JP2008505248A - Stainless steel powder - Google Patents

Stainless steel powder Download PDF

Info

Publication number
JP2008505248A
JP2008505248A JP2007519170A JP2007519170A JP2008505248A JP 2008505248 A JP2008505248 A JP 2008505248A JP 2007519170 A JP2007519170 A JP 2007519170A JP 2007519170 A JP2007519170 A JP 2007519170A JP 2008505248 A JP2008505248 A JP 2008505248A
Authority
JP
Japan
Prior art keywords
stainless steel
steel powder
vanadium
powder
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007519170A
Other languages
Japanese (ja)
Other versions
JP4580984B2 (en
Inventor
モールス、オウェ
カント、レイトン、リカルド
バーグマン、オラ
Original Assignee
ホガナス アクチボラゲット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホガナス アクチボラゲット filed Critical ホガナス アクチボラゲット
Publication of JP2008505248A publication Critical patent/JP2008505248A/en
Application granted granted Critical
Publication of JP4580984B2 publication Critical patent/JP4580984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention concerns a stainless steel powder and composition comprising at least 10w-t% chromium. Vanadium is present in an amount of at least 4 times the amount of carbon and nitrogen. The steel powder comprises 10-30% chromium, 0.1-1.0 vanadium, 0.5-1.5% silicon, less than 0.1% carbon and less than 0.07% nitrogen. A process for preparing a sintered part and a sintered part are also claimed.

Description

本発明は、新規なステンレス鋼粉末及びこの新しい粉末を含むステンレス鋼粉末組成物に関する。特に本発明は、大きな密度を有する焼結粉末冶金部品を製造するためのステンレス鋼粉末組成物に関する。   The present invention relates to a novel stainless steel powder and a stainless steel powder composition comprising this new powder. In particular, the present invention relates to a stainless steel powder composition for producing sintered powder metallurgy parts having high density.

粉末冶金の第一の目的は、高密度の成形(compact)及び焼結した物体を実現することにある。密度を増大する幾つかの方法があり、それらの方法の一つは、粉末の圧縮性を改良する温間成形であり、一層大きな圧粉密度(green density)を有する圧粉体(green body)を与える。ダイ壁潤滑を適用することにより、内部に用いる潤滑剤の量を最小限にすることができ、圧粉密度も増大させることができる。潤滑剤の量を少なくすると共に、大きな成形圧力を使用することによっても、増大した圧粉密度を与える結果になる。ステンレス鋼粉末をソフトアニーリング(soft annealing)して、材料の歪みを解消し、再結晶化することも圧縮性を改良する。成形後、圧粉体を焼結操作にかけ、焼結物体を得る。焼結時の高い温度、即ち、約1180〜1200℃より高い温度は、焼結中の収縮を増大し、その物体の密度を一層高くすることになる。しかし、高い温度での焼結は、特別な設備をした焼結炉を必要とする。更に、エネルギー消費が増大するであろう。   The primary purpose of powder metallurgy is to achieve high density compact and sintered objects. There are several ways to increase the density, one of which is warm forming to improve the compressibility of the powder, and a green body with a higher green density. give. By applying die wall lubrication, the amount of lubricant used inside can be minimized and the green density can be increased. Reducing the amount of lubricant and using a higher molding pressure also results in increased green density. Soft annealing the stainless steel powder to eliminate material distortion and recrystallization also improves compressibility. After molding, the green compact is subjected to a sintering operation to obtain a sintered body. High temperatures during sintering, i.e., greater than about 1180-1200 ° C, will increase shrinkage during sintering and increase the density of the object. However, high temperature sintering requires a specially equipped sintering furnace. Furthermore, energy consumption will increase.

高密度ステンレス鋼PM部品を製造する時、鋼を耐腐食性にするクロムが存在するため、特別な問題が起きる。   When manufacturing high density stainless steel PM parts, special problems arise because of the presence of chromium which makes the steel corrosion resistant.

ステンレス鋼は約10%より多いクロムを含む。鋼には炭素が存在している場合が最も多く、クロム炭化物の形成を起こすであろう。クロム炭化物の形成は、マトリックス中のクロム含有量を低下し、それが今度は耐腐食性の低下を起こす。マトリックス中のクロム含有量が低下するのを防ぐために、ニオブのような炭化物を形成する安定化剤をしばしば用いる。このやり方で、炭化クロムの形成を回避することができ、その代わり炭化ニオブが形成され、その結果、耐腐食性を維持することができる。しかし、ニオブを使用することによる問題は、大きな焼結密度を得るためには高い焼結温度が必要になり、エネルギー消費がかなり大きくなることである。   Stainless steel contains more than about 10% chromium. Steel is most often present with carbon and will cause the formation of chromium carbides. The formation of chromium carbide reduces the chromium content in the matrix, which in turn causes a decrease in corrosion resistance. Stabilizers that form carbides such as niobium are often used to prevent the chromium content in the matrix from being reduced. In this way, the formation of chromium carbide can be avoided, instead niobium carbide is formed, so that the corrosion resistance can be maintained. However, the problem with using niobium is that a high sintering temperature is required to obtain a large sintering density and the energy consumption is considerably increased.

本発明による新規な粉末を用いることにより、焼結ステンレス鋼PM部品を製造するためのエネルギーコストを減少させることができることが今回判明した。新規な粉末を使用することによる別の大きな利点は、比較的大きな焼結密度を得ることができることである。   It has now been found that the energy costs for producing sintered stainless steel PM parts can be reduced by using the novel powder according to the invention. Another major advantage of using the new powder is that a relatively large sintered density can be obtained.

新規な粉末を使用することにより製造された焼結部品は、部品のコスト及び性能の両方に対する要求事項が厳しい自動車工業では特に重要である。新規な粉末は、排気系統の焼結部品、特に排気系統のフランジのために用いることもできる。   Sintered parts produced by using new powders are particularly important in the automotive industry where demands on both part cost and performance are stringent. The novel powders can also be used for exhaust system sintered parts, in particular for exhaust system flanges.

本発明は、ステンレス鋼粉末、ステンレス鋼粉末組成物のみならず、それから得られた大きな密度を有する成形及び焼結部品に関する。特に本発明は、粉末冶金部品を製造するためのステンレス鋼粉末組成物に関する。   The present invention relates not only to stainless steel powder and stainless steel powder compositions, but also to molded and sintered parts having a large density obtained therefrom. In particular, the invention relates to a stainless steel powder composition for producing powder metallurgy parts.

ステンレス鋼粉末に安定化剤としてバナジウムを添加することにより、現在用いられているニオブ安定化剤を用いた場合と比較して、焼結密度を同様か又は更に増大しながら、焼結温度、従って、エネルギー消費を減少させることができることが今回思いがけなく発見された。更に、炭素と窒素の合計量の少なくとも4倍の量でバナジウムを存在させるのがよく、それにより窒素の量を0.07重量%より低くするのがよく、炭素の量を0.1重量%より少なくするのがよいことが発見された。バナジウムの量は、0.1〜1重量%の範囲にすべきである。   By adding vanadium as a stabilizer to the stainless steel powder, the sintering temperature, and hence the sintering density, can be increased or similar compared to the case of using the niobium stabilizer currently used. It was unexpectedly discovered that energy consumption can be reduced. In addition, vanadium should be present in an amount at least four times the total amount of carbon and nitrogen, so that the amount of nitrogen should be less than 0.07% by weight and the amount of carbon should be 0.1% by weight. It has been discovered that less is better. The amount of vanadium should be in the range of 0.1 to 1% by weight.

バナジウムを含むステンレス鋼組成物は、WO 03/106077公報及び米国特許第5,856,625号明細書に記載されている。WO 03/106077には、バナジウムを含む粉末の効果又は実際の例は何等記載されていない。米国特許第5,856,625号明細書によれば、ステンレス鋼粉末は、1.5〜2.5%のバナジウムを含むのが好ましい。この既知のステンレス鋼粉末は、大きな耐摩耗性を有する材料を目的としており、Mo、V、及びWのような強力な炭化物形成元素から主に形成される、マトリックス中の硬質炭化物の量を適切にするためには大きな炭素含有量が必要である。特許公報、JP59−47358には、クロム、珪素、炭素、及び窒素を含む鋼粉末が記載されている。この粉末は、更にニッケル及び/又は銅及びバナジウムを含んでいてもよい。JP59−47358による鋼粉末の目的は、例えば、滑動表面を製造することにある。   Stainless steel compositions containing vanadium are described in WO 03/106077 and US Pat. No. 5,856,625. WO 03/106077 does not describe any effect or actual example of vanadium containing powder. According to US Pat. No. 5,856,625, the stainless steel powder preferably contains 1.5-2.5% vanadium. This known stainless steel powder is aimed at materials with high wear resistance and is suitable for the amount of hard carbides in the matrix, mainly formed from strong carbide-forming elements such as Mo, V and W. A large carbon content is necessary to make it. Patent publication JP 59-47358 describes steel powder containing chromium, silicon, carbon, and nitrogen. This powder may further contain nickel and / or copper and vanadium. The purpose of the steel powder according to JP 59-47358 is, for example, to produce a sliding surface.

本発明の詳細な記述
特に、本発明によるステンレス鋼粉末は、10〜30%のクロム、0.1〜1%のバナジウム、0.5〜1.5%の珪素、0.1%未満の炭素、及び0.07%未満の窒素を含む。好ましくは、ステンレス鋼粉末は、10〜20%のクロム、0.15〜0.8%のバナジウム、0.7〜1.2%の珪素、0.05%未満の炭素、及び0.05%未満の窒素を含む。
DETAILED DESCRIPTION OF THE INVENTION In particular, the stainless steel powder according to the invention comprises 10-30% chromium, 0.1-1% vanadium, 0.5-1.5% silicon, less than 0.1% carbon. And less than 0.07% nitrogen. Preferably, the stainless steel powder is 10-20% chromium, 0.15-0.8% vanadium, 0.7-1.2% silicon, less than 0.05% carbon, and 0.05% Contains less than nitrogen.

ステンレス鋼の耐腐食性は非常に重要なので、バナジウム含有量は、クロムの炭化物及び窒化物の代わりにバナジウムの炭化物及び窒化物が形成されるように選択されるべきである。バナジウム含有量は、焼結部品中のバナジウムの炭化物及び窒化物を形成することができる実際の炭素及び窒素の含有量に関連して選択されるのが好ましいであろう。形成されるバナジウムの炭化物及び窒化物は、VC及びNC型のものであり、我々の現在の知識によれば、バナジウム含有量は、粉末の炭素及び窒素含有量の好ましくは最低4倍になるべきであると考えられる。焼結部品中の実際の炭素及び窒素の含有量は、脱潤滑中に取り込まれるため、粉末のそれら元素の含有量よりも高くなることがある。   Since the corrosion resistance of stainless steel is very important, the vanadium content should be selected so that vanadium carbides and nitrides are formed instead of chromium carbides and nitrides. The vanadium content would preferably be selected in relation to the actual carbon and nitrogen content capable of forming vanadium carbides and nitrides in the sintered part. The vanadium carbides and nitrides formed are of the VC and NC types, and according to our current knowledge, the vanadium content should preferably be at least 4 times the carbon and nitrogen content of the powder. It is thought that. The actual carbon and nitrogen content in the sintered part may be higher than the content of those elements in the powder because it is incorporated during delubrication.

珪素の量は、0.5%〜1.5%になるべきである。珪素は重要な元素である。なぜなら、それはステンレス鋼溶融物の噴霧中に薄い凝集酸化物層(a thin coherent oxide layer)を生ずるからである。即ち、珪素の含有量は、0.5重量%以上になるべきである。この酸化物層は、更に酸化するのを防ぐ。珪素レベルが余りにも高くなると、圧縮性の低下を起こすであろう。従って、珪素含有量は1.5重量%以下になるべきである。   The amount of silicon should be between 0.5% and 1.5%. Silicon is an important element. This is because it produces a thin coherent oxide layer during spraying of the stainless steel melt. That is, the silicon content should be 0.5% by weight or more. This oxide layer prevents further oxidation. If the silicon level is too high, it will cause a decrease in compressibility. Accordingly, the silicon content should be 1.5% by weight or less.

窒素は炭素と同じ影響を与え、即ち、クロムの窒化物又はクロムの炭窒化物の形成により材料を敏感にすることがあるので、窒素の量はできるだけ低くすべきである。窒素は、圧縮性を低下する析出硬化効果も有する。従って、窒素含有量は0.07%を超えるべきではなく、好ましくは0.05重量%を超えるべきではない。実際には窒素含有量を0.001%より低くすることは困難である。   The amount of nitrogen should be as low as possible because nitrogen can have the same effect as carbon, ie, it can make the material sensitive by the formation of chromium nitrides or chromium carbonitrides. Nitrogen also has a precipitation hardening effect that reduces compressibility. Thus, the nitrogen content should not exceed 0.07% and preferably should not exceed 0.05% by weight. In practice, it is difficult to make the nitrogen content lower than 0.001%.

強度及び硬度等のような性質を向上させるため、他の合金用元素を添加する。合金用元素は、モリブデン、銅、マンガン、及びニッケルからなる群から選択する。   In order to improve properties such as strength and hardness, other alloying elements are added. The alloying element is selected from the group consisting of molybdenum, copper, manganese, and nickel.

本発明によれば、フェライト系ステンレス鋼が好ましい。フェライト系ステンレス鋼は、ニッケルとの合金であるオーステナイトステンレス鋼よりも値段が安い。オーステナイトマトリックスと比較して、フェライトマトリックスは熱膨張係数が低く、そのことは、例えば、ステンレス鋼排気系のフランジには有利である。従って、本発明によるステンレス鋼の好ましい態様は、本質的にニッケルを含まない。特に、フェライト系ステンレス鋼は、10〜20重量%のクロム、0〜5重量%のモリブデン、1重量%未満のニッケル、0.2重量%未満のマンガンを含むであろう。   According to the invention, ferritic stainless steel is preferred. Ferritic stainless steel is cheaper than austenitic stainless steel, which is an alloy with nickel. Compared to the austenite matrix, the ferrite matrix has a lower coefficient of thermal expansion, which is advantageous, for example, for flanges in stainless steel exhaust systems. Accordingly, a preferred embodiment of the stainless steel according to the present invention is essentially free of nickel. In particular, ferritic stainless steel will contain 10-20 wt% chromium, 0-5 wt% molybdenum, less than 1 wt% nickel, less than 0.2 wt% manganese.

他の可能な添加剤は、流動剤、機械加工性改良剤、例えば、フッ化カルシウム、硫化マンガン、窒化硼素、又はそれらの組合せである。   Other possible additives are flow agents, machinability improvers such as calcium fluoride, manganese sulfide, boron nitride, or combinations thereof.

ステンレス鋼粉末は、ガス又は水噴霧された予め合金化された粉末で、その粉末の圧密化法により、約20μmより大きな平均粒径を有する粉末であってもよい。平均粒径は、通常約50μmより大きい。   The stainless steel powder may be a pre-alloyed powder that has been sprayed with gas or water and may have a mean particle size greater than about 20 μm, depending on the compaction method of the powder. The average particle size is usually greater than about 50 μm.

潤滑剤は、粉末の圧縮性を向上させ、圧粉体部品を放出し易くさせるため、潤滑剤は成形前に添加させる場合が最も多い。潤滑剤の量は、典型的には0.1%〜2%であり、好ましくは0.3%〜1.5%である。潤滑剤は、亜鉛又はリチウムのステアリン酸塩のような金属ステアリン酸塩、ケノルーブ(Kenolube)(登録商標名)、アミド重合体、又はアミドオリゴマー、エチレンビスステアルアミド、脂肪酸誘導体、又は他の潤滑効果を有する適当な物質からなる群から選択することができる。ダイ壁潤滑は単独で用いてもよく、或いは内部潤滑と組合せて用いてもよい。   Lubricants are most often added before molding in order to improve the compressibility of the powder and facilitate the release of the green compact part. The amount of lubricant is typically 0.1% to 2%, preferably 0.3% to 1.5%. Lubricants include metal stearates such as zinc or lithium stearate, Kenolube (R), amide polymers, or amide oligomers, ethylene bisstearamide, fatty acid derivatives, or other lubricants It can be selected from the group consisting of suitable substances having an effect. Die wall lubrication may be used alone or in combination with internal lubrication.

場合によりアニーリングした後、ステンレス鋼粉末を潤滑剤及び他の場合による添加剤と混合する。粉末混合物は、400〜1200MPaで成形し、1150〜1350℃で5分〜1時間焼結し、少なくとも7.20g/cmの密度を得る。しかし、本発明による粉末は、処理コストを減少するため、一層低い焼結密度を有する部品を製造するために用いることもできる。成形工程は、冷間成形、又は温間成形として行うことができるであろう。 After optional annealing, the stainless steel powder is mixed with a lubricant and other optional additives. The powder mixture is molded at 400 to 1200 MPa and sintered at 1150 to 1350 ° C. for 5 minutes to 1 hour to obtain a density of at least 7.20 g / cm 3 . However, the powders according to the invention can also be used to produce parts with a lower sintered density in order to reduce processing costs. The forming process could be done as cold forming or warm forming.

焼結中の収縮を増大することにより、大きな焼結密度が得られ、何ら特別な理論に束縛されるものではないが、この収縮は、体積拡散が促進された結果であると考えられる。炭素の存在で形成される炭化バナジウムは、上昇させた温度、特に焼結温度では溶解しているであろうが、金属粉末のアニーリングのような低い温度でも溶解しているであろう。通常、ステンレス鋼粉末の焼結温度は、約1150〜1300℃である。   By increasing the shrinkage during sintering, a large sintered density is obtained and is not bound by any particular theory, but this shrinkage is believed to be a result of accelerated volume diffusion. Vanadium carbide formed in the presence of carbon will dissolve at elevated temperatures, particularly sintering temperatures, but will also dissolve at lower temperatures such as annealing of metal powders. Usually, the sintering temperature of the stainless steel powder is about 1150 to 1300 ° C.

例1
表1による化学組成を有し、炭化物形成元素としてニオブ及びバナジウムを含む三つの異なった溶融物を形成した。表2及び3による冷間又は温間成形のための幾つかの混合物を調製した。冷間成形及び温間成形の目的のために、潤滑剤を使用した。温間成形での流動剤として、デガッサ(Degussa)からのエアロジル(Aerosil)(登録商標名)A−200を用いた。
Example 1
Three different melts having the chemical composition according to Table 1 and containing niobium and vanadium as carbide forming elements were formed. Several mixtures for cold or warm forming according to Tables 2 and 3 were prepared. Lubricants were used for cold forming and warm forming purposes. Aerosil (R) A-200 from Degussa was used as a flow agent in warm forming.

Figure 2008505248
Figure 2008505248

Figure 2008505248
Figure 2008505248

Figure 2008505248
Figure 2008505248

表2及び3による粉末混合物を成形し、圧粉体の性質を種々の成形圧力に対して決定した。結果を表4に与える。成形物体を、水素雰囲気中で1250℃で45分間焼結し、焼結密度及び機械的性質を決定した。結果を表5に示す。   Powder mixtures according to Tables 2 and 3 were molded and the properties of the green compacts were determined for various molding pressures. The results are given in Table 4. The shaped body was sintered in a hydrogen atmosphere at 1250 ° C. for 45 minutes to determine the sintered density and mechanical properties. The results are shown in Table 5.

Figure 2008505248
Figure 2008505248

Figure 2008505248
Figure 2008505248

表4及び表5から、本発明による材料から製造された試料の焼結密度が改良されているが、本発明による材料の圧粉密度は比較材料と同様であることを明らかに判定することができる。焼結部品の機械的性質も、既知の材料と比較して、本発明による材料を用いて改良されている。   From Tables 4 and 5, it can be clearly determined that the sintered density of the samples produced from the material according to the invention is improved, but the dust density of the material according to the invention is similar to that of the comparative material. it can. The mechanical properties of the sintered parts are also improved with the material according to the invention compared to known materials.

例2
焼結温度及び焼結時間の影響を評価するため、粉末混合物4、5、6を、周囲温度で600MPaで一軸成形運動で成形し、ISO 2740に従う抗張力試験試料にした。得られた圧粉体試料を、水素雰囲気中1200℃、1250℃、及び1300℃で、それぞれ20分間及び45分間焼結した。
Example 2
In order to evaluate the influence of the sintering temperature and the sintering time, the powder mixtures 4, 5, 6 were molded in a uniaxial molding motion at 600 MPa at ambient temperature and made into tensile test samples according to ISO 2740. The obtained green compact samples were sintered in a hydrogen atmosphere at 1200 ° C., 1250 ° C., and 1300 ° C. for 20 minutes and 45 minutes, respectively.

焼結した後、焼結試料の焼結密度をISO 3369に従って測定した。結果を表6に示す。表6から、バナジウムを添加して与えたフェライト系ステンレス鋼粉末について、1200℃位の低い焼結温度でさえも7.2g/cmより大きい焼結密度を得ることができることを結論することができる。1250℃の焼結温度で20分の焼結時間で7.35g/cmの焼結密度を生じたのに対し、ニオブ安定化フェライト系ステンレス鋼粉末についての対応する密度は、添加したニオブの量により、それぞれ7.15g/cm及び7.03g/cmである。 After sintering, the sintered density of the sintered samples was measured according to ISO 3369. The results are shown in Table 6. From Table 6, it can be concluded that for ferritic stainless steel powders given with the addition of vanadium, sintering densities greater than 7.2 g / cm 3 can be obtained even at sintering temperatures as low as 1200 ° C. it can. While a sintering time of 20 minutes at a sintering temperature of 1250 ° C. produced a sintered density of 7.35 g / cm 3 , the corresponding density for the niobium stabilized ferritic stainless steel powder was that of the added niobium Depending on the amount, they are 7.15 g / cm 3 and 7.03 g / cm 3 respectively.

この例は、本発明によるフェライト系ステンレス鋼粉末から形成した圧粉体の焼結中、収縮に対する驚く程大きな影響を表している。   This example represents a surprisingly large effect on shrinkage during sintering of green compacts formed from ferritic stainless steel powders according to the present invention.

Figure 2008505248
Figure 2008505248

例3
ステンレス鋼粉末の窒素含有量の影響を評価するため、一つの溶融物を噴霧し、その噴霧した粉末から、窒素含有雰囲気中でアニーリングすることにより、種々の窒素含有量を有する粉末試料を調製した。参照材料として、水素100%の雰囲気中でアニールした粉末を用いた。それら粉末試料を1%の潤滑剤と混合し、得られた組成物を種々の圧力で冷間成形し、試料片にした。それら試料片を水素雰囲気中1250℃で45分間焼結した。それら種々の分間試料の化学分析を表7に与える。但し窒素含有量は、アニーリング後に決定し、表8に与える。表8には、種々の試料片についての焼結密度も与えられている。
Example 3
In order to evaluate the influence of the nitrogen content of stainless steel powder, powder samples with various nitrogen contents were prepared by spraying one melt and annealing from the sprayed powder in a nitrogen-containing atmosphere. . As a reference material, powder annealed in an atmosphere of 100% hydrogen was used. The powder samples were mixed with 1% lubricant and the resulting compositions were cold formed at various pressures into sample pieces. The sample pieces were sintered in a hydrogen atmosphere at 1250 ° C. for 45 minutes. The chemical analysis of these various minute samples is given in Table 7. However, the nitrogen content is determined after annealing and given in Table 8. Table 8 also gives the sintered density for the various specimens.

Figure 2008505248
Figure 2008505248

Figure 2008505248
Figure 2008505248

例3から、0.07%より高い窒素含有量は、望ましくない焼結密度を与える結果になることが分かる。   From Example 3, it can be seen that a nitrogen content higher than 0.07% results in an undesirable sintered density.

Claims (8)

少なくとも10重量%のクロム、0.1重量%未満の炭素、及び0.07重量%未満の窒素を含む予め合金化したステンレス鋼粉末で、更に、炭素と窒素の合計量の少なくとも4倍の量のバナジウムを含み、前記バナジウムの量が、0.1〜1重量%である、予め合金化したステンレス鋼粉末。   A pre-alloyed stainless steel powder containing at least 10 wt% chromium, less than 0.1 wt% carbon, and less than 0.07 wt% nitrogen, and at least four times the total amount of carbon and nitrogen A pre-alloyed stainless steel powder containing the vanadium, wherein the amount of vanadium is 0.1 to 1% by weight. 更に、10〜30%のクロム、及び0.5〜1.5%の珪素を含む、請求項1に記載のステンレス鋼粉末。   The stainless steel powder according to claim 1, further comprising 10-30% chromium and 0.5-1.5% silicon. 10〜20%のクロム、0.15〜0.8%のバナジウム、0.7〜1.2%の珪素、0.05%未満の炭素、及び0.05%未満の窒素を含む、請求項1又は2に記載のステンレス鋼粉末。   10 to 20% chromium, 0.15 to 0.8% vanadium, 0.7 to 1.2% silicon, less than 0.05% carbon, and less than 0.05% nitrogen. The stainless steel powder according to 1 or 2. 本質的にニッケルを含まない、請求項1〜3のいずれか1項に記載のステンレス鋼粉末。   The stainless steel powder according to any one of claims 1 to 3, which is essentially free of nickel. 請求項1〜4のいずれか1項に記載のステンレス鋼粉末と、潤滑剤、流動剤、機械的加工性改良剤、及び合金用元素からなる群から選択された添加剤とを含む、粉末冶金組成物。   Powder metallurgy comprising the stainless steel powder according to any one of claims 1 to 4 and an additive selected from the group consisting of a lubricant, a flow agent, a mechanical workability improver, and an alloying element. Composition. 請求項1〜4のいずれか1項に記載の鋼粉末を、場合により潤滑剤と混合する工程と、
1150〜1350℃の温度で成形部品を焼結する工程、
を含むステンレス鋼粉末の成形部品を製造する方法。
A step of optionally mixing the steel powder according to any one of claims 1 to 4 with a lubricant;
Sintering the molded part at a temperature of 1150 to 1350 ° C.,
Of producing molded parts of stainless steel powder containing
少なくとも7.20g/cmの密度まで焼結を行う、請求項6に記載の方法。 The method of claim 6, wherein the sintering is performed to a density of at least 7.20 g / cm 3 . 少なくとも7.20g/cmの焼結密度を有する、請求項1〜4のいずれか1項に記載のステンレス鋼粉末の焼結部品。
The sintered part of stainless steel powder according to claim 1, having a sintered density of at least 7.20 g / cm 3 .
JP2007519170A 2004-07-02 2005-07-01 Stainless steel powder Expired - Fee Related JP4580984B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0401707A SE0401707D0 (en) 2004-07-02 2004-07-02 Stainless steel powder
PCT/SE2005/001086 WO2006004529A1 (en) 2004-07-02 2005-07-01 Stainless steel powder

Publications (2)

Publication Number Publication Date
JP2008505248A true JP2008505248A (en) 2008-02-21
JP4580984B2 JP4580984B2 (en) 2010-11-17

Family

ID=32733732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007519170A Expired - Fee Related JP4580984B2 (en) 2004-07-02 2005-07-01 Stainless steel powder

Country Status (17)

Country Link
EP (1) EP1768803B1 (en)
JP (1) JP4580984B2 (en)
CN (1) CN101124058B (en)
AT (1) ATE483541T1 (en)
AU (1) AU2005260139B2 (en)
BR (1) BRPI0512943A (en)
CA (1) CA2572130C (en)
DE (1) DE602005023998D1 (en)
DK (1) DK1768803T3 (en)
ES (1) ES2354019T3 (en)
MX (1) MXPA06015244A (en)
RU (1) RU2345866C2 (en)
SE (1) SE0401707D0 (en)
TW (1) TWI279268B (en)
UA (1) UA83145C2 (en)
WO (1) WO2006004529A1 (en)
ZA (1) ZA200700040B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2357175T3 (en) * 2006-09-22 2011-04-19 Hoganas Ab (Publ) COMPOSITION IN METALLURGICAL POWDER AND PRODUCTION METHOD.
US8231702B2 (en) 2006-09-22 2012-07-31 Hoganas Ab (Publ) Metallurgical powder composition and method of production
KR20120087153A (en) * 2009-10-16 2012-08-06 회가내스 아베 Nitrogen containing, low nickel sintered stainless steel
EP2576104A4 (en) * 2010-06-04 2017-05-31 Höganäs Ab (publ) Nitrided sintered steels
TWI421375B (en) * 2011-01-28 2014-01-01 Taiwan Powder Technologies Co Ltd Methods for improving the mechanical properties of non - Austrian iron - based stainless steel surfaces
TWI421374B (en) * 2011-01-28 2014-01-01 Taiwan Powder Technologies Co Ltd Stainless steel low temperature carburizing method
TWI421376B (en) * 2011-01-28 2014-01-01 Taiwan Powder Technologies Co Ltd Method of Improving Strength and Hardness of Powder Metallurgy Stainless Steel
CN102660709A (en) * 2012-04-24 2012-09-12 邓湘凌 High-strength wear-resisting alloy and preparation method thereof
DE102012216052A1 (en) * 2012-09-11 2014-04-10 Robert Bosch Gmbh Sintered pressing part and method for producing such
CN103643160B (en) * 2013-11-11 2016-01-20 常熟市迅达粉末冶金有限公司 A kind of high-performance 17-4PH stainless steel and preparation method thereof
JP6314842B2 (en) * 2015-01-06 2018-04-25 セイコーエプソン株式会社 Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP6314846B2 (en) * 2015-01-09 2018-04-25 セイコーエプソン株式会社 Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP6319121B2 (en) * 2015-01-29 2018-05-09 セイコーエプソン株式会社 Method for producing metal powder for powder metallurgy, compound, granulated powder and sintered body
JP6314866B2 (en) * 2015-02-09 2018-04-25 セイコーエプソン株式会社 Method for producing metal powder for powder metallurgy, compound, granulated powder and sintered body
RU2750720C1 (en) * 2020-04-18 2021-07-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Method of obtaining a sintered product from powder corrosive steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635441B2 (en) * 1982-09-08 1988-02-03 Kawasaki Steel Co

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA938889B (en) * 1992-12-07 1994-08-01 Mintek Stainless steel composition
AU4887796A (en) * 1995-03-10 1996-10-02 Powdrex Limited Stainless steel powders and articles produced therefrom by powder metallurgy
JP4975916B2 (en) * 2001-09-21 2012-07-11 株式会社日立製作所 High toughness and high strength ferritic steel and its manufacturing method
SE0201825D0 (en) * 2002-06-14 2002-06-14 Hoeganaes Ab Hot compaction or steel powders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635441B2 (en) * 1982-09-08 1988-02-03 Kawasaki Steel Co

Also Published As

Publication number Publication date
BRPI0512943A (en) 2008-04-15
AU2005260139A1 (en) 2006-01-12
MXPA06015244A (en) 2007-03-15
TWI279268B (en) 2007-04-21
DE602005023998D1 (en) 2010-11-18
ES2354019T3 (en) 2011-03-09
CA2572130C (en) 2011-01-18
EP1768803B1 (en) 2010-10-06
AU2005260139B2 (en) 2009-09-03
SE0401707D0 (en) 2004-07-02
JP4580984B2 (en) 2010-11-17
RU2007104054A (en) 2008-08-10
CN101124058B (en) 2010-06-16
ZA200700040B (en) 2008-06-25
DK1768803T3 (en) 2011-01-31
CA2572130A1 (en) 2006-01-12
CN101124058A (en) 2008-02-13
ATE483541T1 (en) 2010-10-15
TW200605972A (en) 2006-02-16
RU2345866C2 (en) 2009-02-10
EP1768803A1 (en) 2007-04-04
UA83145C2 (en) 2008-06-10
WO2006004529A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4580984B2 (en) Stainless steel powder
JP5453251B2 (en) Iron-based powder and composition thereof
RU2553794C2 (en) Nitrogen-containing, low-nickel sintered stainless steel
KR100613942B1 (en) Iron powder
TWI506145B (en) Iron-based pre-alloyed powder
JP2005530037A (en) Prealloy iron-based powder and method for producing one or more sintered parts
PL362787A1 (en) Sintered ferrous material containing copper
JP2010111937A (en) High-strength composition iron powder and sintered component using the same
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP4556755B2 (en) Powder mixture for powder metallurgy
KR20050105243A (en) Cobalt-based metal powder and method for producing components thereof
KR100846047B1 (en) Stainless steel powder
JP2007169736A (en) Alloy steel powder for powder metallurgy
JPH08501832A (en) Method of producing sintered alloy steel components
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
US7473295B2 (en) Stainless steel powder
JP2007100115A (en) Alloy steel powder for powder metallurgy
JPH11181541A (en) Production of stainless steel sintered body
JPH05263200A (en) Sintered high speed steel excellent in seizing resistance and its manufacture
Dobrzański et al. Sinter-hardening process applicable to stainless steels
JP2024016289A (en) Iron-based sintered sliding member and method for producing the same
JP2005200698A (en) Iron-based powder mixture for high-strength sintered component
JPH10287901A (en) Production of stainless sintered body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100611

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees