JP2008504578A - マルチチャネル出力信号を発生するためのマルチチャネルシンセサイザおよび方法 - Google Patents

マルチチャネル出力信号を発生するためのマルチチャネルシンセサイザおよび方法 Download PDF

Info

Publication number
JP2008504578A
JP2008504578A JP2007518481A JP2007518481A JP2008504578A JP 2008504578 A JP2008504578 A JP 2008504578A JP 2007518481 A JP2007518481 A JP 2007518481A JP 2007518481 A JP2007518481 A JP 2007518481A JP 2008504578 A JP2008504578 A JP 2008504578A
Authority
JP
Japan
Prior art keywords
post
channel
processed
reconstruction
quantized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007518481A
Other languages
English (en)
Other versions
JP4712799B2 (ja
Inventor
ユールゲン ヘレ
サッシャ ディスヒ
ジョーハン ヒルペアト
クリスティアン エルテル
アンドレーアス ヘルツァー
クラウス−クリスティアン シュペンガー
Original Assignee
フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ filed Critical フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ
Publication of JP2008504578A publication Critical patent/JP2008504578A/ja
Application granted granted Critical
Publication of JP4712799B2 publication Critical patent/JP4712799B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Radio Relay Systems (AREA)
  • Stereophonic System (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)

Abstract

マルチチャネルシンセサイザは、後処理された再構成パラメータまたは後処理された量が、対応する量子化および逆量子化された再構成パラメータと異なるように、入力信号の実際の時間部分に対して、後処理された再構成パラメータまたは再構成パラメータから導出される量を決定するためのポストプロセッサ(10)を含み、後処理された再構成パラメータまたは導出された量は、量子化ステップサイズに拘束されていない。マルチチャネル再構成器(12)は、マルチチャネル出力信号を再構成するために後処理された再構成パラメータを用いる。マルチチャネル符号化/復号化に関して再構成パラメータを後処理することによって、低ビットレート要求では好ましい、再構成パラメータに対して大きい量子化ステップサイズによる再構成されたマルチチャネル出力信号における大きな変化が低減されるので、一方ではデータ速度を遅くし、他方では品質を向上することが可能になる。
【選択図】図1

Description

本発明は、マルチチャネルオーディオ処理に関し、特に、複数のチャネルを有する出力信号を再構成するためのベースチャネルおよびパラメトリックサイド情報を用いたマルチチャオーディオ再構成に関する。
近年、マルチチャネルオーディオ再生技術がますます重要になっている。これは、周知のMP3技術等のオーディオ圧縮/符号化技術により、制限のある帯域幅を有するインターネットまたは他の伝送チャネルを介して、オーディオ記録を配信することが可能になったという事実によるものである。ステレオフォーマットの全記録を配信すること、すなわち、第1のつまり左ステレオチャネルと第2のつまり右ステレオチャネルとを含むオーディオ記録のデジタル表現を配信することが可能であるという事実により、MP3符号化技術はよく知られるようになった。
しかしながら、従来の2チャネルサウンドシステムには基本的な欠点がある。したがって、サラウンド技術が開発されている。推奨されるマルチチャネルサラウンド表現は、2つのステレオチャネルLおよびRに加えて、付加的なセンターチャネルCおよび2つのサラウンドチャネルLs、Rsをさらに含む。この基準サウンドフォーマットは、3ステレオ/2ステレオとも呼ばれるもので、3つのフロントチャネルおよび2つのサラウンドチャネルを意味する。一般に、5つの伝送チャネルを必要とする。再生環境では、それぞれ5つの異なる場所に配置された少なくとも5つのスピーカは、5つの適切に配置されたスピーカから一定の距離において、最適なスイートスポットを得る必要がある。
マルチチャネルオーディオ信号の伝送に必要なデータ量を低減する本技術では、いくつかの技術が周知である。このような技術は、ジョイントステレオ技術と呼ばれている。このために、図10を参照すると、ジョイントステレオデバイス60を示している。このデバイスは、例えば、インテンシティステレオ(IS)またはバイノーラルキュー符号化(BCC)を実施するデバイスとすることができる。このようなデバイスは、一般に、入力として少なくとも2つのチャネル(CH1、CH2、・・・CHn)を受信し、1つのキャリアチャネルおよびパラメトリックデータを出力する。パラメトリックデータは、デコーダにおいて、元のチャネル(CH1、CH2、・・・CHn)の近似値を算出できるように、定義されている。
通常、キャリアチャネルは、サブバンドサンプル、スペクトル係数、時間領域サンプル等を含み、これらにより、基礎の信号が比較的よい表現になるが、パラメトリックデータはスペクトル係数のこのようなサンプルを含まないが、乗算、時間シフティング、周波数シフティング、位相シフティング等による重み付けのような特定の再構成アルゴリズムを制御するための制御パラメータを含む。したがって、パラメトリックデータは、信号または関連付けられたチャネルの比較的粗い表現しか含んでいない。数字を提示すると、キャリアチャネルが必要とするデータ量は、60〜70キロビット/秒の範囲であるが、1つのチャネルに対してパラメトリックサイド情報が必要とするデータ量は、1.5〜2.5キロビット/秒の範囲である。パラメトリックデータの一例としては、以下に説明するように、周知のスケールファクタ、インテンシティステレオ情報またはバイノーラルキューパラメータが挙げられる。
インテンシティステレオ符号化については、AES予稿集3799、「インテンシティステレオ符号化(Intensity Stereo Coding)」、J.ヘレ(Herre)、K.H.ブランデンブルグ(Brandenburg)、D.レーデラー(Lederer)、1994年2月、アムステルダムに記載され、一般に、インテンシティステレオの概念は、2つの立体音響オーディオチャネルのデータに対して行われる主軸変換に基づいている。大部分のデータポイントが第1の原理軸のまわりに集中している場合、符号化を行う前に一定の角度で2つの信号を回転することにより、符号化利得を得ることができる。しかしながら、これは、現実の立体音響生成技術に対して必ずしも当てはまるとは限らない。そのため、この技術は、ビットストリームにおいて伝送から第2の直交成分を除外することにより変更される。したがって、左および右チャネルのための再構成された信号は、同じ伝送信号の別々に重み付けされまたはスケーリングされたバージョンからなる。しかしながら、再構成された信号は、それらの振幅において異なっているが、それらの位相情報については全く同じである。しかしながら、2つの元のオーディオチャネルのエネルギー時間エンベロープは、通常周波数選択的に動作する選択的スケーリング動作により保存される。これは、高い周波数での人間のサウンド認識に一致し、主要な空間キューは、エネルギーエンベロープにより決定される。
また、実際に実施するにあたっては、2つの成分を回転させる代わりに、伝送信号、すなわち、キャリアチャネルが、左チャネルおよび右チャネルの和信号から発生される。さらに、この処理、すなわち、スケーリング動作を実行するためにインテンシティステレオパラメータを発生することは、周波数選択的に実行され、すなわち、各スケールファクタバンド、すなわち、エンコーダの周波数区分に対して独立して実行される。好ましくは、2つのチャネルが結合チャネルまたは「キャリア」チャネルを形成するために結合され、結合チャネルの他に、インテンシティステレオ情報が決定され、これは、第1のチャネルのエネルギー、第2のチャネルのエネルギーまたは結合チャネルのエネルギーに依存する。
BCC技術については、AESコンベンション論文5574、「ステレオおよびマルチチャネルオーディオ圧縮に応用されたバイノーラルキュー符号化(Binaural cue coding applied to stereo and multi−channel audio compression)」、C.フォーラ(Faller)、F.バウムガルテ(Baumgarte)、2002年5月、ミュンヘンに記載されている。BCC符号化では、オーバーラップウィンドウを有するDFTベースの変換を用いて、多数のオーディオ入力チャネルは、スペクトル表現に変換されている。得られる均一なスペクトルは、それぞれインデックスを有する重なりのない区分に分割される。各区分は、等価矩形帯域幅(ERB)に比例する帯域幅を有する。チャネル間レベル差(ICLD)およびチャネル間時間差(ICTD)は、各フレームkに対して、この区分毎に推定される。ICLDおよびICTDは、量子化され符号化されると、BCCビットストリームが得られる。基準チャネルと比較にして、チャネル間レベル差およびチャネル間時間差が各チャネルに与えられる。次に、パラメータが規定の公式にしたがって算出され、これらは、処理される信号の特定の区分に依存する。
デコーダ側では、デコーダは、モノラル信号およびBCCビットストリームを受信する。モノラル信号は、周波数領域に変換され、空間合成ブロックに入力され、このブロックは、復号化されたICLDおよびICTD値も受信する。空間合成ブロックでは、マルチチャネル信号を合成するために、モノラル信号の重み付け動作を実行するためにBCCパラメータ(ICLDおよびICTD)値が用いられ、マルチチャネル信号は、周波数/時間変換後の元のマルチチャネルオーディオ信号を再構成したものを表す。
BCCの場合、ジョイントステレオモジュール60は、パラメトリックチャネルデータが量子化され、ICLDまたはICTDパラメータを符号化するように、チャネルサイド情報を出力するために動作し、元のチャネルのうちの1つは、基準チャネルとしてチャネルサイド情報を符号化するために用いられる。
通常、キャリアチャネルは、構築する元のチャネルの総計として形成されるものである。
当然、上記の技術では、キャリアチャネルしか処理することができないデコーダに対するモノラル表現を提供するだけであり、パラメトリックデータを処理して、2つ以上の入力チャネルの1つ以上の近似値を発生することはできない。
バイノーラルキュー符号化(BCC)として周知のオーディオ符号化技術については、米国特許出願公開第2003/0219130A1号、米国特許出願公開第2003/0026441A1号および米国特許出願公開第2003/0035553A1号にも詳細に記載されている。さらに引例として、「バイノーラルキュー符号化パートII:方法および応用例(Binaural Cue Coding. Part II:Schemes and Applications)」、C.フォーラ(Faller)およびF.バウムガルテ(Baumgarte)、オーディオおよびスピーチプロシーディング(Audio and Speech Proc.)におけるIEEEトランザクション、11巻、第6号、1993年11月がある。フォーラおよびバウムガルテが著したBCC技術に関する引例の米国特許出願公開公報および2つの引例の技術刊行物は、ここに引例としてすべて組み込まれている。
以下に、マルチチャネルオーディオ符号化のための代表的な一般的BCC方法について、図11〜13を参照して、さらに詳細に説明する。図11は、マルチチャネルオーディオ信号の符号化/伝送のための、そのような一般的バイノーラルキュー符号化方法を示す。BCCエンコーダ112の入力110のマルチチャネルオーディオ入力信号は、ダウンミックスブロック114でダウンミキシングされる。本例では、入力110の元のマルチチャネル信号は、フロント左チャネル、フロント右チャネル、左サラウンドチャネル、右サラウンドチャネルおよびセンターチャネルを有する、5チャネルサラウンド信号である。本発明の好適な実施の形態では、ダウンミックスブロック114は、これらの5つのチャネルを単純に加算して、モノラル信号にすることにより、和信号を生じる。マルチチャネル入力信号を用いて、1つのチャネルを有するダウンミックス信号が得られるような、他のダウンミキシング方法が周知である。この1つのチャネルは、和信号ライン115に出力される。BCC解析ブロック116により得られたサイド情報は、サイド情報ライン117に出力される。BCC解析ブロックでは、上記で説明したように、チャネル間レベル差(ICLD)およびチャネル間時間差(ICTD)が算出される。最近では、BCC解析ブロック116は、チャネル間相関値(ICC値)を算出するために高められている。好ましくは量子化され符号化された形式で、和信号およびサイド情報がBCCデコーダ120に送信される。BCCデコーダは、出力マルチチャネルオーディオ信号のサブバンドを発生するために、送信された和信号を多数のサブバンドに分解して、スケーリングを行い、遅延して、他の処理を行う。出力121の再構成されたマルチチャネル信号のICLD、ICTDおよびICCパラメータ(キュー)が、BCCエンコーダ112への入力110の元のマルチチャネル信号に対するそれぞれのキューと同様になるように、この処理が実行される。このために、BCCデコーダ120は、BCC合成ブロック122およびサイド情報処理ブロック123を含む。
以下に、図12を参照して、BCC合成ブロック122の内部構成を説明する。ライン115上の和信号が、時間/周波数変換ユニットまたはフィルタバンクFB125に入力される。ブロック125の出力には、オーディオフィルタバンク125が1:1変換を実行する場合、すなわち、N個の時間領域サンプルからN個のスペクトル係数を生じる変換の場合、N個のサブバンド信号または、極端な場合では、ブロックとなったスペクトル係数が存在する。
BCC合成ブロック122は、さらに、遅延ステージ126、レベル変更ステージ127、相関処理ステージ128および逆フィルタバンクステージIFB129を備える。ステージ129の出力では、5チャネルサラウンドシステムの場合に、図11に示すように、例えば5つのチャネルを有する再構成されたマルチチャネルオーディオ信号が、1セットのスピーカ124に出力される。
図12に示すように、入力信号s(n)は、エレメント125により、周波数領域またはフィルタバンク領域に変換される。同じ信号のいくつかのバージョンが乗算ノード130で示されるように得られるように、エレメント125による信号出力は乗算される。元の信号のバージョンの数は、再構成される出力信号における出力チャネルの数と等しい。一般に、ノード130での元の信号の各バージョンが遅延d1、d2、・・・、di、・・・、dNを受ける場合、遅延パラメータは図11のサイド情報処理ブロック123により算出され、BCC解析ブロック116で決定されるように、チャネル間時間差から導出される。
同じことが、乗算パラメータa1、a2、・・・、ai、・・・、aNについて当てはまり、これらについても、BCC解析ブロック116により算出されるように、チャネル間レベル差に基づいてサイド情報処理ブロック123により算出される。
遅延されレベルが操作された信号間の特定の相関がブロック128の出力で得られるように、BCC解析ブロック116により算出されるICCパラメータがブロック128の機能を制御するために用いられる。ステージ126、127、128の順序は、図12に示す場合と異なっていてもよいことに、ここで留意されたい。
オーディオ信号のフレームに関する処理において、BCC解析がフレームに関して実行され、すなわち、時間可変的、そして周波数に関しても実行されることに、ここで留意されたい。これは、各スペクトル帯域に対してBCCパラメータが得られるという意味である。これは、オーディオフィルタバンク125が入力信号を例えば32個のバンドパス信号に分解する場合、BCC解析ブロックは、32個の帯域それぞれに対するBCCパラメータのセットを得るという意味である。当然、図12に詳細に示される、図11のBCC合成ブロック122が、本例の32個の帯域に基づく再構成を実行する。
以下に、図13を参照して、あるBCCパラメータを決定するセットアップを示す。通常、ICLD、ICTDおよびICCパラメータは、1対のチャネル間で定義することができる。しかしながら、基準チャネルと互いのチャネルとの間で、ICLDおよびICTDパラメータを決定することが好ましい。これについて、図13Aに示す。
ICCパラメータは、別の方法で決定することもできる。一般に大抵の場合、図13Bに示すように、考えられるすべてのチャネル対の間で、エンコーダ内のICCパラメータを推定することができる。この場合、考えられるすべてのチャネル対間の元のマルチチャネル信号とほぼ同じになるように、デコーダがICCを合成する。しかしながら、各時間で最も強力な2つのチャネル間のICCパラメータだけを推定することが提案されていた。この方法は、図13Cに示され、1つの時点で、チャネル1とチャネル2との間でICCパラメータが推定され、別の時点で、チャネル1とチャネル5との間でICCパラメータが算出される例が示されている。次に、デコーダが、デコーダ内の最も強力なチャネル間のチャネル間相関を合成し、残りのチャネル対に対するチャネル間コヒーレンスを算出して合成するためのある発見的ルールを適用する。
例えば、送信ICLDパラメータに基づいてパラメータa1、aNを算出するには、上記引例のAESコンベンション論文5574を参照する。ICLDパラメータは、元のマルチチャネル信号におけるエネルギー分布を表す。一般性を失うことなく、他の全チャネルとフロント左チャネルとの間のエネルギー差を示す4つのICLDパラメータが、図13Aに示される。サイド情報処理ブロック123では、再構成されたすべての出力チャネルの総エネルギーが送信和信号のエネルギーと同じになるように(または比例するように)、乗算パラメータa1、・・・、aNがICLDパラメータから導出される。これらのパラメータを決定するための簡単な方法は、2ステージ処理であり、これは、第1のステージでは、左フロントチャネルの乗算ファクタが1に設定され、図13Aの他のチャネルの乗算ファクタが送信ICLD値に設定される。次に、第2のステージでは、5つのチャネルすべてのエネルギーが算出され、送信和信号のエネルギーと比較される。次に、全チャネルは、全チャネルに対して等しいダウンスケーリングファクタを用いて、ダウンスケーリングされ、ダウンスケーリングファクタは、ダウンスケーリング後、再構成されたすべての出力チャネルの総エネルギーが送信和信号の総エネルギーと等しくなるように、選択される。
当然、乗算ファクタを算出する他の方法があり、これらは、2ステージ処理を利用せず、1ステージ処理だけを必要とするものである。
遅延パラメータに関して、左フロントチャネルの遅延パラメータd1がゼロに設定される場合、BCCエンコーダから送信される遅延パラメータICTDは、直接用いることができることに留意されたい。遅延を行っても信号のエネルギーを変更しないので、ここでは再スケーリングを行う必要がない。
BCCエンコーダからBCCデコーダに送信されるチャネル間コヒーレンス測定値ICCに関して、20log10(−6)から20log10(6)の間の値の乱数を有する全サブバンドの重み付けファクタを乗算するというように、乗算ファクタa1、・・・、anを変更することにより、コヒーレンス操作を行うことができることに、ここで留意されたい。好ましくは、すべての重要な帯域に対してバリアンスがほぼ一定になり、各々の重要な帯域内で平均がゼロとなるように、疑似乱数シーケンスが選択される。同じシーケンスは、各々の異なるフレームのスペクトル係数に対して適用される。したがって、聴覚によるイメージの幅は、疑似乱数シーケンスのバリアンスを変更することにより、制御される。より大きいバリアンスは、より大きいイメージ幅を作り出す。バリアンス変更は、重要な帯域にわたるそれぞれの帯域で実行することができる。これにより、聴覚による場面において、それぞれ異なるイメージ幅を有する複数の対象を同時に存在させることが可能になる。疑似乱数シーケンスに対し適した振幅分布は、米国特許出願公開第2003/0219130A1号で概説されているように、対数目盛に対して均一な分布である。しかしながら、図11に示すBCCエンコーダからBCCデコーダへ送信される和信号のように、すべてのBCC合成処理は、1つの送信される入力チャネルと関係付けられる。
パラメトリックステレオとして周知の関連した技術については、J.ブレーバールト(Breebaart)、S.ファン・デ・パール(van de Par)、A.コーラウシュ(Kohlrausch)、E.シュイエールス(Schuijers)、「低ビットレートでの高品質パラメトリック空間オーディオ符号化(High−Quality Parametric Spatial Audio Coding at Low Bit rates)」、2004年5月、ベルリン、AES第116回コンベンション、予稿集6072、およびE.シュイエールス(Schuijers)、J.ブレーバールト(Breebaart)、H.プルンハーゲン(Purnhagen)、J.エングデガールド(Engdegard)、「低複雑性パラメトリックステレオ符号化(Low Complexity Parametric Stereo Coding)」、2004年5月、ベルリン、AES第116回コンベンション、予稿集6073に記載されている。
図13を参照してすでに概説したように、パラメトリックサイド情報、すなわち、チャネル間レベル差(ICLD)、チャネル間時間差(ICTD)またはチャネル間コヒーレンスパラメータ(ICC)は、算出され、5つのチャネルそれぞれに送信されることができる。このことは、通常、1つの5チャネル信号に対して5つのセットのチャネル間レベル差を送信することを意味している。同じことがチャネル間時間差についても当てはまる。チャネル間コヒーレンスパラメータについては、例えば2つのセットのこれらのパラメータを送信するだけで十分である。
図12を参照してすでに概説したように、信号の1つのフレームまたは時間部分に対して、レベル差パラメータ、時間差パラメータまたはコヒーレンスパラメータは1つだけではない。むしろ、周波数依存のパラメータ化が行えるように、いくつかの異なる周波数帯域に対してこれらのパラメータが決定される。例えば32の周波数チャネル、すなわち、32の周波数帯域を有するフィルタバンクをBCC解析およびBCC合成に用いることは好ましいので、パラメータは、かなりの量のデータを占有することになる。他のマルチチャネル伝送と比較して、パラメトリック表示ではデータ速度が相当遅くなるが、2つのチャネル(ステレオ信号)を有する信号またはマルチチャネルサラウンド信号等の3つ以上のチャネルを有する信号のようなマルチチャネル信号を表現するために必要なデータ速度を、継続してさらに低減する必要がある。
このために、エンコーダ側で算出された再構成パラメータが、特定の量子化ルールに従って量子化される。これは、量子化されていない再構成パラメータが、限定されたセットの量子化レベルまたは量子化インデックスにマッピングされることを意味し、本技術で周知であり、C.フォーラ(Faller)、F.バウムガルテ(Baumgarte)、「フレキシブルレンダリングを用いたオーディオ圧縮に応用されるバイノーラルキュー符号化(Binaural cue coding applied to audio compression with flexible rendering)」、2002年10月、ロサンジェルス、AES第113回コンベンション、予稿集5686に詳細に記載されている。
量子化は、量子化ステップサイズよりも小さいパラメータ値を全て、ゼロに量子化する作用がある。さらに、大きなセットの量子化されていない値を小さなセットの量子化された値にマッピングすることにより、それ自体でデータ節減になる。これらのデータ速度節減は、エンコーダ側で量子化された再構成パラメータにエントロピー符号化を行うことにより、さらに高められる。好適なエントロピー符号化方法は、定義済みのコードテーブルに基づいた、または、実際に決定された信号統計データおよびコードブックの信号適応構成に基づいた、ハフマン法である。言い換えれば、算術符号化等の他のエントロピー符号化ツールを用いることができる。
一般に、量子化器のステップサイズが大きくなると、再構成パラメータに必要なデータ速度が低下するというルールがある。言い換えれば、量子化のサイズが荒くなるとデータ速度が遅くなり、量子化が微細になるとデータ速度が速くなる。
通常、データ速度が遅い環境ではパラメトリック信号表示が必要になるので、できるだけ荒いサイズで再構成パラメータを量子化することにより、ベースチャネルにおける特定の量のデータと、量子化されエントロピー符号化された再構成パラメータを含むサイド情報の適正な小さな量のデータとを有する信号表示が得られる。
したがって、従来技術の方法では、符号化されるマルチチャネル信号から直接、送信される再構成パラメータを抽出している。上述のように、量子化された再構成パラメータが、デコーダで逆量子化され、マルチチャネル合成に用いられる場合、荒いサイズの量子化を行うと再構成パラメータが歪んでしまう。もちろん、量子化器のステップサイズ、すなわち、選択された「量子化器の荒さ」によって、丸め誤差が大きくなる。このような丸め誤差は、量子化レベルの変化に、すなわち、第1の時点での第1の量子化レベルから後の時点での第2の量子化レベルへの変化になることがあり、ある量子化器のレベルと別の量子化器のレベルとの間の差が、相当大きな量子化器のステップサイズで定義され、このことは、荒いサイズの量子化では好ましい。残念ながら、量子化器のステップサイズが大きくなってしまうこのような量子化器のレベルの変化は、量子化されていないパラメータが2つの量子化レベルの中間にある場合、小さいパラメータ変化のみによって、トリガされることが可能になる。サイド情報におけるこのような量子化器インデックスの変化が発生することが、信号合成ステージにおける同じ大きな変化となる。例として、チャネル間レベル差を考える場合、大きな変化により、特定のスピーカ信号の音の大きさが急激に低下し、これに付随して、別のスピーカの信号の音の大きさが急激に増加することが明らかである。量子化レベル変化および荒いサイズの量子化のみによってトリガされるこの状況を、(仮想の)第1の場所から(仮想の)第2の場所へ直ちにサウンドソースを再配置することとして認識することができる。ある時点から別の時点へのこのような速やかな再配置は、不自然に聞こえ、すなわち、特に、音信号のサウンドソースはその位置を非常に速く変化しないので、このことは転調作用として認識される。
一般に、伝送エラーにより量子化器インデックスに急激に変化が発生することもあり、これによりマルチチャネル出力信号に急激に変化が直ちに発生し、この状況ではもっとよく当てはまることであるが、データ速度のために荒いサイズの量子化器を採用している。
米国特許出願公開第2003/0219130A1号 米国特許出願公開第2003/0026441A1号 米国特許出願公開第2003/0035553A1号 「インテンシティステレオ符号化(Intensity Stereo Coding)」、J.ヘレ(Herre)、K.H.ブランデンブルグ(Brandenburg)、D.レーデラー(Lederer)、1994年2月、アムステルダム、AES予稿集3799 「ステレオおよびマルチチャネルオーディオ圧縮に応用されたバイノーラルキュー符号化(Binaural cue coding applied to stereo and multi−channel audio compression)」、C.フォーラ(Faller)、F.バウムガルテ(Baumgarte)、2002年5月、ミュンヘン、AESコンベンション論文5574 「バイノーラルキュー符号化パートII:方法および応用例(Binaural Cue Coding. Part II:Schemes and Applications)」、C.フォーラ(Faller)およびF.バウムガルテ(Baumgarte)、オーディオおよびスピーチプロシーディング(Audio and Speech Proc.)におけるIEEEトランザクション、11巻、第6号、1993年11月 「低ビットレートでの高品質パラメトリック空間オーディオ符号化(High−Quality Parametric Spatial Audio Coding at Low Bit rates)」、J.ブレーバールト(Breebaart)、S.ファン・デ・パール(van de Par)、A.コーラウシュ(Kohlrausch)、E.シュイエールス(Schuijers)、2004年5月、ベルリン、AES第116回コンベンション、予稿集6072 「低複雑性パラメトリックステレオ符号化(Low Complexity Parametric Stereo Coding)」、E.シュイエールス(Schuijers)、J.ブレーバールト(Breebaart)、H.プルンハーゲン(Purnhagen)、J.エングデガールド(Engdegard)、2004年5月、ベルリン、AES第116回コンベンション、予稿集6073 「フレキシブルレンダリングを用いたオーディオ圧縮に応用されるバイノーラルキュー符号化(Binaural cue coding applied to audio compression with flexible rendering)」、C.フォーラ(Faller)、F.バウムガルテ(Baumgarte)、2002年10月、ロサンジェルス、AES第113回コンベンション、予稿集5686
本発明の目的は、一方ではデータ速度が低く、他方では良好な主観的な品質が可能な、向上された信号合成概念を提供することである。
本発明の第1の態様によれば、この目的は、入力信号から出力信号を発生するためのマルチチャネルシンセサイザであって、入力信号は少なくとも1つの入力チャネルと量子化された再構成パラメータのシーケンスとを有し、量子化された再構成パラメータは量子化ルールに従って量子化され、かつ入力信号の後の時間部分に関連付けられ、出力信号は多数の合成された出力チャネルを有し、多数の合成された出力チャネルは1より多いか入力チャネルの数よりも多く、処理される入力信号の時間部分に対して、後処理された再構成パラメータまたは再構成パラメータから導出される後処理された量を決定するためのポストプロセッサであって、後処理された再構成パラメータまたは後処理された量の値が、量子化ルールに従って再量子化を用いて得られる値と異なるように、後処理された再構成パラメータを決定するポストプロセッサと、入力チャネルの時間部分および後処理された再構成パラメータまたは後処理された量を用いて、多数の合成された出力チャネルの時間部分を再構成するためのマルチチャネル再構成器とを備える、マルチチャネルシンセサイザにより達成される。
本発明の第2の態様によれば、この目的は、入力信号から出力信号を発生する方法であって、入力信号は少なくとも1つの入力チャネルと量子化された再構成パラメータのシーケンスとを有し、量子化された再構成パラメータは量子化ルールに従って量子化され、かつ入力チャネルの後の時間部分に関連付けられ、出力信号は多数の合成された出力チャネルを有し、多数の合成された出力チャネルは1より多いか入力チャネルの数よりも多く、処理される入力信号の時間部分に対して、後処理された再構成パラメータまたは再構成パラメータから導出される後処理された量を決定するステップであって、後処理された再構成パラメータまたは後処理された量の値が、量子化ルールに従って再量子化を用いて得られる値と異なるようにするステップと、入力チャネルの時間部分および後処理された再構成パラメータまたは後処理された量を用いて、多数の合成された出力チャネルの時間部分を再構成するステップとを備える、方法により達成される。
本発明の第3の態様によれば、この目的は、コンピュータ上で実行するときに、上述の方法を実施するコンピュータプログラムにより達成される。
本発明は、マルチチャネルシンセサイザに用いられる量子化された再構成パラメータに対して後処理を行うことにより、一方では荒いサイズの量子化と、他方では量子化レベル変化とに付随する問題を、低減したり、解消したりするという知見に基づいている。従来技術のシステムでは、シンセサイザにおける再量子化を限定したセットの量子化された値に限って容認できるので、エンコーダにおける小さなパラメータ変化がデコーダでは大きなパラメータ変化となってしまうが、本発明のデバイスは、入力信号の処理される時間部分に対する後処理された再構成パラメータが、エンコーダを採用した量子化ラスタによって決定されるのではなく、量子化ルールによる量子化で得られる値とは異なる再構成パラメータの値となるように、再構成パラメータの後処理を実行する。
直線量子化器の場合、従来技術の方法では、量子化器のステップサイズの整数倍の逆量子化された値しか求めることができないが、本発明の後処理では、逆量子化された値を量子化器のステップサイズの非整数倍とすることが可能である。2つの隣接する量子化器のレベル間の後処理された再構成パラメータが、後処理によって得られ、後処理された再構成パラメータを利用する本発明のマルチチャネル再構成器によって用いられるので、本発明の後処理は、量子化器のステップサイズの制限を解消することを意味している。
この後処理は、マルチチャネルシンセサイザにおいて、再量子化の前または後で実行することができる。量子化されたパラメータ、すなわち、量子化器インデックスを用いて後処理が実行される場合、逆量子化器が必要になり、これは、量子化器ステップの倍数に逆に量子化できるばかりでなく、量子化器のステップサイズの倍数間の逆量子化された値に逆に量子化することができる。
逆量子化された再構成パラメータを用いて後処理が実行される場合、直接逆量子化器を用いることができ、逆量子化された値を用いて補間/フィルタ/平滑化が実行される。
対数量子化ルール等の非直線量子化ルールの場合、対数量子化は人間の耳によるサウンドの認知と類似しているので、再量子化の前に量子化された再構成パラメータの後処理は好ましく、対数量子化は、低レベルのサウンドに対してより正確で、高レベルのサウンドに対してはあまり正確でない、すなわち、一種の対数圧縮を行う。
ここで、量子化されたパラメータとしてビットストリームに含まれる再構成パラメータ自体を変更することにより、本発明の利点を得るものではないことに留意されたい。再構成パラメータから後処理された量を導出することにより、利点を得ることができる。再構成パラメータが差パラメータで、差パラメータから導出される絶対パラメータに対して平滑化等の操作が実行される場合、これは特に有益である。
本発明の好適な実施の形態では、再構成パラメータの後処理は、信号アナライザにより制御され、これは、信号特性が存在する、求める再構成パラメータに関連付けられる信号部分を解析する。好適な実施の形態では、本発明の後処理は、信号の音部分に対して(周波数および/または時間に対して)起動されるが、音でない部分、すなわち、入力信号の過渡部分に対して後処理が起動されない。これにより、信号の音部分ではなく、オーディオ信号の過渡部分に対して、フルダイナミックの再構成パラメータ変化が確実に送信される。
好ましくは、ポストプロセッサは、音でない、すなわち、過渡信号部分に対して特に重要な空間検出キューに影響を与えることなく、再構成パラメータの平滑化の形式で変更を実行し、これは、心理音響的な視点から理解できるものである。
本発明により、再構成パラメータをエンコーダ側で量子化すると荒いサイズの量子化が可能となるので、データ速度が遅くなり、ある逆量子化されたレベルから別の逆量子化されたレベルへ再構成パラメータが変化するという理由で、システム設計者がデコーダにおいて大きな変化を気にかける必要がなくなり、2つの再量子化レベル間の値でマッピングして、本発明の処理により、変化が低減される。
本発明の別の利点は、ある再量子化レベルから次の許容再量子化レベルへの変化による可聴アーティファクトが本発明の後処理により低減されるので、システムの品質が向上することであり、2つの許容再量子化レベル間の値でマッピングする。
もちろん、量子化された再構成パラメータに対して本発明の後処理は、エンコーダにおけるパラメータ化と後の再構成パラメータの量子化とにより生じる情報損失に加えて、さらに情報が損失することになる。しかしながら、本発明のポストプロセッサが、好ましくは、実際のまたは直前の量子化された再構成パラメータを用いて、入力信号の実際の時間部分、すなわち、ベースチャネルの再構成に用いられる後処理された再構成パラメータを決定するので、このことはさほど悪いことではない。エンコーダ誘導誤用をある程度補償することができるので、主観的な品質が向上することになることがわかる。エンコーダ側誘導誤用が再構成パラメータの後処理によって補償されない場合であっても、再構成されたマルチチャネルオーディオ信号における空間認知の大きな変化は、好ましくは音信号部分に限って低減されるので、さらに情報を損失することになるかどうかという事実にかかわらず、いずれにせよ、主観的な聴き取り品質が向上することになる。
本発明の好ましい実施の形態が添付図面を参照して後に説明されるが、これらの図としては:
図1は、本発明のマルチチャネルシンセサイザの好適な実施の形態のブロック図であり、
図2は、図1のマルチチャネルシンセサイザを含むエンコーダ/デコーダシステムの好適な実施の形態のブロック図であり、
図3は、図1の本発明のマルチチャネルシンセサイザに用いられるポストプロセッサ/信号アナライザの結合のブロック図であり、
図4は、入力信号の時間部分と、過去の信号部分、処理される実際の信号部分および未来の信号部分に対して関連付けられた量子化された再構成パラメータとの概略表現であり、
図5は、図1によるポストプロセッサの実施の形態であり、
図6aは、図1に示すポストプロセッサの別の実施の形態であり、
図6bは、ポストプロセッサの別の好適な実施の形態であり、
図7aは、図1に示すポストプロセッサの別の実施の形態であり、
図7bは、再構成パラメータから導出される量を平滑化可能なことを示す本発明による後処理されるパラメータを示す概略図であり、
図8は、直接マッピングまたは拡張マッピングを実行する量子化器/逆量子化器の概略説明であり、
図9aは、後の入力信号部分に関連付けられる量子化された再構成パラメータの例示的な時間経過を示し、
図9bは、平滑化(ローパス)機能を実施するポストプロセッサにより後処理された、後処理された再構成パラメータの時間経過を示し、
図10は、従来技術のジョイントステレオエンコーダを示し、
図11は、従来技術のBCCエンコーダ/デコーダチェーンを示すブロック図であり、
図12は、従来技術により実施された図11のBCC合成ブロックを示すブロック図であり、
図13は、ICLD、ICTDおよびICCパラメータを決定するための周知の手法を示す図である。
図1は、入力信号から出力信号を発生するための本発明のマルチチャネルエンコーダ/シンセサイザのブロック図を示す。図4を参照して後述するように、入力信号は、少なくとも1つの入力チャネルと量子化された再構成パラメータのシーケンスとを有し、量子化された再構成パラメータは、量子化ルールに従って量子化されている。時間部分のシーケンスが量子化された再構成パラメータのシーケンスと関連付けられるように、各再構成パラメータは入力チャネルの時間部分と関連付けられている。また、図1のマルチチャネルシンセサイザにより発生された出力信号は、いずれにせよ入力信号における入力チャネルの数よりも多い、多数の合成された出力チャネルを有することに留意されたい。入力チャネルの数が1である場合、すなわち、1つの入力チャネルが存在する場合、出力チャネルの数は2以上である。しかしながら、入力チャネルの数が2または3の場合、出力チャネルの数は、少なくとも3または少なくとも4である。
上述のBCCの場合では、入力チャネルの数は、1または一般にせいぜい2であるが、出力チャネルの数は、5(左サラウンド、左、センター、右、右サラウンド)若しくは6(5サラウンドチャネルプラス1サブウーハーチャネル)、または、7.1若しくは9.1マルチチャネルフォーマットではそれ以上となる。
図1に示すように、本発明のマルチチャネルシンセサイザは、基本的な特徴として、再構成パラメータポストプロセッサ10およびマルチチャネル再構成器12を備える。再構成パラメータポストプロセッサ10は、入力信号の後の時間部分に対して、量子化され好ましくは符号化された再構成パラメータを受信する。再構成パラメータポストプロセッサ10は、処理される入力信号の時間部分に対して、後処理された再構成パラメータをその出力で決定する。再構成パラメータポストプロセッサは、後処理ルールに従って動作し、これは、特定の好適な実施の形態では、ローパスフィルタリングルール、平滑化ルール等である。特に、ポストプロセッサ10は、後処理された再構成パラメータの値が、量子化ルールに従って、任意の量子化された再構成パラメータの再量子化により得られる値と異なるように、後処理された再構成パラメータを決定する。
マルチチャネル再構成器12は、入力チャネルの処理される時間部分および後処理された再構成パラメータを用いて、多数の合成出力チャネルのそれぞれの時間部分を再構成するために用いられる。
本発明の好適な実施の形態では、量子化された再構成パラメータは、チャネル間レベル差、チャネル間時間差またはチャネル間コヒーレンスパラメータ等の、量子化されたBCCパラメータである。当然、インテンシティステレオまたはパラメトリックステレオに対するパラメータ等の他の全ての再構成パラメータについても、本発明に従って処理することができる。
要約すると、本発明のシステムは、入力信号の後の時間部分に関連付けられる量子化され好ましくは符号化された再構成パラメータのための第1の入力14aを有する。入力信号の後の時間部分は、第2の入力14bに入力され、これは、マルチチャネル再構成器12に好ましくは入力信号アナライザ16に接続され、これについては後述する。出力側では、図1の本発明のマルチチャネルシンセサイザは、マルチチャネル出力信号出力18を有し、これは、いくつかの出力チャネルを含み、この数は、多数の入力チャネルより多く、入力チャネルの数は、1つの入力チャネルまたは2つ以上の入力チャネルとすることができる。いずれにせよ、合成された出力チャネルは、一方では入力信号を用いて、他方では再構成パラメータの形式でサイド情報を用いて形成されるので、入力チャネルより出力チャネルの数が多い。
以下には、ビットストリームの例を示す図4を参照する。ビットストリームは、いくつかのフレーム20a、20b、20c、・・・を含む。各フレームは、図4の上の4角のフレームで示される入力信号の時間部分を含む。また、各フレームは、各フレーム20a、20b、20cの下の4角で図4に示される、時間部分に関連付けられる量子化された再構成パラメータのセットを含む。例示として、フレーム20bは、処理される入力信号部分と考えられ、このフレームは、すなわち、処理される入力信号部分の「過去」を形成する、直前の入力信号部分を有する。また、処理される入力信号部分の「未来」を形成する、次の入力信号部分が存在する(処理される入力部分は、「実際の」入力信号部分とも呼ばれる)が、「過去」における入力信号部分は先の入力信号部分と呼ばれ、未来における信号部分は後の入力信号部分と呼ばれる。
以下に、本発明のマルチチャネルシンセサイザを配置可能な完全なエンコーダ/デコーダ構成について図2を参照する。
図2は、エンコーダ側21とデコーダ側22とを示す。エンコーダでは、N個の元の入力チャネルがダウンミキサステージ23に入力される。ダウンミキサステージは、チャネルの数を例えば1つのモノラルチャネルに、あるいは可能ならば2つのステレオチャネルに低減する。次に、ダウンミキサ23のダウンミックスした信号表示は、ソースエンコーダ24に入力され、ソースエンコーダは、例えば出力ビットストリームを生じるMP3エンコーダまたはAACエンコーダとして実施される。エンコーダ側21は、さらに、パラメータ抽出器25を備え、これは、本発明に従って、BCC解析(図11のブロック116)を実行し、量子化された好ましくはハフマン符号化されたチャネル間レベル差(ICLD)を出力する。ソースエンコーダ24の出力でのビットストリームとともにパラメータ抽出器25により出力される量子化された再構成パラメータは、デコーダ22に送信されたり、デコーダに後から送信するために保存されたりすることができる。
デコーダ22は、ソースデコーダ26を含み、これは、受信されたビットストリーム(ソースエンコーダ24から送信されたもの)から信号を再構成する。このために、ソースデコーダ26は、その出力で、入力信号の後の時間部分をアップミキサ12に供給し、これは、図1のマルチチャネル再構成器12と同じ機能を実行する。好ましくは、この機能は、図11のブロック122により実施されるようにBCC合成である。
図11と異なって、本発明のマルチチャネルシンセサイザは、さらに、ポストプロセッサ10を含み、これは、「チャネル間レベル差(ICLD)スムーザ」と呼ばれ、入力信号アナライザ16により制御され、好ましくは入力信号の調性解析を実行する。
図2からわかるように、チャネル間レベル差(ICLDs)等の再構成パラメータがあり、ICLDスムーザに入力されるが、パラメータ抽出器25とアップミキサ12とをつなぐ接続がさらにある。このバイパス接続を介して、後処理する必要のない他の再構成パラメータを、パラメータ抽出器25からアップミキサ12に供給することができる。
図3は、信号アナライザ16およびICLDスムーザ10により形成される信号適応再構成パラメータ処理の好適な実施の形態を示す。
信号アナライザ16は、調性決定ユニット16aと後段の閾値処理デバイス16bとから形成される。さらに、図2の再構成パラメータポストプロセッサ10は、平滑化フィルタ10aと、ポストプロセッサスイッチ10bとを含む。ポストプロセッサスイッチ10bは、閾値処理デバイス16bにより制御され、調性特性等の入力信号の特定の信号特性が特定の指定の閾値に対して所定の関係にあることを閾値処理デバイス16bが決定した場合、スイッチが作動される。この場合、入力信号の信号部分の調整が、特に、特定の入力信号の時間部分の特定の周波数帯域が調性閾値を超える調性を有する場合に、(図3に示すように)スイッチが上の位置に作動されるという状況である。この場合、逆量子化されたチャネル間差ではなく、後処理されたものがデコーダ/マルチチャネル再構成器/アップミキサ12に供給されるように、スイッチ10bは、平滑化フィルタ10aの出力をマルチチャネル再構成器12の入力に接続するために作動される。
しかしながら、調性決定手段が、実際の入力信号の時間部分の特定の周波数帯域、すなわち、処理される入力信号部分の特定の周波数帯域が指定の閾値よりも低い調性を有する、すなわち、過渡であると決定する場合、スイッチは平滑化フィルタ10aをバイパスするように作動される。
後者の場合、平滑化フィルタ10aによる信号適応後処理は、過渡信号に対する再構成パラメータ変化が変更のない後処理ステージを通過して、過渡信号に対して相当高い確率で現実の状況に対応する、空間イメージに関する再構成された出力信号を迅速に変化することを確実にする。
ここで、一方では後処理を起動し、他方では完全に後処理を起動しない図3の実施の形態、すなわち、後処理を行うか行わないかという二者択一は、その単純で効率的な構造のために、単に好適な実施の形態にすぎないことに留意されたい。しかしながら、特に調性に対しては、この信号特性は、質的パラメータばかりでなく、通常0と1との間にすることができる量的パラメータでもあることに留意されたい。量的に決定されたパラメータに従って、音信号が大きい場合に大きな平滑化が起動され、音信号がそうでない場合により低い平滑化度合いを有する平滑化が始められるように、平滑化フィルタの平滑化度合い、または、例えば、ローパスフィルタのカットオフ周波数を設定することができる。
もちろん、過渡信号が大きい場合、再構成パラメータの後処理が、マルチチャネル信号の空間イメージの変化をさらに強調するように、過渡部分を検出したり、定義済みの量子化された値間の値、または量子化インデックス間の値にパラメータの変化を強調したりすることもできる。この場合、後の時間部分に対する後の再構成パラメータにより指示されるように1の量子化ステップサイズを、例えば1.5、1.4、1.3等に高めて、再構成されたマルチチャネル信号の空間イメージをさらに劇的に変化させることができる。
ここで、音信号特性、過渡信号特性または他の信号特性は、それに基づいて信号解析が再構成パラメータポストプロセッサを制御するために実行され得る信号特性の例に過ぎないことに留意されたい。この制御に応答して、再構成パラメータポストプロセッサは、所定の量子化ルールにより決定される、一方では量子化インデックスの任意の値であり、他方では再量子化値である値を有する後処理された再構成パラメータを決定する。
ここで、再構成パラメータの後処理は、信号特性に依存すること、すなわち、信号適応パラメータ後処理はオプションであることに留意されたい。また、信号に依存しない後処理は、多くの信号に対して利点がある。例えば、ユーザが(強調機能の場合に)強められた変化を行ったり、(平滑化機能の場合に)弱められた変化を行ったりするように、特定の後処理機能をユーザが選択することもできる。あるいは、任意のユーザ選択および信号特性に依存しない後処理は、誤り耐性に関してある利点がある。特に、量子化器のステップサイズが大きい場合、量子化器インデックスの伝送エラーにより、可聴アーティファクトが顕著になってしまうことが明らかになっている。このために、エラーを起こしやすいチャネルを介して信号を送信する必要がある場合、前進型誤信号訂正等を実行する。本発明によれば、過去における再構成パラメータに基づく再構成パラメータの後処理は、大量の送信された量子化された再構成パラメータを検出することになり、さらに、このようなエラーに対する適切な対策となるので、後処理は、ビットとして効率的でないエラー訂正符号を不要とすることができる。また、後処理機能が平滑化機能である場合、後述するように、先のまたは後の再構成パラメータと大きく異なる量子化された再構成パラメータは自動的に操作される。
図5は、図1の再構成パラメータポストプロセッサ10の好適な実施の形態を示す。特に、量子化された再構成パラメータが符号化されるという状況を考える。ここでは、符号化された量子化された再構成パラメータはエントロピーデコーダ10cに入り、これは、復号化された量子化された再構成パラメータのシーケンスを出力する。エントロピーデコーダの出力で再構成パラメータは量子化され、このことは、特定の「有益な」値を有していることを意味しているのではなく、後段の逆量子化器により実施される特定の量子化ルールの特定の量子化器インデックスまたは量子化器レベルを示していることを意味している。マニピュレータ10dは、例えば、(好ましくは)必要とする後処理機能により決定される任意のフィルタ特性を有するIIRフィルタまたはFIRフィルタ等のデジタルフィルタとすることができる。平滑化またはローパスフィルタリング後処理機能が好ましい。マニピュレータ10dの出力で、操作された量子化された再構成パラメータのシーケンスが得られ、これらは、整数の数字だけでなく、量子化ルールにより決定される範囲内の任意の実数である。このように操作された量子化された再構成パラメータは、ステージ10dの前の値1、0、1と比較して、1.1、0.1、0.5等の値を有することができる。次に、ブロック10dの出力での値のシーケンスは、後処理された再構成パラメータを得るために拡張逆量子化器10eに入力され、これらは、図1のブロック12でマルチチャネル再構成(例えばBCC合成)に用いることができる。
通常の逆量子化器は、限定した数の量子化インデックスから指定の逆量子化された出力値へ各量子化入力をマッピングするだけであるので、拡張量子化器10eは通常の逆量子化器と異なることに留意されたい。通常の逆量子化器は、非整数量子化器インデックスをマッピングすることはできない。したがって、好ましくは、拡張逆量子化器10eは直線または対数量子化ルール等の同じ量子化ルールを用いて実施されるが、非整数入力を受け付けて、整数入力だけを用いて得られる値とは異なる出力値を供給することができる。
再量子化の前(図5を参照)または再量子化の後(図6a、図6bを参照)で、操作を行うかどうかは、本発明に対して基本的に差は何もない。後者の場合では、逆量子化器は、すでに概略を述べたように、図5の拡張逆量子化器10eと異なる、通常の直接逆量子化器である必要がある。もちろん、図5および図6aの選択は、特定の実施例に依存する選択の問題である。現在のBCC実施例では、既存のBCCアルゴリズムとより互換性があるので、図5の実施の形態が好ましい。しかしながら、このことは他の応用では別の話である。
図6bは、図6aの拡張逆量子化器10eが、直接逆量子化器と直線または好ましくは非直線曲線に従ってマッピングするためのマッピング手段10gとに置換される実施の形態を示す。このマッピング手段は、数値動作を実行するための回路またはルックアップテーブル等のハードウェアまたはソフトウェアとして実行することができる。データ操作は、例えばスムーザ10gを用いて、マッピング手段10gの前段、またはマッピング手段10gの後段、または結合して両段で実行することができる。全てのエレメント10f、10h、10gはソフトウェアルーチンの回路等の構成部品を直接用いて実施することができるので、後処理が逆量子化器領域で実行される場合に、この実施の形態は好ましい。
一般に、ポストプロセッサ10は、図7aに示すようにポストプロセッサとして実施され、実際の量子化された再構成パラメータ、未来の再構成パラメータまたは過去の量子化された再構成パラメータを全てまたは選択して受信する。この場合、ポストプロセッサは、少なくとも1つの過去の再構成パラメータおよび実際の再構成パラメータだけを受信し、ポストプロセッサは、ローパスフィルタとして動作する。しかしながら、ポストプロセッサ10が、リアルタイムの応用において可能でないが、他の全ての応用において可能である、未来の量子化された再構成パラメータを受信する場合、ポストプロセッサは、例えば特定の周波数帯域の再構成パラメータの時間経過を平滑化するために、未来の量子化された再構成パラメータと現在または過去の量子化された再構成パラメータとの間で補間を実行することができる。
すでに概説したように、パラメトリック符号化されたマルチチャネル信号内のベースチャネルに付属する再構成パラメータから導出される量について、荒いサイズの量子化環境での量子化ステップサイズによるアーティファクトを克服するデータ操作を実行することができる。例えば、量子化された再構成パラメータが差パラメータ(ICLD)である場合、変更をしないで、このパラメータを逆量子化することができる。次に、出力チャネルの絶対レベル値を導出することができ、絶対値に対して本発明のデータ操作が実行される。この手順は、後処理された再構成パラメータまたは後処理された量の値が、量子化ルールに従って再量子化を用いて、すなわち「ステップサイズ制限」を克服する操作を行わずに、得られる値と異なるように、量子化された再構成パラメータと実際の再構成との間の処理経路でデータ操作が実行される限りにおいて、本発明のアーティファクトを低減することにもなる。
操作された量を量子化された再構成パラメータから最終的に導出するためのマッピング機能の多くは、導出可能で、本技術で用いられ、これらのマッピング機能は、後処理されない量を得るためにマッピングルールに従って入力値を出力値に一意的にマッピングするための機能を含み、それは、次に、マルチチャネル再構成(合成)アルゴリズムに用いられる後処理された量を得るために後処理される。
以下では、図8を参照して、図5の拡張逆量子化器10eと、図6aの直接逆量子化器10fとの間の違いを説明する。このために、図8の図では、横軸は、量子化されていない値の入力値軸を示す。縦軸は、量子化器レベルまたは量子化器インデックスを示し、これは、好ましくは0、1、2、3の値を有する整数である。ここで、図8の量子化器では、0から1の間の値または1から2の間の値にはならないことに留意されたい。これらの量子化器レベルに対するマッピングは、例えば−10から10の間の値が0にマッピングされ、10から20の間の値が1に量子化される等のように、階段関数により制御される。
考えられる逆量子化器機能は、0の量子化器レベルを0の逆量子化された値にマッピングする。1の量子化器レベルは、10の逆量子化された値にマッピングされる。同様に、例えば、2の量子化器レベルは20の逆量子化された値にマッピングされる。したがって、再量子化は、参照番号31で示す逆量子化器機能により制御される。直接逆量子化器は、ライン30とライン31との交点に限って可能であることに留意されたい。このことは、図8の逆量子化器ルールを有する直接逆量子化器では、0、10、20、30の値だけを、再量子化により得ることができることを意味している。
拡張逆量子化器は、0.5の値等の、0から1または1から2の間の値を入力として受信するので、拡張逆量子化器10eとは異なっている。マニピュレータ10dにより得られる0.5の値の進んだ再量子化により、5の逆量子化された出力値となり、すなわち、後処理された再構成パラメータは、量子化ルールに従って再量子化により得られる値と異なる値を有する。通常の量子化ルールでは、0または10の値だけが得られるが、逆量子化器機能31に従って動作する本発明の逆量子化器では、異なる値、すなわち、図8に示す5の値が得られる。
直接逆量子化器では、整数量子化器レベルを量子化されたレベルにマッピングするだけであるが、拡張逆量子化器は、非整数量子化器「レベル」を受信し、これらの値を逆量子化器ルールにより決定される値間の「逆量子化された値」にマッピングする。
図9は、図5の実施の形態に対する本発明の後処理の効果を示す。図9aは、0から3の間で変化する量子化された再構成パラメータのシーケンスを示す。図9bは、図9aの波形がローパス(平滑化)フィルタに入力される場合、「変更された量子化器インデックス」とも呼ぶ、後処理された再構成パラメータのシーケンスを示す。ここで、時点1、4、6、8、9、および10での増減は、図9bの実施の形態では低減していることに留意されたい。アーティファクトとして考えられる時点8と時点9との間のピークが、量子化ステップ全体で抑制されていることを強調して述べる。しかしながら、すでに概説したように、このような極端な値を、量的調性値に従って後処理の度合いにより制御することができる。
本発明は、本発明の後処理が、変動を平滑化したり、短期の極端な値を平滑化したりするという利点がある。この状況は、特に、同じエネルギーを有するいくつかの入力チャネルからの信号部分が、信号の周波数帯域、すなわち、ベースチャネルまたは入力信号チャネルと重ね合わされる場合に発生する。次に、この周波数帯域は、時間部分毎に対応し、個々の出力チャネルを非常に変動するように混合した即座の状況に依存する。しかしながら、心理音響的な視点から、これらの変動は、基本的にソースの位置の検出に寄与せずに、主観的な聴き取り印象を悪くするような影響を与えるので、これらの変動を平滑化する方がよい。
本発明の好適な実施の形態によれば、システムにおける異なる場所で品質損失を発生することなく、あるいは送信された再構成パラメータの高い解像度/量子化(したがって、速いデータ速度)を必要とすることなく、このような可聴アーティファクトが低減されたり、解消されたりする。本発明は、重要な空間ローカライゼーション検出キューに基本的に影響を与えることなく、パラメータの信号適応変更(平滑化)を実行することにより、本目的を達成する。
再構成された出力信号の特性に突然変化が発生すると、高い定常特性を有するオーディオ信号に対して、特に可聴アーティファクトが発生する。これは、音信号がある場合である。したがって、このような信号に対する量子化された再構成パラメータ間に「スムーザ」によるトランジションを供給することは重要なことである。これは、例えば、平滑化、補間等により得ることができる。
また、このようなパラメータ値の変更により、他の種類のオーディオ信号に可聴歪みが発生してしまう。これは、信号特性に急速に発生する変動を含む信号の場合である。このような特性は、過渡部分または打楽器のアタックに見られる。この場合、本発明により、パラメータ平滑化を起動しないようにする。
これは、信号適応法で、送信された量子化された再構成パラメータの後処理により、得られる。
適応性は、直線または非直線である。適応性が非直線の場合、図3で説明されるように閾値処理手順が実行される。
適応性を制御するための別の基準は、信号特性の特定の定常性を決定することである。信号特性の定常性を決定するための特定の形式は、信号エンベロープ、または、特に、信号の調性を評価することである。ここで、全周波数範囲に対して、または、好ましくは、オーディオ信号の異なる周波数帯域それぞれに対して、調性を決定することができることに留意されたい。
本発明により、パラメータ値を送信するための必要とされたデータ速度が速くなることなく、今まで不可避であったアーティファクトを低減したり、または解消したりすることになる。
図2および図3ですでに概説したように、検討中の信号部分に音特性がある場合に、本発明の好適な実施の形態では、チャネル間レベル差の平滑化を実行する。エンコーダで算出されて、エンコーダで量子化されるチャネル間レベル差は、信号適応平滑化動作を行うためにデコーダに送信される。適応構成要素は、閾値決定に関する調性決定であり、音スペクトル成分に対してチャネル間レベル差のフィルタリングを起動して、ノイズ様および過渡スペクトル成分に対してはこのような後処理を起動しない。本実施の形態では、エンコーダの付加的なサイド情報は、適応平滑化アルゴリズムを実行するために必要としない。
ここで、本発明の後処理は、パラメトリックステレオMP3/AAC、MP3サラウンド、および同様の方法などのマルチチャネル信号に対してパラメトリック符号化を行う他の概念に用いることもできることに留意されたい。
図1は、本発明のマルチチャネルシンセサイザの好適な実施の形態のブロック図である。 図2は、図1のマルチチャネルシンセサイザを含むエンコーダ/デコーダシステムの好適な実施の形態のブロック図である。 図3は、図1の本発明のマルチチャネルシンセサイザに用いられるポストプロセッサ/信号アナライザの結合のブロック図である。 図4は、入力信号の時間部分と、過去の信号部分、処理される実際の信号部分および未来の信号部分に対して関連付けられた量子化された再構成パラメータとの概略表現である。 図5は、図1によるポストプロセッサの実施の形態である。 図6aは、図1に示すポストプロセッサの別の実施の形態である。 図6bは、ポストプロセッサの別の好適な実施の形態である。 図7aは、図1に示すポストプロセッサの別の実施の形態である。 図7bは、再構成パラメータから導出される量を平滑化可能なことを示す本発明による後処理されるパラメータを示す概略図である。 図8は、直接マッピングまたは拡張マッピングを実行する量子化器/逆量子化器の概略説明である。 図9aは、後の入力信号部分に関連付けられる量子化された再構成パラメータの例示的な時間経過を示す。 図9bは、平滑化(ローパス)機能を実施するポストプロセッサにより後処理された、後処理された再構成パラメータの時間経過を示す。 図10は、従来技術のジョイントステレオエンコーダを示す。 図11は、従来技術のBCCエンコーダ/デコーダチェーンを示すブロック図である。 図12は、従来技術により実施された図11のBCC合成ブロックを示すブロック図である。 図13は、ICLD、ICTDおよびICCパラメータを決定するための周知の手法を示す図である。

Claims (26)

  1. 入力信号から出力信号を発生するためのマルチチャネルシンセサイザであって、前記入力信号は少なくとも1つの入力チャネルと量子化された再構成パラメータのシーケンスとを有し、前記量子化された再構成パラメータは量子化ルールに従って量子化され、かつ前記入力信号の後の時間部分に関連付けられ、前記出力信号は多数の合成された出力チャネルを有し、前記多数の合成された出力チャネルは1より多いか入力チャネルの数よりも多く、
    処理される前記入力信号の時間部分に対して、後処理された再構成パラメータまたは前記再構成パラメータから導出される後処理された量を決定するためのポストプロセッサ(10)であって、前記後処理された再構成パラメータまたは前記後処理された量の値が、前記量子化ルールに従って再量子化を用いて得られる値と異なるように、前記後処理された再構成パラメータまたは前記後処理された量を決定するポストプロセッサ(10)と、
    前記入力チャネルの前記時間部分および前記後処理された再構成パラメータまたは前記後処理された値を用いて、前記多数の合成された出力チャネルの時間部分を再構成するためのマルチチャネル再構成器(12)とを備える、マルチチャネルシンセサイザ。
  2. 処理される前記入力信号の前記時間部分の信号特性を決定する、前記入力信号を解析するための入力信号アナライザ(16)をさらに備え、
    前記ポストプロセッサ(10)は、前記信号特性に依存して、前記後処理された再構成パラメータを決定する、請求項1に記載のマルチチャネルシンセサイザ。
  3. 前記ポストプロセッサ(10)は、所定の信号特性が前記入力信号アナライザ(16)により決定される場合に、前記後処理された再構成パラメータを決定し、前記所定の信号特性が前記入力信号の時間部分に対して前記入力信号アナライザにより決定されない場合に、前記ポストプロセッサ(10)をバイパスする、請求項2に記載のマルチチャネルシンセサイザ。
  4. 前記入力信号アナライザ(16)は、信号特性値が閾値と指定の関係にある場合に、前記所定の信号特性として前記信号特性を決定する、請求項3に記載のマルチチャネルシンセサイザ。
  5. 前記信号特性は、処理される前記入力信号の前記部分の調性特性または過渡特性である、請求項2、請求項3または請求項4に記載のマルチチャネルシンセサイザ。
  6. 前記ポストプロセッサ(10)は、後処理された再構成パラメータのシーケンスが後処理されていない逆量子化された再構成パラメータのシーケンスと比較して時間的により平滑になるように、平滑化機能を実行する、請求項1ないし請求項5のいずれかに記載のマルチチャネルシンセサイザ。
  7. 前記ポストプロセッサ(10)は平滑化機能を実行し、前記ポストプロセッサ(10)はローパス特性を有するデジタルフィルタを含み、前記フィルタは、入力として、前記入力信号の直前の時間部分に関連付けられる少なくとも1つの再構成パラメータを受信する、請求項1ないし請求項6のいずれかに記載のマルチチャネルシンセサイザ。
  8. 前記ポストプロセッサ(10)は、少なくとも1つの直前の時間部分に関連付けられる再構成パラメータを用いて、または、少なくとも1つの後の時間部分に関連付けられる再構成パラメータを用いて、補間機能を実行する、請求項1ないし請求項7のいずれかに記載のマルチチャネルシンセサイザ。
  9. 前記ポストプロセッサ(10)は、
    前記量子化ルールにより定義されるいずれの量子化レベルとも一致しないように、操作された再構成パラメータを決定し、
    逆量子化器によりいずれの量子化レベルをマッピングすることにより定義される逆量子化された値と一致しない、逆量子化された操作された再構成パラメータに、前記操作された再構成パラメータをマッピングする逆量子化器を用いて、前記操作された再構成パラメータを逆量子化する、請求項1ないし請求項8のいずれかに記載のマルチチャネルシンセサイザ。
  10. 前記量子化ルールは、対数量子化ルールである、請求項9に記載のマルチチャネルシンセサイザ。
  11. 前記ポストプロセッサ(10)は、
    前記量子化ルールに従って、量子化された再構成パラメータを逆量子化し、
    得られた逆量子化された再構成パラメータを操作し、
    非直線または直線機能に従って、操作されたパラメータをマッピングする、請求項1ないし請求項11のいずれかに記載のマルチチャネルシンセサイザ。
  12. 前記ポストプロセッサ(10)は、
    前記量子化ルールに従って、量子化された再構成パラメータを逆量子化し、
    非直線または直線機能に従って、得られた逆量子化されたパラメータをマッピングし、
    得られたマッピングされた再構成パラメータを操作する、請求項1ないし請求項11のいずれかに記載のマルチチャネルシンセサイザ。
  13. 前記ポストプロセッサ(10)は、前記量子化ルールに従って、前記入力信号の前記後の時間部分に関連付けられる逆量子化された再構成パラメータに対して動作し、
    前記ポストプロセッサ(10)は、さらに、前記入力信号の少なくとも1つの直前の時間部分に対して、少なくとも1つの逆量子化された再構成パラメータに基づいて、後処理された再構成パラメータを決定する、請求項1ないし請求項12のいずれかに記載のマルチチャネルシンセサイザ。
  14. 前記入力信号の時間部分は、前記入力信号の異なる周波数帯域に対する複数の量子化された再構成パラメータと関連付けられ、
    前記ポストプロセッサ(10)は、前記入力信号の前記異なる周波数帯域に対して、後処理された再構成パラメータを決定する、請求項1ないし請求項13のいずれかに記載のマルチチャネルシンセサイザ。
  15. 前記入力信号は、マルチチャネルオーディオ信号の少なくとも2つの元のチャネルを結合することにより得られる和スペクトルであり、
    前記量子化された再構成パラメータは、チャネル間レベル差パラメータ、チャネル間時間差パラメータ、チャネル間位相差パラメータまたはチャネル間コヒーレンスパラメータである、請求項1ないし請求項14のいずれかに記載のマルチチャネルシンセサイザ。
  16. 前記入力チャネルアナライザ(16)は、前記入力信号が有する前記信号特性を量的に示す度合いを決定し、
    前記ポストプロセッサ(10)は、前記度合いに依存する強度を用いて後処理を実行する、請求項2ないし請求項15のいずれかに記載のマルチチャネルシンセサイザ。
  17. 前記ポストプロセッサ(10)は、処理される前記時間部分に対して前記後処理された再構成パラメータを決定する場合に、処理される前記時間部分に関連付けられる前記量子化された再構成パラメータを用いる、請求項1ないし請求項16のいずれかに記載のマルチチャネルシンセサイザ。
  18. 前記量子化ルールは、2つの隣接する量子化レベル間の差が、数値計算を実行するためのプロセッサのプロセッサ精度により決定される2つの数間の差よりも大きくなるようになる、請求項1ないし請求項17のいずれかに記載のマルチチャネルシンセサイザ。
  19. 前記量子化された再構成パラメータは、エントロピー符号化され、エントロピー符号化された形式で前記時間部分に関連付けられ、
    前記ポストプロセッサ(10)は、前記後処理された再構成パラメータを決定するために用いられる前記エントロピー符号化された量子化された再構成パラメータをエントロピー復号化する、請求項1ないし請求項18のいずれかに記載のマルチチャネルシンセサイザ。
  20. 前記デジタルフィルタ(10a)は、IIRフィルタである、請求項7に記載のマルチチャネルシンセサイザ。
  21. 前記ポストプロセッサ(10)は、後の時間部分に対する後処理された再構成パラメータ間の差が、再量子化により、後の時間部分に関連付けられる前記量子化された再構成パラメータから導出される、後処理されていない再構成パラメータ間の差よりも小さくなるように、後処理ルールを実施する、請求項1ないし請求項20のいずれかに記載のマルチチャネルシンセサイザ。
  22. 前記後処理された量は、後処理されていない量を得るために、マッピングルールに従って、入力値を出力値に一意的にマッピングするマッピング機能だけを用いて、前記量子化された再構成パラメータから導出され、前記ポストプロセッサは、前記後処理された量を得るために前記後処理されていない量を後処理する、請求項1ないし請求項21のいずれかに記載のマルチチャネルシンセサイザ。
  23. 前記量子化された再構成パラメータは、前記入力チャネルに関連付けられる2つの絶対量間のパラメータ化された差を示す差パラメータであり、前記後処理された量は、前記入力チャネルのうちの1つに対応する出力チャネルを再生するために用いられる絶対値である、請求項1ないし請求項22のいずれかに記載のマルチチャネルシンセサイザ。
  24. 前記量子化された再構成パラメータは、チャネル間レベル差であり、前記後処理された量は、出力チャネルの絶対レベルを示し、または、
    前記量子化された再構成パラメータは、チャネル間時間差であり、前記後処理された量は、出力チャネルの絶対時間基準を示し、または、
    前記量子化された再構成パラメータは、チャネル間コヒーレンス基準であり、前記後処理された量は、出力チャネルの絶対コヒーレンスレベルを示し、または、
    前記量子化された再構成パラメータは、チャネル間位相差であり、前記後処理された量は、出力チャネルの絶対位相値を示す、請求項1ないし請求項23のいずれかに記載のマルチチャネルシンセサイザ。
  25. 入力信号から出力信号を発生する方法であって、前記入力信号は少なくとも1つの入力チャネルと量子化された再構成パラメータのシーケンスとを有し、前記量子化された再構成パラメータは量子化ルールに従って量子化され、かつ前記入力チャネルの後の時間部分に関連付けられ、前記出力信号は多数の合成された出力チャネルを有し、前記多数の合成された出力チャネルは1より多いか入力チャネルの数よりも多く、
    処理される前記入力信号の時間部分に対して、後処理された再構成パラメータまたは前記再構成パラメータから導出される後処理された量を決定するステップ(10)であって、前記後処理された再構成パラメータまたは前記後処理された量の値が、前記量子化ルールに従って再量子化を用いて得られる値と異なるようにするステップと、
    前記入力チャネルの前記時間部分および前記後処理された再構成パラメータまたは前記後処理された値を用いて、前記多数の合成された出力チャネルの時間部分を再構成するステップ(12)とを備える、方法。
  26. コンピュータ上で実行するときに、請求項25に記載の方法を実行するためのプログラムコードを有するコンピュータプログラム。
JP2007518481A 2004-06-30 2005-06-13 マルチチャネル出力信号を発生するためのマルチチャネルシンセサイザおよび方法 Active JP4712799B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/883,538 US8843378B2 (en) 2004-06-30 2004-06-30 Multi-channel synthesizer and method for generating a multi-channel output signal
US10/883,538 2004-06-30
PCT/EP2005/006315 WO2006002748A1 (en) 2004-06-30 2005-06-13 Multi-channel synthesizer and method for generating a multi-channel output signal

Publications (2)

Publication Number Publication Date
JP2008504578A true JP2008504578A (ja) 2008-02-14
JP4712799B2 JP4712799B2 (ja) 2011-06-29

Family

ID=34971777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007518481A Active JP4712799B2 (ja) 2004-06-30 2005-06-13 マルチチャネル出力信号を発生するためのマルチチャネルシンセサイザおよび方法

Country Status (18)

Country Link
US (1) US8843378B2 (ja)
EP (1) EP1649723B1 (ja)
JP (1) JP4712799B2 (ja)
KR (1) KR100913987B1 (ja)
CN (1) CN1954642B (ja)
AT (1) ATE394901T1 (ja)
AU (1) AU2005259618B2 (ja)
BR (1) BRPI0511362B1 (ja)
CA (1) CA2569666C (ja)
DE (1) DE602005006495D1 (ja)
ES (1) ES2307188T3 (ja)
HK (1) HK1090504A1 (ja)
IL (1) IL178670A (ja)
MX (1) MXPA06014968A (ja)
NO (1) NO338980B1 (ja)
PT (1) PT1649723E (ja)
RU (1) RU2345506C2 (ja)
WO (1) WO2006002748A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524337A (ja) * 2006-01-19 2009-06-25 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
US8160258B2 (en) 2006-02-07 2012-04-17 Lg Electronics Inc. Apparatus and method for encoding/decoding signal
US8917874B2 (en) 2005-05-26 2014-12-23 Lg Electronics Inc. Method and apparatus for decoding an audio signal
US9595267B2 (en) 2005-05-26 2017-03-14 Lg Electronics Inc. Method and apparatus for decoding an audio signal

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612787B2 (ja) * 2003-03-07 2011-01-12 キヤノン株式会社 画像データの暗号化装置の制御方法及び画像データ変換装置の制御方法、及び、それらの装置、並びにコンピュータプログラム及びコンピュータ可読記憶媒体
US8843378B2 (en) * 2004-06-30 2014-09-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-channel synthesizer and method for generating a multi-channel output signal
ES2387256T3 (es) * 2004-07-14 2012-09-19 Koninklijke Philips Electronics N.V. Método, dispositivo, aparato codificador, aparato decodificador y sistema de audio
JP4892184B2 (ja) * 2004-10-14 2012-03-07 パナソニック株式会社 音響信号符号化装置及び音響信号復号装置
EP1691348A1 (en) * 2005-02-14 2006-08-16 Ecole Polytechnique Federale De Lausanne Parametric joint-coding of audio sources
US9626973B2 (en) * 2005-02-23 2017-04-18 Telefonaktiebolaget L M Ericsson (Publ) Adaptive bit allocation for multi-channel audio encoding
EP1851866B1 (en) * 2005-02-23 2011-08-17 Telefonaktiebolaget LM Ericsson (publ) Adaptive bit allocation for multi-channel audio encoding
EP1858006B1 (en) * 2005-03-25 2017-01-25 Panasonic Intellectual Property Corporation of America Sound encoding device and sound encoding method
US7983922B2 (en) * 2005-04-15 2011-07-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating multi-channel synthesizer control signal and apparatus and method for multi-channel synthesizing
JP2009518659A (ja) * 2005-09-27 2009-05-07 エルジー エレクトロニクス インコーポレイティド マルチチャネルオーディオ信号の符号化/復号化方法及び装置
WO2007089129A1 (en) * 2006-02-03 2007-08-09 Electronics And Telecommunications Research Institute Apparatus and method for visualization of multichannel audio signals
ATE527833T1 (de) 2006-05-04 2011-10-15 Lg Electronics Inc Verbesserung von stereo-audiosignalen mittels neuabmischung
US7930173B2 (en) * 2006-06-19 2011-04-19 Sharp Kabushiki Kaisha Signal processing method, signal processing apparatus and recording medium
DE102006030276A1 (de) 2006-06-30 2008-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen eines gefilterten Aktivitätsmusters, Quellentrenner, Verfahren zum Erzeugen eines bereinigten Audiosignals und Computerprogramm
KR100763919B1 (ko) * 2006-08-03 2007-10-05 삼성전자주식회사 멀티채널 신호를 모노 또는 스테레오 신호로 압축한 입력신호를 2 채널의 바이노럴 신호로 복호화하는 방법 및 장치
US20080235006A1 (en) * 2006-08-18 2008-09-25 Lg Electronics, Inc. Method and Apparatus for Decoding an Audio Signal
JP4769673B2 (ja) * 2006-09-20 2011-09-07 富士通株式会社 オーディオ信号補間方法及びオーディオ信号補間装置
JP5232791B2 (ja) 2006-10-12 2013-07-10 エルジー エレクトロニクス インコーポレイティド ミックス信号処理装置及びその方法
DE102006051673A1 (de) * 2006-11-02 2008-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Nachbearbeiten von Spektralwerten und Encodierer und Decodierer für Audiosignale
EP2092516A4 (en) 2006-11-15 2010-01-13 Lg Electronics Inc METHOD AND APPARATUS FOR AUDIO SIGNAL DECODING
JP5463143B2 (ja) 2006-12-07 2014-04-09 エルジー エレクトロニクス インコーポレイティド オーディオ信号のデコーディング方法及びその装置
WO2008069594A1 (en) 2006-12-07 2008-06-12 Lg Electronics Inc. A method and an apparatus for processing an audio signal
US20100119073A1 (en) * 2007-02-13 2010-05-13 Lg Electronics, Inc. Method and an apparatus for processing an audio signal
US8908873B2 (en) * 2007-03-21 2014-12-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for conversion between multi-channel audio formats
US9015051B2 (en) * 2007-03-21 2015-04-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Reconstruction of audio channels with direction parameters indicating direction of origin
US8290167B2 (en) * 2007-03-21 2012-10-16 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for conversion between multi-channel audio formats
KR101505831B1 (ko) * 2007-10-30 2015-03-26 삼성전자주식회사 멀티 채널 신호의 부호화/복호화 방법 및 장치
RU2565008C2 (ru) 2008-03-10 2015-10-10 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Устройство и метод для обработки аудио сигнала, содержащего переходный сигнал
WO2010016270A1 (ja) * 2008-08-08 2010-02-11 パナソニック株式会社 量子化装置、符号化装置、量子化方法及び符号化方法
EP2154910A1 (en) * 2008-08-13 2010-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for merging spatial audio streams
WO2010036062A2 (en) * 2008-09-25 2010-04-01 Lg Electronics Inc. A method and an apparatus for processing a signal
US8346380B2 (en) * 2008-09-25 2013-01-01 Lg Electronics Inc. Method and an apparatus for processing a signal
US8346379B2 (en) * 2008-09-25 2013-01-01 Lg Electronics Inc. Method and an apparatus for processing a signal
MX2011011399A (es) 2008-10-17 2012-06-27 Univ Friedrich Alexander Er Aparato para suministrar uno o más parámetros ajustados para un suministro de una representación de señal de mezcla ascendente sobre la base de una representación de señal de mezcla descendete, decodificador de señal de audio, transcodificador de señal de audio, codificador de señal de audio, flujo de bits de audio, método y programa de computación que utiliza información paramétrica relacionada con el objeto.
KR101499785B1 (ko) 2008-10-23 2015-03-09 삼성전자주식회사 모바일 디바이스를 위한 오디오 처리 장치 및 그 방법
US20100324915A1 (en) * 2009-06-23 2010-12-23 Electronic And Telecommunications Research Institute Encoding and decoding apparatuses for high quality multi-channel audio codec
ES2644520T3 (es) * 2009-09-29 2017-11-29 Dolby International Ab Decodificador de señal de audio MPEG-SAOC, método para proporcionar una representación de señal de mezcla ascendente usando decodificación MPEG-SAOC y programa informático usando un valor de parámetro de correlación inter-objeto común dependiente del tiempo/frecuencia
ES2461172T3 (es) * 2009-10-21 2014-05-19 Dolby International Ab Aparato y procedimiento para generar una señal de audio de alta frecuencia usando sobremuestreo adaptativo
MY154641A (en) * 2009-11-20 2015-07-15 Fraunhofer Ges Forschung Apparatus for providing an upmix signal representation on the basis of the downmix signal representation, apparatus for providing a bitstream representing a multi-channel audio signal, methods, computer programs and bitstream representing a multi-channel audio signal using a linear cimbination parameter
AU2011237882B2 (en) 2010-04-09 2014-07-24 Dolby International Ab MDCT-based complex prediction stereo coding
EP2464146A1 (en) 2010-12-10 2012-06-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decomposing an input signal using a pre-calculated reference curve
EP3035330B1 (en) 2011-02-02 2019-11-20 Telefonaktiebolaget LM Ericsson (publ) Determining the inter-channel time difference of a multi-channel audio signal
US9299355B2 (en) 2011-08-04 2016-03-29 Dolby International Ab FM stereo radio receiver by using parametric stereo
KR101621287B1 (ko) 2012-04-05 2016-05-16 후아웨이 테크놀러지 컴퍼니 리미티드 다채널 오디오 신호 및 다채널 오디오 인코더를 위한 인코딩 파라미터를 결정하는 방법
ES2560402T3 (es) * 2012-04-05 2016-02-18 Huawei Technologies Co., Ltd Método para la codificación y la decodificación de audio espacial paramétrica, codificador de audio espacial paramétrico y decodificador de audio espacial paramétrico
US9460723B2 (en) * 2012-06-14 2016-10-04 Dolby International Ab Error concealment strategy in a decoding system
US9319790B2 (en) 2012-12-26 2016-04-19 Dts Llc Systems and methods of frequency response correction for consumer electronic devices
CN103533123B (zh) * 2013-09-23 2018-04-06 陕西烽火电子股份有限公司 一种飞机用多接收通道通话静噪方法
EP2866227A1 (en) 2013-10-22 2015-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder
US9774974B2 (en) 2014-09-24 2017-09-26 Electronics And Telecommunications Research Institute Audio metadata providing apparatus and method, and multichannel audio data playback apparatus and method to support dynamic format conversion
US20190096410A1 (en) * 2016-03-03 2019-03-28 Nokia Technologies Oy Audio Signal Encoder, Audio Signal Decoder, Method for Encoding and Method for Decoding
BR112018068892A2 (pt) * 2016-03-18 2019-01-22 Fraunhofer Ges Forschung aparelho para reconstrução de fase a partir de um espectrograma de magnitude de um sinal de áudio, sistema, codificador e método para reconstrução de fase a partir de um espectrograma de magnitude de um sinal de áudio
CN107452387B (zh) * 2016-05-31 2019-11-12 华为技术有限公司 一种声道间相位差参数的提取方法及装置
CN107731238B (zh) 2016-08-10 2021-07-16 华为技术有限公司 多声道信号的编码方法和编码器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211599A (ja) * 1989-11-29 1991-09-17 Communications Satellite Corp <Comsat> 4.8kbpsの情報伝送速度を有する音声符号化/復号化器
US5675701A (en) * 1995-04-28 1997-10-07 Lucent Technologies Inc. Speech coding parameter smoothing method
JP2000214900A (ja) * 1999-01-22 2000-08-04 Toshiba Corp 音声符号化/復号化方法
WO2003007656A1 (en) * 2001-07-10 2003-01-23 Coding Technologies Ab Efficient and scalable parametric stereo coding for low bitrate applications
US20040044527A1 (en) * 2002-09-04 2004-03-04 Microsoft Corporation Quantization and inverse quantization for audio
JP2006521577A (ja) * 2003-03-24 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチチャネル信号を表す主信号と副信号の符号化

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
DE19628293C1 (de) * 1996-07-12 1997-12-11 Fraunhofer Ges Forschung Codieren und Decodieren von Audiosignalen unter Verwendung von Intensity-Stereo und Prädiktion
US6130949A (en) * 1996-09-18 2000-10-10 Nippon Telegraph And Telephone Corporation Method and apparatus for separation of source, program recorded medium therefor, method and apparatus for detection of sound source zone, and program recorded medium therefor
JP3266178B2 (ja) * 1996-12-18 2002-03-18 日本電気株式会社 音声符号化装置
US6307941B1 (en) * 1997-07-15 2001-10-23 Desper Products, Inc. System and method for localization of virtual sound
US6233550B1 (en) * 1997-08-29 2001-05-15 The Regents Of The University Of California Method and apparatus for hybrid coding of speech at 4kbps
JP3657120B2 (ja) * 1998-07-30 2005-06-08 株式会社アーニス・サウンド・テクノロジーズ 左,右両耳用のオーディオ信号を音像定位させるための処理方法
JP3558031B2 (ja) * 2000-11-06 2004-08-25 日本電気株式会社 音声復号化装置
US20030035553A1 (en) * 2001-08-10 2003-02-20 Frank Baumgarte Backwards-compatible perceptual coding of spatial cues
US20030220801A1 (en) * 2002-05-22 2003-11-27 Spurrier Thomas E. Audio compression method and apparatus
ES2273216T3 (es) * 2003-02-11 2007-05-01 Koninklijke Philips Electronics N.V. Codificacion de audio.
US7447317B2 (en) * 2003-10-02 2008-11-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V Compatible multi-channel coding/decoding by weighting the downmix channel
US7394903B2 (en) * 2004-01-20 2008-07-01 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal
US8843378B2 (en) * 2004-06-30 2014-09-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-channel synthesizer and method for generating a multi-channel output signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211599A (ja) * 1989-11-29 1991-09-17 Communications Satellite Corp <Comsat> 4.8kbpsの情報伝送速度を有する音声符号化/復号化器
US5675701A (en) * 1995-04-28 1997-10-07 Lucent Technologies Inc. Speech coding parameter smoothing method
JP2000214900A (ja) * 1999-01-22 2000-08-04 Toshiba Corp 音声符号化/復号化方法
WO2003007656A1 (en) * 2001-07-10 2003-01-23 Coding Technologies Ab Efficient and scalable parametric stereo coding for low bitrate applications
US20040044527A1 (en) * 2002-09-04 2004-03-04 Microsoft Corporation Quantization and inverse quantization for audio
JP2006521577A (ja) * 2003-03-24 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチチャネル信号を表す主信号と副信号の符号化

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595267B2 (en) 2005-05-26 2017-03-14 Lg Electronics Inc. Method and apparatus for decoding an audio signal
US8917874B2 (en) 2005-05-26 2014-12-23 Lg Electronics Inc. Method and apparatus for decoding an audio signal
JP2009524341A (ja) * 2006-01-19 2009-06-25 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
US8521313B2 (en) 2006-01-19 2013-08-27 Lg Electronics Inc. Method and apparatus for processing a media signal
JP4695197B2 (ja) * 2006-01-19 2011-06-08 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
JP4814344B2 (ja) * 2006-01-19 2011-11-16 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
JP4814343B2 (ja) * 2006-01-19 2011-11-16 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
JP2009524340A (ja) * 2006-01-19 2009-06-25 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
US8208641B2 (en) 2006-01-19 2012-06-26 Lg Electronics Inc. Method and apparatus for processing a media signal
JP2009524336A (ja) * 2006-01-19 2009-06-25 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
JP2009524337A (ja) * 2006-01-19 2009-06-25 エルジー エレクトロニクス インコーポレイティド メディア信号の処理方法及び装置
US8351611B2 (en) 2006-01-19 2013-01-08 Lg Electronics Inc. Method and apparatus for processing a media signal
US8411869B2 (en) 2006-01-19 2013-04-02 Lg Electronics Inc. Method and apparatus for processing a media signal
US8488819B2 (en) 2006-01-19 2013-07-16 Lg Electronics Inc. Method and apparatus for processing a media signal
US8296156B2 (en) 2006-02-07 2012-10-23 Lg Electronics, Inc. Apparatus and method for encoding/decoding signal
US8612238B2 (en) 2006-02-07 2013-12-17 Lg Electronics, Inc. Apparatus and method for encoding/decoding signal
US8625810B2 (en) 2006-02-07 2014-01-07 Lg Electronics, Inc. Apparatus and method for encoding/decoding signal
US8638945B2 (en) 2006-02-07 2014-01-28 Lg Electronics, Inc. Apparatus and method for encoding/decoding signal
US8712058B2 (en) 2006-02-07 2014-04-29 Lg Electronics, Inc. Apparatus and method for encoding/decoding signal
US8285556B2 (en) 2006-02-07 2012-10-09 Lg Electronics Inc. Apparatus and method for encoding/decoding signal
US8160258B2 (en) 2006-02-07 2012-04-17 Lg Electronics Inc. Apparatus and method for encoding/decoding signal
US9626976B2 (en) 2006-02-07 2017-04-18 Lg Electronics Inc. Apparatus and method for encoding/decoding signal

Also Published As

Publication number Publication date
AU2005259618B2 (en) 2008-05-22
AU2005259618A1 (en) 2006-01-12
CN1954642B (zh) 2010-05-12
CA2569666C (en) 2013-07-16
RU2007103341A (ru) 2008-08-10
DE602005006495D1 (de) 2008-06-19
KR20070028481A (ko) 2007-03-12
US20060004583A1 (en) 2006-01-05
WO2006002748A1 (en) 2006-01-12
CN1954642A (zh) 2007-04-25
PT1649723E (pt) 2008-07-28
CA2569666A1 (en) 2006-01-12
HK1090504A1 (en) 2006-12-22
BRPI0511362A (pt) 2007-12-04
ES2307188T3 (es) 2008-11-16
EP1649723B1 (en) 2008-05-07
RU2345506C2 (ru) 2009-01-27
MXPA06014968A (es) 2007-02-08
NO338980B1 (no) 2016-11-07
IL178670A (en) 2011-10-31
US8843378B2 (en) 2014-09-23
IL178670A0 (en) 2007-02-11
ATE394901T1 (de) 2008-05-15
NO20070560L (no) 2007-03-30
BRPI0511362B1 (pt) 2018-12-26
JP4712799B2 (ja) 2011-06-29
KR100913987B1 (ko) 2009-08-25
EP1649723A1 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP4712799B2 (ja) マルチチャネル出力信号を発生するためのマルチチャネルシンセサイザおよび方法
JP5624967B2 (ja) マルチチャネルシンセサイザ制御信号を発生するための装置および方法並びにマルチチャネル合成のための装置および方法
JP6641018B2 (ja) チャネル間時間差を推定する装置及び方法
JP5189979B2 (ja) 聴覚事象の関数としての空間的オーディオコーディングパラメータの制御
JP4664371B2 (ja) バイノーラルキュー符号化方法等のための個別に行うチャネル時間エンベロープ整形
JP4574626B2 (ja) マルチチャネル出力信号を構築する装置および方法またはダウンミックス信号を生成する装置および方法
TWI393121B (zh) 處理一組n個聲音信號之方法與裝置及與其相關聯之電腦程式

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Ref document number: 4712799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250