JP2008501043A - Adhesive beads for immobilizing biomolecules and methods for producing biochips using the same - Google Patents

Adhesive beads for immobilizing biomolecules and methods for producing biochips using the same Download PDF

Info

Publication number
JP2008501043A
JP2008501043A JP2007501053A JP2007501053A JP2008501043A JP 2008501043 A JP2008501043 A JP 2008501043A JP 2007501053 A JP2007501053 A JP 2007501053A JP 2007501053 A JP2007501053 A JP 2007501053A JP 2008501043 A JP2008501043 A JP 2008501043A
Authority
JP
Japan
Prior art keywords
beads
adhesive
substrate
acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007501053A
Other languages
Japanese (ja)
Other versions
JP4482025B2 (en
Inventor
ジェ−クウォン・キム
ウン・ジョン・イ
ドン・ジョ・リュウ
ジェ−ヨン・ジャン
Original Assignee
エルジー・ライフ・サイエンシズ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ライフ・サイエンシズ・リミテッド filed Critical エルジー・ライフ・サイエンシズ・リミテッド
Publication of JP2008501043A publication Critical patent/JP2008501043A/en
Application granted granted Critical
Publication of JP4482025B2 publication Critical patent/JP4482025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/706Specific hybridization probes for hepatitis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、生体分子固定用ビーズ及びこれを用いたバイオチップの製造方法に係り、さらに詳しくは、生体分子を固定する支持体とチップ基板の表面に対する粘着剤としての特徴を同時に持つ粘着性ビーズ、及び前記粘着性ビーズに生体分子を結合させ、生体分子が固定されたビーズの水性懸濁液を製造した後、これを基板上に固定することを特徴とするバイオチップの製造方法に関するものである。
本発明による粘着性ビーズは、生体分子を固定する支持体とチップ基板の表面に対する粘着剤としての特徴を同時に持つため、別途の装置及び処理過程なしにバイオチップ上に直接固定させることができる。
The present invention relates to a bead for immobilizing biomolecules and a method for producing a biochip using the same, and more particularly, an adhesive bead having characteristics as an adhesive to the support for immobilizing the biomolecule and the surface of the chip substrate at the same time. And a method for producing a biochip, characterized in that a biomolecule is bound to the adhesive bead and an aqueous suspension of the bead on which the biomolecule is immobilized is produced and then immobilized on a substrate. is there.
Since the adhesive beads according to the present invention simultaneously have a feature as a support for fixing biomolecules and an adhesive to the surface of the chip substrate, they can be directly fixed on the biochip without a separate apparatus and treatment process.

Description

本発明は、生体分子固定用ビーズ及びこれを用いたバイオチップの製造方法に係り、さらに詳しくは、生体分子を固定する支持体とチップ基板の表面に対する粘着剤としての特徴を同時に持つ粘着性ビーズ、及び前記粘着性ビーズに生体分子を結合させ、生体分子が固定されたビーズの水性懸濁液を製造した後、これを基板上に固定することを特徴とするバイオチップの製造方法に関する。   The present invention relates to a bead for immobilizing biomolecules and a method for producing a biochip using the same, and more particularly, an adhesive bead having characteristics as an adhesive to the support for immobilizing the biomolecule and the surface of the chip substrate at the same time. Further, the present invention relates to a biochip manufacturing method, wherein a biomolecule is bound to the adhesive beads, an aqueous suspension of the beads having the biomolecule fixed thereon is manufactured, and then this is fixed on a substrate.

生体分子の固定が可能な固定相支持体は、生体分子間の選択的親和力(affinity)を利用する多くの生物学的な応用分野で広く活用されており、代表的には、アガロース、セルロース、多孔性ガラス、シリカ、アルミナ、ゼオライトなどの天然支持体と、ポリアクリルアミド系ビーズ、ポリメタクリル酸系ビーズ、ポリスチレン系ビーズ、メンブレインなどの合成支持体がある(Regnier, F.E., J. Chromatogr. Sci., 14:316, 1976; Hjerten, S., Anal. Biochem., 3:109, 1962)。   Stationary phase supports capable of immobilizing biomolecules are widely used in many biological application fields that utilize selective affinity between biomolecules, typically agarose, cellulose, There are natural supports such as porous glass, silica, alumina and zeolite, and synthetic supports such as polyacrylamide beads, polymethacrylic acid beads, polystyrene beads and membranes (Regnier, FE, J. Chromatogr. Sci ., 14: 316, 1976; Hjerten, S., Anal. Biochem., 3: 109, 1962).

このような固定相支持体は、タンパク質の分離・精製またはアフィニティークロマトグラフィなどの伝統的な分野の他にも、ハイ・スループット・スクリーニング(High Throughput Screening; HTS)と診断の用途に用いられるバイオチップ(biochip)分野で生体分子をチップ基板に固定するための担体として広く活用されている(Sato, K., Adv. Drug Deliv. Rev., 55:379, 2003; Andersoon, H., Electrophoresis, 22:249, 2001; Choi, J.W., Biomed. Microdevices, 3:191, 2001)。これは、従来から当該分野で使用されてきた自己組立(self-assembly)のような2次元固定方法の技術的な限界点、すなわち生体分子の集積化と生理活性の保存が難しい問題を解決するための代案として提案されたものである。固定相支持体の存在により、3次元の広い表面積を用いて生体分子を高濃度で担持し、これをチップ基板上に固定することによって、生体分子の生体親和的な集積化が可能になった。   In addition to traditional fields such as protein separation / purification or affinity chromatography, such stationary phase supports can be used in biochips used for high-throughput screening (HTS) and diagnostic applications ( Biochip) is widely used as a carrier for immobilizing biomolecules on chip substrates (Sato, K., Adv. Drug Deliv. Rev., 55: 379, 2003; Andersoon, H., Electrophoresis, 22: 249, 2001; Choi, JW, Biomed. Microdevices, 3: 191, 2001). This solves the technical limitations of the two-dimensional fixation method such as self-assembly that has been used in the field, that is, the problem that it is difficult to integrate biomolecules and preserve bioactivity. It has been proposed as an alternative for this. Due to the presence of the stationary phase support, biomolecules are supported at a high concentration using a large three-dimensional surface area, and this is immobilized on a chip substrate, thereby enabling biocompatible integration of biomolecules. .

使用可能な固定相支持体としては、いろいろな形態がある。例えば、メンブレイン形態は、セルロースのように特徴的な多孔構造を持つ広い表面を生体分子の固定面として活用する支持体であり、高分子マトリックス形態は、基板上にグルコース、ポリリシン、キトサン、デキストラン、ポリアリルアミン、ポリビニルアルコールなどの生体親和性高分子からなる薄い高分子マトリックスを形成して固定化面を広くし、生体分子の基板に対する立体障害を改善した支持体である(韓国特許公開第2004−0004725号; Yakovleva, J., Biosens. Bioelectron., 19:21, 2003; Gill, I., Trends in Biotechnology, 18:282, 2000; US 5,034,428; US 5,482,996)。   There are various forms of stationary phase supports that can be used. For example, the membrane form is a support utilizing a wide surface having a characteristic porous structure such as cellulose as a fixing surface for biomolecules, and the polymer matrix form is glucose, polylysine, chitosan, dextran on a substrate. This is a support in which a thin polymer matrix made of a biocompatible polymer such as polyallylamine and polyvinyl alcohol is formed to widen the immobilization surface and to improve the steric hindrance of the biomolecule to the substrate (Korea Patent Publication No. 2004). No. 0004725; Yakovleva, J., Biosens. Bioelectron., 19:21, 2003; Gill, I., Trends in Biotechnology, 18: 282, 2000; US 5,034,428; US 5,482,996).

一方、ビーズ形態の支持体は、球状を有する個々のビーズに生体分子を固定し、これを集めて広い表面積の3次元構造体を成すようにする固定化支持体であって、チップ基板上に形成させる場合、バイオチップとしての活用が可能である(Sato, K., Adv. Drug Deliv. Rev., 55:379, 2003); Andersoon, H., Electrophoresis, 22:249, 2001; Choi, J.W., Biomed. Microdevices, 3:191, 2001)。前記メンブレインまたは高分子マトリックス支持体は、生体分子の固定が外部と接触する表面の周囲に制限されるか、或いは生体分子の固定力を高めるために共有結合的に結合する場合、外部環境に敏感な酵素またはその他のタンパク質の生理活性を維持することが難しいという幾つかの欠点を有する。これに反し、ビーズ支持体は、既に生体分子が固定した個々のビーズを使用して3次元構造体を作るため、表面積の活用率が高く、生体分子の活性を維持させる多様な固定化方法を活用することができるため、利点が大きい。特に、取り扱いが非常に容易なので、ラボ・オン・チップ(Lab-on-a-chip)のように微細流路内に生体分子を固定しなければならないバイオチップ製作工程においてチップの製造を容易にする、適した材料となる。   On the other hand, a bead-shaped support is an immobilization support that fixes biomolecules to individual beads having a spherical shape and collects them to form a three-dimensional structure having a large surface area. When formed, it can be used as a biochip (Sato, K., Adv. Drug Deliv. Rev., 55: 379, 2003); Andersoon, H., Electrophoresis, 22: 249, 2001; Choi, JW , Biomed. Microdevices, 3: 191, 2001). The membrane or polymer matrix support can be attached to the external environment when the immobilization of biomolecules is restricted around the surface in contact with the exterior or covalently bonded to enhance the immobilization force of the biomolecules. It has several disadvantages that it is difficult to maintain the physiological activity of sensitive enzymes or other proteins. Contrary to this, since the bead support is made of individual beads to which biomolecules are already fixed, a three-dimensional structure is made, and therefore, the surface area utilization ratio is high, and various immobilization methods that maintain the activity of biomolecules are used. The advantage is great because it can be utilized. In particular, it is very easy to handle, so it is easy to manufacture chips in the biochip manufacturing process where biomolecules must be fixed in microchannels, such as Lab-on-a-chip. It becomes a suitable material.

また、既存のビーズは、それ自体がチップ基板に対する粘着性を持たないため、微細流路内にビーズを固定するための別途の方法が必要であるという欠点がある。現在まで開発されて使用されるビーズを固定する代表的な方法としては、物理的な障壁を用いてビーズを微細流路内に閉じ込める方法、磁場を用いて固定する方法、及び超音波またはレーザピンセット(laser tweezer)を用いた方法がある。ところが、これらの方法は、ビーズの選択に制限があり、チップを製作する加工工程が複雑であり、光学測定時のノイズが大きく、チップの内部或いは外部に別途の装置が必要であるという欠点を有する。そのため、ラボ・オン・チップの目的として適用するには多少非経済的であるという問題点がある(Sato, K., Adv. Drug Deliv. Rev., 55:379, 2003; Andersoon, H., Electrophoresis, 22:249, 2001; Choi, J.W., Biomed. Microdevices, 3:191, 2001; Meng, A., Transducers, Sendai, Japan, 876, 1999; Dorre, K., Bioimaging, 5:139, 1997)。   Further, since existing beads themselves do not have adhesiveness to the chip substrate, there is a disadvantage that a separate method for fixing the beads in the fine flow path is necessary. Typical methods for immobilizing beads that have been developed and used to date include confining beads in a microchannel using a physical barrier, immobilizing using a magnetic field, and ultrasonic or laser tweezers. There is a method using (laser tweezer). However, these methods have the disadvantage that the selection of beads is limited, the processing steps for manufacturing the chip are complicated, the noise during optical measurement is large, and a separate device is required inside or outside the chip. Have. Therefore, there is a problem that it is somewhat uneconomical to apply as a lab-on-chip purpose (Sato, K., Adv. Drug Deliv. Rev., 55: 379, 2003; Andersoon, H., (Electrophoresis, 22: 249, 2001; Choi, JW, Biomed.Microdevices, 3: 191, 2001; Meng, A., Transducers, Sendai, Japan, 876, 1999; Dorre, K., Bioimaging, 5: 139, 1997) .

一方、本出願人は、プローブ、またはプローブが固定されたビーズを粘着剤を用いて基板の表面に固定させることを特徴とするバイオチップの製造方法について特許出願(韓国特許出願第10−2004−104944号)したことがある。前記特許によれば、プローブが固定されたビーズを基板に、物理的な障壁または電場によらず粘着剤によって固定させることが可能であるが、これも、やはり、ビーズを基板に固定させるためには別途の粘着剤を添加しなければならないという煩わしさが依然として存在する。   On the other hand, the present applicant has filed a patent application (Korean Patent Application No. 10-2004) for a method of manufacturing a biochip characterized in that a probe or a bead to which the probe is fixed is fixed to the surface of a substrate using an adhesive. 104944). According to the patent, it is possible to fix a bead on which a probe is fixed to a substrate with an adhesive regardless of a physical barrier or an electric field. Still has the inconvenience of having to add a separate adhesive.

したがって、当業界では、生体分子を固定する支持体と、チップ基板の表面に対する粘着剤としての特徴を同時に持っており、別途の装置及び処理過程なしにバイオチップ上に直接固定させることが可能な粘着性ビーズ、及びこれを用いたバイオチップの開発が切望されている。
韓国特許公開第2004−0004725号 US 5,034,428 US 5,482,996 Regnier, F.E., J. Chromatogr. Sci., 14:316, 1976 Hjerten, S., Anal. Biochem., 3:109, 1962 Sato, K., Adv. Drug Deliv. Rev., 55:379, 2003 Andersoon, H., Electrophoresis, 22:249, 2001 Choi, J.W., Biomed. Microdevices, 3:191, 2001 Yakovleva, J., Biosens. Bioelectron., 19:21, 2003 Gill, I., Trends in Biotechnology, 18:282, 2000 Sato, K., Adv. Drug Deliv. Rev., 55:379, 2003) Andersoon, H., Electrophoresis, 22:249, 2001 Choi, J.W., Biomed. Microdevices, 3:191, 2001 Meng, A., Transducers, Sendai, Japan, 876, 1999 Dorre, K., Bioimaging, 5:139, 1997
Therefore, the industry simultaneously has a feature as a support for immobilizing biomolecules and an adhesive to the surface of the chip substrate, and can be directly immobilized on the biochip without a separate apparatus and processing process. The development of sticky beads and biochips using such beads is eagerly desired.
Korean Patent Publication No. 2004-0004725 US 5,034,428 US 5,482,996 Regnier, FE, J. Chromatogr. Sci., 14: 316, 1976 Hjerten, S., Anal. Biochem., 3: 109, 1962 Sato, K., Adv. Drug Deliv. Rev., 55: 379, 2003 Andersoon, H., Electrophoresis, 22: 249, 2001 Choi, JW, Biomed. Microdevices, 3: 191, 2001 Yakovleva, J., Biosens. Bioelectron., 19:21, 2003 Gill, I., Trends in Biotechnology, 18: 282, 2000 (Sato, K., Adv. Drug Deliv. Rev., 55: 379, 2003) Andersoon, H., Electrophoresis, 22: 249, 2001 Choi, JW, Biomed. Microdevices, 3: 191, 2001 Meng, A., Transducers, Sendai, Japan, 876, 1999 Dorre, K., Bioimaging, 5: 139, 1997

そこで、本発明者らは、生体分子を固定する支持体と、チップ基板の表面に対する粘着剤としての特徴を同時に持っているため、別途の装置及び処理過程なしにバイオチップ上に直接固定させることが可能な粘着性ビーズ、及びこれを用いたバイオチップを開発するために鋭意努力した結果、本発明を完成するに至った。   Therefore, the present inventors simultaneously have a feature as a support for immobilizing biomolecules and an adhesive for the surface of the chip substrate, so that it can be directly immobilized on the biochip without a separate apparatus and processing step. As a result of diligent efforts to develop an adhesive bead that can be used, and a biochip using the same, the present invention has been completed.

本発明の目的は、生体分子を固定する支持体と、チップ基板の表面に対する粘着剤としての特徴を同時に持つ粘着性ビーズ、及びその製造方法を提供することにある。   An object of the present invention is to provide a support for fixing a biomolecule, an adhesive bead having characteristics as an adhesive to the surface of a chip substrate, and a method for producing the same.

本発明の他の目的は、前記粘着性ビーズに生体分子を付着させ、生体分子を固定したビーズの水性懸濁液を製造した後、これを基板上に固定させることを特徴とするバイオチップの製造方法、及び前記方法によって製造されたバイオチップを提供することにある。   Another object of the present invention is to provide a biochip characterized in that a biomolecule is attached to the adhesive bead, and an aqueous suspension of the bead on which the biomolecule is immobilized is produced and then immobilized on a substrate. A manufacturing method and a biochip manufactured by the method are provided.

前記目的を達成するために、本発明は、水性媒質に親水性モノマー、主単量体(mainmonomer)及び共単量体(comonomer)を乳濁させた後、重合させて製造された、生体分子を固定する支持体とチップ基板の表面に対する粘着剤としての特徴を同時に持つ粘着性ビーズを提供する。   To achieve the above object, the present invention provides a biomolecule produced by emulsifying a hydrophilic monomer, a main monomer, and a comonomer in an aqueous medium and then polymerizing the emulsion. An adhesive bead having characteristics as an adhesive to the support for fixing the substrate and the surface of the chip substrate is provided.

本発明において、前記親水性モノマーは、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、アクリルアミド、グリシジルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、パリトレイン酸、オレイン酸、リノール酸、アラキドン酸、リノレン酸、アリルアルコール及びビニルアルコールよりなる群から選ばれた少なくとも一つであることを特徴とすることができ、前記主単量体は、ブタジエン、エチルアクリレート、ブチルアクリレート、エチルヘキシルアクリレート及びオクチルアクリレートよりなる群から選ばれた少なくとも一つであることを特徴とすることができ、前記共単量体は、酢酸ビニル、アクリロニトリル、アクリルアミド、スチレン、メチルメタクリレート及びメチルアクリレートよりなる群から選ばれた少なくとも一つであることを特徴とすることができる。   In the present invention, the hydrophilic monomer is methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylamide, glycidyl methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, palitreic acid, oleic acid, linoleic acid, It may be characterized in that it is at least one selected from the group consisting of arachidonic acid, linolenic acid, allyl alcohol and vinyl alcohol, wherein the main monomer is butadiene, ethyl acrylate, butyl acrylate, ethyl hexyl acrylate and It may be characterized in that it is at least one selected from the group consisting of octyl acrylate, and the comonomer is vinyl acetate, acrylonitrile, acrylonitrile, Riruamido, styrene, can be characterized in that at least one selected from the group consisting of methyl methacrylate and methyl acrylate.

本発明は、また、(a)乳化剤水溶液に単量体を添加し、混合して乳濁液(emulsion)を作る工程と、(b)水性媒質に親水性モノマーを添加し、窒素雰囲気下で約75℃まで昇温した後、ここに前記(a)工程で得られた乳濁液を添加し、攪拌して乳濁させる工程と、(c)前記(b)工程で得られた乳濁液に重合開始剤を添加した後、反応させる工程とを含む、粘着性ビーズの製造方法を提供する。   The present invention also includes (a) adding a monomer to an aqueous emulsifier solution and mixing to make an emulsion, and (b) adding a hydrophilic monomer to the aqueous medium under a nitrogen atmosphere. After the temperature is raised to about 75 ° C., the emulsion obtained in the step (a) is added thereto, and the emulsion obtained by stirring is emulsified. (C) The emulsion obtained in the step (b) There is provided a method for producing an adhesive bead comprising a step of reacting after adding a polymerization initiator to a liquid.

本発明による粘着性ビーズの製造方法において、前記水性媒質は、水、エタノール、メタノール、DMF、DMSO、アセトン及びNMPよりなる群から選ばれた少なくとも一つであることを特徴とすることができ、前記親水性モノマーは、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、アクリルアミド、グリシジルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、パリトレイン酸、オレイン酸、リノール酸、アラキドン酸、リノレン酸、アリルアルコールおよびビニルアルコールよりなる群から選ばれた少なくとも一つであることを特徴とすることができる。   In the method for producing adhesive beads according to the present invention, the aqueous medium may be at least one selected from the group consisting of water, ethanol, methanol, DMF, DMSO, acetone, and NMP. The hydrophilic monomers are methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylamide, glycidyl methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, paroleic acid, oleic acid, linoleic acid, arachidonic acid, linolenic acid. It may be characterized by being at least one selected from the group consisting of acid, allyl alcohol and vinyl alcohol.

本発明による粘着性ビーズの製造方法において、前記単量体は、ブタジエン、エチルアクリレート、ブチルアクリレート、エチルヘキシルアクリレート及びオクチルアクリレートよりなる群から選ばれた少なくとも一つの主単量体と、酢酸ビニル、アクリロニトリル、アクリルアミド、スチレン、メチルメタクリレート及びメチルアクリレートよりなる群から選ばれた少なくとも一つの共単量体とを含有することを特徴とすることができる。また、前記主単量体と前記共単量体の配合比は前記粘着性ビーズのガラス転移温度(Tg)によって決定され、前記ガラス転移温度(Tg)はバイオチップの製作または使用温度より0〜45℃低いことを特徴とすることができる。   In the method for producing adhesive beads according to the present invention, the monomer is at least one main monomer selected from the group consisting of butadiene, ethyl acrylate, butyl acrylate, ethyl hexyl acrylate, and octyl acrylate, vinyl acetate, acrylonitrile. , Acrylamide, styrene, methyl methacrylate, and at least one comonomer selected from the group consisting of methyl acrylate. The blending ratio of the main monomer and the comonomer is determined by the glass transition temperature (Tg) of the adhesive beads, and the glass transition temperature (Tg) is 0 to 0 based on the biochip production or use temperature. It can be characterized by being 45 ° C. lower.

本発明による粘着性ビーズの製造方法において、前記乳化剤は、ラウリル硫酸ナトリウム、ゼラチン、メチルセルロース、ポリビニルアルコール、臭化セチルトリメチルアンモニウム及びオレイン酸ナトリウムよりなる群から選ばれた少なくとも一つであることを特徴とすることができ、前記重合開始剤は、過硫酸カリウム、過硫酸アンモニウム、アゾビスブチロニトリル(AIBN)及び過酸化ベンゾイル(BPO)よりなる群から選ばれた少なくとも一つであることを特徴とすることができる。   In the method for producing adhesive beads according to the present invention, the emulsifier is at least one selected from the group consisting of sodium lauryl sulfate, gelatin, methylcellulose, polyvinyl alcohol, cetyltrimethylammonium bromide, and sodium oleate. The polymerization initiator is at least one selected from the group consisting of potassium persulfate, ammonium persulfate, azobisbutyronitrile (AIBN), and benzoyl peroxide (BPO). can do.

本発明は、また、(a)粘着性ビーズに生体分子を付着させ、生体分子が固定されたビーズの水性懸濁液を製造する工程と、(b)前記水性懸濁液を基板上に固定させる工程とを含む、バイオチップの製造方法を提供する。   The present invention also includes (a) attaching a biomolecule to an adhesive bead and producing an aqueous suspension of the bead on which the biomolecule is immobilized; and (b) immobilizing the aqueous suspension on a substrate. The manufacturing method of a biochip including the process to make is provided.

本発明によるバイオチップの製造方法において、前記(b)工程は、水性懸濁液を基板上にスポッティング(spotting)させた後、これを乾燥させて基板上に固定させることを特徴とすることができ、前記スポッティングは、インクジェットによって行うことを特徴とすることができ、前記粘着性ビーズに生体分子を付着させる方法は、疎水性吸着法、共有結合法及び静電気的引力による結合法よりなる群から選ばれたいずれか一つであることを特徴とすることができる。   In the biochip manufacturing method according to the present invention, the step (b) is characterized in that after the aqueous suspension is spotted on the substrate, it is dried and fixed on the substrate. The spotting may be performed by inkjet, and a method of attaching a biomolecule to the adhesive bead is selected from the group consisting of a hydrophobic adsorption method, a covalent bond method, and a binding method by electrostatic attraction. It can be characterized by being any one selected.

本発明によるバイオチップの製造方法において、前記生体分子は、核酸、アミノ酸、タンパク質、ペプチド、脂質、炭水化物、酵素基質、リガンド及びコファクターよりなる群から選ばれたいずれか一つであることを特徴とすることができ、前記基板は、マイクロウェル、スライド基板及びラボ・オン・チップの微細流路よりなる群から選ばれたいずれか一つであることを特徴とすることができ、前記基板の材料は、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、環状オレフィンコポリマー、ポリノルボルネン、スチレン−ブタジエンコポリマー、アクリロニトリルブタジエンスチレン、ガラス、シリコン、ヒドロゲル、金属、セラミック及び多孔性メンブレインよりなる群から選ばれた少なくとも一つであることを特徴とすることができる。   In the biochip manufacturing method according to the present invention, the biomolecule is any one selected from the group consisting of nucleic acids, amino acids, proteins, peptides, lipids, carbohydrates, enzyme substrates, ligands, and cofactors. The substrate may be any one selected from the group consisting of a microwell, a slide substrate, and a lab-on-chip fine flow path. The material is at least one selected from the group consisting of polymethyl methacrylate, polycarbonate, polystyrene, cyclic olefin copolymer, polynorbornene, styrene-butadiene copolymer, acrylonitrile butadiene styrene, glass, silicon, hydrogel, metal, ceramic, and porous membrane. Characterized by being one Rukoto can.

本発明は、また、前記方法によって製造され、生体分子が付着している粘着性ビーズが基板に固定されているバイオチップを提供する。   The present invention also provides a biochip manufactured by the above method and having adhesive beads to which biomolecules are attached fixed to a substrate.

本発明は、また、(a)バイオチップに、標的物質を含有する試料を適用する工程と、(b)前記バイオチップ上の生体分子と特異的に結合する標的物質を検出する工程とを含む、試料内標的物質の検出方法を提供する。   The present invention also includes (a) applying a sample containing a target substance to a biochip, and (b) detecting a target substance that specifically binds to a biomolecule on the biochip. A method for detecting a target substance in a sample is provided.

前記標的物質の検出は、放射性同位元素や発光(luminescence)または発色染料などの生体標識子(biolabel)を用いた検出法、生体酵素を用いた酵素免疫測定法(enzyme-linked immunoassay、ELISA)、電気化学的免疫測定法(electrochemical immunoassay)、粒子を用いた免疫比濁法(particle turbidimetric immunoassay)、及び蛍光発色団(fluorophore)を用いた検出法よりなる群から選ばれた少なくとも一つを使用することを特徴とすることができる。   For the detection of the target substance, a detection method using a biolabel such as a radioisotope, luminescence or a coloring dye (biolabel), an enzyme immunoassay using a biological enzyme (enzyme-linked immunoassay, ELISA), Use at least one selected from the group consisting of electrochemical immunoassay, particle turbidimetric immunoassay, and detection using fluorophore Can be characterized.

本発明は、また、配列番号1または配列番号2のSNP(single nucleotide polymorphism)が付いている粘着性ビーズが基板に固定されている、ラミブジン耐性B型肝炎ウィルスの感染の有無を確認するバイオチップを提供する。   The present invention also provides a biochip for confirming the presence or absence of lamivudine-resistant hepatitis B virus infection, in which adhesive beads having SNP (single nucleotide polymorphism) of SEQ ID NO: 1 or SEQ ID NO: 2 are immobilized on a substrate I will provide a.

本発明は、また、粘着性ビーズがチップ基板の表面に全体的にまたは局部的にコートされている凸凹構造物を提供する。   The present invention also provides an uneven structure in which adhesive beads are coated on the surface of a chip substrate entirely or locally.

本発明のさらなる他の特徴及び具体例は、以下の詳細な説明及び添付された特許請求の範囲からさらに明確になるであろう。   Still other features and embodiments of the present invention will become more apparent from the following detailed description and appended claims.

図1から図17の説明を以下に記載する。   The description of FIGS. 1 to 17 will be described below.

本発明は、生体分子を固定する支持体と、チップ基板の表面に対する粘着剤としての特徴を同時に持つ粘着性ビーズ、その製造方法、前記粘着性ビーズに生体分子が付着しているビーズが基板に固定されているバイオチップ及びその製造方法に関するものである。以下に、本発明によるバイオチップの製造方法を工程別に説明する。   The present invention relates to a support for immobilizing a biomolecule, an adhesive bead having characteristics as an adhesive to the surface of the chip substrate, a manufacturing method thereof, and a bead having a biomolecule attached to the adhesive bead on the substrate. The present invention relates to a biochip that is fixed and a manufacturing method thereof. Below, the manufacturing method of the biochip by this invention is demonstrated according to process.

(第1工程:粘着性ビーズを含有する水性懸濁液の製造)
本発明の粘着性ビーズは水性懸濁液中で粘着性質のある固形分をいい、粘着性を持たせる主単量体、固形性を持たせる共単量体、及び水系分散のための親水性モノマーを基本構成物質とする。
(First step: Production of aqueous suspension containing sticky beads)
The sticky beads of the present invention refer to a solid content having sticky properties in an aqueous suspension, a main monomer having stickiness, a comonomer having solidity, and hydrophilicity for aqueous dispersion Monomers are the basic constituents.

本発明の粘着性ビーズは、水性媒質に主単量体、共単量体及び親水性モノマーを混合し、通常の重合方法、例えば懸濁、乳化、分散、マイクロ乳化、ミニ乳化、逆乳化重合などの方法で製造することができ、重合条件に応じて多様なサイズのビーズを得ることができる。生体分子を固定する支持体として用いるために、通常、数十ナノメートル〜数ミクロンの直径に製造する。   The adhesive beads of the present invention are prepared by mixing a main monomer, a comonomer, and a hydrophilic monomer in an aqueous medium, and performing usual polymerization methods such as suspension, emulsification, dispersion, microemulsification, miniemulsion, and inverse emulsion polymerization. And beads of various sizes can be obtained according to the polymerization conditions. In order to use it as a support for immobilizing biomolecules, it is usually produced to a diameter of several tens of nanometers to several microns.

また、前記ビーズに支持体と粘着剤としての2つの機能を同時に与えることは、ビーズを構成する主単量体と共単量体の配合比を調節することにより可能である。具体的には、主単量体の柔軟でねっとりした粘着特性と共単量体の堅い固形特性を用いて、バイオチップの使用環境で同時に現われうる共重合比率を選択することにより可能である。この際、主単量体と共単量体の配合比を決定する最も重要な要因は、製造されたビーズが持つ固有のガラス転移温度(Tg)であり、前記Tgはバイオチップの製作または使用温度より0〜45℃低いことが好ましい。例えば、常温(25℃)でバイオチップを製作または使用する場合、粘着性ビーズのTgは、常温より0〜45℃低い温度である−15〜25℃の範囲が好ましく、−15〜10℃の範囲がさらに好ましい。   Further, it is possible to simultaneously give the beads two functions as a support and an adhesive by adjusting the mixing ratio of the main monomer and the comonomer constituting the beads. Specifically, it is possible to select a copolymerization ratio that can simultaneously appear in the use environment of the biochip by using the soft and sticky adhesive property of the main monomer and the solid property of the comonomer. At this time, the most important factor for determining the mixing ratio of the main monomer and the comonomer is the inherent glass transition temperature (Tg) of the manufactured beads, and the Tg is the production or use of the biochip. It is preferably 0 to 45 ° C. lower than the temperature. For example, when a biochip is produced or used at room temperature (25 ° C.), the Tg of the adhesive beads is preferably in the range of −15 to 25 ° C., which is 0 to 45 ° C. lower than room temperature, and is −15 to 10 ° C. A range is further preferred.

(第2工程:粘着性ビーズへの生体分子の固定及びこれを含有するビーズ水性懸濁液の製造)
本発明のバイオチップは、チップ基板上に固定される生体分子の集積率を高めるために、広い表面積を持つ粘着性ビーズを媒介体として活用する。
(Second step: immobilization of biomolecules on adhesive beads and production of aqueous bead suspension containing the same)
The biochip of the present invention utilizes adhesive beads having a large surface area as a mediator in order to increase the accumulation rate of biomolecules immobilized on the chip substrate.

生体分子をビーズに固定する方法としては、疎水性のビーズ自体の表面と相互作用させる疎水性吸着法、ビーズを構成する共重合体鎖の特定の反応基を利用する共有結合法、静電気力による結合法などがある。前記ビーズの水性懸濁液を製造するときに用いられる水性媒質は、水性特性を有する任意の溶媒を使用することができる。すなわち、前記水性媒質には、水、エタノール、メタノール、DMF、DMSO、アセトン、NMPがあるが、これらに限定されず、好ましくは水を使用することができる。   Examples of methods for immobilizing biomolecules on beads include a hydrophobic adsorption method that interacts with the surface of the hydrophobic bead itself, a covalent bonding method that uses a specific reactive group of the copolymer chain that constitutes the bead, and electrostatic force. There is a combination method. As the aqueous medium used when producing the aqueous suspension of beads, any solvent having aqueous properties can be used. That is, the aqueous medium includes water, ethanol, methanol, DMF, DMSO, acetone, and NMP, but is not limited thereto, and water can be preferably used.

(第3工程:ビーズ水性懸濁液のスポッティング)
前記生体分子を固定したビーズの懸濁液は、その懸濁液を基板上にスポッティングすることにより、基板の表面への固定化が可能である。前記スポッティングは、当業界で通常用いられる任意のスポッティング方法を用いることができ、代表的にインクジェットによるスポッティング方法を用いることができる。インクジェット方法を用いる場合、本発明によるビーズ水性懸濁液を定量的に基板上に噴射することが容易なので有利である。
(3rd step: spotting of aqueous suspension of beads)
The bead suspension on which the biomolecules are immobilized can be immobilized on the surface of the substrate by spotting the suspension on the substrate. For the spotting, any spotting method usually used in the art can be used, and typically, a spotting method by ink jet can be used. When using the inkjet method, it is advantageous because the aqueous bead suspension according to the present invention can be easily ejected quantitatively onto the substrate.

粘着性ビーズを固定する基板は、バイオチップ分野で使用される多様な基板が使用できるが、その代表的な例としては、マイクロウェル、スライド基板またはラボオンチップ微細流路があるが、これらに限定されるものではない。また、前記基板の材料としては、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、環状オレフィンコポリマー、ポリノルボネン、スチレン−ブタジエンコポリマー(SBC)、アクリロニトリルブタジエンスチレン、ガラス、シリコン、ヒドロゲル、金属、セラミック、多孔性メンブレインが使用でき、これらに限定されるものではない。   Various substrates used in the biochip field can be used as the substrate for fixing the adhesive beads. Typical examples include microwells, slide substrates, and lab-on-chip microchannels. It is not limited. Examples of the material for the substrate include polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), cyclic olefin copolymer, polynorbornene, styrene-butadiene copolymer (SBC), acrylonitrile butadiene styrene, glass, silicon, hydrogel, Metals, ceramics, and porous membranes can be used, but are not limited thereto.

(第4工程:乾燥)
乾燥は、スポテッィングによるバイオチップを製造するときに用いられる通常の乾燥方法が使用でき、例えば常温乾燥がある。物質に応じて適切な乾燥温度があるが、タンパク質の場合は15〜33℃であり、DNAの場合は15〜90℃である。
(4th step: drying)
For drying, a normal drying method used when manufacturing a biochip by spotting can be used, for example, room temperature drying. Depending on the substance, there is an appropriate drying temperature, which is 15 to 33 ° C. for proteins and 15 to 90 ° C. for DNA.

前記のような過程を経て製造されたバイオチップを走査電子顕微鏡で観察した結果、図1及び図2に示すように、固着過程を経ながら現われるビーズが基板上に結合することを確認することができる。その結果から、本発明による粘着性ビーズを用いてバイオチップの製作が可能であることが分かった。   As a result of observing the biochip manufactured through the above process with a scanning electron microscope, as shown in FIG. 1 and FIG. 2, it is confirmed that the beads appearing through the fixing process bind to the substrate. it can. From the results, it was found that biochips can be produced using the adhesive beads according to the present invention.

(本発明によって製造されたバイオチップの応用)
本発明は、生体分子が固定された粘着性ビーズを前記チップ基材上にスポッティングして固定し、検出しようとする標的物質試料を適用する工程と、前記生体分子に特異的に結合した標的物質を検出する工程とを含む、検出試料内に存在する標的物質の有無及び含量の分析に応用することができる。
(Application of biochip manufactured by the present invention)
The present invention includes a step of spotting and fixing an adhesive bead on which a biomolecule is immobilized on the chip substrate, applying a target substance sample to be detected, and a target substance specifically bound to the biomolecule And detecting the presence and content of the target substance present in the detection sample.

また、本発明による粘着性ビーズは、それ自体をチップ基板の表面に全体的または局部的にコートし、ビーズからなる凸凹構造物を製造するのに使用することができる(図7)。このような立体的な構造物は、バイオチップ内でいろいろの有用な機能、例えば検出部に適用されて生体分子を直接スポッティングして固定する多面積基板の表面として使用されるか、或いは毛細管の流れを利用するラボオンチップの特定の微細流路に適用されて疎水性作用による流体遅延部として活用できる。   In addition, the adhesive beads according to the present invention can be used to produce an uneven structure composed of beads by coating the surface of the chip substrate with the entire surface or locally (FIG. 7). Such a three-dimensional structure is used as a surface of a multi-area substrate for applying various useful functions in a biochip, for example, spotting and fixing biomolecules directly to a detection unit, or for a capillary. It can be used as a fluid delay part by a hydrophobic action by being applied to a specific fine flow path of a lab-on-chip that uses a flow.

以下、実施例によって本発明をさらに詳細に説明するが、これらの実施例は、本発明を例示するためのものに過ぎない。本発明の範囲がこれらの実施例に限定されるものと解釈してはならないのは、当業界で通常の知識を有する者には自明なことであろう。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these Examples are only for demonstrating this invention. It should be apparent to those skilled in the art that the scope of the present invention should not be construed as limited to these examples.

(実施例1:粘着性ビーズを含有する水性懸濁液の製造)
主反応器(reactor)に脱イオン水622.1gとイタコン酸3.5gを投入し、窒素雰囲気下で75℃まで昇温させた。別途の反応器にブチルアクリレート35.0g、メチルメタクリレート31.4g、アリルメタクリレート0.1g及び3重量%ラウリル硫酸ナトリウム水溶液1.2gを混合した乳濁液を準備した。
Example 1: Production of aqueous suspension containing sticky beads
The main reactor was charged with 622.1 g of deionized water and 3.5 g of itaconic acid and heated to 75 ° C. under a nitrogen atmosphere. An emulsion prepared by mixing 35.0 g of butyl acrylate, 31.4 g of methyl methacrylate, 0.1 g of allyl methacrylate and 1.2 g of a 3 wt% aqueous sodium lauryl sulfate solution in a separate reactor was prepared.

主反応器の温度が安定すると、前記別途の反応器で準備した乳濁液を投入し、1時間以上攪拌して十分乳濁させた後、3重量%硫酸カリウム水溶液を2回にわたって7.0gと1.0gを投入し、2時間反応を行うことにより、粘着性ビーズを含む重合物を合成した。   When the temperature of the main reactor is stabilized, the emulsion prepared in the separate reactor is added, and stirred for 1 hour or more to make it sufficiently emulsified. Then, 7.0 g of 3 wt% aqueous potassium sulfate solution is added twice. And 1.0 g were added and reacted for 2 hours to synthesize a polymer containing sticky beads.

前記重合物を透析(dialysis)とイオン交換樹脂を用いて洗浄した後、脱イオン水に希釈することにより、粘着性ビーズを含む水性懸濁液を製造した。前記粘着性ビーズは、投入される乳化剤の量を調節してその大きさを調節することができる。図3は、様々な量の乳化剤であるラウリル硫酸ナトリウムを用いて製造されたビーズを粒度分析した結果を示し、0.1〜0.05重量%範囲の乳化剤を投入する場合、平均サブマイクロサイズ水準のビーズが製造されることが分かった。   The polymer was washed with dialysis and ion exchange resin, and then diluted with deionized water to prepare an aqueous suspension containing sticky beads. The size of the adhesive beads can be adjusted by adjusting the amount of the emulsifier added. FIG. 3 shows the results of particle size analysis of beads produced with various amounts of emulsifier sodium lauryl sulfate, and when sub-emulsifiers in the range of 0.1 to 0.05% by weight are added, the average sub-micro size is shown. It has been found that a level of beads is produced.

一方、共重合体である粘着性ビーズのガラス転移温度は、一般に、主単量体の高分子であるポリブチルアクリレートと共単量体の高分子であるポリメチルメタクリレートが有するガラス転移温度の中間値に相当する値を示す。したがって、各単量体の配合比を調節することにより、目的のガラス転移温度を有する粘着性ビーズを製造することができた(図4)。   On the other hand, the glass transition temperature of the adhesive bead, which is a copolymer, is generally intermediate between the glass transition temperature of polybutyl acrylate, which is the main monomer polymer, and polymethyl methacrylate, which is the comonomer polymer. Indicates the value corresponding to the value. Therefore, by adjusting the blending ratio of each monomer, it was possible to produce adhesive beads having a target glass transition temperature (FIG. 4).

図5は、互いに異なるガラス転移温度(Tg)を持つビーズを走査電子顕微鏡で観察した写真である。図5を参照すると、常温乾燥条件で、ガラス転移温度が低いビーズは、粘着性が強くて基板に容易に粘着されるが、フィルム化されて立体構造を持たず、これに対し、ガラス転移温度が高いビーズは、固形性が強くてはっきりとしたビーズ形状を示すが、壊れ易くて基板によく固着されない傾向を示した。したがって、常温乾燥する場合、−15〜10℃範囲のガラス転移温度を持つ粘着性ビーズが適切であることが分かった。   FIG. 5 is a photograph of beads having different glass transition temperatures (Tg) observed with a scanning electron microscope. Referring to FIG. 5, beads having a low glass transition temperature under normal temperature drying conditions are strongly sticky and easily stick to a substrate, but are formed into a film and do not have a three-dimensional structure. The high bead had a strong solidity and a clear bead shape, but it was fragile and tended not to adhere well to the substrate. Therefore, it was found that adhesive beads having a glass transition temperature in the range of −15 to 10 ° C. are suitable when drying at room temperature.

(実施例2:生体分子の濃度による固定化効率試験)
前記実施例1で製造されたビーズの表面は、生体分子が固定される面と基板に粘着される面の両方ともを持っているので、全体ビーズの表面積において生体分子が占める面積を調節して、本発明の目的である粘着性ビーズの使用効率を調節することができる。
(Example 2: Immobilization efficiency test by concentration of biomolecule)
Since the surface of the bead manufactured in Example 1 has both a surface to which the biomolecule is fixed and a surface to be adhered to the substrate, the area occupied by the biomolecule in the surface area of the entire bead is adjusted. The use efficiency of the adhesive beads that are the object of the present invention can be adjusted.

固定化生体分子として牛血清アルブミン(bovine serum albumin)のリン酸緩衝(pH7.2)水溶液を0.16、0.31、0.93、1.55、3.10mg/mLの濃度で準備した後、前記ビーズを2重量%含む水性懸濁液と1:1の比率で混合し、常温で14時間振盪して反応させた。反応終了後、遠心分離して上澄液を集めた後、固定化されていない牛血清アルブミンの量を測定し、ビーズに固定された牛血清アルブミンの量を定量した(図6)。その結果、図6に示すように、固定化される生体分子の反応量を調節することにより、ビーズ表面の被覆率を調節することができた。   As an immobilized biomolecule, an aqueous solution of bovine serum albumin in phosphate buffer (pH 7.2) was prepared at concentrations of 0.16, 0.31, 0.93, 1.55, and 3.10 mg / mL. Thereafter, the bead was mixed with an aqueous suspension containing 2% by weight of the beads at a ratio of 1: 1 and reacted by shaking at room temperature for 14 hours. After completion of the reaction, the supernatant was collected by centrifugation, the amount of bovine serum albumin not immobilized was measured, and the amount of bovine serum albumin immobilized on the beads was quantified (FIG. 6). As a result, as shown in FIG. 6, the coverage of the bead surface could be adjusted by adjusting the reaction amount of the immobilized biomolecule.

(比較例1:固定時間による固定比率の測定及びポリスチレンビーズとの比較試験)
前記ビーズに固定される生体分子の量を反応時間に応じて測定し、商用化された代表的なビーズであるポリスチレンビーズの場合と比較した。
(Comparative Example 1: Measurement of fixing ratio by fixing time and comparison test with polystyrene beads)
The amount of biomolecule immobilized on the beads was measured according to the reaction time, and compared with the case of polystyrene beads, which are typical commercially available beads.

牛血清アルブミンのリン酸緩衝(pH7.2)水溶液1.6mg/mLと、実施例1で製造した粘着性ビーズ(直径510nm)またはポリスチレンビーズ(直径600nm)を2重量%含む水性懸濁液とを準備し、実施例2と同様の方法で固定化過程を行った。ビーズに生体分子を固定化させる反応時間による、表面被覆率を測定した(図7)。その結果、図7に示すように、実施例1で製造された粘着性ビーズの場合、反応時間を調節することにより、生体分子の表面被覆率を調節することができ、且つ商用化されたポリスチレンビーズと同等の優れた固定化効率を示すことが分かった。   An aqueous suspension containing 1.6 mg / mL of an aqueous solution of bovine serum albumin in phosphate buffer (pH 7.2) and 2% by weight of adhesive beads (diameter 510 nm) or polystyrene beads (diameter 600 nm) prepared in Example 1 The immobilization process was performed in the same manner as in Example 2. The surface coverage was measured according to the reaction time for immobilizing biomolecules on the beads (FIG. 7). As a result, as shown in FIG. 7, in the case of the adhesive beads produced in Example 1, the surface coverage of biomolecules can be adjusted by adjusting the reaction time, and commercialized polystyrene. It was found that it showed excellent immobilization efficiency equivalent to beads.

(実施例3:粘着性ビーズの濃度によるスポットの形状)
粘着性ビーズを用いたバイオチップの製作において、基板に形成されたスポットの形状は、分注されるビーズ水性懸濁液のビーズ含量に影響される。
(Example 3: Spot shape depending on concentration of adhesive beads)
In the production of biochips using sticky beads, the shape of the spots formed on the substrate is affected by the bead content of the dispensed aqueous bead suspension.

実施例1で製造された粘着性ビーズ(平均直径510nm、Tg−8℃)を含むビーズ水性懸濁液0.05、0.1、0.5、1重量%をそれぞれ準備し、ポリメチルメタクリレート基板上にそれぞれ0.5mLずつスポッティングした。前記基板を常温で12時間乾燥させた後、各スポットの表面形状を観察した(図8)。その結果、図8に示すように、スポット内ビーズの含量が高くなるほど、固着されたビーズの密度が大きくなることが分かるが、0.5重量%を超えると、ビーズが複層として固着されて高分子鎖の挙動によるフィルム化が行われることが分かった。   Aqueous beads suspensions 0.05, 0.1, 0.5, and 1% by weight containing the sticky beads (average diameter 510 nm, Tg-8 ° C.) prepared in Example 1 were prepared, and polymethyl methacrylate was prepared. 0.5 mL each was spotted on the substrate. After the substrate was dried at room temperature for 12 hours, the surface shape of each spot was observed (FIG. 8). As a result, as shown in FIG. 8, it can be seen that the higher the content of beads in the spot, the higher the density of the fixed beads, but when the content exceeds 0.5% by weight, the beads are fixed as a multilayer. It was found that film formation was performed by the behavior of polymer chains.

(実施例4:粘着性ビーズのコーティングによる凸凹構造物の形成)
実施例1で製造された粘着性ビーズ(直径510nm、Tg−8℃)8.5重量%を含むビーズ水性懸濁液をポリメチルメタクリレート基板の表面に全体的または局部的に浸漬コートした(図9)。その結果、図9に示すように、単層のビーズからなる凸凹構造物が形成されることを確認することができた。このような凸凹構造物は、バイオチップ内で多面積基板の表面または流体遅延構造としての活用が可能である。
(Example 4: Formation of uneven structure by coating of adhesive beads)
An aqueous bead suspension containing 8.5% by weight of the sticky beads (diameter 510 nm, Tg-8 ° C.) produced in Example 1 was dip-coated on the surface of the polymethylmethacrylate substrate entirely or locally (FIG. 9). As a result, as shown in FIG. 9, it was confirmed that an uneven structure composed of single-layer beads was formed. Such an uneven structure can be used as a surface of a multi-area substrate or a fluid delay structure in a biochip.

(実施例5:スポットの自己蛍光測定及び非特異的タンパク質結合)
本発明のビーズをバイオチップに応用するための事前実験であって、ビーズ水性懸濁液をチップ基材上にナノスポッティングし、自己蛍光(autofluorescence)と非特異的な結合(non-specific binding)の度合いを測定した。
(Example 5: Spot autofluorescence measurement and non-specific protein binding)
It is a preliminary experiment for applying the beads of the present invention to a biochip, in which an aqueous suspension of beads is nano-spotted on a chip substrate, and autofluorescence and non-specific binding (non-specific binding) The degree of was measured.

3.1mg/mL濃度の牛血清アルブミンまたはSAH(S−アデノシル−L−ホモシステイン)で標識した牛血清アルブミンのリン酸水溶液200μLと、実施例1で製造された2重量%粘着性ビーズ水性懸濁液200μLとを混合し、常温で15時間振盪して反応させた。反応終了の後、遠心分離過程を経て洗浄した後、全ビーズ含量が0.2及び0.4重量%の懸濁液をそれぞれ製造した。前記ビーズ水性懸濁液をインクジェットレイヤーを用いて50nLの体積でポリメチルメタクリレート(PMMA)基板上にスポッティングし、蛍光イメージスキャナ(エクソン社)を用いて、固着されたスポットの自己蛍光強度を測定した(図10)。定量結果、図10に示すように、粘着性ビーズスポットの自己蛍光強度は、3を超えないSN比(SNR:signal to noise ratio)であることが分かった。   3. 200 μL of bovine serum albumin or bovine serum albumin phosphate solution labeled with SAH (S-adenosyl-L-homocysteine) at a concentration of 1 mg / mL, and 2% by weight adhesive bead aqueous suspension prepared in Example 1 The suspension was mixed with 200 μL and reacted by shaking at room temperature for 15 hours. After completion of the reaction, washing was carried out through a centrifugal separation process, and then suspensions having a total bead content of 0.2 and 0.4% by weight were prepared. The bead aqueous suspension was spotted on a polymethyl methacrylate (PMMA) substrate in a volume of 50 nL using an inkjet layer, and the autofluorescence intensity of the fixed spot was measured using a fluorescent image scanner (Exxon). (FIG. 10). As a result of the quantification, as shown in FIG. 10, it was found that the autofluorescence intensity of the sticky bead spot was an SNR (signal to noise ratio) not exceeding 3.

一方、前記のような方法でスポッティングされた、牛血清アルブミンがコートされたビーズを抗SAH抗体水溶液で処理してタンパク質の非特異的な結合の度合いを定量した(図11)。図11の定量結果に示すように、抗SAH抗体の非特異的な結合反応の後に測定したスポットの蛍光強度は、3を超えないSN比であるため、タンパク質の非特異的結合が殆どないことが分かった。   On the other hand, beads coated with bovine serum albumin spotted by the method described above were treated with an anti-SAH antibody aqueous solution to quantify the degree of nonspecific binding of the protein (FIG. 11). As shown in the quantification results of FIG. 11, the fluorescence intensity of the spot measured after the non-specific binding reaction of the anti-SAH antibody is an SN ratio not exceeding 3, so there is almost no non-specific binding of protein. I understood.

自己蛍光強度及び非特異的な結合が微々であるという前記実験結果は、本発明のビーズと標的物質との反応の際に前記ビーズが標的物質の蛍光検出を妨害しないことを意味し、これにより本発明のビーズ支持体がバイオチップに適切に使用できることが分かった。   The experimental result that the autofluorescence intensity and non-specific binding are insignificant means that the bead does not interfere with the fluorescence detection of the target substance during the reaction between the beads of the present invention and the target substance. It has been found that the bead support of the present invention can be suitably used for biochips.

(実施例6:SAH標的物質に対する競合的な免疫検出)
SAH標的物質を検出することが可能なバイオチップを製作するために、前記実施例5と同様の方法で、粘着性ビーズに牛血清アルブミンとSAH標識牛血清アルブミンをそれぞれコートし、リン酸緩衝液を水性媒質として、0.4重量%ビーズ水性懸濁液を製造した。前記製造されたビーズ水性懸濁液をPMMAスライドに50nL体積でスポッティングした後、30℃で30分、常温で20時間乾燥させ、その後3重量%牛血清アルブミンと0.05体積%のTweenが含まれたリン酸緩衝液(pH7.4)で30分間ブロッキングし、洗浄した。蛍光検出のために、Cy3で標識した2次抗体(secondary antibody)を抗SAH抗体と、予め30分間反応させた後、検出しようとする標的物質である様々な濃度のSAHを混合して、チップのスポットと競合的に免疫反応を行った。
(Example 6: Competitive immunodetection against SAH target substance)
In order to fabricate a biochip capable of detecting a SAH target substance, bovine serum albumin and SAH-labeled bovine serum albumin were respectively coated on adhesive beads in the same manner as in Example 5, and phosphate buffer Was used as an aqueous medium to produce a 0.4 wt% bead aqueous suspension. The prepared aqueous bead suspension is spotted on a PMMA slide at a volume of 50 nL, dried at 30 ° C. for 30 minutes and at room temperature for 20 hours, and then contains 3% by weight bovine serum albumin and 0.05% by volume Tween. The resulting solution was blocked with a phosphate buffer (pH 7.4) for 30 minutes and washed. For fluorescence detection, a secondary antibody labeled with Cy3 is reacted with anti-SAH antibody for 30 minutes in advance, and then mixed with various concentrations of SAH, which is the target substance to be detected, to form a chip. Immune reaction was performed competitively with the spot.

SAH濃度によるスポットの蛍光スキャナ写真及び検出結果を図12及び図13(−●−)にそれぞれ示した。蛍光シグナルは、標的物質SAHを添加していないときのシグナルを100にして相対値で示した。本実施例で製作されたチップの競合的な免疫検出によるSAHの検出は、標的物質SAHが存在しない場合に比べて90%以上蛍光シグナルが減少し、このときの検出上限(highest detection limit)は約2〜5μMであった。   The fluorescent scanner photograph of the spot by SAH concentration and the detection result are shown in FIG. 12 and FIG. 13 (-●-), respectively. The fluorescence signal was expressed as a relative value with the signal when the target substance SAH was not added being 100. In the detection of SAH by competitive immunodetection of the chip manufactured in this example, the fluorescence signal is reduced by 90% or more compared to the case where the target substance SAH is not present, and the detection upper limit (highest detection limit) at this time is About 2-5 μM.

(比較例2:2次元生体分子固定化法との比較)
本発明の粘着性ビーズを用いた3次元固定化法の優秀性を検証するために、生体分子固定化法として商用化された従来の2次元固定化法と、免疫検出性能を比較した。
(Comparative Example 2: Comparison with two-dimensional biomolecule immobilization method)
In order to verify the superiority of the three-dimensional immobilization method using the adhesive beads of the present invention, the immunodetection performance was compared with a conventional two-dimensional immobilization method commercialized as a biomolecule immobilization method.

生体分子の2次元固定化が可能な代表的なチップとして、Nunc社のMaxiSorpチップを選択してSAH標的物質に対する競合的な免疫検出を試験し、その結果を実施例6と比較した。   As a representative chip capable of two-dimensional immobilization of biomolecules, Nunc's MaxiSorp chip was selected to test competitive immunodetection against the SAH target substance, and the results were compared with Example 6.

牛血清アルブミンとSAH(S−アデノシル−L−ホモシステイン)標識牛血清アルブミンを、それぞれグリセロール20体積%が含まれたリン酸緩衝液に0.5mg/mLの濃度溶液で準備した後、MaxiSorpにスポッティングし、恒湿チャンバー(humidity chamber)で20時間乾燥させた。スポッティングされたチップを洗浄した後、実施例6と同様の方法で競合的な免疫反応を行った。その結果、図13(−■−)に示すように、競合反応による蛍光シグナルの最大減少値は約50%であり、標準定量範囲は0.01〜0.5μMであって、実施例6の粘着性ビーズを用いた固定化法の検出水準に大きく及んでいない。   After preparing bovine serum albumin and SAH (S-adenosyl-L-homocysteine) -labeled bovine serum albumin in a phosphate buffer solution containing 20% by volume of glycerol in a concentration of 0.5 mg / mL, MaxiSorp Spotted and dried in a humidity chamber for 20 hours. After washing the spotted chip, a competitive immune reaction was performed in the same manner as in Example 6. As a result, as shown in FIG. 13 (-■-), the maximum decrease value of the fluorescence signal by the competitive reaction was about 50%, the standard quantification range was 0.01 to 0.5 μM, and The detection level of the immobilization method using sticky beads is not greatly affected.

前記結果は、MaxiSorpチップを用いた従来の2次元固定化法は生体分子の集積化の度合いが低く、チップの表面に対する立体障害が大きいことに起因している。この結果より、本発明による粘着性ビーズを用いたバイオチップが従来のバイオチップより相対的に優れることを確認することができた。   The above results are due to the fact that the conventional two-dimensional immobilization method using the MaxiSorp chip has a low degree of biomolecule integration and a large steric hindrance to the surface of the chip. From this result, it was confirmed that the biochip using the adhesive beads according to the present invention was relatively superior to the conventional biochip.

(実施例7:特異的なSNP検出)
B型肝炎治療剤ラミブジン耐性を有するB型肝炎ウィルス(HBV)の感染有無の確認に用いられるオリゴヌクレオチド配列を前記粘着性ビーズに固定して、DNA検出応用分野の一つである一塩基多型(SNP:single nucleotide polymorphism)を検出した。
(Example 7: Specific SNP detection)
Single nucleotide polymorphism which is one of DNA detection application fields by fixing an oligonucleotide sequence used to confirm the presence or absence of infection with hepatitis B virus (HBV) having lamivudine resistance, a therapeutic agent for hepatitis B, to the adhesive beads (SNP: single nucleotide polymorphism) was detected.

ラミブジン耐性を有するHBVは、ウィルスポリメラーゼ(polymerase)のYMDDモチーフが変異したものであって、一般的には、Met552がイソロイシン(isoleucine)に置換されたYIDD変異体が存在する。YMDDモチーフを発現する配列番号1の正常配列とYIDDモチーフを発現する配列番号2の変異配列間には只一つの塩基しか差異がない(表1)。   The HBV having lamivudine resistance is obtained by mutating the YMDD motif of the viral polymerase, and generally there is a YIDD mutant in which Met552 is replaced with isoleucine. There is only one base difference between the normal sequence of SEQ ID NO: 1 expressing the YMDD motif and the mutant sequence of SEQ ID NO: 2 expressing the YIDD motif (Table 1).

YMDDモチーフを有するHBVポリメラーゼ遺伝子配列に相補的な正常プローブと、YIDD変異体の遺伝子配列に相補的な変異プローブを、それぞれ前記粘着性ビーズを用いてチップの表面に固定した後、蛍光染料で標識したHBVポリメラーゼ遺伝子配列(ターゲット)に対して選択的な検出が可能であるかを試験した。   A normal probe complementary to the HBV polymerase gene sequence having a YMDD motif and a mutant probe complementary to the gene sequence of the YIDD mutant are immobilized on the surface of the chip using the adhesive beads, respectively, and then labeled with a fluorescent dye It was tested whether selective detection was possible with respect to the HBV polymerase gene sequence (target).

Figure 2008501043
Figure 2008501043

それぞれのオリゴヌクレオチドプローブを効果的に粘着性ビーズに固定するために、スルホサクシニミジル4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレート(sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate)を用いて牛血清アルブミンとカップリングし、これを実施例6と類似の方法で粘着性ビーズにコートした。   In order to effectively immobilize each oligonucleotide probe to an adhesive bead, sulfosuccinimidyl 4- (N-maleimidomethyl) cyclohexane-1-carboxylate ) Was used to coat bovine serum albumin, and this was coated onto sticky beads in a manner similar to Example 6.

プラスチック基板上に前記ビーズ水性懸濁液を0.4重量%の濃度で50nLずつナノスポッティングして遺伝子チップを製作した。前記チップを脱イオン水で3分間洗浄し、80μLブロッキング溶液(20X SSC 3mL、ホルムアミド1.35mL、1重量%BSA500μL、脱イオン水150μL)を用いて40℃で30分間処理した後、さらにターゲット試料(0nM〜100nM)を5μL添加して、40℃で1時間ハイブリダイズさせた。非特異的結合をしているターゲット配列を除去するために、2X SSCで10分間、0.2X SSCで10分間洗浄し、蛍光スキャナで分析した。図14は、本実施例によるバイオチップを用いてB型肝炎ウィルス(HBV)のポリメラーゼ遺伝子配列を有するオリゴクレオチドのSNP(single nucleotide polymorphism)を多様な濃度で検出した蛍光スキャナ写真であり、図15は、図14の蛍光スキャナ写真を分析した蛍光シグナル強度を示すグラフである。   A gene chip was manufactured by nano-spotting the aqueous beads suspension at a concentration of 0.4% by weight on a plastic substrate. The chip was washed with deionized water for 3 minutes, treated with 80 μL blocking solution (20 × SSC 3 mL, formamide 1.35 mL, 1 wt% BSA 500 μL, deionized water 150 μL) at 40 ° C. for 30 minutes, and then a target sample 5 μL of (0 nM to 100 nM) was added and hybridized at 40 ° C. for 1 hour. In order to remove the target sequence having non-specific binding, it was washed with 2X SSC for 10 minutes, 0.2X SSC for 10 minutes, and analyzed with a fluorescence scanner. FIG. 14 is fluorescence scanner photographs in which SNP (single nucleotide polymorphism) of an oligonucleotide having a polymerase gene sequence of hepatitis B virus (HBV) was detected at various concentrations using the biochip according to this example. These are the graphs which show the fluorescence signal intensity which analyzed the fluorescence scanner photograph of FIG.

測定した蛍光スキャナ写真から蛍光シグナル強度を分析した結果、標的物質であるターゲット試料に対して相補的な正常プローブが、一つの塩基が異なる変異プローブと比較して約4.1倍高い識別能を示すことを確認することができた。この結果から、本発明によるバイオチップはSNPのような遺伝子の検出目的としても有用であることを分かった。   As a result of analyzing the fluorescence signal intensity from the measured fluorescence scanner photograph, the normal probe complementary to the target sample, which is the target substance, has a discrimination ability about 4.1 times higher than that of the mutant probe having a different base. I was able to confirm that From this result, it was found that the biochip according to the present invention is useful for the purpose of detecting a gene such as SNP.

(実施例8:タンパク質標的物質に対する直接免疫検出)
標的物質として実施例6で例示したSAHのような低分子物質ではないタンパク質抗体に対しても、前記粘着性ビーズを用いた免疫検出が可能であることを試験した。
(Example 8: Direct immunodetection against protein target substance)
It was tested that immunodetection using the above-mentioned adhesive beads was possible even for a protein antibody that is not a low-molecular substance such as SAH exemplified in Example 6 as a target substance.

タンパク質抗原としては、BSA(bovine serum albumin)を使用した。実施例6と類似の方法でBSA(Calbiochem社、antigen grade)がコートされた粘着性ビーズを製造した後、PMMA基板上にスポッティングしてIgG(免疫グロブリン)を検出することが可能な簡単なバイオチップを製作した。表面ブロッキングのために、1X PBS緩衝水溶液で希釈した30%ヒト血清(human serum)を用いて常温で30分間処理した。陰性対照群として抗−SAH IgG(ポリクローナル抗体、50μg/mL)を選択し、陽性対照群として抗−BSA IgG(モノクローナル抗体、50μg/mL)を選択し、前記チップ基板上で45分間常温反応させた後、2次抗体としてCy3蛍光染料で標識した抗−マウス−Cy3(ポリクローナル、10μg/mL)を常温で20分間反応させた。1X PBS緩衝水溶液で、非特異的な結合をしている残りの抗体を洗い出した後、蛍光スキャナを用いて蛍光シグナルを検出した。図16は、本発明のバイオチップを用いて、タンパク質抗原である免疫グロブリン(IgG)を直接免疫検出法で検出した蛍光スキャナ写真であり、図17は、図16の蛍光スキャナ写真を分析した蛍光シグナル強度を示したグラフである。   BSA (bovine serum albumin) was used as a protein antigen. A simple biomaterial capable of detecting IgG (immunoglobulin) by producing adhesive beads coated with BSA (Calbiochem, antigen grade) in the same manner as in Example 6 and spotting on PMMA substrate. I made a chip. For surface blocking, treatment was performed at room temperature for 30 minutes with 30% human serum diluted with 1X PBS buffer aqueous solution. Anti-SAH IgG (polyclonal antibody, 50 μg / mL) is selected as a negative control group, and anti-BSA IgG (monoclonal antibody, 50 μg / mL) is selected as a positive control group, and allowed to react at room temperature for 45 minutes on the chip substrate. Then, anti-mouse-Cy3 (polyclonal, 10 μg / mL) labeled with a Cy3 fluorescent dye as a secondary antibody was reacted at room temperature for 20 minutes. After washing away the remaining non-specific antibody with 1X PBS buffer aqueous solution, the fluorescence signal was detected using a fluorescence scanner. FIG. 16 is a fluorescence scanner photograph in which immunoglobulin (IgG), which is a protein antigen, is detected by a direct immunodetection method using the biochip of the present invention, and FIG. 17 is a fluorescence photograph obtained by analyzing the fluorescence scanner photograph in FIG. It is the graph which showed signal intensity.

測定した蛍光スキャナ写真から蛍光シグナル強度を分析した結果、標的物質であるIgGに対して特異的な陽性対照群が非特異的な陰性対照群と比較して、7.7(陽性シグナル強度/陰性シグナル強度)の検出能を示すことが確認できた。この結果から、本発明によるバイオチップはタンパク質抗原の検出目的としても有用であることが分かった。   As a result of analyzing the fluorescence signal intensity from the measured fluorescence scanner photograph, the positive control group specific for the target substance IgG was 7.7 (positive signal intensity / negative compared to the non-specific negative control group. It was confirmed that the signal intensity was detectable. From this result, it was found that the biochip according to the present invention is also useful for the purpose of detecting protein antigens.

以上、本発明の特定の内容部分を詳細に記述したが、当業界における通常の知識を有する者において、このような具体的な技術は好適な実施様態に過ぎないもので、これによって本発明の範囲が制限されるものでない点は明らかであろう。したがって、本発明の実質的な範囲は、添付された特許請求の範囲およびその等価物によって定義されるべきである。   The specific contents of the present invention have been described in detail above. However, such a specific technique is only a preferred embodiment for those having ordinary knowledge in the art, and thus the present invention is not limited thereto. It will be clear that the range is not limited. Accordingly, the substantial scope of the present invention should be defined by the appended claims and their equivalents.

本発明による粘着性ビーズは、生体分子を固定する支持体とチップ基板の表面に対する粘着剤としての特徴を同時に有し、別途の装置及び処理過程なしにバイオチップ上に直接固定させることができる。また、本発明の粘着性ビーズは、固定化する生体分子の反応量及び生体分子をビーズに固定する反応時間に応じて、ビーズ表面の被覆率を調節することができるという利点がある。更にその上、商用化された既存のビーズと類似の固定化効率を示しながらも、従来の2次元生体分子固定化法と比較して生体分子の集積化率が高くてバイオチップを小型に製造することができるため、経済的な面においても優れるという効果がある。   The adhesive beads according to the present invention simultaneously have a feature as an adhesive for the support for fixing biomolecules and the surface of the chip substrate, and can be directly fixed on the biochip without a separate apparatus and treatment process. In addition, the adhesive beads of the present invention have an advantage that the coverage of the bead surface can be adjusted according to the reaction amount of the biomolecule to be immobilized and the reaction time for immobilizing the biomolecule to the bead. Furthermore, while exhibiting immobilization efficiency similar to that of existing commercial beads, the biomolecule integration rate is higher than conventional two-dimensional biomolecule immobilization methods, and the biochip is manufactured in a small size. Therefore, there is an effect that it is excellent in terms of economy.

本発明による粘着性ビーズ(600nm)が基板上に固着されたことを走査電子顕微鏡で10,000倍拡大観察した写真である。It is the photograph which expanded and observed 10,000 times with the scanning electron microscope that the adhesive bead (600 nm) by this invention was fixed on the board | substrate. 図1のビーズを900,000倍拡大観察した写真である。2 is a photograph of the beads of FIG. 投入する乳化剤の含量に応じてビーズの大きさが変化することを示すグラフである。It is a graph which shows that the magnitude | size of a bead changes according to the content of the emulsifier input. 主単量体と共単量体の共重合比に応じて、製造されるビーズのガラス転移温度(Tg)が変化することを示すグラフである。It is a graph which shows that the glass transition temperature (Tg) of the bead manufactured changes according to the copolymerization ratio of a main monomer and a comonomer. 互いに異なるガラス転移温度を有するビーズを走査電子顕微鏡で観察した写真である。It is the photograph which observed the bead which has a mutually different glass transition temperature with the scanning electron microscope. 生体分子の濃度が高いほど生体分子のビーズに対する表面被覆率が増加することを示すグラフである。It is a graph which shows that the surface coverage with respect to the bead of a biomolecule increases so that the density | concentration of a biomolecule is high. ビーズに生体分子を固定する反応時間に応じて、生体分子の本発明の粘着性ビーズ及びポリスチレンビーズに対する表面被覆率が増加することを示すグラフである。It is a graph which shows that the surface coverage with respect to the adhesive bead and polystyrene bead of this invention of a biomolecule increases according to the reaction time which fixes a biomolecule to a bead. 粘着性ビーズを含むビーズ水性懸濁液をそれぞれの重量%別にポリメチルメタクリレート基板上にスポッティングしたことを走査電子顕微鏡で観察した写真である。It is the photograph which observed with the scanning electron microscope that the bead aqueous suspension containing an adhesive bead was spotted on the polymethylmethacrylate board | substrate according to each weight%. プラスチック基板を粘着性ビーズ水性懸濁液で浸漬コートして形成された凸凹構造物を走査電子顕微鏡で観察したものである。An uneven structure formed by dip-coating a plastic substrate with an adhesive bead aqueous suspension was observed with a scanning electron microscope. タンパク質が固定された粘着性ビーズの水性懸濁液をチップ基板上にスポッティングして形成したスポットの自己蛍光を測定して定量したグラフである。It is the graph which measured and quantified the autofluorescence of the spot formed by spotting the aqueous | water-based suspension of the adhesive bead which fixed protein on the chip | tip substrate. タンパク質が固定された粘着性ビーズの水性懸濁液をチップ基板上にスポッティングして形成したスポットに非特異的なタンパク質を処理して結合の度合いを定量したグラフである。It is the graph which processed nonspecific protein to the spot formed by spotting the aqueous suspension of the adhesive bead which fixed protein on the chip substrate, and quantified the degree of binding. 本発明のバイオチップを用いて多様な濃度のSAH(S−アデノシル−L−ホモシステイン)で競合的な免疫検出法により検出した蛍光スキャナ写真である。It is the fluorescence scanner photograph detected by competitive immunodetection method with various concentrations of SAH (S-adenosyl-L-homocysteine) using the biochip of the present invention. 本発明のバイオチップとNunc社のMaxiSorpチップを用いて標的物質SAHに対する競合的免疫検出を行った結果を示すグラフである。It is a graph which shows the result of having performed the competitive immunity detection with respect to the target substance SAH using the biochip of this invention and the MaxiSorp chip | tip of Nunc. 本発明のバイオチップを用いてB型肝炎ウィルス(HBV)のポリメラーゼ遺伝子配列を有するオリゴヌクレオチドのSNP(single nucleotide polymorphism)を様々な濃度で検出した蛍光スキャナ写真である。It is the fluorescence scanner photograph which detected SNP (single nucleotide polymorphism) of the oligonucleotide which has the polymerase gene sequence of hepatitis B virus (HBV) using the biochip of this invention in various density | concentrations. 図14の蛍光スキャナ写真を分析した蛍光シグナル強度を示すグラフである。It is a graph which shows the fluorescence signal intensity | strength which analyzed the fluorescence scanner photograph of FIG. 本発明のバイオチップを用いて、タンパク質抗原である免疫グロブリン(IgG)を直接免疫検出法で検出した蛍光スキャナ写真である。It is the fluorescence scanner photograph which detected the immunoglobulin (IgG) which is a protein antigen with the direct immunodetection method using the biochip of this invention. 図16の蛍光スキャナ写真を分析した蛍光シグナル強度を示すグラフである。It is a graph which shows the fluorescence signal intensity | strength which analyzed the fluorescence scanner photograph of FIG.

Claims (23)

水性媒質に親水性モノマー、主単量体及び共単量体を乳濁させた後、重合させて製造された、生体分子を固定する支持体とチップ基板の表面に対する粘着剤としての特徴を同時に持つ粘着性ビーズ。   The hydrophilic monomer, main monomer, and comonomer in an aqueous medium are emulsified and then polymerized. At the same time, the support for fixing biomolecules and the feature as an adhesive to the surface of the chip substrate are simultaneously used. Sticky beads with. 前記親水性モノマーが、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、アクリルアミド、グリシジルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、パリトレイン酸、オレイン酸、リノール酸、アラキドン酸、リノレン酸、アリルアルコール及びビニルアルコールよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項1に記載の粘着性ビーズ。   The hydrophilic monomer is methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylamide, glycidyl methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, paroleic acid, oleic acid, linoleic acid, arachidonic acid, linolenic acid. The adhesive bead according to claim 1, wherein the adhesive bead is at least one selected from the group consisting of acid, allyl alcohol and vinyl alcohol. 前記主単量体が、ブタジエン、エチルアクリレート、ブチルアクリレート、エチルヘキシルアクリレート及びオクチルアクリレートよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項1に記載の粘着性ビーズ。   The adhesive bead according to claim 1, wherein the main monomer is at least one selected from the group consisting of butadiene, ethyl acrylate, butyl acrylate, ethyl hexyl acrylate, and octyl acrylate. 前記共単量体が、酢酸ビニル、アクリロニトリル、アクリルアミド、スチレン、メチルメタクリレート及びメチルアクリレートよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項1に記載の粘着性ビーズ。   The adhesive bead according to claim 1, wherein the comonomer is at least one selected from the group consisting of vinyl acetate, acrylonitrile, acrylamide, styrene, methyl methacrylate, and methyl acrylate. 次の工程を含む、粘着性ビーズの製造方法:
(a)乳化剤水溶液に単量体を添加し、混合して乳濁液を作る工程;
(b)水性媒質に親水性モノマーを添加し、窒素雰囲気下で約75℃まで昇温した後、ここに前記(a)工程で得られた乳濁液を添加し、攪拌して乳濁させる工程;及び
(c)前記(b)工程で得られた乳濁液に重合開始剤を添加した後、反応させる工程。
A method for producing an adhesive bead comprising the following steps:
(A) a step of adding a monomer to an aqueous emulsifier solution and mixing to make an emulsion;
(B) A hydrophilic monomer is added to the aqueous medium, the temperature is raised to about 75 ° C. under a nitrogen atmosphere, and then the emulsion obtained in the step (a) is added thereto and stirred to make the emulsion emulsified. And (c) a step of adding a polymerization initiator to the emulsion obtained in the step (b) and then reacting the emulsion.
前記水性媒質が、水、エタノール、メタノール、DMF、DMSO、アセトン及びNMPよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項5に記載の方法。   The method according to claim 5, wherein the aqueous medium is at least one selected from the group consisting of water, ethanol, methanol, DMF, DMSO, acetone and NMP. 前記親水性モノマーが、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、アクリルアミド、グリシジルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、パリトレイン酸、オレイン酸、リノール酸、アラキドン酸、リノレン酸、アリルアルコールおよびビニルアルコールよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項5に記載の方法。   The hydrophilic monomer is methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylamide, glycidyl methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, paroleic acid, oleic acid, linoleic acid, arachidonic acid, linolenic acid. The method according to claim 5, wherein the method is at least one selected from the group consisting of acid, allyl alcohol and vinyl alcohol. 前記単量体が、ブタジエン、エチルアクリレート、ブチルアクリレート、エチルヘキシルアクリレート及びオクチルアクリレートよりなる群から選ばれた少なくとも一つの主単量体と、酢酸ビニル、アクリロニトリル、アクリルアミド、スチレン、メチルメタクリレート及びメチルアクリレートよりなる群から選ばれた少なくとも一つの共単量体とを含有することを特徴とする、請求項5に記載の方法。   The monomer is at least one main monomer selected from the group consisting of butadiene, ethyl acrylate, butyl acrylate, ethyl hexyl acrylate and octyl acrylate, and vinyl acetate, acrylonitrile, acrylamide, styrene, methyl methacrylate and methyl acrylate. The method according to claim 5, comprising at least one comonomer selected from the group consisting of: 前記乳化剤が、ラウリル硫酸ナトリウム、ゼラチン、メチルセルロース、ポリビニルアルコール、臭化セチルトリメチルアンモニウム及びオレイン酸ナトリウムよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項5に記載の方法。   The method according to claim 5, wherein the emulsifier is at least one selected from the group consisting of sodium lauryl sulfate, gelatin, methylcellulose, polyvinyl alcohol, cetyltrimethylammonium bromide, and sodium oleate. 前記重合開始剤が、過硫酸カリウム、過硫酸アンモニウム、アゾビスブチロニトリル(AIBN)及び過酸化ベンゾイル(BPO)よりなる群から選ばれた少なくとも一つであることを特徴とする、請求項5に記載の方法。   6. The polymerization initiator according to claim 5, wherein the polymerization initiator is at least one selected from the group consisting of potassium persulfate, ammonium persulfate, azobisbutyronitrile (AIBN), and benzoyl peroxide (BPO). The method described. 前記主単量体と前記共単量体の配合比が、前記粘着性ビーズのガラス転移温度(Tg)によって決定され、前記ガラス転移温度(Tg)はバイオチップの製作または使用温度より0〜45℃低いことを特徴とする、請求項8に記載の方法。   The mixing ratio of the main monomer and the comonomer is determined by the glass transition temperature (Tg) of the adhesive beads, and the glass transition temperature (Tg) is 0 to 45 from the production or use temperature of the biochip. The method according to claim 8, wherein the method is low. 次の工程を含む、バイオチップの製造方法 :
(a)請求項1乃至請求項4の何れか一項に記載の粘着性ビーズに生体分子を付着させ、生体分子を固定したビーズの水性懸濁液を製造する工程;及び
(b)前記水性懸濁液を基板上に固定させる工程。
Biochip manufacturing method including the following steps:
(A) a step of producing an aqueous suspension of beads having biomolecules immobilized thereon by attaching biomolecules to the adhesive beads according to any one of claims 1 to 4; and (b) the aqueous solution. Fixing the suspension on the substrate.
前記(b)工程が、水性懸濁液を基板上にスポッティングさせた後、これを乾燥させて基板上に固定させることを特徴とする、請求項12に記載の方法。   The method according to claim 12, wherein the step (b) comprises spotting the aqueous suspension on the substrate, and then drying and fixing the aqueous suspension on the substrate. 前記スポッティングが、インクジェットによって行うことを特徴とする、請求項12に記載の方法。   The method according to claim 12, wherein the spotting is performed by inkjet. 前記粘着性ビーズに生体分子を付着させる方法が、疎水性吸着法、共有結合法及び静電気的引力による結合法よりなる群から選ばれたいずれか一つであることを特徴とする、請求項12に記載の方法。   The method for attaching a biomolecule to the adhesive bead is any one selected from the group consisting of a hydrophobic adsorption method, a covalent bonding method, and a binding method by electrostatic attraction. The method described in 1. 前記生体分子が、核酸、アミノ酸、タンパク質、ペプチド、脂質、炭水化物、酵素基質、リガンド及びコファクターよりなる群から選ばれたいずれか一つであることを特徴とする、請求項12に記載の方法。   The method according to claim 12, wherein the biomolecule is any one selected from the group consisting of nucleic acids, amino acids, proteins, peptides, lipids, carbohydrates, enzyme substrates, ligands and cofactors. . 前記基板が、マイクロウェル、スライド基板及びラボ・オン・チップの微細流路よりなる群から選ばれたいずれか一つであることを特徴とする、請求項12に記載の方法。   The method according to claim 12, wherein the substrate is one selected from the group consisting of a microwell, a slide substrate, and a lab-on-chip microchannel. 前記基板の材料が、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、環状オレフィンコポリマー、ポリノルボルネン、スチレン−ブタジエンコポリマー、アクリロニトリルブタジエンスチレン、ガラス、シリコン、ヒドロゲル、金属、セラミック及び多孔性メンブレインよりなる群から選ばれた少なくとも一つであることを特徴とする、請求項17に記載の方法。   The substrate material is selected from the group consisting of polymethyl methacrylate, polycarbonate, polystyrene, cyclic olefin copolymer, polynorbornene, styrene-butadiene copolymer, acrylonitrile butadiene styrene, glass, silicon, hydrogel, metal, ceramic, and porous membrane. The method according to claim 17, wherein the method is at least one. 請求項12に記載の方法によって製造され、生体分子が付着している粘着性ビーズが基板に固定されているバイオチップ。   A biochip manufactured by the method according to claim 12, wherein adhesive beads to which biomolecules are attached are fixed to a substrate. 次の工程を含む、試料内の標的物質の検出方法:
(a)請求項19に記載のバイオチップに、標的物質を含有する試料を適用する工程;及び
(b)前記バイオチップ上の生体分子と特異的に結合する標的物質を検出する工程。
A method for detecting a target substance in a sample, comprising the following steps:
(A) applying a sample containing a target substance to the biochip according to claim 19; and (b) detecting a target substance that specifically binds to a biomolecule on the biochip.
前記標的物質の検出が、放射線同位元素や発光または発色染料などの生体標識子を用いた検出法、生体酵素を用いた酵素免疫測定法(ELISA)、電気化学的免疫測定法、粒子を用いた免疫比濁法、及び蛍光発色団を用いた検出法よりなる群から選ばれた少なくとも一つを使用することを特徴とする、請求項20に記載の方法。   The detection of the target substance is performed using a detection method using a biolabel such as a radioisotope, luminescence, or coloring dye, an enzyme immunoassay (ELISA) using a bioenzyme, an electrochemical immunoassay, or a particle. 21. The method according to claim 20, wherein at least one selected from the group consisting of an immunoturbidimetric method and a detection method using a fluorescent chromophore is used. ビーズが基板に固定されている、ラミブジン耐性を有するB型肝炎ウィルスの感染の有無を確認するバイオチップであって、請求項1乃至請求項4の何れか一項に記載の粘着性ビーズに配列番号1または配列番号2のSNP(一塩基多型)が付いているバイオチップ。   A biochip for confirming the presence or absence of lamivudine-resistant hepatitis B virus, wherein the beads are fixed on a substrate, wherein the beads are arrayed on the adhesive beads according to any one of claims 1 to 4. A biochip with SNP (single nucleotide polymorphism) of No. 1 or SEQ ID No. 2. 請求項1乃至請求項4の何れか一項に記載の粘着性ビーズがチップ基板の表面に全体的または局部的にコートされている凸凹構造物。   An uneven structure in which the adhesive beads according to any one of claims 1 to 4 are entirely or locally coated on the surface of a chip substrate.
JP2007501053A 2005-09-15 2006-04-24 Adhesive beads for immobilizing biomolecules and methods for producing biochips using the same Active JP4482025B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050086284 2005-09-15
PCT/KR2006/001535 WO2007032587A1 (en) 2005-09-15 2006-04-24 Adhesive bead for immobilization of biomolecules and method for fabricating a biochip using the same

Publications (2)

Publication Number Publication Date
JP2008501043A true JP2008501043A (en) 2008-01-17
JP4482025B2 JP4482025B2 (en) 2010-06-16

Family

ID=37865146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007501053A Active JP4482025B2 (en) 2005-09-15 2006-04-24 Adhesive beads for immobilizing biomolecules and methods for producing biochips using the same

Country Status (6)

Country Link
US (1) US20080248962A1 (en)
EP (1) EP1924706A4 (en)
JP (1) JP4482025B2 (en)
CN (1) CN101044251A (en)
TW (1) TW200712491A (en)
WO (1) WO2007032587A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110552A (en) * 2009-11-24 2011-06-09 Internatl Business Mach Corp <Ibm> Polymeric film made from cage type polyhedral oligomeric silsesquioxane (poss) and hydrophilic comonomer
CN102286635A (en) * 2011-07-15 2011-12-21 广东凯普生物科技股份有限公司 Hepatitis B virus nucleoside analog drug resistant mutation detection kit

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162225B2 (en) * 2009-03-30 2015-10-20 Konica Minolta, Inc. Microchip
US20110009300A1 (en) * 2009-07-07 2011-01-13 Chevron U.S.A. Inc. Synthesis of biolubricant esters from unsaturated fatty acid derivatives
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
WO2011109379A1 (en) 2010-03-01 2011-09-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
FR2970568B1 (en) * 2011-01-14 2016-05-06 Centre Nat Rech Scient NEW ADHESIVE SURFACES FOR THE IMMOBILIZATION OF LIGANDS
US20140302532A1 (en) 2011-04-12 2014-10-09 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patient's recovery from a brain injury
KR101101310B1 (en) 2011-05-17 2011-12-30 서울대학교산학협력단 Assay method using coded particle based platform
WO2014113502A1 (en) 2013-01-15 2014-07-24 Quanterix Corporation Detection of dna or rna using single molecule arrays and other techniques
CN103709311B (en) * 2013-11-18 2016-01-20 长春永固科技有限公司 For the preparation method of the modified epoxy of die adhesive
CN107589254B (en) * 2016-07-08 2022-02-08 鉴识生物系统有限公司 Preparation method and application of immunoliposome complex nanoparticle biochip
US11926770B2 (en) * 2016-08-12 2024-03-12 Rohm And Haas Company Water-based pressure sensitive adhesive compositions and methods of making same
BR102016025448B1 (en) 2016-10-31 2021-08-31 Instituto De Biologia Molecular Do Paraná (Ibpm) Surface activation method of polymeric materials
US20210023522A1 (en) * 2017-09-07 2021-01-28 Mitsubishi Gas Chemical Company, Inc. Substrate for biochip, biochip, method for manufacturing biochip, and method for preserving biochip
WO2019161165A1 (en) 2018-02-15 2019-08-22 Ohio State Innovation Foundation Microfluidic devices and methods for high throughput electroporation
CN111551713A (en) * 2020-05-15 2020-08-18 中国科学院过程工程研究所 COVID-19 virus antibody detection microsphere, preparation method thereof and kit containing microsphere

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381921A (en) * 1978-12-27 1983-05-03 Eastman Kodak Company Element, structure and method for the analysis or transport of liquids
US5034428A (en) * 1986-06-19 1991-07-23 Board Of Regents Of The University Of Washington Immobilized biomolecules and method of making same
CA2067969A1 (en) * 1991-05-30 1992-12-01 Chung I. Young Method for making structured suspension psa beads
US5482996A (en) * 1993-12-08 1996-01-09 University Of Pittsburgh Protein-containing polymers and a method of synthesis of protein-containing polymers in organic solvents
US6133436A (en) * 1996-11-06 2000-10-17 Sequenom, Inc. Beads bound to a solid support and to nucleic acids
KR100369845B1 (en) * 2000-10-20 2003-01-30 한솔제지주식회사 Repositionable adhesive of pore microsphere and method for preparing of the same
EP1527203B1 (en) * 2002-08-08 2007-04-18 Siemens Aktiengesellschaft Radically crosslinkable hydrogel comprising linker groups
KR100766750B1 (en) * 2004-12-13 2007-10-17 주식회사 엘지생명과학 Method for fabricating a biochip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110552A (en) * 2009-11-24 2011-06-09 Internatl Business Mach Corp <Ibm> Polymeric film made from cage type polyhedral oligomeric silsesquioxane (poss) and hydrophilic comonomer
CN102286635A (en) * 2011-07-15 2011-12-21 广东凯普生物科技股份有限公司 Hepatitis B virus nucleoside analog drug resistant mutation detection kit

Also Published As

Publication number Publication date
US20080248962A1 (en) 2008-10-09
WO2007032587A1 (en) 2007-03-22
JP4482025B2 (en) 2010-06-16
EP1924706A4 (en) 2009-06-17
EP1924706A1 (en) 2008-05-28
CN101044251A (en) 2007-09-26
TW200712491A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
JP4482025B2 (en) Adhesive beads for immobilizing biomolecules and methods for producing biochips using the same
JP3887647B2 (en) Biochip
JP4307380B2 (en) Biochip produced by gelation reaction on chip substrate
JP2000515251A (en) Device for performing an assay, method for manufacturing the device, and use of the membrane in manufacturing the device
US20080293592A1 (en) Method For Covalently Immobilising Biomolecules on Organic Surfaces
JP5148818B2 (en) New solid support and use thereof
KR100794186B1 (en) Adhesive Bead for Immobilization of Biomolecules and Method for Fabricating aBiochip Using the Same
JP4197279B2 (en) Biologically-derived substance detection substrate and manufacturing method thereof
JP4534817B2 (en) Protein detection method and peptide detection method
KR20070031759A (en) Method for Fabricating a Biochip Using Polymer?gel
US20060216728A1 (en) Method of fabricating biochip
JP2004513344A (en) A method for large-scale production of patterned surfaces for biological binding
US20060228813A1 (en) Method for immobilizing biomolecules on metal oxide substrates
JP2009109214A (en) Functional particle having particle size distribution allowing measurement of single particle, and separation method of target material using it
US20210223236A1 (en) A sensor body for binding and/or enriching and/or detecting an analyte in a sample
JP6028488B2 (en) Analytical carrier, method for producing and using the same
JP6076500B2 (en) Target substance detection method
JP2003277455A (en) Method for producing polymer particle, polymer particle and carrier for physiologically active substance
Pourjahed et al. Development of polymer-coated glass slides as optical oligonucleotide microarrays

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091020

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150