JP2008312062A - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
JP2008312062A
JP2008312062A JP2007159480A JP2007159480A JP2008312062A JP 2008312062 A JP2008312062 A JP 2008312062A JP 2007159480 A JP2007159480 A JP 2007159480A JP 2007159480 A JP2007159480 A JP 2007159480A JP 2008312062 A JP2008312062 A JP 2008312062A
Authority
JP
Japan
Prior art keywords
wireless
wireless slave
intermittent reception
slave device
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159480A
Other languages
Japanese (ja)
Other versions
JP5201439B2 (en
Inventor
Toshio Nagai
敏雄 永井
Shoken Araki
正賢 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saxa Inc
Original Assignee
Saxa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saxa Inc filed Critical Saxa Inc
Priority to JP2007159480A priority Critical patent/JP5201439B2/en
Publication of JP2008312062A publication Critical patent/JP2008312062A/en
Application granted granted Critical
Publication of JP5201439B2 publication Critical patent/JP5201439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

<P>PROBLEM TO BE SOLVED: To reduce variations in power consumption of a plurality of wireless units, caused by a difference in the number of times of communication in a communication system which connects wirelessly the wireless units having an intermittent receiving function in a hierarchical structure. <P>SOLUTION: The system has a hierarchical structure in which three wireless slave units 3 to 5 exist under a wireless master unit 2, two wireless slave units 4 and 5 exist under the wireless slave unit 3, and one wireless slave unit 5 exists under the wireless slave unit 4. Wireless units at higher-order positions in the hierarchical structure relay data from wireless units at lower-order positions to ones at higher-order positions. The intermittent receiving interval of wireless units at higher-order positions having an increased number of times of communication is made longer than that of wireless units at lower-order positions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガスメータや水道メータなどの検針データを自動収集する自動検針システム、或いはガス漏れセンサや火災センサ等の情報を報知するセキュリティシステムなどに好適な無線通信システムに関する。   The present invention relates to a wireless communication system suitable for an automatic meter reading system for automatically collecting meter reading data such as a gas meter and a water meter, or a security system for notifying information such as a gas leak sensor and a fire sensor.

図10はこのような無線通信システムの概略構成を示す図である。この無線通信システムは、センタ装置201と、無線親機202と、無線子機203とからなる。センタ装置201と無線親機202とは携帯電話網などの公衆通信回線を用いてデータ通信を行う。無線親機202と無線子機203とは特定小電力無線によりデータ通信を行う。無線子機203にはガスメータ、水道メータ、ガス漏れセンサなどが接続されている。   FIG. 10 is a diagram showing a schematic configuration of such a wireless communication system. This wireless communication system includes a center device 201, a wireless master device 202, and a wireless slave device 203. The center device 201 and the wireless master device 202 perform data communication using a public communication line such as a mobile phone network. The wireless master device 202 and the wireless slave device 203 perform data communication by specific low power wireless. The wireless slave device 203 is connected to a gas meter, a water meter, a gas leak sensor, and the like.

このように構成された通信システムにおいて、無線子機203に接続されたガスメータや水道メータで計測されたガスや水道の使用量(検針データ)をセンタ装置201で定期的に収集するには、センタ装置201は定期的に無線親機202を呼び出し、無線子機203に接続されたメータの検針データの送信を要求する。無線親機202は、この要求に従って無線子機203を呼び出し、検針データの送信を要求する。無線子機203は、検針データを無線親機202へ送信し、無線親機202は受信した検針データをセンタ装置201へ送信する。   In the communication system configured as described above, the center device 201 periodically collects gas and water usage (meter reading data) measured by a gas meter or a water meter connected to the wireless slave device 203. The apparatus 201 periodically calls the wireless master device 202 and requests transmission of meter reading data of a meter connected to the wireless slave device 203. The wireless master device 202 calls the wireless slave device 203 according to this request and requests transmission of meter-reading data. The wireless slave device 203 transmits the meter reading data to the wireless master device 202, and the wireless master device 202 transmits the received meter reading data to the center device 201.

無線子機203は電池により駆動されており、消費電力を節約するため、待機時には例えば30sec毎に10msec受信回路の電源をオンにする間欠受信動作を行う。ここで30sec、10msecをそれぞれ間欠受信間隔、間欠受信時間と言う。そして、間欠受信時間、即ち受信回路の電源がオンになっている時間に無線親機202からの呼び出し(起動電文)の有無をチェックし、有る場合はデータ通信を行い、無い場合は受信回路の電源をオフにして待機する(特許文献1参照)。   The wireless slave unit 203 is driven by a battery, and in order to save power consumption, for example, an intermittent reception operation is performed in which the power of the 10 msec reception circuit is turned on every 30 seconds during standby. Here, 30 sec and 10 msec are referred to as an intermittent reception interval and an intermittent reception time, respectively. Then, the presence or absence of a call (start message) from the wireless master device 202 is checked during the intermittent reception time, that is, the time when the power of the reception circuit is turned on. If there is, the data communication is performed. Turn off the power and wait (see Patent Document 1).

ここで、親機202が複数の無線子機からの検針データを収集するシステムを、図11Aに示すように、複数(ここでは3台)の無線子機203〜205が直接無線親機202と通信を行うように構成した場合は各無線子機の通信回数は同じであるため、消費電力も同じになる。   Here, as shown in FIG. 11A, a system in which the master unit 202 collects meter reading data from a plurality of wireless slave units is configured such that a plurality (three in this case) of wireless slave units 203 to 205 are directly connected to the wireless master unit 202. When configured to perform communication, the number of communications of each wireless slave unit is the same, so the power consumption is also the same.

しかし、図11Bに示すように、無線子機203の配下に無線子機204及び205を収容する階層構造とし、無線子機203に中継機能を持たせて無線子機204及び205の検針データを無線子機203経由で無線親機202に伝送するように構成した場合は、無線子機203の通信回数が多くなるため、その分消費電力が多くなり、無線子機203の電池が先に消耗してしまう。この結果、各無線子機の電池交換作業を異なる時期に行うことになり、作業工数が多くなるという問題がある。   However, as shown in FIG. 11B, a hierarchical structure in which the wireless slave devices 204 and 205 are accommodated under the wireless slave device 203, and the wireless slave device 203 has a relay function so that the meter reading data of the wireless slave devices 204 and 205 is obtained. When configured to transmit to the wireless master device 202 via the wireless slave device 203, the number of communications of the wireless slave device 203 increases, so the power consumption increases correspondingly and the battery of the wireless slave device 203 is depleted first. Resulting in. As a result, there is a problem in that the battery replacement work for each wireless slave unit is performed at different times, which increases the number of work steps.

特開平8−194022号公報JP-A-8-194022

本発明は、このような問題点に鑑みてなされたものであり、その目的は、間欠受信機能を有する複数の無線通信端末装置を、階層構造を有するように無線接続する無線通信システムにおいて、通信回数の差異に起因する無線通信端末装置の消費電力のバラツキを低減することである。   The present invention has been made in view of such problems, and an object of the present invention is to perform communication in a wireless communication system in which a plurality of wireless communication terminal devices having an intermittent reception function are wirelessly connected so as to have a hierarchical structure. It is to reduce the variation in power consumption of the wireless communication terminal device due to the difference in the number of times.

請求項1の発明は、間欠受信機能を有する複数の無線通信端末装置を、階層構造を有するように無線接続する無線通信システムであって、前記無線通信端末装置の間欠受信間隔を前記階層構造に応じて設定する手段を有することを特徴とする。
請求項2の発明は、請求項1記載の無線通信システムにおいて、前記手段は、無線通信端末装置の下位に存在する無線通信端末装置の数に応じて前記間欠受信間隔を設定することを特徴とする。
請求項3の発明は、請求項1記載の無線通信システムにおいて、前記手段は、無線通信端末装置の直下及び直上に存在する無線通信端末装置の数に応じて前記間欠受信間隔を設定することを特徴とする。
請求項4の発明は、請求項1〜3のいずれかに記載の無線通信システムにおいて、無線通信端末装置から他の無線通信端末装置に対する呼び出し時間を前記階層構造に応じて設定する手段を有することを特徴とする。
請求項5の発明は、請求項1〜4のいずれかに記載の無線通信システムにおいて、前記無線通信端末装置の通信回数に応じて、前記設定された間欠受信間隔及び呼び出し時間を補正する手段を有することを特徴とする。
The invention of claim 1 is a wireless communication system for wirelessly connecting a plurality of wireless communication terminal devices having an intermittent reception function so as to have a hierarchical structure, wherein the intermittent reception interval of the wireless communication terminal devices is the hierarchical structure. It has the means to set according to, It is characterized by the above-mentioned.
According to a second aspect of the present invention, in the wireless communication system according to the first aspect, the means sets the discontinuous reception interval according to the number of wireless communication terminal devices existing below the wireless communication terminal device. To do.
According to a third aspect of the present invention, in the wireless communication system according to the first aspect, the means sets the discontinuous reception interval according to the number of wireless communication terminal devices existing immediately below and immediately above the wireless communication terminal device. Features.
According to a fourth aspect of the present invention, in the wireless communication system according to any one of the first to third aspects, the wireless communication terminal device has means for setting a calling time from the wireless communication terminal device to another wireless communication terminal device according to the hierarchical structure. It is characterized by.
According to a fifth aspect of the present invention, in the wireless communication system according to any one of the first to fourth aspects, means for correcting the set intermittent reception interval and calling time according to the number of communications of the wireless communication terminal device. It is characterized by having.

(作用)
請求項1の発明によれば、階層構造を有するように無線接続される無線通信端末装置の間欠受信間隔を階層構造に応じて設定することにより、無線通信端末装置の間欠受信による消費電力を階層構造に応じて設定することができる。
請求項2の発明によれば、階層構造を有するように無線接続される無線通信端末装置の間欠受信間隔を下位に存在する無線通信端末装置の数に応じて設定することにより、無線通信端末装置の下位に存在する無線通信端末装置の数に応じて、無線通信端末装置の間欠受信による消費電力を設定することができる。
請求項3の発明によれば、階層構造を有するように無線接続される無線通信端末装置の間欠受信間隔を無線通信端末装置の直下及び直上に存在する無線通信端末装置の数に応じて設定することにより、無線通信端末装置と直接データ通信を行う無線通信端末装置の数に応じて、無線通信端末装置の間欠受信による消費電力を設定することができる。
請求項4の発明によれば、階層構造を有するように無線接続される無線通信端末装置の間欠受信間隔を階層構造に応じて設定するとともに、他の無線通信端末装置に対する呼び出し時間を階層構造に応じて設定することにより、無線通信端末装置の間欠受信による消費電力及び他の無線通信端末装置に対する呼び出しによる消費電力を階層構造に応じて設定することができる。
請求項5の発明によれば、無線通信端末装置の通信回数に応じて、間欠受信間隔及び呼び出し時間の設定値を補正することにより、無線通信端末装置の間欠受信による消費電力及び他の無線通信端末装置に対する呼び出しによる消費電力を階層構造に応じて設定し、かつ通信回数に応じて補正することができる。
(Function)
According to the invention of claim 1, by setting the intermittent reception interval of the wireless communication terminal apparatuses wirelessly connected so as to have a hierarchical structure according to the hierarchical structure, the power consumption due to the intermittent reception of the wireless communication terminal apparatus is hierarchical. It can be set according to the structure.
According to the invention of claim 2, by setting the intermittent reception interval of the wireless communication terminal devices wirelessly connected so as to have a hierarchical structure according to the number of wireless communication terminal devices existing in the lower layer, the wireless communication terminal device Depending on the number of wireless communication terminal devices existing in the lower level, power consumption due to intermittent reception of the wireless communication terminal device can be set.
According to the invention of claim 3, the intermittent reception interval of the wireless communication terminal devices wirelessly connected so as to have a hierarchical structure is set according to the number of wireless communication terminal devices existing immediately below and directly above the wireless communication terminal device. Thus, the power consumption due to intermittent reception of the wireless communication terminal device can be set according to the number of wireless communication terminal devices that directly perform data communication with the wireless communication terminal device.
According to invention of Claim 4, while setting the intermittent reception interval of the radio | wireless communication terminal device wirelessly connected so that it may have a hierarchical structure according to a hierarchical structure, the calling time with respect to another wireless communication terminal device is made into a hierarchical structure. By setting accordingly, the power consumption due to intermittent reception of the wireless communication terminal device and the power consumption due to calling to another wireless communication terminal device can be set according to the hierarchical structure.
According to the invention of claim 5, the power consumption due to the intermittent reception of the wireless communication terminal device and other wireless communication are corrected by correcting the set values of the intermittent reception interval and the calling time according to the number of communication of the wireless communication terminal device. The power consumption by calling the terminal device can be set according to the hierarchical structure and can be corrected according to the number of communications.

本発明によれば、間欠受信機能を有する複数の無線通信端末装置を、階層構造を有するように無線接続する無線通信システムにおいて、通信回数の差異に起因する無線通信端末装置の消費電力のバラツキを低減することができる。   According to the present invention, in a wireless communication system in which a plurality of wireless communication terminal devices having an intermittent reception function are wirelessly connected so as to have a hierarchical structure, variation in power consumption of the wireless communication terminal device due to a difference in the number of communication times is reduced. Can be reduced.

以下、本発明の実施形態について図面を参照して説明する。
[第1の実施形態]
図1は本発明の第1の実施形態の無線通信システムの構成を示す図である。この無線通信システムは、センタ装置1と、無線親機2と、無線子機3〜5とからなる。センタ装置1と無線親機2とは携帯電話網などの公衆通信回線によりデータ通信を行う。無線親機2と無線子機3とは特定小電力無線などによりデータ通信を行う。無線子機3と無線子機4、無線子機4と無線子機5も特定小電力無線などによりデータ通信を行う。無線子機3〜5にはガスメータ、水道メータ、ガス漏れセンサなどが接続されている。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to a first embodiment of this invention. This wireless communication system includes a center device 1, a wireless master device 2, and wireless slave devices 3 to 5. The center device 1 and the wireless master device 2 perform data communication through a public communication line such as a cellular phone network. The wireless master device 2 and the wireless slave device 3 perform data communication by using a specific low power radio. The wireless slave unit 3 and the wireless slave unit 4, and the wireless slave unit 4 and the wireless slave unit 5 also perform data communication by a specific low power radio. A gas meter, a water meter, a gas leak sensor, and the like are connected to the wireless slave devices 3 to 5.

無線子機3に接続されているメータの検針データは無線親機2を介してセンタ装置1へ送信される。無線子機4に接続されているメータの検針データは無線子機3及び無線親機2を介してセンタ装置1へ送信される。無線子機5に接続されているメータの検針データは無線子機4、無線子機3、及び無線親機2を介してセンタ装置1へ送信される。各無線子機に接続されているガス漏れセンサの検知データをセンタ装置1へ報知する場合も同様である。   Meter reading data of the meter connected to the wireless slave unit 3 is transmitted to the center device 1 via the wireless master unit 2. Meter reading data of the meter connected to the wireless slave unit 4 is transmitted to the center device 1 via the wireless slave unit 3 and the wireless master unit 2. Meter reading data of the meter connected to the wireless slave device 5 is transmitted to the center device 1 via the wireless slave device 4, the wireless slave device 3, and the wireless master device 2. The same applies to the case where the detection data of the gas leak sensor connected to each wireless slave is notified to the center device 1.

つまり、無線親機2の配下に3台の無線子機3〜5が存在し、無線子機3の配下に2台の無線子機4及び5が存在し、無線子機4の配下に1台の無線子機5が存在する階層構造を持っている。また、無線子機3及び4は、階層構造の下位に位置する無線子機から送信されたデータを階層構造の上位へ中継することで、全ての無線子機からのデータは無線親機2に届けられ、さらにセンタ装置1に届けられる。   That is, there are three wireless slave devices 3 to 5 under the wireless master device 2, two wireless slave devices 4 and 5 are present under the wireless slave device 3, and 1 is under the wireless slave device 4. It has a hierarchical structure in which a single wireless slave unit 5 exists. Further, the wireless slave devices 3 and 4 relay data transmitted from wireless slave devices located in the lower layer of the hierarchical structure to the upper layer of the hierarchical structure, so that data from all the wireless slave devices is transmitted to the wireless parent device 2. Delivered to the center apparatus 1.

無線親機2の特定小電力無線の通信部、及び無線子機3〜5は通信相手を呼び出すときには、その通信相手宛に起動電文を送信する。また、無線親機2の特定小電力無線の通信部、及び無線子機3〜5は待機時には間欠受信動作を行う。そして、間欠受信動作中の間欠受信時間、即ち間欠受信間隔毎に受信回路の電源がオンになっている時間に自分宛の呼び出し(起動指令)を検出したときは、データの送受信が可能な状態へ移行し、自分宛の呼び出しを検出しなかった場合は受信回路の電源をオフにして待機する。   When the communication unit of the specific low power radio of the wireless master device 2 and the wireless slave devices 3 to 5 call the communication partner, an activation message is transmitted to the communication partner. In addition, the specific low power wireless communication unit of the wireless master device 2 and the wireless slave devices 3 to 5 perform an intermittent reception operation during standby. When the intermittent reception time during the intermittent reception operation, that is, the call (start command) addressed to itself is detected at the time when the power of the reception circuit is turned on every intermittent reception interval, the data can be transmitted and received If no call addressed to itself is detected, the receiving circuit is turned off and waits.

ここで、無線親機2、無線子機3〜5の間欠受信間隔(間欠受信周期)は同一ではなく、配下に存在する無線子機の数が多い程、即ち上位の階層に存在する無線機程長くすることで、一定時間内の間欠受信回数を少なくし、間欠受信の累積による消費電力を少なくしている。このように、上位の階層に存在する無線機程、間欠受信に伴う消費電力を少なくすることで、中継によりデータ通信回数が多くなることに起因する消費電力の増大を補正している。この点の詳細については後述する。   Here, the intermittent reception interval (intermittent reception cycle) of the wireless master device 2 and the wireless slave devices 3 to 5 is not the same, and the more wireless slave devices there are, that is, the wireless devices present in the upper layer By making it longer, the number of intermittent receptions within a certain time is reduced, and the power consumption due to the accumulation of intermittent receptions is reduced. Thus, the increase in power consumption due to the increase in the number of data communication by relay is corrected by reducing the power consumption associated with intermittent reception in the wireless devices existing in the higher layers. Details of this point will be described later.

図2は図1の無線子機3の構成を示すブロック図である。無線子機3は、無線子機3全体の制御などを行う制御装置11と、アンテナ12と、アンテナ12に接続された送受信切替え回路(SW)13と、送受信切替え回路(SW)13に接続された送信回路14及び受信回路15と、制御装置11が動作するときに使用する各種データ、プログラムなどが記憶されるメモリ16と、メータや各種センサ(図示せず)が接続されたインタフェース(I/F)回路17とを備えている。   FIG. 2 is a block diagram showing a configuration of the wireless slave device 3 of FIG. The wireless slave device 3 is connected to a control device 11 that controls the entire wireless slave device 3, an antenna 12, a transmission / reception switching circuit (SW) 13 connected to the antenna 12, and a transmission / reception switching circuit (SW) 13. The transmission circuit 14 and the reception circuit 15, the memory 16 for storing various data and programs used when the control device 11 operates, and an interface (I / I) connected to a meter and various sensors (not shown). F) A circuit 17 is provided.

制御装置11は間欠受信用タイマー18及び起動指令用タイマー19を備えている。間欠受信用タイマー18は受信回路15を間欠的にオンにする時間(間欠受信時間)及びその間隔(間欠受信間隔)を設定するためのタイマーである。起動指令用タイマー19は、無線子機3が無線子機4や無線親機2を呼び出すときに、制御装置11で作成された起動電文を送信回路14から送信する時間(呼び出し時間)を設定するためのタイマーである。これらのタイマーの設定時間を定めるためのデータはメモリ16に記憶されている。   The control device 11 includes an intermittent reception timer 18 and a start command timer 19. The intermittent reception timer 18 is a timer for setting a time (intermittent reception time) for intermittently turning on the reception circuit 15 and an interval (intermittent reception interval). The activation command timer 19 sets a time (calling time) for transmitting the activation message generated by the control device 11 from the transmission circuit 14 when the wireless slave device 3 calls the wireless slave device 4 or the wireless master device 2. It is a timer for. Data for determining the set time of these timers is stored in the memory 16.

送受信切替え回路(SW)13は、制御装置11の制御に従ってアンテナ12を送信状態又は受信状態に切り替える回路である。送信回路14は制御装置11からのデータを変調するための変調回路を含んでおり、受信回路15は受信したデータを復調するための復調回路を含んでいる。インタフェース(I/F)回路17は制御装置11からの指令に応じてメータの検針データを読み出し、制御装置11に送る。また、ガス漏れセンサが検知データを生成したときは制御装置11に通知する。   The transmission / reception switching circuit (SW) 13 is a circuit that switches the antenna 12 to a transmission state or a reception state under the control of the control device 11. The transmission circuit 14 includes a modulation circuit for modulating data from the control device 11, and the reception circuit 15 includes a demodulation circuit for demodulating the received data. The interface (I / F) circuit 17 reads meter reading data of the meter in response to a command from the control device 11 and sends it to the control device 11. Further, when the gas leak sensor generates detection data, the control device 11 is notified.

無線子機4及び5も以上説明した無線子機3と同様に構成されている。また、無線親機2は無線子機3の構成に対し、センタ装置1と携帯電話網を介してデータ通信を行うための通信回路を付加したものである。ただし、無線親機2の電源は電池でもよいが、商用交流電源でもよい。さらに、センタ装置1は無線親機2との通信機能を備えたコンピュータにより構成されている。   The wireless slave devices 4 and 5 are configured in the same manner as the wireless slave device 3 described above. The wireless master device 2 is obtained by adding a communication circuit for performing data communication to the configuration of the wireless slave device 3 via the mobile telephone network with the center device 1. However, the power source of the wireless master device 2 may be a battery or a commercial AC power source. Further, the center device 1 is configured by a computer having a communication function with the wireless master device 2.

以上の構成を有する通信システムにおいて、センタ装置1が無線子機3〜5に接続されているメータの検針データを収集する手順について、図3に示すシーケンス図及び図4に示すタイミング図を参照しながら説明する。   In the communication system having the above configuration, the procedure for collecting meter reading data of the meters connected to the wireless slave devices 3 to 5 by the center device 1 is described with reference to the sequence diagram shown in FIG. 3 and the timing diagram shown in FIG. While explaining.

図3に示すように、センタ装置1から無線親機2に対し、無線子機3〜5の検針データを収集することを指令する(手順S1)。無線親機2はこの指令を受信すると、無線子機3に起動指令を送信する(手順S2)。無線子機3の受信回路15は間欠受信用タイマー18により設定された間欠受信間隔及び間欠受信時間で間欠受信動作中であり、受信信号を復調して制御装置11へ送る。制御装置11は復調信号の中から無線子機3宛の起動指令を検出すると、送信回路14及び受信回路15を制御して、間欠受信動作状態からデータ通信可能な状態へ移行させ、起動応答を作成して送信回路14から無線親機2へ送信する(手順S3)。   As shown in FIG. 3, the center apparatus 1 instructs the wireless master device 2 to collect meter reading data of the wireless slave devices 3 to 5 (step S1). When receiving the command, the wireless master device 2 transmits an activation command to the wireless slave device 3 (step S2). The reception circuit 15 of the wireless slave device 3 is performing an intermittent reception operation at the intermittent reception interval and intermittent reception time set by the intermittent reception timer 18, and demodulates the received signal and sends it to the control device 11. When the control device 11 detects the activation command addressed to the wireless slave unit 3 from the demodulated signal, the control device 11 controls the transmission circuit 14 and the reception circuit 15 to shift from the intermittent reception operation state to the state capable of data communication, and to respond to the activation response. It is created and transmitted from the transmission circuit 14 to the wireless master device 2 (step S3).

ここで無線親機2による無線子機3に対する起動指令の送信時間(呼び出し時間)、及び無線子機3の間欠受信間隔は、それぞれ図4A、Bに示すように、間欠受信P2の間隔(4a)よりも起動指令P1の送信時間(4a+α)を長くしている。従って、無線子機3は1回目の起動指令により起動される。   Here, the transmission time (calling time) of the activation command to the wireless slave device 3 by the wireless master device 2 and the intermittent reception interval of the wireless slave device 3 are the intervals (4a) of the intermittent reception P2 as shown in FIGS. ) Is longer than the transmission time (4a + α) of the activation command P1. Accordingly, the wireless slave device 3 is activated by the first activation command.

起動応答を受信した無線親機2は、無線子機3に対し、無線子機5の検針指令を送信する(手順S4)。この検針指令を受信した無線子機3は、無線子機4に起動指令を送信する(手順S5)。無線子機4は間欠受信動作中であり、この起動指令を検出すると、間欠受信動作状態からデータ通信可能な状態へ移行し、起動応答を無線子機3へ送信する(手順S6)。   The wireless master device 2 that has received the activation response transmits a meter reading command of the wireless slave device 5 to the wireless slave device 3 (step S4). The wireless slave device 3 that has received this meter-reading command transmits an activation command to the wireless slave device 4 (step S5). The wireless slave device 4 is in the intermittent reception operation. When this activation command is detected, the wireless slave device 4 shifts from the intermittent reception operation state to a state where data communication is possible, and transmits an activation response to the wireless slave device 3 (step S6).

ここで無線子機3による無線子機4に対する起動指令の送信時間(呼び出し時間)、及び無線子機4の間欠受信間隔は、それぞれ図4C、Dに示すように、間欠受信P4の間隔(3a)よりも起動指令P3の送信時間(3a+α)を長くしている。従って、無線子機4は1回目の起動指令により起動される。   Here, the transmission time (calling time) of the activation command to the wireless slave device 4 by the wireless slave device 3 and the intermittent reception interval of the wireless slave device 4 are the intervals (3a) of the intermittent reception P4 as shown in FIGS. 4C and D, respectively. ) Is longer than the transmission time (3a + α) of the start command P3. Accordingly, the wireless slave device 4 is activated by the first activation command.

起動応答を受信した無線子機3は、無線子機4に対し、無線子機5の検針指令を送信する(手順S7)。この検針指令を受信した無線子機4は、無線子機5に起動指令を送信する(手順S8)。無線子機5は間欠受信動作中であり、この起動指令を検出すると、間欠受信動作状態からデータ通信可能な状態へ移行し、起動応答を無線子機4へ送信する(手順S9)。   The wireless slave device 3 that has received the activation response transmits a meter reading command of the wireless slave device 5 to the wireless slave device 4 (step S7). The wireless slave device 4 that has received this meter-reading command transmits an activation command to the wireless slave device 5 (step S8). The wireless slave device 5 is performing an intermittent reception operation. When this activation command is detected, the wireless slave device 5 shifts from the intermittent reception operation state to a state where data communication is possible, and transmits an activation response to the wireless slave device 4 (step S9).

ここで無線子機4による無線子機5に対する起動指令の送信時間(呼び出し時間)、及び無線子機5の間欠受信間隔は、それぞれ図4E、Fに示すように、間欠受信P6の間隔(2a)よりも起動指令P5の送信時間(2a+α)を長くしている。従って、無線子機5は1回目の起動指令により起動される。   Here, the transmission time (calling time) of the activation command to the wireless slave device 5 by the wireless slave device 4 and the intermittent reception interval of the wireless slave device 5 are the intervals (2a) of the intermittent reception P6 as shown in FIGS. ) Is longer than the transmission time (2a + α) of the activation command P5. Accordingly, the wireless slave device 5 is activated by the first activation command.

起動応答を受信した無線子機4は、無線子機5に対し、無線子機5の検針指令を送信する(手順S10)。この検針指令を受信した無線子機5は、自分に接続されているメータの検針データを無線子機4へ送信する(手順S11)。この検針データを受信した無線子機4は、無線子機5へ了解応答(ACK)を送信する(手順S12)とともに、無線子機3へ無線子機5の検針データを送信する(手順S13)。   The wireless slave device 4 that has received the activation response transmits a meter reading command of the wireless slave device 5 to the wireless slave device 5 (step S10). The wireless slave device 5 that has received the meter reading command transmits meter reading data of the meter connected to the wireless slave device 4 to the wireless slave device 4 (step S11). The wireless slave device 4 that has received the meter reading data transmits an acknowledgment response (ACK) to the wireless slave device 5 (procedure S12) and transmits the meter reading data of the wireless slave device 5 to the wireless slave device 3 (procedure S13). .

了解応答(ACK)を受信した無線子機5は間欠受信動作状態に戻る。無線子機5の検針データを受信した無線子機3は、無線子機4へ了解応答(ACK)を送信する(手順S14)とともに、無線親機2へ無線子機5の検針データを送信する(手順S15)。   The wireless handset 5 that has received the acknowledgment (ACK) returns to the intermittent reception operation state. The wireless slave device 3 that has received the meter reading data of the wireless slave device 5 transmits an acknowledgment response (ACK) to the wireless slave device 4 (step S14), and transmits the meter reading data of the wireless slave device 5 to the wireless master device 2. (Procedure S15).

了解応答(ACK)を受信した無線子機4は間欠受信動作状態に戻る。無線子機5の検針データを受信した無線親機2は、無線子機3へ了解応答(ACK)を送信する(手順S16)とともに、無線子機5の検針データを内蔵するメモリに保存する。   The wireless handset 4 that has received the acknowledgment (ACK) returns to the intermittent reception operation state. The wireless master device 2 that has received the meter reading data of the wireless slave device 5 transmits an acknowledgment response (ACK) to the wireless slave device 3 (step S16), and stores the meter reading data of the wireless slave device 5 in a built-in memory.

了解応答(ACK)を受信した無線子機3は間欠受信動作状態に戻る。無線子機5の検針データを保存した無線親機2は次に無線子機3に対し、無線子機4の検針データを取得するために起動指令を送信する(手順S17)。以後、無線子機5の検針データを取得した場合と同様の手順(手順S18〜S25)により、無線子機4の検針データが無線親機2へ届けられる。   The wireless handset 3 that has received the acknowledgment (ACK) returns to the intermittent reception operation state. The wireless master device 2 that has stored the meter reading data of the wireless slave device 5 then transmits an activation command to the wireless slave device 3 in order to acquire the meter reading data of the wireless slave device 4 (step S17). Thereafter, the meter reading data of the wireless slave device 4 is delivered to the wireless master device 2 by the same procedure (procedure S18 to S25) as when the meter reading data of the wireless slave device 5 is acquired.

上記の手順を繰り返すことにより、全ての無線子機3〜5の検針データが無線親機2に届けられると、無線親機2は全ての無線子機3〜5の検針データをまとめてセンタ装置1へ送信する。なお、無線親機2が無線子機3〜5の検針データをまとめて送信するのではなく、個別に送信してもよい。   By repeating the above procedure, when the meter reading data of all the wireless slave devices 3 to 5 are delivered to the wireless master device 2, the wireless master device 2 collects the meter reading data of all the wireless slave devices 3 to 5 in the center device. Send to 1. Note that the wireless master device 2 may transmit the meter reading data of the wireless slave devices 3 to 5 individually, rather than collectively.

このように、無線子機3〜5の検針データを無線親機2へ送信するときに、階層構造の最も下位に存在する無線子機5は自分の検針データの送信を1回行うだけであるのに対し、無線子機4は自分の検針データの送信及び無線子機5の検針データの転送の計2回の送信を行い、無線子機3は自分の検針データの送信、無線子機4の検針データの転送、及び無線子機5の検針データの転送の計3回の送信を行う。   Thus, when transmitting the meter reading data of the wireless slave devices 3 to 5 to the wireless master device 2, the wireless slave device 5 existing at the lowest level of the hierarchical structure only transmits its own meter reading data once. On the other hand, the wireless slave unit 4 transmits its own meter reading data and transmits the meter reading data of the wireless slave unit 5 in total, and the wireless slave unit 3 transmits its own meter reading data. The meter reading data is transferred and the meter reading data of the wireless slave unit 5 is transmitted three times in total.

つまり、階層構造の上位に存在する無線子機程、検針データの送信回数が多くなるため、検針データの送信に伴う消費電力が多くなる。従って、このままでは無線子機3、4、5の順に電池が消耗してしまう。そこで、本実施形態では、図4に示すように、無線子機3、4、5の順に間欠受信間隔を短くすることで、間欠受信の累積による一定時間内の消費電力が無線子機3、4、5の順に大きくなるようにしている。つまり、間欠受信の累積による消費電力に差を持たせることで、検針データの送信回数の差異に起因する消費電力のバラツキを低減している。なお、図4から分かるように、起動指令の送信時間(呼び出し時間)については、検針データの送信回数の差異に起因する消費電力のバラツキを増大さるものとなるが、起動指令の回数は間欠受信回数と比べると遥かに少ないため無視できる。   In other words, since the wireless slave units that are higher in the hierarchical structure and the number of times of meter reading data transmission increase, the power consumption associated with the transmission of meter reading data increases. Therefore, the battery is consumed in the order of the wireless slave units 3, 4, and 5 in this state. Therefore, in the present embodiment, as shown in FIG. 4, by shortening the intermittent reception interval in the order of the wireless slave devices 3, 4, and 5, the power consumption within a certain time due to the accumulation of intermittent reception is reduced. It is made to become large in order of 4,5. That is, by providing a difference in power consumption due to the accumulation of intermittent reception, variations in power consumption due to a difference in the number of times meter reading data is transmitted are reduced. As can be seen from FIG. 4, the transmission time (calling time) of the start command increases the variation in power consumption due to the difference in the number of times the meter reading data is transmitted, but the number of start commands is intermittent reception. Since it is far less than the number of times, it can be ignored.

次に、無線子機5に接続されているガス漏れセンサの検知情報(警報)をセンタ装置1へ通報する手順について、図5に示すシーケンス図及び図6に示すタイミング図を参照しながら説明する。   Next, a procedure for reporting the detection information (alarm) of the gas leak sensor connected to the wireless slave device 5 to the center device 1 will be described with reference to the sequence diagram shown in FIG. 5 and the timing diagram shown in FIG. .

図5に示すように、無線親機2及び無線子機3〜5は、それぞれの受信回路15が間欠受信用タイマー18により設定された間欠受信間隔及び間欠受信時間で間欠受信動作中である。無線子機5接続されているガス漏れセンサがガスを検知すると、ガス漏れセンサは無線子機5に対し、起動指令を送信する(手順S31)。無線子機5はこの起動指令により起動されてデータ通信可能な状態へ移行し、無線子機4に対し、起動指令を送信する(手順S32)。無線子機4は間欠受信動作中であり、この起動指令を検出すると、間欠受信動作状態からデータ通信可能な状態へ移行し、無線子機5へ起動応答を送信する(手順S33)。   As shown in FIG. 5, in the wireless master device 2 and the wireless slave devices 3 to 5, each reception circuit 15 is performing an intermittent reception operation at the intermittent reception interval and intermittent reception time set by the intermittent reception timer 18. When the gas leak sensor connected to the wireless slave unit 5 detects gas, the gas leak sensor transmits an activation command to the wireless slave unit 5 (step S31). The wireless slave device 5 is activated by this activation command, shifts to a state where data communication is possible, and transmits an activation command to the wireless slave device 4 (step S32). The wireless slave device 4 is in the intermittent reception operation. When this activation command is detected, the wireless slave device 4 shifts from the intermittent reception operation state to a state where data communication is possible, and transmits an activation response to the wireless slave device 5 (step S33).

ここで無線子機5による無線子機4に対する起動指令の送信時間(呼び出し時間)、及び無線子機4の間欠受信間隔は、それぞれ図6A、Bに示すように、間欠受信P8の間隔(3a)よりも起動指令P7の送信時間(3a+α)を長くしている。従って、無線子機4は1回目の起動指令により起動される。   Here, the transmission time (calling time) of the activation command to the wireless slave device 4 by the wireless slave device 5 and the intermittent reception interval of the wireless slave device 4 are the intervals (3a) of the intermittent reception P8 as shown in FIGS. 6A and 6B, respectively. ) Is longer than the transmission time (3a + α) of the activation command P7. Accordingly, the wireless slave device 4 is activated by the first activation command.

起動応答を受信した無線子機5は無線子機4に対し、無線子機5からの警報を送信する(手順S34)。この警報を受信した無線子機4は、無線子機5へ了解応答(ACK)を送信する(手順S35)とともに、無線子機3へ起動指令を送信する(手順S36)。了解応答(ACK)を受信した無線子機5は間欠受信動作状態に戻る。   The wireless slave device 5 that has received the activation response transmits an alarm from the wireless slave device 5 to the wireless slave device 4 (step S34). The wireless slave device 4 that has received this warning transmits an acknowledgment response (ACK) to the wireless slave device 5 (procedure S35) and transmits an activation command to the wireless slave device 3 (procedure S36). The wireless handset 5 that has received the acknowledgment (ACK) returns to the intermittent reception operation state.

無線子機3は間欠受信動作中であり、起動指令を検出すると、間欠受信動作状態からデータ通信可能な状態へ移行し、無線子機4へ起動応答を送信する(手順S37)。   The wireless slave unit 3 is in the intermittent reception operation. When the activation instruction is detected, the wireless slave unit 3 shifts from the intermittent reception operation state to a state where data communication is possible, and transmits an activation response to the wireless slave unit 4 (step S37).

ここで無線子機4による無線子機3に対する起動指令の送信時間(呼び出し時間)、及び無線子機3の間欠受信間隔は、それぞれ図6C、Dに示すように、間欠受信P10の間隔(4a)よりも起動指令P9の送信時間(4a+α)を長くしている。従って、無線子機3は1回目の起動指令により起動される。   Here, the transmission time (calling time) of the start command to the wireless slave device 3 by the wireless slave device 4 and the intermittent reception interval of the wireless slave device 3 are the intervals (4a) of the intermittent reception P10 as shown in FIGS. 6C and D, respectively. ) Is longer than the transmission time (4a + α) of the start command P9. Accordingly, the wireless slave device 3 is activated by the first activation command.

起動応答を受信した無線子機4は、無線子機3に対し、無線子機5からの警報を送信する(手順S38)。この警報を受信した無線子機3は無線子機4へ了解応答(ACK)を送信する(手順S39)とともに、無線親機2へ起動指令を送信する(手順S40)。了解応答(ACK)を受信した無線子機4は間欠受信動作状態に戻る。   The wireless slave device 4 that has received the activation response transmits an alarm from the wireless slave device 5 to the wireless slave device 3 (step S38). The wireless slave device 3 that has received this alarm transmits an acknowledgment response (ACK) to the wireless slave device 4 (step S39) and transmits an activation command to the wireless master device 2 (procedure S40). The wireless handset 4 that has received the acknowledgment (ACK) returns to the intermittent reception operation state.

無線親機2は間欠受信動作中であり、起動指令を検出すると、間欠受信動作状態からデータ通信可能な状態へ移行し、無線子機3へ起動応答を送信する(手順S41)。   The wireless master device 2 is in the intermittent reception operation. When the activation command is detected, the wireless master device 2 shifts from the intermittent reception operation state to a state where data communication is possible, and transmits an activation response to the wireless slave device 3 (step S41).

ここで無線子機3による無線親機2に対する起動指令の送信時間(呼び出し時間)、及び無線親機2の間欠受信間隔は、それぞれ図6E、Fに示すように、間欠受信P12の間隔(5a)よりも起動指令P11の送信時間(5a+α)を長くしている。従って、無線親機2は1回目の起動指令により起動される。   Here, the transmission time (calling time) of the start command to the wireless master device 2 by the wireless slave device 3 and the intermittent reception interval of the wireless master device 2 are the intervals (5a) of the intermittent reception P12 as shown in FIGS. ) Is longer than the transmission time (5a + α) of the start command P11. Accordingly, the wireless master device 2 is activated by the first activation command.

起動応答を受信した無線子機3は、無線親機2に対し、無線子機5からの警報を送信する(手順S42)。この警報を受信した無線親機2は無線子機3へ了解応答(ACK)を送信する(手順S43)とともに、センタ装置1へ無線子機5の警報を送信する(手順S44)。起動指令を送信する。了解応答(ACK)を受信した無線子機4は間欠受信動作状態に戻る。   The wireless slave device 3 that has received the activation response transmits an alarm from the wireless slave device 5 to the wireless master device 2 (step S42). The wireless master device 2 that has received this warning transmits an acknowledgment response (ACK) to the wireless slave device 3 (step S43) and transmits an alarm for the wireless slave device 5 to the center device 1 (procedure S44). Send a start command. The wireless handset 4 that has received the acknowledgment (ACK) returns to the intermittent reception operation state.

無線子機5からの警報を受信したセンタ装置1は、無線親機2へ了解応答(ACK)を送信する(手順S45)。了解応答(ACK)を受信した無線親機2は間欠受信動作状態に戻る。   The center device 1 that has received the alarm from the wireless slave device 5 transmits an acknowledgment response (ACK) to the wireless master device 2 (step S45). The wireless master device 2 that has received the acknowledgment (ACK) returns to the intermittent reception operation state.

このように、無線子機5からの警報をセンタ装置1へ送信する場合は、階層構造の上位に存在する無線子機4及び3を経由して無線親機2へ送られる。同様に、無線子機4からの警報をセンタ装置1へ送信する場合は、階層構造の上位に存在する無線子機3を経由して無線親機2へ送られる。一方、無線子機3からの警報をセンタ装置1へ送信する場合は直接無線親機2へ送られる。   As described above, when the alarm from the wireless slave device 5 is transmitted to the center device 1, it is sent to the wireless master device 2 via the wireless slave devices 4 and 3 existing at the upper level of the hierarchical structure. Similarly, when an alarm from the wireless slave unit 4 is transmitted to the center device 1, the alarm is sent to the wireless master unit 2 via the wireless slave unit 3 existing at the upper level of the hierarchical structure. On the other hand, when an alarm from the wireless slave unit 3 is transmitted to the center device 1, it is sent directly to the wireless master unit 2.

従って、各無線子機3〜5に接続されているガス漏れセンサがガス漏れを検知する頻度が同じ場合、階層構造の上位に存在する無線子機程、警報の送信回数が多くなり、それに伴う消費電力も多くなる。しかし、本実施形態では、間欠受信による消費電力に差を持たせることで、警報の送信回数の差異に起因する消費電力のバラツキを低減することができる。   Therefore, if the gas leak sensors connected to each of the wireless slave units 3 to 5 detect the same gas leak frequency, the wireless slave units that are higher in the hierarchical structure and the number of alarms to be transmitted increase. Power consumption also increases. However, in the present embodiment, by providing a difference in power consumption due to intermittent reception, it is possible to reduce variations in power consumption due to differences in the number of alarm transmissions.

さらに、無線子機3〜5の検針データの送信回数や警報の送信回数をカウントして保存しておき、定期的に送信回数に応じて、前述した間欠受信間隔を補正するように構成すれば、無線子機3〜5の検針データ及び警報の送信回数の差異に起因する消費電力のバラツキをより正確に補正することができる。   Furthermore, if the wireless slave devices 3 to 5 are configured to count and store the number of transmissions of meter reading data and the number of transmissions of alarms, and periodically correct the intermittent reception interval according to the number of transmissions. In addition, it is possible to more accurately correct the variation in power consumption caused by the difference between the meter reading data of the wireless slave devices 3 to 5 and the number of times of alarm transmission.

このように、本実施形態の通信システムによれば、「無線子機3の間欠受信間隔(4a)>無線子機4の間欠受信間隔(3a)>無線子機5の間欠受信間隔(2a)」に設定したので、無線子機3〜5の検針データ及び警報の送信回数の差異に起因する消費電力のバラツキを低減することができ、無線子機3〜5の電池の消耗速度のバラツキを抑えることができる。これにより、無線子機3〜5の交換時期を合わせることができるため、作業工数を低減することができる。なお、これらの間欠受信間隔を設定するためのデータは、通信システムの構築時にユーザが各無線子機のメモリ16に個々に書き込むように構成してもよいし、センタ装置1からデータ通信により各無線子機のメモリ16に書き込むように構成してもよい。   Thus, according to the communication system of the present embodiment, “intermittent reception interval (4a) of the wireless slave unit 3> intermittent reception interval (3a) of the wireless slave unit 4> intermittent reception interval (2a) of the wireless slave unit 5”. Therefore, it is possible to reduce the variation in power consumption caused by the difference in the number of meter reading data and alarm transmission times of the wireless slave units 3 to 5, and the variation in the battery consumption speed of the wireless slave units 3 to 5 can be reduced. Can be suppressed. Thereby, since the exchange time of the wireless subunit | mobile_units 3-5 can be match | combined, work man-hours can be reduced. The data for setting these intermittent reception intervals may be configured so that the user individually writes the data in the memory 16 of each wireless slave when constructing the communication system. You may comprise so that it may write in the memory 16 of a radio | wireless subunit | mobile_unit.

なお、以上の説明では、無線親機2にはメータやガス漏れセンサが接続されていないものとしたが、それらを接続し、検針データや警報を送信するように構成してもよい。また、無線親機2の場合、携帯電話網などの通信回線によりセンタ装置1とデータ通信を行うため、その消費電力は無線子機3よりもさらに多くなる。しかし、本実施形態によれば、「無線親機2の間欠受信間隔(5a)>無線子機3の間欠受信間隔(4a)」に設定しているため、消費電力の差異を低減することができる。   In the above description, the wireless master device 2 is not connected to a meter or a gas leak sensor. However, the wireless master device 2 may be connected to transmit meter reading data or an alarm. Further, in the case of the wireless master device 2, data communication with the center device 1 is performed via a communication line such as a mobile phone network, so that the power consumption is higher than that of the wireless slave device 3. However, according to the present embodiment, since “intermittent reception interval (5a) of wireless master device 2> intermittent reception interval (4a) of wireless slave device 3” is set, the difference in power consumption can be reduced. it can.

[第2の実施形態]
図7は本発明の第2の実施形態の無線通信システムの構成を示す図である。この無線通信システムは、センタ装置100と、無線親機101と、無線子機102〜117とからなる。センタ装置100と無線親機101とは携帯電話網などの通信回線によりデータ通信を行う。
[Second Embodiment]
FIG. 7 is a diagram illustrating a configuration of a wireless communication system according to the second embodiment of this invention. The wireless communication system includes a center device 100, a wireless master device 101, and wireless slave devices 102 to 117. The center device 100 and the wireless master device 101 perform data communication through a communication line such as a mobile phone network.

無線親機101は、階層構造の直下に存在する無線子機102及び103と特定小電力無線などによりデータ通信を行う。無線子機102〜117は、それぞれの階層構造の直下及び直上に存在する無線子機と特定小電力無線などによりデータ通信を行う。ただし、自分の直下に無線子機が存在しない無線子機(107、108、112〜117)は直上の無線子機とだけデータ通信を行う。無線子機102〜117にはガスメータ、水道メータ、ガス漏れセンサなどが接続されている。   The wireless master device 101 performs data communication with the wireless slave devices 102 and 103 existing immediately below the hierarchical structure by using a specific low-power wireless device or the like. The wireless slave devices 102 to 117 perform data communication with a wireless slave device that exists immediately below and directly above each hierarchical structure using a specific low-power radio. However, the wireless slave devices (107, 108, 112 to 117) in which no wireless slave device exists immediately below perform data communication only with the wireless slave device directly above. The wireless slave units 102 to 117 are connected to a gas meter, a water meter, a gas leak sensor, and the like.

本実施形態においても第1の実施形態と同様、無線親機101を最上位とする階層構造を持っており、無線親機101の直下の無線子機102及び103以外の無線子機の検針データ及び警報は、その無線子機の上位に存在する無線子機を経由して無線親機101へ届けられるため、検針データ及び警報の送信回数に差異が生ずる。そこで、第1の実施形態と同様、無線子機の間欠受信間隔に差異を持たせることで、検針データ及び警報の送信回数の差異に起因する消費電力のバラツキを低減する。   Also in this embodiment, as in the first embodiment, the wireless master device 101 has a hierarchical structure with the highest rank, and the meter reading data of wireless slave devices other than the wireless slave devices 102 and 103 immediately below the wireless master device 101 is provided. Since the alarm and the alarm are delivered to the wireless master device 101 via the wireless slave device existing above the wireless slave device, a difference occurs between the meter reading data and the number of times the alarm is transmitted. Therefore, as in the first embodiment, by providing a difference in the intermittent reception interval of the wireless slave unit, variation in power consumption due to a difference in the number of meter reading data and the number of alarm transmissions is reduced.

図8は無線親機101及び無線子機102〜117の待ち受け間隔(間欠受信間隔)及び呼び出し時間(起動指令の送信時間)を設定するための手順を示すフローチャートである。この手順は通信システムの構築時にセンタ装置100にて実行される。   FIG. 8 is a flowchart showing a procedure for setting the standby interval (intermittent reception interval) and calling time (start command transmission time) of the wireless master device 101 and the wireless slave devices 102 to 117. This procedure is executed by the center apparatus 100 when the communication system is constructed.

まず通信システム内の各端末装置(無線親機、無線子機)の接続関係に基づいて、各端末装置の通信回数を求める(ステップST1)。ここで、接続関係とは図7に示す階層構造のことである。また通信回数とは、センタ装置100が全ての端末装置(無線子機102〜117、及び無線親機101)の検針データを収集するときに、各端末装置が検針データを送信する回数である。本実施形態では、上位に存在する端末装置は下位に存在する端末装置の検針データと自分の検針データとをまとめて、さらに上位の端末装置へ送信するため、各端末装置の検針データの送信回数は自分の直下及び直上に存在する端末装置の数の和となる。従って、ステップST1により、図9Aに示すテーブルが作成される。   First, the number of communications of each terminal device is obtained based on the connection relationship of each terminal device (wireless master device, wireless slave device) in the communication system (step ST1). Here, the connection relationship is the hierarchical structure shown in FIG. The number of communications is the number of times each terminal device transmits meter reading data when the center device 100 collects meter reading data of all the terminal devices (wireless slave devices 102 to 117 and the wireless master device 101). In the present embodiment, since the terminal device present in the higher order collects the meter reading data of the terminal device present in the lower order and its own meter reading data and transmits it to the higher order terminal device, the number of transmissions of the meter reading data of each terminal device Is the sum of the number of terminal devices directly below and above itself. Therefore, the table shown in FIG. 9A is created by step ST1.

次に各端末装置の通信回数に基づいて、端末装置をn個(nは2以上の整数)のグループに分け(ステップST2)、通信回数の少ない方からグループG1〜Gnとする(ステップST3)。ここでは、通信回数は1〜4なので、4個のグループG1〜G4に分けられ、図9Bに示すテーブルが作成される。図8の無線親機101及び無線子機102〜117に記入したG1〜G4はこのグループ名である。   Next, based on the number of communication times of each terminal device, the terminal devices are divided into n groups (n is an integer of 2 or more) (step ST2), and groups G1 to Gn are set in order of the smaller number of communication times (step ST3). . Here, since the number of times of communication is 1 to 4, it is divided into four groups G1 to G4, and the table shown in FIG. 9B is created. G1 to G4 entered in the wireless master device 101 and the wireless slave devices 102 to 117 in FIG. 8 are the group names.

次いで、予め登録されている図9Dに示すテーブルを参照して、各端末装置の待ち受け間隔及び呼び出し時間を求める(ステップST4)。最後に、求められた待ち受け間隔及び呼び出し時間を初期設定値として各端末装置のメモリ16に書き込む。図9Dにおける待ち受け間隔及び呼び出し時間の単位は共にsec(秒)である。   Next, with reference to the table shown in FIG. 9D registered in advance, the standby interval and the calling time of each terminal device are obtained (step ST4). Finally, the obtained waiting interval and calling time are written in the memory 16 of each terminal device as initial setting values. The unit of the standby interval and the calling time in FIG. 9D is both sec (seconds).

ここで、各グループの待ち受け間隔及び呼び出し時間は図9Cに示す関係を持つ。即ち通信回数が多い程、呼び出し時間が短く、かつ待ち受け間隔が長くなる。従って、第1の実施形態と同様、検針データの送信回数の差異に起因する消費電力のバラツキを低減することができる。   Here, the standby interval and the calling time of each group have the relationship shown in FIG. 9C. That is, the greater the number of communications, the shorter the call time and the longer the waiting interval. Therefore, similarly to the first embodiment, it is possible to reduce the variation in power consumption caused by the difference in the number of times the meter reading data is transmitted.

さらに本実施形態では、各端末装置の検針データ送信回数及び警報送信回数をセンタ装置100でカウントし、定期的にそのカウント値と図9Aに示す通信回数とを比較し、その差異が所定の閾値を超える端末装置が有る場合には、通信回数の測定値に基づいて、初期設定されたグループの更新を行い、更新されたグループに対し、図9Dに示すテーブルを参照して、各端末装置の待ち受け間隔及び呼び出し時間を求め、メモリ16に書き込む。これにより、各端末装置の検針データ及び警報の送信回数の差異に起因する消費電力のバラツキをより正確に補正することができる。   Further, in the present embodiment, the center device 100 counts the number of meter reading data transmissions and the number of alarm transmissions of each terminal device, periodically compares the count value with the number of communications shown in FIG. 9A, and the difference is a predetermined threshold value. If there is a terminal device exceeding this value, the initially set group is updated based on the measured value of the number of communications, and the updated group is referred to the table shown in FIG. The standby interval and the calling time are obtained and written in the memory 16. Thereby, the variation in the power consumption resulting from the difference between the meter reading data of each terminal device and the number of times of alarm transmission can be corrected more accurately.

なお、図9Dのテーブルでは、グループ数が複数の場合、待ち受け間隔が長いグループ程、呼び出し時間を短くしたが、複数のグループ全ての呼び出し時間を待ち受け間隔が最短のグループの呼び出し時間に設定してもよい。即ち例えばグループ数が4の場合、グループG1〜G4の呼び出し時間を80secに設定してもよい。   In the table of FIG. 9D, when there are a plurality of groups, the longer the waiting interval, the shorter the calling time. However, the calling time of all the groups is set to the calling time of the group with the shortest waiting interval. Also good. That is, for example, when the number of groups is 4, the calling time of the groups G1 to G4 may be set to 80 seconds.

本発明の第1の実施形態の無線通信システムの構成を示す図である。It is a figure which shows the structure of the radio | wireless communications system of the 1st Embodiment of this invention. 図1の無線子機の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless subunit | mobile_unit of FIG. 本発明の第1の実施形態のセンタ装置が無線子機に接続されているメータの検針データを収集する手順を示すシーケンス図である。It is a sequence diagram which shows the procedure in which the center apparatus of the 1st Embodiment of this invention collects the meter-reading data of the meter connected to the radio | wireless subunit | mobile_unit. 本発明の第1の実施形態のセンタ装置が無線子機に接続されているメータの検針データを収集する手順を示すタイミング図である。It is a timing diagram which shows the procedure in which the center apparatus of the 1st Embodiment of this invention collects the meter-reading data of the meter connected to the wireless cordless handset. 本発明の第1の実施形態の無線子機からセンタ装置へ警報を送信する手順を示すシーケンス図である。It is a sequence diagram which shows the procedure which transmits an alarm from the radio | wireless subunit | mobile_unit of the 1st Embodiment of this invention to a center apparatus. 本発明の第1の実施形態の無線子機からセンタ装置へ警報を送信する手順を示すタイミング図である。It is a timing diagram which shows the procedure which transmits an alarm from the radio | wireless subunit | mobile_unit of the 1st Embodiment of this invention to a center apparatus. 本発明の第2の実施形態の無線通信システムの構成を示す図である。It is a figure which shows the structure of the radio | wireless communications system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の無線親機及び無線子機の待ち受け間隔及び呼び出し時間を設定するための手順を示すフローチャートである。It is a flowchart which shows the procedure for setting the waiting space | interval and ringing time of the radio | wireless main | base station of the 2nd Embodiment of this invention and a radio | wireless slave | mobile_unit. 図8に示す手順により生成されるテーブルなどを示す図である。It is a figure which shows the table etc. which are produced | generated by the procedure shown in FIG. 従来の無線通信システムの構成を示す図である。It is a figure which shows the structure of the conventional radio | wireless communications system. 複数の無線子機を有する無線通信システムの構成を示す図である。It is a figure which shows the structure of the radio | wireless communications system which has a some radio | wireless subunit | mobile_unit.

符号の説明Explanation of symbols

1,100・・・センタ装置、2,101・・・無線親機、3〜5,102〜117・・・無線子機、11・・・制御装置、18・・・間欠受信用タイマー、19・・・起動指令用タイマー。   DESCRIPTION OF SYMBOLS 1,100 ... Center apparatus, 2,101 ... Wireless master machine, 3-5, 102-117 ... Wireless slave machine, 11 ... Control apparatus, 18 ... Timer for intermittent reception, 19 ... Start command timer.

Claims (5)

間欠受信機能を有する複数の無線通信端末装置を、階層構造を有するように無線接続する無線通信システムであって、前記無線通信端末装置の間欠受信間隔を前記階層構造に応じて設定する手段を有することを特徴とする無線通信システム。   A wireless communication system for wirelessly connecting a plurality of wireless communication terminal devices having an intermittent reception function so as to have a hierarchical structure, comprising means for setting an intermittent reception interval of the wireless communication terminal devices according to the hierarchical structure A wireless communication system. 請求項1記載の無線通信システムにおいて、前記手段は、無線通信端末装置の下位に存在する無線通信端末装置の数に応じて前記間欠受信間隔を設定することを特徴とする無線通信システム。   2. The radio communication system according to claim 1, wherein the means sets the intermittent reception interval according to the number of radio communication terminal apparatuses existing in a lower level of the radio communication terminal apparatus. 請求項1記載の無線通信システムにおいて、前記手段は、無線通信端末装置の直下及び直上に存在する無線通信端末装置の数に応じて前記間欠受信間隔を設定することを特徴とする無線通信システム。   2. The radio communication system according to claim 1, wherein the means sets the intermittent reception interval in accordance with the number of radio communication terminal devices existing immediately below and immediately above the radio communication terminal device. 請求項1〜3のいずれかに記載の無線通信システムにおいて、無線通信端末装置から他の無線通信端末装置に対する呼び出し時間を前記階層構造に応じて設定する手段を有することを特徴とする無線通信システム。   4. The wireless communication system according to claim 1, further comprising means for setting a calling time from the wireless communication terminal device to another wireless communication terminal device according to the hierarchical structure. . 請求項1〜4のいずれかに記載の無線通信システムにおいて、前記無線通信端末装置の通信回数に応じて、前記設定された間欠受信間隔及び呼び出し時間を補正する手段を有することを特徴とする無線通信システム。   5. The wireless communication system according to claim 1, further comprising means for correcting the set intermittent reception interval and call time according to the number of communications of the wireless communication terminal device. Communications system.
JP2007159480A 2007-06-15 2007-06-15 Wireless communication system Active JP5201439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159480A JP5201439B2 (en) 2007-06-15 2007-06-15 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159480A JP5201439B2 (en) 2007-06-15 2007-06-15 Wireless communication system

Publications (2)

Publication Number Publication Date
JP2008312062A true JP2008312062A (en) 2008-12-25
JP5201439B2 JP5201439B2 (en) 2013-06-05

Family

ID=40239231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159480A Active JP5201439B2 (en) 2007-06-15 2007-06-15 Wireless communication system

Country Status (1)

Country Link
JP (1) JP5201439B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178073A (en) * 2009-01-29 2010-08-12 Panasonic Electric Works Co Ltd Intercom system
JP2011035468A (en) * 2009-07-29 2011-02-17 Panasonic Electric Works Co Ltd Radio communication system
JP2012215991A (en) * 2011-03-31 2012-11-08 Nohmi Bosai Ltd Fire alarm facility
JP2015228232A (en) * 2015-07-13 2015-12-17 能美防災株式会社 Fire alarm facility
JP2019062312A (en) * 2017-09-25 2019-04-18 サクサ株式会社 Remote meter reading system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194022A (en) * 1995-01-13 1996-07-30 Tokyo Gas Co Ltd Wireless automatic meter inspection system
JP2004336779A (en) * 2003-05-01 2004-11-25 Lucent Technol Inc Adaptive sleeping and wake-up protocol for high energy efficiency adhoc network
JP2005217548A (en) * 2004-01-27 2005-08-11 Nec Corp Method and system for radio communication and radio terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194022A (en) * 1995-01-13 1996-07-30 Tokyo Gas Co Ltd Wireless automatic meter inspection system
JP2004336779A (en) * 2003-05-01 2004-11-25 Lucent Technol Inc Adaptive sleeping and wake-up protocol for high energy efficiency adhoc network
JP2005217548A (en) * 2004-01-27 2005-08-11 Nec Corp Method and system for radio communication and radio terminal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178073A (en) * 2009-01-29 2010-08-12 Panasonic Electric Works Co Ltd Intercom system
JP2011035468A (en) * 2009-07-29 2011-02-17 Panasonic Electric Works Co Ltd Radio communication system
JP2012215991A (en) * 2011-03-31 2012-11-08 Nohmi Bosai Ltd Fire alarm facility
JP2015228232A (en) * 2015-07-13 2015-12-17 能美防災株式会社 Fire alarm facility
JP2019062312A (en) * 2017-09-25 2019-04-18 サクサ株式会社 Remote meter reading system

Also Published As

Publication number Publication date
JP5201439B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
RU2416164C2 (en) Mobile station, radio access network device, mobile communication system and method for discrete reception
JP5201439B2 (en) Wireless communication system
JP2007068230A5 (en)
JP2006245665A (en) Wireless communication system
JP2013098883A (en) Radio communication device
JP4561986B2 (en) Wireless terminal
JP2009049889A (en) Radio data communication system
KR101027831B1 (en) Mobile communication terminal and computer-readable recording medium recorded program
JP2010134623A (en) Alarm system
JP2006277353A (en) Meter reading radio system
EP1463363A2 (en) Wireless communication terminal and control method therefor
JP4728212B2 (en) Wireless telemeter system
JP2009065337A (en) Radio telemetering system
JP2006245666A (en) Wireless communication system
JP4522934B2 (en) Remote monitoring device
JP4977943B2 (en) Communications system
JPH07184276A (en) Radio system for automatic metering
JP2009089073A (en) Radio terminal device
JP6848617B2 (en) Wireless communication system
JP5838374B2 (en) Wireless communication system
JP2001257621A (en) Wireless mobile communication unit
JP3502481B2 (en) Automatic meter reading device
JP2004127176A (en) Radio data collection system
JPH07284170A (en) Automatic meter inspection system
JP7031454B2 (en) Wireless communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Ref document number: 5201439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3