JP2008309684A - Sample measuring substrate for near field spectral analysis - Google Patents

Sample measuring substrate for near field spectral analysis Download PDF

Info

Publication number
JP2008309684A
JP2008309684A JP2007158566A JP2007158566A JP2008309684A JP 2008309684 A JP2008309684 A JP 2008309684A JP 2007158566 A JP2007158566 A JP 2007158566A JP 2007158566 A JP2007158566 A JP 2007158566A JP 2008309684 A JP2008309684 A JP 2008309684A
Authority
JP
Japan
Prior art keywords
sample
substrate
light
sample measurement
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158566A
Other languages
Japanese (ja)
Other versions
JP4957398B2 (en
Inventor
Nobuaki Takazawa
信明 高澤
Tomoyuki Hayashi
知征 林
Yasutoshi Houjiyo
康利 方城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007158566A priority Critical patent/JP4957398B2/en
Publication of JP2008309684A publication Critical patent/JP2008309684A/en
Application granted granted Critical
Publication of JP4957398B2 publication Critical patent/JP4957398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sample measuring substrate enhanced in near field light detection sensitivity by closely adhering and fixing a sample for near field spectral analysis to a light reflective substrate without producing local adhesion defectiveness. <P>SOLUTION: In the sample measuring substrate (2) for near field spectral analysis for holding the sample (8) for near field spectral analysis and pressing the sample (8) from above and below to form the same into a thin film, the surface for holding the sample (8) of the sample measuring substrate (2) is formed of the light reflective material and a plurality of fine projections (4, 4, ...) are provided on the surface of the sample measuring substrate (2). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、近接場分光分析のための試料測定基板に関する。   The present invention relates to a sample measurement substrate for near-field spectroscopic analysis.

近接場光を利用した分光分析では、試料の、例えば数百ナノメートル程度の極微小領域に対して分光(赤外、ラマンおよび蛍光)分析を行うことができ、表面ナノ化学構造解析に対して有効な手段を提供する。しかしながら、近接場光を実材料分析に適用するために必要な基本技術が未だ確立されておらず、実用化に向けて手探りの状態である。発明者等は、近接場赤外分光分析のための試料のサンプリング法に関して、試料を薄膜化して光反射基板上に密着固定することにより、高い空間分解能で近接場赤外分光分析を行うことができることを見出している。   In spectroscopic analysis using near-field light, spectroscopic (infrared, Raman, and fluorescence) analysis can be performed on a very small region of a sample, for example, several hundred nanometers. Provide effective means. However, the basic technology necessary to apply near-field light to actual material analysis has not yet been established, and it is in a state of groping for practical use. The inventors are able to perform near-field infrared spectroscopy with high spatial resolution by thinning the sample and fixing it on a light-reflecting substrate with respect to the sample sampling method for near-field infrared spectroscopy. I find out what I can do.

図9は、本発明者等による、近接場赤外分光分析のための試料のサンプリング法を示す図である。図において、100は近接場分光分析のための試料、102は表面を光反射性の材料で形成した基板、103はプレス機を示す。試料100は、光反射基板102上に保持して上下よりプレスすることにより、薄膜化される。試料100の厚さを、近接場分光分析に使用する、例えば赤外光を透過することが可能な程度に薄膜化することによって、試料100を通過した赤外光は光反射基板102の表面で反射され、再び試料100を通過して外部に出射する。試料100を通過した赤外光はプローブ先端で発生した近接場光を含んでいるので、基板102からの反射光を検出することにより、近接場分光分析を高感度で行うことができる。   FIG. 9 is a diagram showing a sample sampling method for near-field infrared spectroscopy by the present inventors. In the figure, 100 is a sample for near-field spectroscopic analysis, 102 is a substrate whose surface is made of a light-reflective material, and 103 is a press. The sample 100 is thinned by being held on the light reflecting substrate 102 and pressed from above and below. The thickness of the sample 100 is thinned to such an extent that it can be used for near-field spectroscopic analysis, for example, infrared light can be transmitted, so that the infrared light that has passed through the sample 100 is reflected on the surface of the light reflecting substrate 102. The light is reflected, passes through the sample 100 again, and exits to the outside. Since the infrared light that has passed through the sample 100 includes near-field light generated at the tip of the probe, near-field spectroscopic analysis can be performed with high sensitivity by detecting reflected light from the substrate 102.

ところが、以上のようにして形成したサンプルであっても、往々にして測定感度が低下し、あるいは測定不能となる事態が発生する。本発明者等は、その原因を次のように考えた。即ち、試料を薄膜化するために光反射基板上にプレスする場合、基板表面が平板であっても基板の微妙なうねりや試料の材質分布等により、プレス圧力が試料に均一にかからず、試料と基板間に局所的な密着不良が発生する。この密着不良により、測定光の反射率が低下し、あるいは乱反射を起こすため、光検出器によって検出される反射光が大幅に低下し、測定不能となるものと思われる。   However, even in the case of the sample formed as described above, the measurement sensitivity often decreases or the measurement becomes impossible. The present inventors considered the cause as follows. That is, when pressing on the light reflecting substrate to make the sample thin, even if the substrate surface is a flat plate, the press pressure is not uniformly applied to the sample due to the subtle waviness of the substrate or the material distribution of the sample. Local adhesion failure occurs between the sample and the substrate. Due to this poor adhesion, the reflectance of the measurement light is reduced or irregular reflection is caused, so that the reflected light detected by the photodetector is greatly reduced, and it is considered that measurement is impossible.

図10(a)および(b)は、試料と基板間の局所的な密着不良によって、反射光の検出感度が低下する理由を説明している。図10(a)および(b)において、104は光反射基板102と試料100との局所的な密着不良箇所を示している。また、105は、先端の曲率半径が数百nm程度のプローブを示し、その先端に例えば赤外光を照射することによって近接場光106が発生する。近接場光106自体は伝播しないが、赤外光によって散乱されて光検出器107(図(b)参照)に達し、検出される。近接場光は非常に弱い光であるため、その検出感度を上げるためには、できるだけ多くの近接場光を検出器方向に反射しなければならない。   FIGS. 10A and 10B illustrate the reason why the detection sensitivity of reflected light is reduced due to local adhesion failure between the sample and the substrate. In FIGS. 10A and 10B, reference numeral 104 denotes a local poor adhesion portion between the light reflecting substrate 102 and the sample 100. Reference numeral 105 denotes a probe having a tip radius of curvature of about several hundreds of nanometers. Near-field light 106 is generated by irradiating the tip with, for example, infrared light. The near-field light 106 itself does not propagate, but is scattered by infrared light and reaches the photodetector 107 (see FIG. 5B) and is detected. Since near-field light is very weak light, in order to increase its detection sensitivity, as much near-field light as possible must be reflected toward the detector.

ところが、図10(a)に示すように、基板102と試料100間に局所的な密着不良104が発生し、その場所にプローブ105が存在した場合、試料100を通過した近接場光106の散乱光は、基板102によって方向性を持って反射されず、分散してしまう。その結果、光検出器による検出感度が低下する。あるいは、図10(b)に示すように、プローブ105を試料100と基板102とが密着した箇所に近づけた場合であっても、試料102のうねりによって乱反射108が発生し、反射光が光検出器107の方向に達しない。そのため、近接場光の検出感度が低下し、測定不能となる場合がある。   However, as shown in FIG. 10A, when a local adhesion failure 104 occurs between the substrate 102 and the sample 100 and the probe 105 exists at that location, the near-field light 106 that has passed through the sample 100 is scattered. The light is not reflected by the substrate 102 with directionality but is dispersed. As a result, the detection sensitivity of the photodetector is reduced. Alternatively, as shown in FIG. 10B, even when the probe 105 is brought close to the place where the sample 100 and the substrate 102 are in close contact with each other, irregular reflection 108 is generated by the undulation of the sample 102, and the reflected light is detected by light. The direction of the vessel 107 is not reached. For this reason, the detection sensitivity of near-field light is lowered, and measurement may become impossible.

したがって、高感度でしかも高い空間分解能を有する近接場分光分析を行うためには、プレスによって局所的な密着不良を起こさず、試料を均一に基板表面に密着固定させることが重要である。   Therefore, in order to perform near-field spectroscopic analysis with high sensitivity and high spatial resolution, it is important to fix the sample uniformly on the substrate surface without causing local adhesion failure by the press.

なお、本発明に関する一般的な技術水準を示す文献として、以下の特許文献1乃至4が存在する。   The following Patent Documents 1 to 4 exist as documents indicating general technical levels related to the present invention.

特開2002−148172JP 2002-148172 A 特開2000−182264JP 2000-182264 A 特開2005−207935JP-A-2005-207935 特開平9−231608JP-A-9-231608

本発明は、近接場分光分析のための試料のサンプリング法における、上記のような問題点を解決する目的でなされたもので、プレスによる試料の薄膜化において、試料と光反射基板とが局所的な密着不良を起こすことなく、均一に密着固定されることが可能な、近接場分光分析用の試料測定基板を提供することを課題とする。また、さらに検出感度を上げるために、プローブを照射する光であって、プローブ先端での近接場光の発生に寄与しない光を有効に利用して、近接場光を増強することが可能な、新規な構造の近接場分光分析用の試料測定基板を提供することを課題とする。   The present invention was made for the purpose of solving the above-described problems in the sample sampling method for near-field spectroscopic analysis, and the sample and the light-reflecting substrate are locally disposed in the thinning of the sample by pressing. It is an object of the present invention to provide a sample measurement substrate for near-field spectroscopic analysis that can be uniformly closely fixed without causing any poor adhesion. Further, in order to further increase the detection sensitivity, it is possible to enhance the near-field light by effectively using the light that irradiates the probe and does not contribute to the generation of the near-field light at the probe tip. It is an object of the present invention to provide a sample measurement substrate for near-field spectroscopic analysis having a novel structure.

本発明は、前記課題を解決するために、近接場分光分析のための試料を保持し、当該試料を上下よりプレスして薄膜化するための試料測定基板おいて、前記試料測定基板の試料を保持する表面を光反射性材料で形成すると共に、前記表面に複数の微小突起を設けるようにしている。この場合、前記微小突起先端を平坦化しても良い。   In order to solve the above problems, the present invention holds a sample for near-field spectroscopic analysis, and in a sample measurement substrate for thinning the sample by pressing it from above and below, The surface to be held is formed of a light reflecting material, and a plurality of minute protrusions are provided on the surface. In this case, the tips of the minute protrusions may be flattened.

上記構成の試料測定基板において、さらに、前記突起の先端に照射された光によってエバネッセント光が誘起されるように、前記突起を稜線状に形成しても良い。   In the sample measurement substrate having the above-described configuration, the protrusion may be formed in a ridge shape so that evanescent light is induced by the light irradiated to the tip of the protrusion.

あるいは、上記構成の試料測定基板において、前記基板および前記突起を、光透過性材料の基板表面を光反射性皮膜で被覆して形成し、前記基板内部を伝播した光が前記突起の先端部分を介して出射し前記先端部分に近接場光を誘起するように、前記突起先端部分の前記光反射性皮膜を除去するようにしても良い。   Alternatively, in the sample measurement substrate having the above-described configuration, the substrate and the protrusion are formed by coating a substrate surface of a light-transmitting material with a light-reflective coating, and light propagating through the substrate causes the tip portion of the protrusion to be formed. The light-reflective coating on the tip portion of the protrusion may be removed so as to emit near-field light and induce near-field light on the tip portion.

あるいは、上記構成の試料測定基板において、前記稜線状の複数の突起を、前記基板表面の前記試料を保持する部分を中心にして放射状に分布するように形成しても良い。   Alternatively, in the sample measurement substrate having the above-described configuration, the plurality of ridge line-shaped protrusions may be formed so as to be distributed radially around a portion of the substrate surface that holds the sample.

あるいは、上記構成の試料測定基板において、前記稜線状の突起を、前記基板表面の前記試料を保持する部分を中心とするらせん状に形成しても良い。   Alternatively, in the sample measurement substrate having the above-described configuration, the ridge-line-shaped protrusions may be formed in a spiral shape centering on a portion of the substrate surface that holds the sample.

本発明にかかる近接場分光分析用の試料測定基板では、基板表面に複数の微小な突起が形成されているので、試料を試料測定基板上に保持しプレスする場合、高圧力を均一に試料にかけることができ、その結果、試料と試料測定基板表面との局所的な密着不良の発生を回避することができる。これによって、試料を通過した光を光反射基板により高い反射率で再び試料方向に反射させることができる。さらに、突起側面の傾斜を利用して反射光を多重反射させることによって、近接場光の乱反射を抑制し、光検出器方向への充分な反射光量を確保することができる。これらの結果、高い検出感度で近接場分光分析を行うことが可能となる。   In the sample measurement substrate for near-field spectroscopic analysis according to the present invention, since a plurality of minute protrusions are formed on the substrate surface, when holding and pressing the sample on the sample measurement substrate, a high pressure is uniformly applied to the sample. As a result, it is possible to avoid the occurrence of local adhesion failure between the sample and the sample measurement substrate surface. As a result, the light that has passed through the sample can be reflected again toward the sample with a high reflectance by the light reflecting substrate. Furthermore, the reflected light is subjected to multiple reflection using the inclination of the side surface of the protrusion, thereby suppressing the irregular reflection of the near-field light and ensuring a sufficient amount of reflected light in the direction of the photodetector. As a result, it is possible to perform near-field spectroscopic analysis with high detection sensitivity.

また、試料測定基板を光透過材料で構成し、その表面に光反射性の皮膜を形成した構成の試料測定基板では、前記微小突起の先端部分の皮膜を除去し、基板内を伝播した光をこの先端部分から出射させることによって、先端部分で近接場光を誘発することができる。したがって、基板の側面、あるいは裏面に第2の光源を設けることによって、試料測定基板そのものを、近接場光発生のための第2のプローブとして使用し、近接場光を増強することができる。これによって、さらに高感度で近接場分光分析を行うことが可能となる。   In addition, in the sample measurement substrate having a configuration in which the sample measurement substrate is made of a light-transmitting material and a light-reflective coating is formed on the surface thereof, the coating at the tip of the microprotrusions is removed, and the light propagated in the substrate is By emitting from this tip portion, near-field light can be induced at the tip portion. Therefore, by providing the second light source on the side surface or the back surface of the substrate, the sample measurement substrate itself can be used as the second probe for generating near-field light, and the near-field light can be enhanced. This makes it possible to perform near-field spectroscopic analysis with higher sensitivity.

あるいは、近接場光を発生させるためのプローブの先端を照射する光の光径を試料のサイズより大きくする、照射位置をずらす、などの工夫によって、プローブの先端に当たって近接場光を発生する以外の光を試料測定基板内に導入することにより、第2の光源を設けることなく、突起先端から近接場光を発生させ、プローブ先端から発生した近接場光を増強することができる。   Or, other than generating near-field light by striking the tip of the probe by devising such as making the light diameter of the light irradiating the tip of the probe to generate near-field light larger than the sample size or shifting the irradiation position By introducing light into the sample measurement substrate, it is possible to generate near-field light from the tip of the protrusion and enhance the near-field light generated from the tip of the probe without providing a second light source.

さらに、光反射性の突起を稜線状に形成することによって、この部分に近接場光発生のための光が照射されると、稜線部でエバネッセント光が誘発され、プローブ先端で発生した近接場光を増強することができる。その結果、高感度で近接場分光分析を行うことができるようになる。稜線状の突起は、試料を保持する場所を中心にして放射状に形成しても、あるいはらせん状に形成しても良く、この場合、稜線のいずれかの場所に入射した光は全て、試料の下方に集光されるので、近接場光の増強効果が大きい。   Furthermore, by forming light-reflective protrusions in the shape of ridge lines, when this portion is irradiated with light for generating near-field light, evanescent light is induced at the ridge lines, and near-field light generated at the probe tip Can be strengthened. As a result, near-field spectroscopic analysis can be performed with high sensitivity. The ridge line-shaped protrusions may be formed radially around the place where the sample is held, or may be formed in a spiral shape. In this case, all the light incident on any part of the ridge line is Since the light is condensed downward, the enhancement effect of near-field light is great.

以下に、本発明の種々の実施形態について図面を参照して説明する。なお、以下の各図において、同じ符号は同一又は類似の構成要素を示すので重複して説明しない。   Hereinafter, various embodiments of the present invention will be described with reference to the drawings. In addition, in each following figure, since the same code | symbol shows the same or similar component, it does not repeat.

図1に、本発明の第1の実施形態にかかる、近接場分光分析用の試料(サンプル)測定基板の概略構成を示す。図1(a)は試料測定基板1の平面図であり、図(b)は図(a)に示す領域Aの拡大図、(c)は図(b)のX−X線上断面図である。なお、これらの図に各部の概略の大きさを記載しているが、これらは参考値であって発明を限定するものではない。   FIG. 1 shows a schematic configuration of a sample measurement substrate for near-field spectroscopic analysis according to the first embodiment of the present invention. 1A is a plan view of the sample measurement substrate 1, FIG. 1B is an enlarged view of a region A shown in FIG. 1A, and FIG. 1C is a cross-sectional view taken along line XX in FIG. . In addition, although the approximate magnitude | size of each part is described in these figures, these are reference values and do not limit the invention.

図1において、2は試料測定基板であって、表面にミクロンオーダーのピラミッド状の突起4、4・・・を有している。試料測定基板2は、数百ミクロン程度の厚さとして形成されるため、ハンドリングが容易なように、別の大きな基板6に貼り付けられている。なお、図(c)ではこの基板6は省略されている。試料測定基板2は、耐プレス強度を有する金属あるいは表面に金属皮膜を有する硬質無機材料で形成される。例えば、金属であればFe、Ni等、硬質無機材料の場合はダイヤモンド、WC、Si等を材料として使用することができる。 In FIG. 1, reference numeral 2 denotes a sample measurement substrate having micron-order pyramidal protrusions 4, 4,. Since the sample measurement substrate 2 is formed with a thickness of about several hundred microns, it is affixed to another large substrate 6 for easy handling. Note that the substrate 6 is omitted in FIG. The sample measurement substrate 2 is formed of a metal having press strength or a hard inorganic material having a metal film on the surface. For example, Fe, Ni or the like can be used as a metal, and diamond, WC, Si 3 N 4 or the like can be used as a hard inorganic material.

突起4、4・・・は、試料測定基板2の表面において均一に分散して形成され、その先端は平坦化されている。突起4、4・・・の側面の傾斜角は、30度〜60度程度である。突起4、4・・・を有する試料測定基板2は、例えば電鋳法を用いて次のようにして形成される。まず、面方位(100)を有するSi基板に対して、KOHあるいはフッ酸等を用いて異方性エッチングを行い、Si基板上にピラミッド状の複数の窪み(凹)を形成する。次に、濃度の異なる数種類のエッチング液を用いて、窪みの底面をフラット状(平坦化)とする。   The protrusions 4, 4... Are uniformly dispersed on the surface of the sample measurement substrate 2, and the tips thereof are flattened. The inclination angle of the side surfaces of the protrusions 4, 4,... Is about 30 to 60 degrees. The sample measurement substrate 2 having the protrusions 4, 4... Is formed as follows using, for example, an electroforming method. First, anisotropic etching is performed on a Si substrate having a plane orientation (100) using KOH or hydrofluoric acid to form a plurality of pyramidal depressions (concaves) on the Si substrate. Next, the bottom surface of the depression is made flat (flattened) using several kinds of etching solutions having different concentrations.

このようにして複数の微小な窪みがSi基板に均一に分散して形成されると、次に、Au、Pt、Ag、Cu等を数十〜数百nm程度、蒸着する。この蒸着層表面を陰極とし、Fe、Ni等の棒を陽極として基板全体を希硫酸等に浸漬し、通電することにより、金属がSi基板上にメッキされる。このようにして形成されたメッキ皮膜をSi基板から剥がすと、原板として用いたSi基板とは逆の凹凸を有する金属ピラミッドを備えた、試料測定基板2が得られる。   If a plurality of minute depressions are formed uniformly dispersed on the Si substrate in this way, then, Au, Pt, Ag, Cu, etc. are vapor-deposited on the order of several tens to several hundreds nm. The entire surface of the substrate is immersed in dilute sulfuric acid using the surface of the vapor deposition layer as a cathode and a rod of Fe, Ni or the like as an anode, and a metal is plated on the Si substrate. When the plating film formed in this manner is peeled off from the Si substrate, the sample measurement substrate 2 provided with a metal pyramid having concavities and convexities opposite to the Si substrate used as the original plate is obtained.

試料装置基板2は、数百ミクロンの厚さであるため、他の大きな基板6に貼り付けてハンドリングし易くする。基板2の材料がダイヤモンドなどの硬質無機材料である場合は、基板表面をフェムト秒レーザ等によって直接加工し、表面に凹凸を形成する。その上で、表面に光反射性の金属材料を蒸着、あるいはコーティングする。このようにして、表面に、高さが例えば数μmの突起4が一様に分布する試料測定基板2が形成される。   Since the sample device substrate 2 has a thickness of several hundred microns, it is easily attached to another large substrate 6 for handling. When the material of the substrate 2 is a hard inorganic material such as diamond, the substrate surface is directly processed by a femtosecond laser or the like to form irregularities on the surface. Then, a light reflective metal material is deposited or coated on the surface. In this way, the sample measurement substrate 2 in which the protrusions 4 having a height of, for example, several μm are uniformly distributed on the surface is formed.

図2は、図1に示す構造の試料測定基板2を用いて近接場分光分析用のサンプルを形成する過程、および形成したサンプルの効果を示す図である。なお、図2において、基板6は省略して示してある。図2(a)に示すように、表面に複数の突起4、4・・・が均一に分散して形成された光反射性の試料測定基板2を用意し、その上に近接場分光分析用の試料8を設置する。この状態で、試料測定基板2の上下より圧力をかけて試料8をプレスし、薄膜化する。基板2上には数μmオーダーで突起4、4・・・の微小頂面が均一に分布しているので、ムラなく、高圧力で試料8をプレスすることができる。   FIG. 2 is a diagram showing a process of forming a sample for near-field spectroscopic analysis using the sample measurement substrate 2 having the structure shown in FIG. 1 and the effect of the formed sample. In FIG. 2, the substrate 6 is omitted. As shown in FIG. 2A, a light-reflective sample measurement substrate 2 having a plurality of protrusions 4, 4,... Uniformly dispersed on the surface is prepared and used for near-field spectroscopic analysis. Sample 8 is installed. In this state, the sample 8 is pressed by applying pressure from above and below the sample measurement substrate 2 to form a thin film. Since the minute top surfaces of the protrusions 4, 4,... Are uniformly distributed on the substrate 2 on the order of several μm, the sample 8 can be pressed with high pressure without unevenness.

図2(b)に示すように、高圧プレスの結果、試料8は基板2の凹部に入りこみ、突起4、4・・・の側壁に密着固定される。突起4、4・・・の頂面上では、頂面の面積が小さいので、試料8がうねることなく突起4、4・・・に密着固定される。したがって、この状態の試料測定基板を用いて、図2(c)に示すように試料8の近接場分光測定を行う場合、試料8の基板2への密着不良による反射光の散乱、乱反射が抑制され、高感度での分光分析が実施される。   As shown in FIG. 2B, as a result of the high pressure pressing, the sample 8 enters the concave portion of the substrate 2 and is closely fixed to the side walls of the protrusions 4, 4. Since the area of the top surface is small on the top surfaces of the protrusions 4, 4..., The sample 8 is firmly fixed to the protrusions 4, 4. Therefore, when the near-field spectroscopic measurement of the sample 8 is performed using the sample measurement substrate in this state as shown in FIG. 2C, scattering of reflected light and irregular reflection due to poor adhesion of the sample 8 to the substrate 2 are suppressed. And a spectroscopic analysis with high sensitivity is performed.

なお、図2(c)において、10は、例えば先端曲率径が百〜数百nmのファイバープローブであり、その先端に分光スペクトル測定用の赤外光12を照射することにより、先端曲率半径と同程度のオーダーで局所的な光の場、即ち近接場光14を発生させることができる。この近接場光を試料8に当ててその散乱光を検出し、スペクトル分析を行うことによって、プローブ先端径オーダーの局所エリアに限定した化学分析が可能となる。   In FIG. 2C, reference numeral 10 denotes a fiber probe having a tip curvature diameter of, for example, one hundred to several hundreds nm. By irradiating the tip with infrared light 12 for spectral spectrum measurement, the tip curvature radius and A local light field, that is, the near-field light 14 can be generated in the same order. By applying this near-field light to the sample 8 to detect the scattered light and performing spectrum analysis, chemical analysis limited to a local area of the probe tip diameter order becomes possible.

図2(c)に示すように、本実施形態の試料測定基板2では、近接場光14は突起4、4・・・の側壁によって多重に反射されることにより、検出器16の方向に向かって試料8を出射する。そのため、従来は乱反射によって検出器16の方向以外に散乱されていた光が検出器16の方向に向かうようになり、近接場光の検出感度が向上する。また、突起4、4・・・の頂面においても、試料8と基板2とが密着固定されているので、頂面に入射した赤外光は検出器16の方向に効果的に反射される。   As shown in FIG. 2 (c), in the sample measurement substrate 2 of the present embodiment, the near-field light 14 is reflected in multiple directions by the side walls of the protrusions 4, 4,. The sample 8 is emitted. For this reason, light that has been conventionally scattered in a direction other than the direction of the detector 16 due to irregular reflection is directed toward the direction of the detector 16, and the detection sensitivity of near-field light is improved. In addition, since the sample 8 and the substrate 2 are tightly fixed on the top surfaces of the protrusions 4, 4,..., The infrared light incident on the top surface is effectively reflected in the direction of the detector 16. .

なお、本実施形態でのピラミッド状突起4、4・・・の側面の傾斜角度は、30度〜60度程度である。また、図1および2では、ピラミッド状突起4、4・・・の先端を平坦にしているが、平坦にすることなく鋭角にしても同様の効果が得られることはもちろんである。   In this embodiment, the inclination angle of the side faces of the pyramid-shaped protrusions 4, 4... Is about 30 to 60 degrees. 1 and 2, the tips of the pyramid-shaped protrusions 4, 4,... Are flattened, but it is a matter of course that the same effect can be obtained even if an acute angle is used without flattening.

図3に、本発明の第2の実施形態にかかる近接場赤外分析用の試料測定基板を示す。図3(a)は試料測定基板20の平面図、図3(b)は図(a)の領域Bの拡大図、図3(c)は、図(b)のX−X線上断面図である。本実施形態にかかる試料測定基板20は、図3(b)および(c)から明らかなように、図1に示す試料測定基板2とは反対に、ミクロンオーダーの逆ピラミッド形状の窪み22が基板20上に均一に分散して形成されている。窪み22の底面は平坦化されている。図(b)および(c)に示すように、逆ピラミッド形状の窪み22を基板20の表面に均一に分散して形成することにより、基板20上に稜線状の突起24が複数、形成されるようになる。図の符号26は、突起24によって形成される稜線を示している。   FIG. 3 shows a sample measurement substrate for near-field infrared analysis according to the second embodiment of the present invention. 3A is a plan view of the sample measurement substrate 20, FIG. 3B is an enlarged view of a region B in FIG. 3A, and FIG. 3C is a cross-sectional view along the line XX in FIG. is there. As is apparent from FIGS. 3B and 3C, the sample measurement substrate 20 according to the present embodiment has a micron-order inverted pyramid-shaped recess 22 opposite to the sample measurement substrate 2 shown in FIG. 20 are uniformly dispersed. The bottom surface of the recess 22 is flattened. As shown in FIGS. 2 (b) and (c), a plurality of ridge line-shaped protrusions 24 are formed on the substrate 20 by uniformly forming the inverted pyramid-shaped depressions 22 on the surface of the substrate 20. It becomes like this. Reference numeral 26 in the figure indicates a ridge line formed by the protrusion 24.

図4は、図3に示す試料測定基板20上に試料を保持し、プレスにより圧着固定して、薄膜状の試料28を形成した状態を示す。図4(a)に示すように、試料28をプレスすることによって、試料測定基板20の突起24が試料28に食い込み、底面部22で試料と良く密着する。先端が稜線26を構成する突起24で囲まれた逆ピラミッド状の窪み22は、図3(b)、(c)に示すように閉空間を構成するため、第1の実施形態にかかる試料測定基板2の場合よりもピラミッド壁による多重反射によって、反射光が検出器16の方向以外に散乱することをより効果的に抑制する。その結果、近接場光の検出感度がさらに向上する。   FIG. 4 shows a state in which the sample is held on the sample measurement substrate 20 shown in FIG. As shown in FIG. 4A, by pressing the sample 28, the protrusion 24 of the sample measurement substrate 20 bites into the sample 28 and comes into close contact with the sample at the bottom surface portion 22. The inverted pyramid-shaped depression 22 whose tip is surrounded by the protrusion 24 constituting the ridge line 26 constitutes a closed space as shown in FIGS. 3B and 3C, so that the sample measurement according to the first embodiment is performed. The reflected light is more effectively prevented from being scattered outside the direction of the detector 16 due to multiple reflections by the pyramid wall than in the case of the substrate 2. As a result, the near-field light detection sensitivity is further improved.

図4(b)に示すように、突起24で構成される稜線26はプリズムの稜線に相当するため、この部分に赤外光12が照射されると、稜線26に沿ってエバネッセント光30が誘発される。エバネッセント光30は稜線24上を伝播するが、稜線内に閉じ込められ外部に伝播せず、分光分析のための近接場光14を増強する働きをする。したがって、本実施形態の試料測定基板20は、試料プレス時の局所的密着不良や赤外光の乱反射を抑制する効果と共に、近接場光の増強効果を有するので、本試料測定基板を使用することにより、第1の実施形態の場合よりもさらに高感度で近接場分光分析を実施することが可能となる。   As shown in FIG. 4B, since the ridge line 26 formed by the protrusions 24 corresponds to the ridge line of the prism, when the infrared light 12 is irradiated on this portion, the evanescent light 30 is induced along the ridge line 26. Is done. The evanescent light 30 propagates on the ridge line 24, but is confined within the ridge line and does not propagate outside, and functions to enhance the near-field light 14 for spectroscopic analysis. Accordingly, the sample measurement substrate 20 of the present embodiment has an effect of suppressing near-field light as well as an effect of suppressing local adhesion failure and irregular reflection of infrared light at the time of sample pressing. As a result, it is possible to perform near-field spectroscopic analysis with higher sensitivity than in the case of the first embodiment.

本実施形態の試料測定基板20は、図1に示す第1実施形態の試料測定基板2を陰極にして電鋳を行うことにより製造することができる。試料測定基板20を、ダイヤモンド、WC、Siなどの硬質無機材料で形成する場合は、フェムト秒レーザ等によって基板材料を直接加工することによって、製造することができる。硬質無機材料で基板20を形成した場合は、窪み22と突起24とを含む基板20の表面に、赤外光を反射する金属皮膜を蒸着、あるいはコーティングによって形成する必要がある。 The sample measurement substrate 20 of this embodiment can be manufactured by performing electroforming using the sample measurement substrate 2 of the first embodiment shown in FIG. 1 as a cathode. When the sample measurement substrate 20 is formed of a hard inorganic material such as diamond, WC, or Si 3 N 4 , it can be manufactured by directly processing the substrate material with a femtosecond laser or the like. When the substrate 20 is formed of a hard inorganic material, it is necessary to form a metal film that reflects infrared light on the surface of the substrate 20 including the recesses 22 and the protrusions 24 by vapor deposition or coating.

図5に、本発明の第3の実施形態にかかる試料測定基板40を示す。図5(a)は試料測定基板40の断面図であり、図5(b)は試料測定基板40に試料48を圧着固定し、近接場分光分析を行う状態を示す図である。本実施形態の試料測定基板40は、第1の実施形態にかかる試料測定基板2と同じ外形を有しているが、基板を、ダイヤモンド、KBr、NaCl、CaF等の赤外透明材料で構成した点で異なっている。   FIG. 5 shows a sample measurement substrate 40 according to the third embodiment of the present invention. FIG. 5A is a cross-sectional view of the sample measurement substrate 40, and FIG. 5B is a diagram illustrating a state in which the sample 48 is fixed to the sample measurement substrate 40 by pressure and near-field spectroscopy analysis is performed. The sample measurement substrate 40 of the present embodiment has the same outer shape as the sample measurement substrate 2 according to the first embodiment, but the substrate is made of an infrared transparent material such as diamond, KBr, NaCl, or CaF. It is different in point.

即ち、試料測定基板40は、ダイヤモンド、KBr、NaCl、CaF等の赤外透明材料の基板をフェムト秒レーザによって直接加工し、表面にピラミッド状の突起42、42・・・と溝44、44・・・を形成した構造を有している。突起42と溝44とから構成される凹凸部の表面は、突起42の頂面を除いて金属皮膜46で覆われている。金属皮膜46は、Pt、Au、Ag、Al、Pd等の金属を蒸着等により試料測定基板40に付着させて形成することができる。   That is, the sample measurement substrate 40 is formed by directly processing a substrate made of an infrared transparent material such as diamond, KBr, NaCl, or CaF by a femtosecond laser, and forming pyramidal protrusions 42, 42... And grooves 44, 44. .. having a structure formed. The surface of the concavo-convex portion constituted by the protrusion 42 and the groove 44 is covered with a metal film 46 except for the top surface of the protrusion 42. The metal film 46 can be formed by attaching a metal such as Pt, Au, Ag, Al, Pd or the like to the sample measurement substrate 40 by vapor deposition or the like.

本実施形態の試料測定基板40は、図5(b)に示すように、試料測定基板40の側面外部に第2の赤外光源50を設け、試料測定基板40の側面より基板内に第2赤外光を導入することにより、基板40をプローブとして用いることを特徴としている。即ち、突起42の金属皮膜46で被覆されていない頂面42aは、基板内に入射した第2の赤外光に対して、幅が1μm以下の開口を形成する。   As shown in FIG. 5 (b), the sample measurement substrate 40 of the present embodiment is provided with a second infrared light source 50 outside the side surface of the sample measurement substrate 40, and a second inside the substrate from the side surface of the sample measurement substrate 40. The substrate 40 is used as a probe by introducing infrared light. That is, the top surface 42a not covered with the metal film 46 of the protrusion 42 forms an opening having a width of 1 μm or less with respect to the second infrared light incident on the substrate.

したがって、プローブ10の先端に強い赤外光10を照射し、近接場光14を発生させた場合、共鳴によって頂面42aの開口に近接場光52が誘発される。近接場光52は、プローブ10の先端に発生させた近接場光14と共に試料48の赤外光吸収を増強する。なお、試料測定基板40の裏面には赤外光反射膜が形成されていても良く、あるいは試料測定基板40を、プレスに耐えられるように大きな金属板に貼り付けて使用しても良い。   Therefore, when the strong infrared light 10 is irradiated to the tip of the probe 10 to generate the near-field light 14, the near-field light 52 is induced in the opening of the top surface 42a by resonance. The near-field light 52 enhances infrared light absorption of the sample 48 together with the near-field light 14 generated at the tip of the probe 10. It should be noted that an infrared light reflection film may be formed on the back surface of the sample measurement substrate 40, or the sample measurement substrate 40 may be attached to a large metal plate so as to withstand the press.

本実施形態の試料測定基板40は、第1の実施形態の試料測定基板2と同じ外形を有しているので、第1の実施形態の試料測定基板2が有するのと同じ効果、即ち、基板40と試料48の局所的な密着不良の発生を抑制する効果、および赤外光の乱反射を抑制する効果を有している。これに加えて、突起42の頂面開口からの共鳴近接場光の発生による、近接場光の増強効果も有しているので、高感度での近接場分光測定の実施を保障することが可能となる。   Since the sample measurement substrate 40 of the present embodiment has the same outer shape as the sample measurement substrate 2 of the first embodiment, the same effect as the sample measurement substrate 2 of the first embodiment, that is, the substrate It has the effect of suppressing the occurrence of local adhesion failure between the sample 40 and the sample 48 and the effect of suppressing irregular reflection of infrared light. In addition to this, it also has an effect of enhancing near-field light by generating resonant near-field light from the top opening of the protrusion 42, so that it is possible to guarantee the near-field spectroscopic measurement with high sensitivity. It becomes.

図6に、本発明の第4の実施形態にかかる試料測定基板40aの構造を示す。本実施形態の試料測定基板40aは、基本的に図5に示す第3の実施形態にかかる試料測定基板40と同様の構成を有しているが、突起42からなるピラミッド状突起群の周辺に金属皮膜46aを形成しない点で、第3の実施形態にかかる試料測定基板40とは異なっている。本実施形態の試料測定基板40aでは、ピラミッド状突起群の周辺に金属皮膜46aを形成しないことによって、プローブ10の先端を照射した赤外光12の一部を試料測定基板40a内に潜り込ませることができる。   FIG. 6 shows the structure of a sample measurement substrate 40a according to the fourth embodiment of the present invention. The sample measurement substrate 40a of the present embodiment has basically the same configuration as the sample measurement substrate 40 according to the third embodiment shown in FIG. 5, but around the pyramidal projection group consisting of the projections 42. It differs from the sample measurement substrate 40 according to the third embodiment in that the metal film 46a is not formed. In the sample measurement substrate 40a of the present embodiment, the metal film 46a is not formed around the pyramid-shaped projection group, so that a part of the infrared light 12 that irradiates the tip of the probe 10 is embedded in the sample measurement substrate 40a. Can do.

これによって、試料測定基板40aの側面に第2赤外光源を設けることなく、突起42の頂面42aから近接場光を共鳴発生させることができる。なお、プローブ10の先端を照射する赤外光の光径12aは、10〜30μmであるため、ピラミッド突起群の直径を10μm程度とすれば、赤外光は充分に試料測定基板40aの内部に潜り込むことができる。その結果、図5に示す第3の実施形態の場合とは異なり、第2の赤外光源を用いることなく、近接場光の増強効果を得ることができる。なお、試料測定基板40aの裏面には赤外光反射膜を形成しても良く、あるいは試料測定基板40aを、プレスに耐えられるように大きな金属板に貼り付けて使用しても良い。   Thereby, near-field light can be resonated and generated from the top surface 42a of the protrusion 42 without providing the second infrared light source on the side surface of the sample measurement substrate 40a. In addition, since the light diameter 12a of the infrared light that irradiates the tip of the probe 10 is 10 to 30 μm, if the diameter of the pyramid projection group is about 10 μm, the infrared light is sufficiently contained in the sample measurement substrate 40a. I can dive in. As a result, unlike the case of the third embodiment shown in FIG. 5, the near-field light enhancement effect can be obtained without using the second infrared light source. Note that an infrared light reflection film may be formed on the back surface of the sample measurement substrate 40a, or the sample measurement substrate 40a may be attached to a large metal plate so as to withstand the press.

図7に、本発明の第5の実施形態にかかる試料測定基板60の構成を示す。図7(a)は試料測定基板60の平面図、図(b)は図(a)のX−X線上断面図、図(c)は試料測定基板60を用いて試料62の近接場赤外分光測定を行う状態を示す図である。本実施形態の試料測定基板60は、金属または金属皮膜を付与した硬質無機材料で形成され、試料62が設置される表面に集光部65が形成されている。集光部65は、フェムト秒レーザ加工等によって基板表面に形成した放射状の溝64、64・・・を有する。基板表面に溝64、64・・・を形成することにより、隣接する溝の間には稜線状あるいは尾根状の突起66、66・・・を形成する。   FIG. 7 shows a configuration of a sample measurement substrate 60 according to the fifth embodiment of the present invention. 7A is a plan view of the sample measurement substrate 60, FIG. 7B is a cross-sectional view along the line XX in FIG. 7A, and FIG. 7C is a near-field infrared of the sample 62 using the sample measurement substrate 60. It is a figure which shows the state which performs a spectroscopic measurement. The sample measurement substrate 60 of the present embodiment is formed of a metal or a hard inorganic material provided with a metal film, and a light collecting portion 65 is formed on the surface on which the sample 62 is installed. The condensing unit 65 has radial grooves 64, 64... Formed on the substrate surface by femtosecond laser processing or the like. By forming grooves 64, 64... On the surface of the substrate, ridge line-like or ridge-like projections 66, 66... Are formed between adjacent grooves.

試料62は、放射状の溝64および突起66の中心付近に載置される。試料測定基板60は、試料プレス時のハンドリングが容易なように、安定した大型の基板に貼り付けられても良い。また、図7(b)および(c)では、試料62は突起66上に置かれているが、試料62を設置した基板60を上下よりプレスすることにより、試料62を薄膜化し、かつ試料62が溝64内に廻り込むようにしても良い。   The sample 62 is placed near the center of the radial groove 64 and the protrusion 66. The sample measurement substrate 60 may be attached to a stable large substrate so that handling during sample pressing is easy. In FIGS. 7B and 7C, the sample 62 is placed on the protrusion 66. By pressing the substrate 60 on which the sample 62 is placed from above and below, the sample 62 is thinned, and the sample 62 is formed. May go around into the groove 64.

図7(a)および(b)に示す構造の試料測定基板60を用いて、試料62の近接場分光測定を行う場合、図7(c)に示すように、プローブ10の先端に赤外光12を照射して近接場光を発生させる。このとき、赤外光12の光径12aは10〜30μmであるため、試料62の幅を10μm程度以下とすることにより、集光部65の周辺が赤外光12に対して露出され、赤外光12によって照射されるようになる。このとき、溝64に入射した赤外光は、溝64の側壁によって多重反射されながら、溝の長手方向に伝播する。   When performing near-field spectroscopic measurement of the sample 62 using the sample measurement substrate 60 having the structure shown in FIGS. 7A and 7B, infrared light is applied to the tip of the probe 10 as shown in FIG. 12 is irradiated to generate near-field light. At this time, since the light diameter 12a of the infrared light 12 is 10 to 30 μm, by setting the width of the sample 62 to about 10 μm or less, the periphery of the condensing unit 65 is exposed to the infrared light 12, and the red light 12 It is irradiated with the external light 12. At this time, the infrared light incident on the groove 64 propagates in the longitudinal direction of the groove while being multiple-reflected by the side wall of the groove 64.

一方、集光部65の周辺で稜線状の突起66を照射した赤外光は、突起66がプリズムの頂角を形成しているために、その部分でエバネッセント光68を誘発する。このエバネッセント光68は突起66の稜線に沿って伝播し、試料62の下方に集光されることにより、プローブ10の先端で生成された近接場光を増強する働きをする。その結果、高感度での近接場分光測定の実施が可能となる。なお、稜線状の突起の何れの場所に入射した赤外光も、試料62の下方に集光されるので、近接場光増強の効果が大きい。   On the other hand, the infrared light irradiated on the ridge-line-shaped protrusion 66 around the condensing portion 65 induces evanescent light 68 at that portion because the protrusion 66 forms the apex angle of the prism. The evanescent light 68 propagates along the ridge line of the protrusion 66 and is condensed below the sample 62 to enhance the near-field light generated at the tip of the probe 10. As a result, it is possible to perform near-field spectroscopic measurement with high sensitivity. In addition, since the infrared light incident on any location of the ridge-shaped protrusion is condensed below the sample 62, the effect of enhancing the near-field light is great.

また、図7(b)に示すように、試料62を通過した赤外光は、溝64の側面で反射されて再び試料62を通過し、光検出器の方向に向かうため、近接場光の検出感度が向上する。   Further, as shown in FIG. 7 (b), the infrared light that has passed through the sample 62 is reflected by the side surface of the groove 64, passes through the sample 62 again, and travels in the direction of the photodetector. Detection sensitivity is improved.

本実施形態による試料62下方への赤外光の周り込み、即ち近接場光増強の効果を確保するためには、試料62のサイズを赤外光の光径以下、例えば10μm以下とすること、プローブ先端に照射する赤外光の絞りを甘くすること、あるいは赤外光の照射位置をずらすこと(図7(c)に示す)等を行うことができる。   In order to ensure that the infrared light wraps around the sample 62 under the present embodiment, that is, the effect of enhancing the near-field light, the size of the sample 62 is set to be equal to or less than the light diameter of the infrared light, for example, 10 μm or less. It is possible to soften the aperture of the infrared light applied to the probe tip, or to shift the infrared light irradiation position (shown in FIG. 7C).

図8(a)および(b)は、本発明の第6の実施形態にかかる試料測定基板70の概略構成を示す平面図および断面図である。本実施形態の試料測定基板70は、第5の実施形態にかかる試料測定基板60とほぼ同様の構成および作用効果を有するが、基板70の表面の集光部72に、放射状の溝に代わってらせん状の溝74を設けたことを特徴としている。らせん状の溝74を設けることによって、らせん状の突起76が形成される。本実施形態では、したがって、第5の実施形態の場合とは異なり、溝74および突起76が集光部72の周辺から中心に向かって連続して形成されていることを特徴とする。なお、試料78は集光部72の中心に設置される。   FIGS. 8A and 8B are a plan view and a cross-sectional view showing a schematic configuration of a sample measurement substrate 70 according to the sixth embodiment of the present invention. The sample measurement substrate 70 of the present embodiment has substantially the same configuration and operational effects as the sample measurement substrate 60 according to the fifth embodiment, but instead of the radial grooves in the light collecting portion 72 on the surface of the substrate 70. A spiral groove 74 is provided. By providing the spiral groove 74, the spiral protrusion 76 is formed. Therefore, in this embodiment, unlike the case of the fifth embodiment, the groove 74 and the protrusion 76 are formed continuously from the periphery of the light collecting portion 72 toward the center. The sample 78 is placed at the center of the light collecting unit 72.

以上のように、本実施形態の試料測定基板70では、突起76が集光部72の周辺から中心に向かって連続しているため、プローブ先端を外れて基板70に当たった赤外光は、らせん状の突起76でエバネッセント光を誘発し、集光部72の中心部に向かって集光される。したがって、集光部72の中心付近に試料78を設置すれば、集光されたエバネッセント光によりプローブ先端から発生する近接場光を増強することができる。また、試料78を通過して溝74の側面に達した近接場光の赤外光による散乱光は、溝74の側面によって多重に反射されて試料78の下方に集光され、光検出器の方向に向かって反射されるので、近接場光の検出感度が向上する。   As described above, in the sample measurement substrate 70 of the present embodiment, since the protrusions 76 are continuous from the periphery of the light collecting unit 72 toward the center, the infrared light that has hit the substrate 70 off the probe tip is The evanescent light is induced by the spiral projection 76 and is collected toward the central portion of the light collecting portion 72. Therefore, if the sample 78 is installed in the vicinity of the center of the condensing unit 72, the near-field light generated from the probe tip by the collected evanescent light can be enhanced. Further, the scattered light by the infrared light of the near-field light that has passed through the sample 78 and reached the side surface of the groove 74 is reflected in multiple by the side surface of the groove 74 and condensed below the sample 78, and the light detector Since it is reflected toward the direction, the detection sensitivity of near-field light is improved.

第6の実施形態の試料測定基板70は、第6の実施形態の試料測定基板60と同様にして形成される。なお、第5および第6の実施形態の試料測定基板では、放射状あるいはらせん状の突起66、76によって試料78が支持されるので、試料78をプレスする場合、試料78に高い圧力が均等に印加される。試料と、試料測定基板との間に密着不良が生じない。   The sample measurement substrate 70 of the sixth embodiment is formed in the same manner as the sample measurement substrate 60 of the sixth embodiment. In the sample measurement substrates of the fifth and sixth embodiments, the sample 78 is supported by the radial or spiral protrusions 66 and 76. Therefore, when the sample 78 is pressed, a high pressure is evenly applied to the sample 78. Is done. There is no adhesion failure between the sample and the sample measurement substrate.

本発明の第1の実施形態にかかる、近接場分光分析用の試料測定基板を示す図であって、図(a)は試料測定基板の平面図、図(b)は図(a)の一部拡大図、図(c)は図(b)のX−X線上断面図である。It is a figure which shows the sample measurement board | substrate for near field spectroscopic analysis concerning the 1st Embodiment of this invention, Comprising: FIG. (A) is a top view of a sample measurement board | substrate, FIG. FIG. 2C is a sectional view on line XX of FIG. 図(a)、(b)は、図1に示す試料測定基板を用いて近接場分光分析試料を形成する過程を示し、図(c)は図(b)の試料測定基板を用いて近接場分光分析を行う状態を示す。FIGS. (A) and (b) show a process of forming a near-field spectroscopic analysis sample using the sample measurement substrate shown in FIG. 1, and FIG. (C) shows a near-field using the sample measurement substrate of FIG. (B). A state in which spectroscopic analysis is performed is shown. 本発明の第2の実施形態にかかる、近接場分光分析用の試料測定基板を示す図であって、図(a)は試料測定基板の平面図、図(b)は図(a)の一部拡大図、図(c)は図(b)のX−X線上断面図である。It is a figure which shows the sample measurement board | substrate for near field spectroscopy analysis concerning the 2nd Embodiment of this invention, Comprising: FIG. (A) is a top view of a sample measurement board | substrate, FIG. (B) is a figure of (a). FIG. 2C is a sectional view on line XX of FIG. 図(a)は、図3に示す試料測定基板を用いて近接場分光分析を行う状態を示し、図(b)はエバネッセント光の発生を説明するための図である。FIG. 4A shows a state in which near-field spectroscopic analysis is performed using the sample measurement substrate shown in FIG. 3, and FIG. 4B is a diagram for explaining generation of evanescent light. 図(a)は、本発明の第3の実施形態にかかる近接場分光分析用の試料測定基板の構成を示す図、図(b)は図(a)の試料測定基板を用いて近接場分光分析を行う状態を示す図である。FIG. (A) is a diagram showing a configuration of a sample measurement substrate for near-field spectroscopy analysis according to a third embodiment of the present invention, and FIG. (B) is a near-field spectroscopy using the sample measurement substrate of FIG. (A). It is a figure which shows the state which performs analysis. 図(a)は、本発明の第4の実施形態にかかる近接場分光分析用の試料測定基板の構成を示す図、図(b)は図(a)の試料測定基板を用いて近接場分光分析を行う状態を示す図である。FIG. (A) is a diagram showing the configuration of a sample measurement substrate for near-field spectroscopy according to the fourth embodiment of the present invention, and FIG. (B) is a near-field spectroscopy using the sample measurement substrate of FIG. (A). It is a figure which shows the state which performs analysis. 図(a)は、本発明の第5の実施形態にかかる近接場分光分析用の試料測定基板の平面図、図(b)は図(a)のX−X線上断面図、図(c)は図(a)および(b)に示す試料測定基板を用いて近接場分光分析を行う状態を示す図である。FIG. 5A is a plan view of a sample measurement substrate for near-field spectroscopic analysis according to a fifth embodiment of the present invention, FIG. 5B is a cross-sectional view along line XX in FIG. These are figures which show the state which performs a near field spectroscopic analysis using the sample measurement board | substrate shown to Fig. (A) and (b). 図(a)は、本発明の第6の実施形態にかかる近接場分光分析用の試料測定基板の平面図、図(b)は図(a)のX−X線上段面図である。FIG. 5A is a plan view of a sample measurement substrate for near-field spectroscopy analysis according to a sixth embodiment of the present invention, and FIG. 5B is an upper-stage view along line XX in FIG. 従来の近接場分光分析用の試料測定基板の構成を示す図である。It is a figure which shows the structure of the sample measurement board | substrate for the conventional near field spectroscopy analysis. 図(a)、(b)は、図9に示す試料測定基板の問題点を説明するための図である。FIGS. (A) and (b) are diagrams for explaining problems of the sample measurement substrate shown in FIG.

符号の説明Explanation of symbols

2 試料測定基板
4 突起
6 支持基板
8 試料
10 プローブ
12 赤外光
14 近接場光
16 光検出器
30 エバネッセント光
52 共鳴近接場光
66 放射状突起
76 らせん状突起
2 Sample measurement substrate 4 Protrusion 6 Support substrate 8 Sample 10 Probe 12 Infrared light 14 Near-field light 16 Photo detector 30 Evanescent light 52 Resonant near-field light 66 Radial projection 76 Helical projection

Claims (6)

近接場分光分析のための試料を保持し、当該試料を上下よりプレスして薄膜化するための試料測定基板おいて、
前記試料測定基板の試料を保持する表面を光反射性材料で形成すると共に、前記表面に複数の微小突起を設けたことを特徴とする、近接場分光分析用の試料測定基板。
In a sample measurement substrate for holding a sample for near-field spectroscopic analysis and pressing the sample from above and below to make a thin film,
A sample measurement substrate for near-field spectroscopic analysis, wherein a surface for holding a sample of the sample measurement substrate is formed of a light reflective material, and a plurality of minute protrusions are provided on the surface.
請求項1に記載の近接場分光分析用の試料測定基板において、前記微小突起先端は平坦化されていることを特徴とする、近接場分光分析用の試料測定基板。   2. The sample measurement substrate for near-field spectral analysis according to claim 1, wherein the tip of the minute protrusion is flattened. 請求項1に記載の近接場分光分析用の試料測定基板において、前記突起の先端に光を照射することによってエバネッセント光が誘起されるように、前記突起を稜線状に形成したことを特徴とする、近接場分光分析用の試料測定基板。   2. The sample measurement substrate for near-field spectroscopic analysis according to claim 1, wherein the protrusion is formed in a ridge shape so that evanescent light is induced by irradiating light on a tip of the protrusion. Sample measurement board for near-field spectroscopic analysis. 請求項2に記載の近接場分光分析用の試料測定基板において、前記基板および前記突起は、光透過性材料の基板表面を光反射性皮膜で被覆して形成され、前記基板内部を伝播した光が前記突起の先端部分を介して出射し前記先端部分に近接場光を誘起するように、前記突起先端部分の前記光反射性皮膜が除去されていることを特徴とする、近接場分光分析用の試料測定基板。   3. The sample measurement substrate for near-field spectroscopic analysis according to claim 2, wherein the substrate and the protrusion are formed by coating a substrate surface of a light-transmitting material with a light-reflective coating and propagating through the substrate. For the near-field spectroscopic analysis, wherein the light-reflective coating on the tip of the protrusion is removed so that the light is emitted through the tip of the protrusion and induces near-field light at the tip. Sample measurement board. 請求項3に記載の近接場分光分析用の試料測定基板において、前記稜線状の複数の突起は、前記基板表面の前記試料を保持する部分を中心にして放射状に分布するように形成されていることを特徴とする、近接場分光分析用の試料測定基板。   4. The sample measurement substrate for near-field spectroscopic analysis according to claim 3, wherein the plurality of ridge-shaped protrusions are formed so as to be distributed radially around a portion of the substrate surface that holds the sample. A sample measurement substrate for near-field spectral analysis. 請求項3に記載の近接場分光分析用の試料測定基板において、前記稜線状の突起は、前記基板表面の前記試料を保持する部分を中心とするらせん状に形成されていることを特徴とする、近接場分光分析用の試料測定基板。   4. The sample measurement substrate for near-field spectroscopic analysis according to claim 3, wherein the ridge-shaped protrusion is formed in a spiral shape centering on a portion of the substrate surface that holds the sample. Sample measurement board for near-field spectroscopic analysis.
JP2007158566A 2007-06-15 2007-06-15 Sample measurement board for near-field spectroscopy Expired - Fee Related JP4957398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158566A JP4957398B2 (en) 2007-06-15 2007-06-15 Sample measurement board for near-field spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158566A JP4957398B2 (en) 2007-06-15 2007-06-15 Sample measurement board for near-field spectroscopy

Publications (2)

Publication Number Publication Date
JP2008309684A true JP2008309684A (en) 2008-12-25
JP4957398B2 JP4957398B2 (en) 2012-06-20

Family

ID=40237414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158566A Expired - Fee Related JP4957398B2 (en) 2007-06-15 2007-06-15 Sample measurement board for near-field spectroscopy

Country Status (1)

Country Link
JP (1) JP4957398B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943257A (en) * 1995-07-27 1997-02-14 Olympus Optical Co Ltd Inspection specimen for scanning proximity field optical microscope
JPH09231608A (en) * 1995-12-19 1997-09-05 Mitsubishi Electric Corp Optical information system and near-field optical microscope
JPH1144694A (en) * 1997-07-29 1999-02-16 Nikon Corp Scanning near-field optical microscope
JPH1164216A (en) * 1997-08-26 1999-03-05 Matsushita Electric Ind Co Ltd Apparatus for measuring attenuated total reflection and method for measuring specific component with using the same
JP2000182264A (en) * 1998-12-16 2000-06-30 Ricoh Co Ltd Planar probe and its forming method
JP2002148172A (en) * 2000-11-13 2002-05-22 Jasco Corp Near field microscope
JP2003524779A (en) * 2000-01-20 2003-08-19 レーザー− ウント メディツィン−テヒノロギー ゲゼルシャフト ミット ベシュレンクテル ハフツング ベルリン Apparatus for analyzing biological objects by near-field optical method
JP2004309272A (en) * 2003-04-04 2004-11-04 Ricoh Co Ltd Plane probe, its manufacturing method and optical pickup device
JP2004329888A (en) * 2003-04-03 2004-11-25 Matsushita Electric Ind Co Ltd Method and apparatus for measuring concentration of specific component
JP2005207935A (en) * 2004-01-23 2005-08-04 Univ Of Tokyo Near-field optical microscope
JP2007078541A (en) * 2005-09-14 2007-03-29 Pioneer Electronic Corp Apparatus, method, and program for guidance and record medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943257A (en) * 1995-07-27 1997-02-14 Olympus Optical Co Ltd Inspection specimen for scanning proximity field optical microscope
JPH09231608A (en) * 1995-12-19 1997-09-05 Mitsubishi Electric Corp Optical information system and near-field optical microscope
JPH1144694A (en) * 1997-07-29 1999-02-16 Nikon Corp Scanning near-field optical microscope
JPH1164216A (en) * 1997-08-26 1999-03-05 Matsushita Electric Ind Co Ltd Apparatus for measuring attenuated total reflection and method for measuring specific component with using the same
JP2000182264A (en) * 1998-12-16 2000-06-30 Ricoh Co Ltd Planar probe and its forming method
JP2003524779A (en) * 2000-01-20 2003-08-19 レーザー− ウント メディツィン−テヒノロギー ゲゼルシャフト ミット ベシュレンクテル ハフツング ベルリン Apparatus for analyzing biological objects by near-field optical method
JP2002148172A (en) * 2000-11-13 2002-05-22 Jasco Corp Near field microscope
JP2004329888A (en) * 2003-04-03 2004-11-25 Matsushita Electric Ind Co Ltd Method and apparatus for measuring concentration of specific component
JP2004309272A (en) * 2003-04-04 2004-11-04 Ricoh Co Ltd Plane probe, its manufacturing method and optical pickup device
JP2005207935A (en) * 2004-01-23 2005-08-04 Univ Of Tokyo Near-field optical microscope
JP2007078541A (en) * 2005-09-14 2007-03-29 Pioneer Electronic Corp Apparatus, method, and program for guidance and record medium

Also Published As

Publication number Publication date
JP4957398B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5820929B2 (en) SPR sensor device with nanostructure
US20150369744A1 (en) Nanoscale structures on optical fiber for surface enhanced raman scattering and methods related thereto
US8023115B2 (en) Sensor, sensing system and sensing method
US20080280374A1 (en) Methods and systems for detecting biological and chemical materials on a submicron structured substrate
JP5848013B2 (en) Photoelectric field enhancement device and measuring apparatus equipped with the device
JP4463610B2 (en) Surface plasmon resonance sensor device
EP2450692B1 (en) High sensitivity localized surface plasmon resonance sensor and sensor system using same
WO2012035716A1 (en) Optical-electric-field enhancement device
JP2000356587A (en) Localized plasmon resonance sensor
JP6179905B2 (en) Optical device and analyzer
JP2005301288A (en) Plasmon-enhanced tapered optical fiber
JP2008014933A (en) Device for raman spectrum and raman spectrometer
Jin et al. Large-area nanogap plasmon resonator arrays for plasmonics applications
JP2012063294A (en) Light measuring method and light measuring apparatus using optical electric-field enhancement device
JP2007255948A (en) Electric field sensor
Fulmes et al. Self-aligned placement and detection of quantum dots on the tips of individual conical plasmonic nanostructures
WO2011054614A1 (en) A nanohole array biosensor
US7224451B2 (en) Raman spectroscopy method, raman spectroscopy system and raman spectroscopy device
JP2005321392A (en) Spectrum analysis using evanescent field excitation
JP2007024870A (en) Sensor, and sensing device and method
JP4957398B2 (en) Sample measurement board for near-field spectroscopy
WO2014156088A1 (en) Photo-electric-field enhancement device and manufacturing method therefor
JP2014016221A (en) Optical field amplifying device and method of manufacturing the same
JP2007024869A (en) Multichannel sensor, and sensing device and method
JP2012132743A (en) Optical electric-field reinforcing device and photodetector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees