JP2008309579A - Quality determination method of fluid channel in fluid bearing device - Google Patents

Quality determination method of fluid channel in fluid bearing device Download PDF

Info

Publication number
JP2008309579A
JP2008309579A JP2007156512A JP2007156512A JP2008309579A JP 2008309579 A JP2008309579 A JP 2008309579A JP 2007156512 A JP2007156512 A JP 2007156512A JP 2007156512 A JP2007156512 A JP 2007156512A JP 2008309579 A JP2008309579 A JP 2008309579A
Authority
JP
Japan
Prior art keywords
light
flow path
housing
passing
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007156512A
Other languages
Japanese (ja)
Inventor
Kazuto Shimizu
一人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007156512A priority Critical patent/JP2008309579A/en
Publication of JP2008309579A publication Critical patent/JP2008309579A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a determination method capable of determining properly the quality of formation of a fluid channel constituting a circulation path, in a fluid bearing device of this kind. <P>SOLUTION: A bearing sleeve 8 on which a plurality of axial direction grooves 8c1 are formed previously is stuck and fixed on the inner periphery of a housing 7, and light L1 is irradiated from one end opening side of a bearing member 6 (housing 7) on which a plurality of axial direction channels 10 are formed between the housing 7 and the bearing sleeve 8. In the irradiation light L1, light (passing light L2) passing the inner circumferential surface 8a of the bearing sleeve 8, reflected by the upper bottom surface 7b1 of a bottom part 7b of the housing 7, and passing the channels 10 in the axial direction from the blocking side to the opening side is recognized. Determination on the quality of formation of the channels 10 is performed based on recognition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流体軸受装置の流体流路の良否を判定する方法に関する。   The present invention relates to a method for determining the quality of a fluid flow path of a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に形成される流体の膜で軸部材を相対回転自在に支持するものである。この種の軸受装置は、特に高速回転時における回転精度、静粛性等に優れており、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として好適に使用される。具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The hydrodynamic bearing device supports a shaft member in a relatively rotatable manner with a fluid film formed in a bearing gap. This type of bearing device is particularly excellent in rotational accuracy, quietness, etc. during high-speed rotation, and is suitably used as a bearing device for motors mounted on various electrical devices including information devices. Specifically, as a bearing device for a spindle motor in magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, magneto-optical disk devices such as MD and MO, etc. Alternatively, it is preferably used as a bearing device for a motor such as a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, or a fan motor.

また、最近では、上記情報機器等の携帯化・小型化に伴い、これらに搭載して使用される流体軸受装置にも小型化の要請が高まっている。   Recently, with the portability and downsizing of the information equipment and the like, there is an increasing demand for downsizing of the hydrodynamic bearing device that is mounted and used.

例えば、流体軸受装置の軸方向寸法(厚み)を小さくすることを目的として、ハウジングの外周面とこれに対向するハブの筒部の内周面との間に、潤滑油をシールするためのシール空間を形成し、軸受スリーブと軸との間に形成されるラジアル軸受隙間の半径方向外側にシール空間を配設した流体軸受装置が知られている(例えば、特許文献1を参照)。この場合、回転軸の一端に設けたハブの下端面とハウジングの上端面との間にスラスト軸受隙間が設けられるので、ハブを除き回転軸は径一定のものでよく、例えばハウジングとして、その一端を開口し他端を閉塞した形状のものが提案されている(同じく、特許文献1を参照)。   For example, for the purpose of reducing the axial dimension (thickness) of the hydrodynamic bearing device, a seal for sealing lubricating oil between the outer peripheral surface of the housing and the inner peripheral surface of the cylindrical portion of the hub facing the housing. A hydrodynamic bearing device is known in which a space is formed and a seal space is disposed radially outside a radial bearing gap formed between a bearing sleeve and a shaft (see, for example, Patent Document 1). In this case, since the thrust bearing gap is provided between the lower end surface of the hub provided at one end of the rotating shaft and the upper end surface of the housing, the rotating shaft may have a constant diameter except for the hub. Has been proposed in which the other end is closed and the other end is closed (see also Patent Document 1).

また、この種の流体軸受装置においては、軸受内部空間における圧力バランスの調整や潤滑油中に混入した気泡の除去等を図る目的で、ハウジングとこのハウジングの内周に固定される軸受スリーブとの間に軸方向の流路が形成される場合がある。この種の流路は、例えば軸受スリーブの外周に予め1又は複数の軸方向溝を設けておき、この軸受スリーブをハウジングの内周に固定することで形成される(特許文献1を参照)。かかる流路を設けることで、この流路と、ラジアル軸受隙間、さらには、スラスト軸受隙間やシール空間を介して潤滑油を循環可能とする循環路が構成される。
特開2006−207787号公報
Further, in this type of hydrodynamic bearing device, a housing and a bearing sleeve fixed to the inner periphery of the housing are provided for the purpose of adjusting the pressure balance in the bearing internal space and removing bubbles mixed in the lubricating oil. An axial flow path may be formed between them. This type of flow path is formed, for example, by providing one or a plurality of axial grooves on the outer periphery of the bearing sleeve in advance and fixing the bearing sleeve to the inner periphery of the housing (see Patent Document 1). By providing such a flow path, a circulation path that allows the lubricating oil to circulate through the flow path, the radial bearing gap, and further the thrust bearing gap and the seal space is configured.
JP 2006-207787 A

このように、上記循環路の一部をなす軸方向の流路をハウジングと軸受スリーブとの間に形成する際、その固定手段によっては、当該流路が適正に形成されない可能性がある。すなわち、ハウジングと軸受スリーブとの固定を接着により行う場合、ハウジングと軸受スリーブとの間に充填すべき接着剤の供給量を部品寸法のばらつきに応じて個別に調整することは難しく、供給量が過剰となる場合には、循環路を形成する流路が接着剤で塞がれる恐れがある。また、両者を圧入で固定する場合には、締め代のばらつきや圧入時の精度によっては不必要な変形を生じ、これにより軸方向溝(流路)が変形して塞がってしまう恐れがある。   Thus, when the axial flow path that forms a part of the circulation path is formed between the housing and the bearing sleeve, the flow path may not be formed properly depending on the fixing means. That is, when the housing and the bearing sleeve are fixed by bonding, it is difficult to individually adjust the supply amount of the adhesive to be filled between the housing and the bearing sleeve according to the variation in the component dimensions. If it is excessive, the flow path forming the circulation path may be blocked by the adhesive. Further, when both are fixed by press-fitting, unnecessary deformation may occur depending on the variation in the tightening allowance and the accuracy at the time of press-fitting, which may cause the axial groove (flow path) to be deformed and blocked.

以上の理由から、組立の際にこれらの不具合が生じていないか検査することが必要となるが、上述の流路は通常、数十μm〜数百μmと小径で、目視によりこれら流路が変形することなく形成されているか、あるいは接着剤により途中が塞がれていないか等を検査することは困難である。特に、上述のように、シール空間をラジアル軸受隙間の半径方向外側に配設してなる流体軸受装置において、その一端を閉塞したハウジングに軸受スリーブを固定してなるサブアッシーについては、流路の良否を検査するための手段が限られる。また、複数の流路が形成される場合には、これら複数の流路の良否を個別に判定することが必要となるが、既知の方法ではこれらの良否を個別に適正に判定することは難しい。   For the above reasons, it is necessary to inspect for these defects during assembly. However, the above-mentioned flow path is usually a small diameter of several tens to several hundreds of micrometers, and these flow paths are visually observed. It is difficult to inspect whether it is formed without deformation or whether the middle is blocked by an adhesive. In particular, as described above, in the hydrodynamic bearing device in which the seal space is disposed on the radially outer side of the radial bearing gap, the sub-assembly in which the bearing sleeve is fixed to the housing closed at one end thereof is used for the flow path. The means for inspecting pass / fail is limited. Further, when a plurality of flow paths are formed, it is necessary to individually determine the quality of the plurality of flow paths. However, it is difficult to appropriately determine the quality of each of the plurality of flow paths by a known method. .

以上の事情に鑑み、本発明では、この種の流体軸受装置において、循環路を構成する流体流路の形成の良否を適正に判定することのできる判定方法を提供することを技術的課題とする。   In view of the above circumstances, an object of the present invention is to provide a determination method capable of appropriately determining the quality of formation of a fluid flow path constituting a circulation path in this type of hydrodynamic bearing device. .

前記課題を解決するため、本発明は、他端を閉塞したハウジングの内周に、軸孔を有する軸受スリーブを固定することによりハウジングと軸受スリーブとの間に形成されるもので軸孔とその他端閉塞側でつながる1又は複数の流体流路、の良否を判定する方法であって、ハウジングの一端開口側から光を照射し、照射光のうち、軸孔を通過しかつその他端閉塞側で生じる光の回り込みにより流体流路を通過した光を認識し、認識情報に基づき流体流路の良否を判定する流体軸受装置の流体流路の良否判定方法を提供する。   In order to solve the above problems, the present invention is formed between a housing and a bearing sleeve by fixing a bearing sleeve having a shaft hole to the inner periphery of the housing with the other end closed. A method for determining the quality of one or a plurality of fluid flow paths connected on the end closing side, wherein light is irradiated from one end opening side of the housing, and the light passes through the shaft hole and on the other end closing side. Provided is a fluid flow path quality determination method for a fluid dynamic bearing device that recognizes light that has passed through a fluid flow path due to the wraparound of light and determines the quality of the fluid flow path based on recognition information.

このように、ハウジングの一端開口側から照射した光のうち、1の軸孔を通過しかつ軸孔の他端閉塞側で回り込んだ光が流体流路を通過したものを認識し、この認識に基づき良否判定を実施するのであれば、流体流路が複数存在する場合であっても、1の光源から光を照射した際にこれら流体流路を通過する光の数でもって、良好に形成された流体流路の数を評価することができる。また、軸孔を通過し、かつ軸孔の閉塞側で生じる光の回り込みを利用して流体流路を通過する光を認識するようにしたので、軸孔の多端閉塞側に到った光がハウジングと軸受スリーブとの間で反射を繰り返しながらその進行方向を変えて流体流路にその他端閉塞側から流体流路に侵入する。そのため、他端を閉塞したハウジングに軸受スリーブを固定することで両者の間に形成される流体流路を検査対象とする場合であっても、閉塞側から開口側へと流体流路を通過した光を認識して、流体流路の良否を適正に評価することができる。   As described above, the light irradiated from the one end opening side of the housing is recognized as the light passing through one shaft hole and circulated on the other end closing side of the shaft hole passes through the fluid flow path. If a plurality of fluid flow paths are present, the number of light passing through these fluid flow paths when irradiated with light from one light source is good. The number of fluid channels that have been made can be evaluated. In addition, since light passing through the fluid flow path is recognized by using the wraparound of light generated on the closed side of the shaft hole and the light that has reached the multi-end closed side of the shaft hole, The traveling direction is changed while repeating reflection between the housing and the bearing sleeve, and the fluid channel enters the fluid channel from the other end closed side. For this reason, even if the fluid flow path formed between the two is fixed to the housing with the other end closed by fixing the bearing sleeve, the fluid flow path has passed from the closed side to the open side. By recognizing light, it is possible to appropriately evaluate the quality of the fluid flow path.

上述のようにして流体流路の良否判定を実施する場合、照射光の光源から軸孔に到る空間と、流体流路から通過光の認識箇所に至る空間との間を遮蔽した状態で光の照射および認識を行うのが好ましい。軸孔における照射光の入口と、流体流路における通過光の出口とは共にハウジングの一端開口側となるため、これら光の出入口となる空間の間に適当な遮蔽を施すことで、流体流路を通過する光のみを確実に認識することができ、認識精度ひいては判定精度を高めることができる。   When the quality determination of the fluid flow path is performed as described above, the light is shielded between the space from the light source of the irradiation light to the shaft hole and the space from the fluid flow path to the recognition position of the passing light. It is preferable to perform irradiation and recognition. Since both the entrance of the irradiation light in the shaft hole and the exit of the passing light in the fluid flow path are on one end opening side of the housing, the fluid flow path can be obtained by providing an appropriate shielding between the spaces serving as the light entrances and exits. It is possible to reliably recognize only the light passing through the light, and to improve the recognition accuracy and thus the determination accuracy.

上記手段により流体流路を通過した光は、例えば直接目視により認識することができる。この場合、作業者(視認した者)の認識に基づき流体流路の貫通の程度を個別に評価することで、その良否を判定することができる。   The light that has passed through the fluid flow path by the above means can be recognized directly by visual observation, for example. In this case, the quality can be determined by individually evaluating the degree of penetration of the fluid flow path based on the recognition of the worker (the person who has visually confirmed).

また、通過光の認識は、この通過光の進行方向延長線上に受光部を配置し、かかる受光部で通過光を認識することによっても行うことができる。この場合、受光部で認識した通過光の数および形態を画像化して評価することもでき、あるいは、受光部で認識した通過光に係る物理量(例えば光量、光度など)を予め設定した閾値と比較して評価することにより、流体流路の良否を判定することもできる。前者の方法によれば、通過光の認識情報を拡大して画像化したものを認識できるので、より確実に判定することができる。また、後者の方法によれば、通過光の認識から当該認識情報に基づく流体流路の良否判定に到る工程を自動的かつ定量的に行うことができるので、かかる判定の簡便性および正確性を高め、ひいてはこの方法を用いた検査の信頼性向上を図ることができる。   The recognition of the passing light can also be performed by arranging a light receiving part on the extension line of the passing light and recognizing the passing light by the light receiving part. In this case, the number and form of the passing light recognized by the light receiving unit can be imaged and evaluated, or the physical quantity (for example, light quantity, luminous intensity, etc.) related to the passing light recognized by the light receiving unit is compared with a preset threshold value. Thus, it is possible to determine whether the fluid flow path is good or bad. According to the former method, an image obtained by enlarging the recognition information of the passing light can be recognized, so that the determination can be made more reliably. In addition, according to the latter method, since the process from recognition of passing light to quality determination of the fluid flow path based on the recognition information can be performed automatically and quantitatively, the determination is simple and accurate. As a result, the reliability of the inspection using this method can be improved.

また、通過光の認識に関し、例えばその進行方向前方に1又は複数の反射面を設け、この反射面によりその進行方向を変化させた通過光を認識するようにしても構わない。また、この場合、1又は複数の反射面によりその進行方向を変化させた通過光を、ハウジングの他端閉塞側で認識するようにしても構わない。上述のように、光を照射する位置と通過光を認識する位置とを異ならせることで、双方の作業スペースが重複するのを避けて、各々の工程を実施することができる。   Regarding the recognition of the passing light, for example, one or a plurality of reflecting surfaces may be provided in front of the traveling direction, and the passing light whose traveling direction is changed by the reflecting surface may be recognized. In this case, the passing light whose traveling direction is changed by one or a plurality of reflecting surfaces may be recognized on the other end closing side of the housing. As described above, by making the position for irradiating light different from the position for recognizing the passing light, each process can be performed while avoiding the overlapping of both work spaces.

以上のように、本発明によれば、流体軸受装置における循環路を構成する流体流路の形成の良否を適正に判定することができる。また、本発明に係る判定方法を用いた検査工程を経て提供される流体軸受装置の信頼性を高めることができる。   As described above, according to the present invention, it is possible to appropriately determine whether or not the fluid flow path forming the circulation path in the hydrodynamic bearing device is good. Moreover, the reliability of the hydrodynamic bearing device provided through the inspection process using the determination method according to the present invention can be enhanced.

以下、本発明の一実施形態を図1〜図5に基づいて説明する。なお、以下の説明における『上下』方向は、単に各図における構成要素間の位置関係を容易に理解するために用いるもので、流体軸受装置(動圧軸受装置)の設置方向や使用態様、あるいは後述する良否判定時のワーク(軸受部材)の配置態様等を特定するものではない。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The “up and down” direction in the following description is merely used for easy understanding of the positional relationship between the components in each figure, and the installation direction and usage mode of the hydrodynamic bearing device (dynamic pressure bearing device), or It does not specify an arrangement mode or the like of a work (bearing member) at the time of pass / fail judgment described later.

図1は、本発明の一実施形態に係る判定方法の対象となる動圧軸受装置1を組込んだ情報機器用スピンドルモータの断面図を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸2を有する回転体3を回転自在に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bと、ブラケット5とを備えている。ステータコイル4aはブラケット5の外径側に取付けられ、ロータマグネット4bは回転体3を構成するハブ9の外周に取付けられている。動圧軸受装置1のハウジング7は、ブラケット5の内周に固定される。回転体3には、図示は省略するが、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)が一又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間に発生する励磁力でロータマグネット4bが回転し、これに伴って、回転体3に保持されたディスクが軸2と一体に回転する。   FIG. 1 shows a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 which is a target of a determination method according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is opposed to a hydrodynamic bearing device 1 that supports a rotating body 3 having a shaft 2 in a non-contact manner in a rotatable manner, for example, via a radial gap. A stator coil 4a, a rotor magnet 4b, and a bracket 5 are provided. The stator coil 4 a is attached to the outer diameter side of the bracket 5, and the rotor magnet 4 b is attached to the outer periphery of the hub 9 constituting the rotating body 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 5. Although not shown in the figure, the rotating body 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) such as magnetic disks. In the spindle motor configured as described above, when the stator coil 4a is energized, the rotor magnet 4b is rotated by the exciting force generated between the stator coil 4a and the rotor magnet 4b, and accordingly, the rotor magnet 4b is held by the rotating body 3. The disc is rotated integrally with the shaft 2.

図2は、動圧軸受装置1の断面図を示している。この動圧軸受装置1は、主にハウジング7および軸受スリーブ8からなる軸受部材6と、軸受部材6に対して相対回転する回転体3とを備えている。   FIG. 2 shows a cross-sectional view of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a bearing member 6 mainly composed of a housing 7 and a bearing sleeve 8, and a rotating body 3 that rotates relative to the bearing member 6.

回転体3は、ハウジング7の一端開口側に配置されるハブ9と、軸受スリーブ8の内周に挿入される軸2とを有する。   The rotating body 3 includes a hub 9 disposed on one end opening side of the housing 7 and a shaft 2 inserted into the inner periphery of the bearing sleeve 8.

ハブ9は金属材料あるいは樹脂材料で形成され、ハウジング7の一端開口側(上側)を覆う円盤部9aと、円盤部9aの外周部から軸方向下方に延びた筒状部9bと、筒状部9bのさらに外周に設けられたディスク搭載面9cおよび鍔部9dとで構成される。図示されていないディスクは、円盤部9aの外周に外嵌され、ディスク搭載面9cに載置される。そして、図示しない適当な保持手段(クランパなど)によってディスクがハブ9に保持される。   The hub 9 is formed of a metal material or a resin material, and includes a disc portion 9a that covers one end opening side (upper side) of the housing 7, a cylindrical portion 9b that extends downward from the outer periphery of the disc portion 9a, and a cylindrical portion. Further, it is composed of a disk mounting surface 9c and a flange 9d provided on the outer periphery of 9b. A disc (not shown) is fitted on the outer periphery of the disk portion 9a and placed on the disc mounting surface 9c. Then, the disc is held on the hub 9 by appropriate holding means (such as a clamper) not shown.

軸2は、この実施形態ではハブ9と別体に形成され、その上端をハブ9の中央に設けた孔に圧入、接着等の手段により固定している。もちろん、軸2をハブ9と同材料で一体に形成することもでき、あるいは、異材料で形成される軸2とハブ9の一方をインサート部品として他方を金属や樹脂の射出成形で形成することもできる。   In this embodiment, the shaft 2 is formed separately from the hub 9, and its upper end is fixed to a hole provided in the center of the hub 9 by means such as press-fitting and bonding. Of course, the shaft 2 can be integrally formed of the same material as the hub 9, or one of the shaft 2 and the hub 9 formed of different materials is used as an insert part and the other is formed by injection molding of metal or resin. You can also.

軸受スリーブ8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。また、軸受スリーブ8は、樹脂やセラミック等の非金属材料からなる多孔質体で形成することもでき、また焼結金属等の多孔質体以外にも、内部空孔を持たない中実の、あるいは潤滑油の出入りができない程度の大きさの空孔を有する構造の材料で形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body of sintered metal whose main component is copper, for example. The bearing sleeve 8 can also be formed of a porous body made of a non-metallic material such as resin or ceramic, and other than a porous body such as sintered metal, the bearing sleeve 8 is a solid having no internal pores. Or it can also form with the material of the structure which has a hole of the magnitude | size which cannot enter / exit lubricating oil.

軸受スリーブ8の内周面8aの全面もしくはその一部には、ラジアル動圧発生部として
複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3に示すように、複数の動圧溝8a1をヘリングボーン形状に配列した領域と、複数の動圧溝8a2を同じくへリングボーン形状に配列した領域とが軸方向に離隔して形成される。上側の動圧溝8a1配列領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側の配列領域の軸方向寸法X1が下側の配列領域の軸方向寸法X2よりも大きくなるよう形成されている。
A region where a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire inner peripheral surface 8a of the bearing sleeve 8 or a part thereof. In this embodiment, for example, as shown in FIG. 3, a region in which a plurality of dynamic pressure grooves 8a1 are arranged in a herringbone shape and a region in which a plurality of dynamic pressure grooves 8a2 are similarly arranged in a herringbone shape are formed in the axial direction. Formed apart. In the upper dynamic pressure groove 8a1 arrangement region, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the region between the upper and lower inclined grooves), and above the axial center m. The axial dimension X1 of the array region is formed to be larger than the axial dimension X2 of the lower array region.

軸受スリーブ8の外周面8cには、後述する軸方向の流路10をハウジング7との間に形成する目的で、1又は複数本の軸方向溝8c1が形成される。この実施形態では、図4に示すように、円周方向等間隔に6本の軸方向の流路10が形成されるよう、軸受スリーブ8の外周面8cに6本の軸方向溝8c1が円周方向等間隔に形成される。なお、この実施形態のように軸受スリーブ8が焼結金属で形成される場合、かかる軸方向溝8c1は圧粉成形時と焼結後各種サイジング時の何れの段階においても形成することが可能であるが、後述の如く、光を効率よく通過させることを考慮した場合、焼結後の各種サイジング時に同時に形成するのが好ましい。もちろん、各サイジング時に既に形成した軸方向溝8c1の表面を目潰しする(再圧縮する)ことが可能であれば、圧粉成形時に軸方向溝8c1を形成しておいても構わない。   One or a plurality of axial grooves 8 c 1 are formed on the outer peripheral surface 8 c of the bearing sleeve 8 for the purpose of forming an axial flow path 10 to be described later between the bearing sleeve 8 and the housing 7. In this embodiment, as shown in FIG. 4, six axial grooves 8c1 are circularly formed on the outer peripheral surface 8c of the bearing sleeve 8 so that six axial flow paths 10 are formed at equal circumferential intervals. It is formed at equal intervals in the circumferential direction. When the bearing sleeve 8 is formed of sintered metal as in this embodiment, the axial groove 8c1 can be formed at any stage of compacting and various sizing after sintering. However, as will be described later, in consideration of efficiently transmitting light, it is preferable to form them simultaneously during various sizing after sintering. Of course, the axial groove 8c1 may be formed at the time of compacting as long as the surface of the axial groove 8c1 already formed at each sizing can be crushed (recompressed).

軸受スリーブ8と共に軸受部材6を構成するハウジング7はその一端を開口すると共に他端を閉塞した形状をなし、例えば金属材料で略円筒状に形成される。詳細には、ハウジング7は、筒部7aと、筒部7aの他端を閉塞する底部7bとを一体に有し、筒部7aの内周面7cに軸受スリーブ8の外周面8cを接着固定してなる。これにより、図3に示すサブアッシーとしての軸受部材6が形成される。また、ハウジング7に軸受スリーブ8を固定することで、軸受スリーブ8の外周に設けた複数の軸方向溝8c1と、この軸方向溝8c1とラジアル方向に対向するハウジング7の内周面7cとの間に後述する循環路を構成する軸方向の流路10が形成される。   The housing 7 constituting the bearing member 6 together with the bearing sleeve 8 has a shape in which one end thereof is opened and the other end is closed, and is formed in a substantially cylindrical shape with, for example, a metal material. Specifically, the housing 7 integrally includes a cylindrical portion 7a and a bottom portion 7b that closes the other end of the cylindrical portion 7a, and the outer peripheral surface 8c of the bearing sleeve 8 is bonded and fixed to the inner peripheral surface 7c of the cylindrical portion 7a. Do it. Thereby, the bearing member 6 as a sub assembly shown in FIG. 3 is formed. Further, by fixing the bearing sleeve 8 to the housing 7, a plurality of axial grooves 8 c 1 provided on the outer periphery of the bearing sleeve 8, and the inner peripheral surface 7 c of the housing 7 facing the axial grooves 8 c 1 in the radial direction. An axial flow path 10 constituting a circulation path, which will be described later, is formed therebetween.

また、この際、軸受スリーブ8の下端面8bとハウジング7の底部7bの上底面7b1とは非接触の状態(軸方向に離隔した状態)で互いに接着固定されており、両面7b1、8b間には流体(ここでは潤滑油)が流通可能な程度の隙間が形成される。   At this time, the lower end surface 8b of the bearing sleeve 8 and the upper bottom surface 7b1 of the bottom portion 7b of the housing 7 are bonded and fixed to each other in a non-contact state (a state separated in the axial direction), and between the both surfaces 7b1 and 8b. A gap is formed so that fluid (here, lubricating oil) can flow.

ハウジング7の一端開口側に位置する上端面7dには、スラスト軸受面として、例えば図3に示すように複数の動圧溝7d1をスパイラル状に配列した領域が形成される。このスラスト軸受面(動圧溝7d1配列領域)は、ハブ9の円盤部9aの下端面9a1と対向し、回転体3の回転時には、下端面9a1との間に後述するスラスト軸受部Tのスラスト軸受隙間を形成する(図2を参照)。   On the upper end surface 7d located on the one end opening side of the housing 7, as a thrust bearing surface, for example, as shown in FIG. 3, a region in which a plurality of dynamic pressure grooves 7d1 are arranged in a spiral shape is formed. This thrust bearing surface (the region where the dynamic pressure grooves 7d1 are arranged) is opposed to the lower end surface 9a1 of the disk portion 9a of the hub 9, and a thrust of a thrust bearing portion T, which will be described later, between the lower end surface 9a1 when the rotating body 3 rotates. A bearing gap is formed (see FIG. 2).

ハウジング7の外周には、上方に向かって漸次拡径するテーパ状のシール面7eが形成される。このテーパ状のシール面7eは、筒状部9bの内周面9b1との間に、ハウジング7の閉塞側(下方)から開口側(上方)に向けて半径方向寸法を漸次縮小させた環状のシール空間Sを形成する。このシール空間Sは、軸2およびハブ9の回転時、スラスト軸受部Tのスラスト軸受隙間の外径側と連通しており、各軸受隙間を含む軸受内部空間との間で潤滑油の流通を可能としている。潤滑油を充填した状態では、潤滑油の油面(気液界面)は、少なくとも想定される使用もしくは輸送温度範囲内では、常にシール空間S内に維持される。   On the outer periphery of the housing 7, a tapered sealing surface 7 e that gradually increases in diameter upward is formed. This taper-shaped sealing surface 7e is an annular shape having a radial dimension gradually reduced from the closed side (downward) to the open side (upward) of the housing 7 between the inner peripheral surface 9b1 of the cylindrical portion 9b. A seal space S is formed. The seal space S communicates with the outer diameter side of the thrust bearing gap of the thrust bearing portion T when the shaft 2 and the hub 9 are rotated, and allows the lubricating oil to flow between the bearing inner space including each bearing gap. It is possible. In the state filled with the lubricating oil, the oil level (gas-liquid interface) of the lubricating oil is always maintained in the seal space S at least within the assumed use or transport temperature range.

ここで、動圧軸受装置1の内部に充填する潤滑油としては、種々のものが使用可能である。この実施形態のように、HDD等のディスク駆動装置用の動圧軸受装置に提供される潤滑油には、蒸発率が小さく、かつ低温時の粘度低下が少ないエステル系の潤滑油が好適に使用される。   Here, as the lubricating oil filled in the fluid dynamic bearing device 1, various oils can be used. As in this embodiment, an ester-based lubricating oil with a low evaporation rate and a low viscosity drop at low temperatures is preferably used as the lubricating oil provided for a hydrodynamic bearing device for a disk drive device such as an HDD. Is done.

上記構成の動圧軸受装置1において、軸2(回転体3)の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2ヶ所の動圧溝8a1、8a2配列領域)は、軸2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸2の回転に伴い、上記ラジアル軸受隙間の潤滑油が各動圧溝8a1、8a2配列領域の軸方向中心m側に押し込まれ、軸方向中心m側の領域において潤滑油の圧力が上昇する。このような動圧溝8a1、8a2の動圧作用によって、軸2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ構成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft 2 (rotating body 3) is rotated, a region that is the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 (the two dynamic pressure grooves 8a1 and 8a2 are arranged in the upper and lower locations). Is opposed to the outer peripheral surface 2a of the shaft 2 via a radial bearing gap. As the shaft 2 rotates, the lubricating oil in the radial bearing gap is pushed into the axial center m side of each of the dynamic pressure grooves 8a1 and 8a2, and the pressure of the lubricating oil increases in the axial center m side region. To do. The dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2 constitutes the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft 2 in a non-contact manner so as to be rotatable in the radial direction.

また、ハウジング7のスラスト軸受面(動圧溝7d1配列領域)とこれに対向するハブ9の下端面9a1との間のスラスト軸受隙間に、動圧溝7d1の動圧作用により潤滑油の油膜が形成される。そして、この油膜の圧力によって、回転体3をスラスト方向に非接触支持するスラスト軸受部Tが構成される。   In addition, an oil film of lubricating oil is formed in the thrust bearing gap between the thrust bearing surface of the housing 7 (the region where the dynamic pressure grooves 7d1 are arranged) and the lower end surface 9a1 of the hub 9 facing the housing by the dynamic pressure action of the dynamic pressure grooves 7d1. It is formed. And the thrust bearing part T which non-contact-supports the rotary body 3 in a thrust direction is comprised by the pressure of this oil film.

また、ハウジング7と軸受スリーブ8との間に軸方向の流路10が形成されることにより、第1ラジアル軸受部R1のラジアル軸受隙間から、第2ラジアル軸受部R2のラジアル軸受隙間、軸受スリーブ8の下端面8bとハウジング底部7bの上底面7b1との隙間、複数の軸方向の流路10、そして軸受スリーブ8の上端面8dとハブ9の下端面9a1との隙間を介して再び上側のラジアル軸受隙間へと戻る、潤滑油の循環路が形成される(図2を参照)。このようにして循環路が形成されることで、潤滑油の圧力バランスが崩れた場合も早急にかかる圧力差を解消することができ、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等を防止することが可能となる。また、この循環路は、軸方向の流路10の上端からスラスト軸受隙間を介してシール空間Sに通じている。そのため、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間Sを介して外部空間に排出されるので、気泡の混入に伴う上記不具合の発生を確実に防止することができる。   Further, the axial flow path 10 is formed between the housing 7 and the bearing sleeve 8, so that the radial bearing gap of the second radial bearing portion R2, the bearing sleeve, from the radial bearing gap of the first radial bearing portion R1. 8 again through the clearance between the lower end surface 8b of the housing 8 and the upper bottom surface 7b1 of the housing bottom 7b, the plurality of axial flow paths 10, and the clearance between the upper end surface 8d of the bearing sleeve 8 and the lower end surface 9a1 of the hub 9. A lubricating oil circulation path is formed which returns to the radial bearing gap (see FIG. 2). By forming the circulation path in this way, even when the pressure balance of the lubricating oil is lost, it is possible to eliminate the pressure difference that is applied immediately, and the generation of bubbles accompanying the generation of local negative pressure, It becomes possible to prevent the leakage of the lubricating oil and the occurrence of vibration caused by the generation. In addition, this circulation path communicates with the seal space S through the thrust bearing gap from the upper end of the axial flow path 10. Therefore, even when bubbles are mixed in the lubricating oil for some reason, the bubbles are discharged to the external space through the seal space S when circulating along with the lubricating oil, so that the above-mentioned problem due to the mixing of bubbles occurs. Can be reliably prevented.

上述の如き循環路の作用は、その構成要素である軸方向の流路10の良否により大きく左右されるため、かかる流路10の良否判定を動圧軸受装置1の品質検査の一環として設ける必要が生じる。以下、流路10の良否判定方法の一例を図5と共に説明する。   Since the operation of the circulation path as described above is greatly influenced by the quality of the axial flow path 10 which is a constituent element thereof, it is necessary to provide the quality determination of the flow path 10 as part of the quality inspection of the hydrodynamic bearing device 1. Occurs. Hereinafter, an example of the quality determination method of the flow path 10 will be described with reference to FIG.

図5は、軸受部材6に形成される軸方向の流路10の形成良否の判定工程の一例を概念的に説明する図である。同図に示すように、この判定方法では、軸受部材6(ハウジング7)の一端開口側から光L1を照射し、この照射光L1のうち、軸孔を形成する軸受スリーブ8の内周面8aを通過し、かつ、ハウジング7の底部7bの上底面7b1で反射してその閉塞側から開口側へと軸方向の流路10を通過する光(通過光L2)を認識する。そして、この認識に基づき、流路10の形成の良否に関する判定を行う。   FIG. 5 is a diagram for conceptually explaining an example of a process for determining whether or not the axial flow path 10 formed in the bearing member 6 is good. As shown in the figure, in this determination method, light L1 is irradiated from one end opening side of the bearing member 6 (housing 7), and the inner peripheral surface 8a of the bearing sleeve 8 that forms the shaft hole in the irradiated light L1. And the light (passed light L2) that is reflected by the upper bottom surface 7b1 of the bottom portion 7b of the housing 7 and passes through the axial flow path 10 from the closed side to the open side is recognized. And based on this recognition, the determination regarding the quality of formation of the flow path 10 is performed.

具体的には、照射光L1の光源から軸受スリーブ8の軸孔に到る空間と、軸方向の流路10から通過光L2の認識箇所に到る空間との間を遮蔽すべく、筒状の遮蔽部材21の一端を軸受スリーブ8の上端面8dに当接させた状態で、この遮蔽部材21の他端側から適当な光源により軸孔に向けて光L1を照射する。これにより、光源から照射された光L1が流路10の側から軸受内部に侵入するのを防ぎ、かつ、底部7b付近での光の回り込みにより流路10を通過した光L2のみをその延長線上で認識するようにする。   Specifically, in order to shield the space from the light source of the irradiation light L1 to the shaft hole of the bearing sleeve 8 and the space from the axial flow path 10 to the recognition location of the passing light L2, In a state where one end of the shielding member 21 is in contact with the upper end surface 8d of the bearing sleeve 8, light L1 is emitted from the other end side of the shielding member 21 toward the shaft hole by an appropriate light source. As a result, the light L1 emitted from the light source is prevented from entering the inside of the bearing from the flow path 10 side, and only the light L2 that has passed through the flow path 10 due to the wraparound of light near the bottom portion 7b is on the extension line. To recognize.

このように、軸方向の流路10を通過した光L2を認識し、この認識に基づき良否判定を実施することで、本実施形態に例示の如く流路10が複数存在する場合であっても、1の光源から光L1を照射した際にこれら流路10を通過する光L2の数でもって、良好に形成された流路10の数を評価することができる。また、軸孔を通過し、かつ軸孔の閉塞側から軸受スリーブ8の下端面8bとハウジング7の底部7bの上底面7b1との隙間に回り込んで流路10を通過する光L2を認識することで、閉塞側から開口側へ軸方向の流路10を通過した光L2を認識することとなる。そのため、底部7bを有しその他端を閉塞したハウジング7に軸受スリーブ8を固定することで形成される流路10を検査対象とする場合であっても、通過光L2の認識情報に基づき、かかる流路10の良否を適正に評価することができる。   As described above, even if there are a plurality of flow paths 10 as exemplified in the present embodiment, the light L2 that has passed through the axial flow path 10 is recognized and the quality is determined based on this recognition. The number of well formed channels 10 can be evaluated by the number of lights L2 that pass through these channels 10 when the light L1 is irradiated from one light source. Further, light L2 that passes through the flow path 10 by passing through the shaft hole and entering the gap between the lower end surface 8b of the bearing sleeve 8 and the upper bottom surface 7b1 of the bottom portion 7b of the housing 7 from the closed side of the shaft hole is recognized. Thus, the light L2 that has passed through the axial flow path 10 from the closed side to the open side is recognized. Therefore, even when the flow path 10 formed by fixing the bearing sleeve 8 to the housing 7 having the bottom 7b and closed at the other end is to be inspected, it is based on the recognition information of the passing light L2. The quality of the flow path 10 can be evaluated appropriately.

なお、上述の工程において、流路10を通過した光L2は、直接目視により認識することができる他、この通過光L2の進行方法延長線上に受光部(例えば、図6にて例示するCCDカメラ23など)を配置し、かかる受光部で通過光L2を認識することによっても行うことができる。   In the above-described process, the light L2 that has passed through the flow path 10 can be directly recognized visually, and a light receiving portion (for example, a CCD camera illustrated in FIG. 23) and the light receiving unit recognizes the passing light L2.

また、受光部で通過光L2を認識する場合、受光部で認識した通過光L2の数および形態を画像化して評価することもでき、あるいは、受光部で認識した通過光L2に係る物理量(例えば光量、光度など)を予め設定した閾値と比較して評価することにより、流路10の良否を判定することもできる。前者の方法によれば、通過光L2の認識情報をモニター等に拡大して画像化したものを認識できるので、より確実に判定することができる。また、後者の方法によれば、通過光L2の認識から当該認識情報に基づく流路10の良否判定に到る工程を自動かつ定量的に行うことができるので、判定(検査)の簡便性および正確性を高め、ひいてはこの方法を用いた検査の信頼性向上を図ることができる。特に、通過光L2に係る物理量を各流路10を通過した光L2ごとに取得すれば、各々の流路10ごとの良否判定を自動的かつ高速に実施することができる。もちろん、認識した通過光L2の個数だけでもって、流路10の形成良否に関し、一応の信頼性ある判定(検査)を行うことも可能である。   Further, when the light receiving unit recognizes the passing light L2, the number and form of the passing light L2 recognized by the light receiving unit can be imaged and evaluated, or a physical quantity related to the passing light L2 recognized by the light receiving unit (for example, The quality of the flow path 10 can also be determined by evaluating the light intensity, light intensity, etc.) by comparing with a preset threshold value. According to the former method, the information obtained by enlarging the recognition information of the passing light L2 on a monitor or the like can be recognized, so that the determination can be made more reliably. Further, according to the latter method, since the process from the recognition of the passing light L2 to the quality determination of the flow path 10 based on the recognition information can be performed automatically and quantitatively, the determination (inspection) is easy and The accuracy can be improved, and as a result, the reliability of the inspection using this method can be improved. In particular, if the physical quantity related to the passing light L2 is acquired for each light L2 that has passed through each flow path 10, the quality determination for each flow path 10 can be performed automatically and at high speed. Of course, it is possible to make a reliable judgment (inspection) with respect to the quality of the formation of the flow path 10 only by the number of recognized passing lights L2.

なお、照射すべき光L1の光量(光度)は、通過に際して反射すべきハウジング7や軸受スリーブ8の材質、表面粗さ、流路10の長さ(軸方向寸法)、通過光L2の認識方法、およびその評価(判定)方法に応じて適切に設定するのがよい。また、光源としては特に限定されることなく種々のものが使用可能であるが、例えば比較的短波長の光を照射可能なものが好適であり、その具体例として、ハロゲンランプを挙げることができる。   In addition, the light quantity (luminous intensity) of the light L1 to be irradiated is the material of the housing 7 and the bearing sleeve 8 to be reflected when passing, the surface roughness, the length (axial dimension) of the flow path 10, and the recognition method of the passing light L2. It is preferable to set appropriately according to the evaluation (determination) method. Various light sources can be used without any particular limitation. For example, a light source capable of irradiating light with a relatively short wavelength is suitable, and a specific example thereof is a halogen lamp. .

また、通過光の認識に関し、例えばその進行方向前方に1又は複数の反射面を設け、この反射面によりその進行方向を変化させた通過光を認識するようにしても構わない。図6は本発明に係る流路10の良否判定方法の他の例を示すもので、同図に示すように、遮蔽部材21の外周には、流路10を通過した光L2を反射してその進行方向を変化させるための反射部材22が取り付けられている。ここで、反射部材22は、通過光L2を最初に反射する内径側の反射面(第1の反射面22a)と、この反射面22aの外径側に配設され、互いに傾斜角の異なる反射面(第2の反射面22b)とを備えてなる。この実施形態では、第1の反射面22aは通過光L2の進行方向に対して45°の傾斜角(入射角)を有し、かつ、この反射面22aに対して90°傾斜した第2の反射面22bに45°の入射角をもって入射および反射するよう、軸受部材6(流路10)に対する配置位置(姿勢)が設定されている。   Regarding the recognition of the passing light, for example, one or a plurality of reflecting surfaces may be provided in front of the traveling direction, and the passing light whose traveling direction is changed by the reflecting surface may be recognized. FIG. 6 shows another example of the quality determination method for the flow path 10 according to the present invention. As shown in FIG. 6, the light L2 that has passed through the flow path 10 is reflected on the outer periphery of the shielding member 21. A reflecting member 22 for changing the traveling direction is attached. Here, the reflecting member 22 is disposed on the inner diameter side reflecting surface (first reflecting surface 22a) that first reflects the passing light L2, and on the outer diameter side of the reflecting surface 22a, and has reflection angles different from each other. And a surface (second reflecting surface 22b). In this embodiment, the first reflecting surface 22a has an inclination angle (incident angle) of 45 ° with respect to the traveling direction of the passing light L2, and the second reflecting surface inclined 90 ° with respect to the reflecting surface 22a. The arrangement position (posture) with respect to the bearing member 6 (flow path 10) is set so as to be incident and reflected on the reflecting surface 22b with an incident angle of 45 °.

このように、通過光L2を反射面22a(あるいは反射面22b)で反射してその進行方向を変えることで、光の照射方向と認識方向とを異ならせることができる。図6の例でいえば、流路10を通過した光L2を第1の反射面22aで反射させ、かつこの反射した通過光(反射光)L3を第2の反射面22bで反射させることで、反射前の通過光L2と平行でその進行方向が逆となる通過光L4をCCDカメラ23で受光、認識することができる。そのため、光源の設置スペースと受光部(図6ではCCDカメラ23)の設置スペースとが重複するのを避けて、各々の工程を実施することができる。あるいは、第1の反射面22aのみを有する反射部材22を用いる場合でも、第1の反射面22aで反射した通過光L3の進行方向延長線上にCCDカメラ23等の受光部を円周方向に移動させながら受光することで、通過光L3の認識および判定を行うことができる。   Thus, by reflecting the passing light L2 on the reflecting surface 22a (or reflecting surface 22b) and changing its traveling direction, the light irradiation direction and the recognition direction can be made different. In the example of FIG. 6, the light L2 that has passed through the flow path 10 is reflected by the first reflecting surface 22a, and the reflected passing light (reflected light) L3 is reflected by the second reflecting surface 22b. The CCD camera 23 can receive and recognize the passing light L4 which is parallel to the passing light L2 before reflection and whose traveling direction is opposite. For this reason, each process can be performed while avoiding an overlap between the installation space of the light source and the installation space of the light receiving unit (CCD camera 23 in FIG. 6). Alternatively, even when the reflecting member 22 having only the first reflecting surface 22a is used, the light receiving unit such as the CCD camera 23 is moved in the circumferential direction on the extension line of the traveling light L3 reflected by the first reflecting surface 22a. By receiving the light while doing so, it is possible to recognize and determine the passing light L3.

また、以上説明した判定方法は、上記例示の動圧軸受装置1に限らず、種々の形態をなす流体軸受装置に適用可能である。   Moreover, the determination method demonstrated above is applicable not only to the fluid dynamic bearing apparatus 1 of the said illustration but the hydrodynamic bearing apparatus which makes | forms various forms.

例えば、循環路を構成する軸方向の流路10に関し、かかる流路10は必ずしも軸方向にわたって寸法一定である必要はない。主たる循環方向や優先的に保持すべき位置に応じて、その流路径(サイズ)の異ならせた複数の部分的な流路を軸方向に連続して設けた流路を判定の対象とすることも可能である。あるいは、光が通過可能である限りにおいて、途中で屈曲した部分を有する流路についても判定の対象とすることができる。   For example, with respect to the axial flow path 10 constituting the circulation path, the flow path 10 does not necessarily need to have a constant dimension over the axial direction. Depending on the main circulation direction and the position that should be preferentially retained, the flow path in which a plurality of partial flow paths having different flow path diameters (sizes) are continuously provided in the axial direction is to be determined. Is also possible. Alternatively, as long as light can pass, a flow path having a bent portion in the middle can also be determined.

また、軸受スリーブ8の固定手段は特に限定されず、例示の接着(ルーズ接着のほか圧入接着を含む)のほか、圧入、溶着など適宜の手段を使用することが可能であり、何れの場合においてもこれらサブアッシー(軸受部材6)に対して本発明に係る判定方法を適用することが可能である。   In addition, the fixing means for the bearing sleeve 8 is not particularly limited, and appropriate means such as press-fitting and welding can be used in addition to the exemplified bonding (including the press-fitting adhesion in addition to the loose bonding). In addition, the determination method according to the present invention can be applied to these subassemblies (bearing members 6).

また、以上の説明では、底部7bを一体に形成したハウジング7に本発明に係る判定方法を適用した場合を説明したが、底部7bを別体に形成し、後付けで固定したハウジングに対しても本発明を適用できることはもちろんである。   In the above description, the case where the determination method according to the present invention is applied to the housing 7 in which the bottom portion 7b is integrally formed has been described. However, the bottom portion 7b is formed separately and the housing is fixed later. Of course, the present invention can be applied.

また、以上の説明では、ハウジング7と軸受スリーブ8との間に形成した流路10の形成良否について判定する場合を説明したが、本発明に係る方法であれば、併せて、両部材7,8間の接着の良否や圧入の良否(隙間なく接着あるいは圧入されているか否か)についても判定することが可能である。   In the above description, the case where the quality of the flow path 10 formed between the housing 7 and the bearing sleeve 8 is determined is determined. However, if the method according to the present invention is used, the two members 7, It is also possible to determine whether or not the bonding between the eight is good and whether or not the press-fitting is good (whether bonding or press-fitting is performed without a gap).

本発明の一実施形態に係る動圧軸受装置を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the dynamic pressure bearing apparatus which concerns on one Embodiment of this invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. ハウジングに軸受スリーブを固定してなる軸受部材の断面図である。It is sectional drawing of the bearing member formed by fixing a bearing sleeve to a housing. 軸受部材を一端開口側から見た平面図である。It is the top view which looked at the bearing member from the one end opening side. ハウジングと軸受スリーブとの間に形成される流体流路の良否判定工程の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the quality determination process of the fluid flow path formed between a housing and a bearing sleeve. 流体流路の良否判定工程の他の例を概念的に示す断面図である。It is sectional drawing which shows notionally other examples of the quality determination process of a fluid flow path.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸
6 軸受部材
7 ハウジング
7b 底部
7b1 上底面
7c 内周面
8 軸受スリーブ
8b 下端面
8c 外周面
8c1 軸方向溝
10 流路
21 遮蔽部材
22 反射部材
22a、22b 反射面
23 CCDカメラ
L1 照射光
L2、L3、L4 通過光
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft 6 Bearing member 7 Housing 7b Bottom part 7b1 Upper bottom surface 7c Inner peripheral surface 8 Bearing sleeve 8b Lower end surface 8c Outer peripheral surface 8c1 Axis direction groove | channel 10 Flow path 21 Shielding member 22 Reflective member 22a, 22b Reflective surface 23 CCD Camera L1 Irradiation light L2, L3, L4 Passing light

Claims (9)

他端を閉塞したハウジングの内周に、軸孔を有する軸受スリーブを固定することにより前記ハウジングと前記軸受スリーブとの間に形成されるもので前記軸孔とその他端閉塞側でつながる1又は複数の流体流路、の良否を判定する方法であって、
前記ハウジングの一端開口側から光を照射し、該照射光のうち、前記軸孔を通過しかつその他端閉塞側で生じる光の回り込みにより前記流体流路を通過した光を認識し、該認識情報に基づき前記流体流路の良否を判定する流体軸受装置の流体流路の良否判定方法。
One or more formed between the housing and the bearing sleeve by fixing a bearing sleeve having a shaft hole to the inner periphery of the housing with the other end closed and connected to the shaft hole and the other end closed side A method for determining the quality of the fluid flow path of
Light is irradiated from one end opening side of the housing, and the light passing through the fluid flow path by the wraparound of the light passing through the shaft hole and occurring at the other end closing side is recognized, and the recognition information A fluid passage quality determination method for a fluid dynamic bearing device that determines the quality of the fluid flow path based on the above.
前記照射光の光源から前記軸孔に到る空間と、前記流体流路から前記通過光の認識箇所に至る空間との間を遮蔽した状態で前記光の照射および認識を行う請求項1記載の流体流路の良否判定方法。   The light irradiation and recognition are performed in a state where a space between a light source of the irradiation light from the light source to the shaft hole and a space from the fluid flow path to the recognition position of the passing light is shielded. A method for determining the quality of a fluid flow path. 前記通過光の認識を目視で行う請求項1記載の流体流路の良否判定方法。   The fluid passage quality determination method according to claim 1, wherein the passage light is recognized visually. 前記通過光の認識を、前記通過光の進行方向延長線上に配置した受光部で行う請求項1記載の流体流路の良否判定方法。   The fluid passage quality determination method according to claim 1, wherein recognition of the passing light is performed by a light receiving unit disposed on an extension line in the traveling direction of the passing light. 前記受光部で認識した前記通過光の数および形態を画像化して評価する請求項4記載の流体流路の良否判定方法。   The fluid passage quality determination method according to claim 4, wherein the number and form of the passing light recognized by the light receiving unit are imaged and evaluated. 前記受光部で認識した前記通過光に係る物理量を予め設定した閾値と比較して評価することにより、前記流体流路の良否を判定する請求項4記載の流体流路の良否判定方法。   The fluid channel quality determination method according to claim 4, wherein the quality of the fluid channel is determined by evaluating a physical quantity related to the passing light recognized by the light receiving unit in comparison with a preset threshold value. 前記通過光の進行方向前方に1又は複数の反射面を設け、該反射面によりその進行方向を変化させた前記通過光を認識するようにした請求項3又は4記載の流体流路の良否判定方法。   5. The fluid flow path quality determination according to claim 3 or 4, wherein one or a plurality of reflecting surfaces are provided in front of the traveling direction of the passing light, and the passing light whose traveling direction is changed by the reflecting surface is recognized. Method. 前記反射面によりその進行方向を変化させた前記通過光の認識を、前記ハウジングの他端閉塞側で行う請求項7記載の流体流路の良否判定方法。   The fluid passage quality determination method according to claim 7, wherein recognition of the passing light whose traveling direction is changed by the reflecting surface is performed on the other end closing side of the housing. 請求項1〜8の何れか記載の判定工程を用いた流体軸受装置の検査方法。   A fluid bearing device inspection method using the determination step according to claim 1.
JP2007156512A 2007-06-13 2007-06-13 Quality determination method of fluid channel in fluid bearing device Withdrawn JP2008309579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156512A JP2008309579A (en) 2007-06-13 2007-06-13 Quality determination method of fluid channel in fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156512A JP2008309579A (en) 2007-06-13 2007-06-13 Quality determination method of fluid channel in fluid bearing device

Publications (1)

Publication Number Publication Date
JP2008309579A true JP2008309579A (en) 2008-12-25

Family

ID=40237320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156512A Withdrawn JP2008309579A (en) 2007-06-13 2007-06-13 Quality determination method of fluid channel in fluid bearing device

Country Status (1)

Country Link
JP (1) JP2008309579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054272A (en) * 2015-04-09 2016-10-26 株式会社三井高科技 Method and device for detecting laminated iron cores

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054272A (en) * 2015-04-09 2016-10-26 株式会社三井高科技 Method and device for detecting laminated iron cores
JP2016201892A (en) * 2015-04-09 2016-12-01 株式会社三井ハイテック Inspection method for laminated core, and inspection apparatus therefor

Similar Documents

Publication Publication Date Title
JP2008167521A (en) Motor, recording disc drive, and method of manufacturing rotor hub
US20090080819A1 (en) Fluid dynamic bearing having a recirculation channel
JP2006170230A (en) Working fluid amount inspection method for fluid bearing device, fluid bearing device, and spindle motor
JP2013249851A (en) Bearing mechanism, motor, and disk drive apparatus
KR101275304B1 (en) Spindle motor
JP2014005934A (en) Bearing mechanism, motor and disk driving device
JP2008267531A (en) Method for manufacturing dynamic pressure bearing device
JP2010127448A (en) Fluid dynamic-pressure bearing mechanism, motor, recording disk driving device, and method for producing fluid dynamic-pressure bearing mechanism
JP5312895B2 (en) Hydrodynamic bearing device
JP2008121849A (en) Dynamic pressure fluid bearing device, spindle motor and record reproduction device
US20100166346A1 (en) Dynamic bearing device
JP2004183734A (en) Fluid dynamic bearing and disk recording device
JP6502068B2 (en) Method of manufacturing fluid dynamic bearing device
JP2008309579A (en) Quality determination method of fluid channel in fluid bearing device
JP2006211795A (en) Spindle motor
JP2004340760A (en) Rotational runout inspection device and rotational runout test method
JP2008020244A (en) Inspection method of bearing member of fluid bearing device
JP2011074951A (en) Fluid dynamic bearing device
JP2009097672A (en) Manufacturing method of bearing parts
JP2005337364A (en) Dynamic pressure bearing device
JP2008169944A (en) Fluid bearing device
JP2000292373A (en) Method for internally inspecting fluid bearing
JPH11183329A (en) Life inspecting device and inspecting method for dynamic pressure bearing device
JP2004176817A (en) Dynamic pressure bearing device and method of manufacturing the same
JP2010084909A (en) Fluid bearing device, spindle motor having the same, and information device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907