JP2008309402A - Heat collecting method and heat collecting device - Google Patents

Heat collecting method and heat collecting device Download PDF

Info

Publication number
JP2008309402A
JP2008309402A JP2007157698A JP2007157698A JP2008309402A JP 2008309402 A JP2008309402 A JP 2008309402A JP 2007157698 A JP2007157698 A JP 2007157698A JP 2007157698 A JP2007157698 A JP 2007157698A JP 2008309402 A JP2008309402 A JP 2008309402A
Authority
JP
Japan
Prior art keywords
working fluid
heat
closed circuit
heat exchanger
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007157698A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博司 山口
Hokichi Ueda
穂吉 上田
Noboru Sawada
昇 澤田
Takanori Kanayama
孝範 金山
Katsumi Fujima
克己 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAEKAWA KK
Doshisha Co Ltd
Showa Denko Gas Products Co Ltd
Resonac Holdings Corp
Original Assignee
MAEKAWA KK
Showa Denko KK
Showa Tansan Co Ltd
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAEKAWA KK, Showa Denko KK, Showa Tansan Co Ltd, Doshisha Co Ltd filed Critical MAEKAWA KK
Priority to JP2007157698A priority Critical patent/JP2008309402A/en
Publication of JP2008309402A publication Critical patent/JP2008309402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar heat collecting means capable of saving energy by dispensing with power, reducing costs by simplifying a device constitution, and achieving high recovering temperature even in winter. <P>SOLUTION: This heat collecting device comprising a solar-heat heating device provided with a closed circuit 1 for circulating working fluid mainly composed of CO<SB>2</SB>, and collecting heat in the working fluid, and a heat exchanger 3 recovering heat from the working fluid in which heat is collected, comprises the heat exchanger 3 for recovering heat retained by the working fluid w, liquefying the same, and forming a liquid head pressure H by the working fluid 2 at an outlet side by having the difference in heights between an inlet side where the working fluid w flows in and the outlet side where the working fluid w flows out, and the solar-heat heating device 2 disposed in the closed circuit 1, and collecting heat in the liquefied working fluid 2 to keep the working fluid w at the outlet side in a supercritical state, and natural circulation of the working fluid 2 is formed in the closed circuit 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、COを主要流体とする作動流体が循環する閉回路を形成した太陽熱集熱方法及び装置に関し、作動流体を無動力で循環可能とし、太陽熱を効率良く低コストで集熱し利用可能にしたものである。 The present invention relates to a solar heat collecting method and apparatus in which a closed circuit in which a working fluid containing CO 2 as a main fluid circulates is formed. The working fluid can be circulated without power, and solar heat can be collected efficiently and used at low cost. It is a thing.

近年、温室効果ガスによる地球温暖化などの環境汚染問題や、化石燃料の枯渇問題を背景に化石燃料に代わる新しいエネルギ源の開拓、実用化に関する研究が行なわれている。その中で、太陽エネルギは、地球上のほぼ全体に降り注いでおり、そのエネルギ量は他の自然エネルギと比較して圧倒的に大きく無尽蔵であるために、有効利用に関する多くの研究及び実用化がなされている。   In recent years, research on the development and practical application of new energy sources to replace fossil fuels has been conducted against the background of environmental pollution problems such as global warming due to greenhouse gases and the problem of exhaustion of fossil fuels. Among them, solar energy is poured almost all over the earth, and the amount of energy is overwhelmingly large and inexhaustible compared with other natural energies. Has been made.

太陽エネルギを含む自然エネルギ利用の効果として、省エネと炭酸ガスの排出削減が挙げられるが、太陽エネルギの利用上の課題として、太陽熱利用システムの設置面積の削減と集熱率の向上、及び低価格化が望まれている。   The effects of using natural energy, including solar energy, include energy saving and carbon dioxide emission reduction, but the challenges in using solar energy include reducing the installation area of solar thermal utilization systems, improving the heat collection rate, and lowering the price. Is desired.

本出願人等は、先に特許文献1(特開2004−263944号公報)で、太陽エネルギを利用して、発電と冷温熱と給湯の同時供給を可能とするソーラシステムを提案している。このシステムは、作動流体として、CO,NH,HO,炭化水素系の自然冷媒を使用し、液化作動流体を超臨界圧流体とするポンプアップ部、該超臨界圧流体を太陽熱により高温超臨界圧流体とする蒸発器と、該高温超臨界圧流体を断熱膨張させて低圧ガスを形成するとともに発電する膨張タービンと、低圧ガスより熱回収するとともに液化及び超臨界、近超臨界、臨界未満の作動流体を形成する熱回収器とより構成される。 The present applicants have previously proposed a solar system that enables simultaneous power generation, cold / hot heat, and hot water supply using solar energy in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-263944). This system uses CO 2 , NH 3 , H 2 O, hydrocarbon-based natural refrigerant as the working fluid, and a pump-up unit that uses the liquefied working fluid as a supercritical pressure fluid. An evaporator as a high-temperature supercritical pressure fluid, an expansion turbine that adiabatically expands the high-temperature supercritical pressure fluid to form a low-pressure gas and generates power, heat recovery from the low-pressure gas and liquefaction and supercritical, near supercritical, And a heat recovery device that forms a subcritical working fluid.

特開2004−263944号公報JP 2004-263944 A

特許文献1に開示されたソーラシステムは、システム内で作動流体を強制循環させるためのポンプ動力を必要とするとともに、装置が大掛かりになり、設備コスト及びメンテナンスコストが高価になるという問題がある。   The solar system disclosed in Patent Document 1 requires a pump power for forcibly circulating a working fluid in the system, and has a problem that the apparatus becomes large, and the equipment cost and the maintenance cost become high.

一般に、太陽熱利用システムは、集熱効率が悪く、設備投資が大きくなるという問題がある。特に、冬季での回収温度が低く、利用する場合には追い焚きなどが必要である。また、特許文献1に開示されたシステムのように、集熱そのものに動力が必要であり、さらに、バッチ式の熱回収では利用性の点で劣るという問題がある。   In general, the solar heat utilization system has a problem that the heat collection efficiency is poor and the capital investment is increased. In particular, the recovery temperature in winter is low, and it is necessary to catch up when using it. Moreover, like the system disclosed in Patent Document 1, power is required for the heat collection itself, and further, there is a problem that batch-type heat recovery is inferior in terms of usability.

本発明は、かかる従来技術の課題に鑑み、動力を不要として省エネを可能とし、かつ装置構成を簡素化して低コスト化でき、さらに、冬季でも高温の回収温度を得ることができる太陽熱集熱手段を実現することを目的とする。   In view of the problems of the prior art, the present invention is a solar heat collecting means that can save energy without requiring motive power, can simplify the apparatus configuration and reduce the cost, and can obtain a high recovery temperature even in winter. It aims at realizing.

かかる目的を達成するため、本発明の集熱方法は、
COを主要流体とする作動流体が循環する閉回路を形成し、太陽熱加熱装置で集熱された該作動流体から熱交換器で熱回収する集熱方法において、
前記熱交換器に作動流体の流入側と流出側とで高低差をもうけて該熱交換器の作動流体流出側に作動流体による液頭圧を形成するとともに、
該太陽熱加熱装置の集熱により該太陽熱加熱装置出口側の作動流体を超臨界状態とすることにより、該閉回路に作動流体の自然循環を形成するようにものである。
In order to achieve this object, the heat collection method of the present invention comprises:
In a heat collecting method for forming a closed circuit in which a working fluid having CO 2 as a main fluid circulates and recovering heat from the working fluid collected by a solar heating device using a heat exchanger,
Forming a liquid head pressure by the working fluid on the working fluid outflow side of the heat exchanger by creating a difference in height between the inflow side and the outflow side of the working fluid in the heat exchanger;
A natural circulation of the working fluid is formed in the closed circuit by bringing the working fluid on the outlet side of the solar heating device into a supercritical state by collecting heat from the solar heating device.

また、本発明の集熱装置は、
COを主要流体とする作動流体が循環する閉回路を形成し、作動流体に集熱する太陽熱加熱装置と、集熱された作動流体から熱回収する熱交換器とを備えた集熱装置において、
作動流体の保有熱を回収して液化させるとともに、作動流体の流入側と作動流体の流出する流出側とで高低差をもうけて作動流体の流出側に作動流体により液頭圧を形成させる熱交換器と、
該閉回路に介設され液化した作動流体に集熱して出口側の作動流体を超臨界状態となす太陽熱加熱装置とを備え、
該閉回路で作動流体の自然循環を形成させるように構成したものである。
Moreover, the heat collecting apparatus of the present invention is
In a heat collecting apparatus including a solar heating device that forms a closed circuit in which a working fluid having CO 2 as a main fluid circulates and collects heat in the working fluid, and a heat exchanger that recovers heat from the collected working fluid ,
Heat exchange that collects and liquefies the retained heat of the working fluid and creates a head pressure with the working fluid on the working fluid outflow side by creating a level difference between the working fluid inflow side and the working fluid outflow side And
A solar heating device that collects heat into the liquefied working fluid interposed in the closed circuit and brings the working fluid on the outlet side into a supercritical state,
The closed circuit is configured to form a natural circulation of the working fluid.

本発明方法では、COを主要流体とする作動流体を用いる。COは、高圧になるほど比熱が減少し、特に高温での集熱がしやすくなる。また、高圧高密度でも粘性が大幅に変わらず、臨界点(圧力7.3MPa、温度31℃)以上で超臨界状態となり、超臨界状態で粘度が小さくなるので、太陽熱加熱装置と熱交換器間に配設された閉回路を循環させる場合に移動動力を小さくすることができる。そして、熱交換器で作動流体の保有熱を回収して作動流体を液化させ、熱交換器出口部の閉回路内で液化した作動流体の液頭圧を形成することにより、作動流体を該閉回路で自然循環させるようにしている。従って、閉回路に前記作動流体の圧縮又は揚程作用を伴う物理的な強制循環機器を介設する必要がない。 In the method of the present invention, a working fluid whose main fluid is CO 2 is used. The specific heat of CO 2 decreases as the pressure increases, and it becomes easier to collect heat particularly at high temperatures. In addition, the viscosity does not change significantly even at high pressure and high density, it becomes supercritical at the critical point (pressure 7.3 MPa, temperature 31 ° C.) or higher, and the viscosity decreases in the supercritical state. When the closed circuit arranged in the circuit is circulated, the moving power can be reduced. Then, the retained heat of the working fluid is recovered by the heat exchanger, the working fluid is liquefied, and the liquid head pressure of the working fluid liquefied in the closed circuit at the outlet of the heat exchanger is formed, thereby closing the working fluid. The circuit is naturally circulated. Therefore, it is not necessary to provide a physical forced circulation device with the compression or lifting action of the working fluid in the closed circuit.

また、本発明装置では、熱交換器に作動流体の流入側と作動流体の流出する流出側とで高低差をもうけて作動流体の流出側の閉回路に作動流体による液頭圧を形成することにより、該閉回路で作動流体を自然循環させるようにしている。   In the apparatus of the present invention, a head pressure is generated by the working fluid in the closed circuit on the outflow side of the working fluid by providing a difference in height between the inflowing side of the working fluid and the outflow side of the working fluid in the heat exchanger. Thus, the working fluid is naturally circulated in the closed circuit.

また、COは、常温域で液化又はガス化するため、常温域近辺での相変化を利用することにより、無動力で自然循環流を形成でき、この循環流により熱移動を連続的に行なうことができる。 In addition, since CO 2 is liquefied or gasified in the normal temperature range, a natural circulation flow can be formed without power by utilizing the phase change in the vicinity of the normal temperature range, and heat transfer is continuously performed by this circulation flow. be able to.

このように、本発明では、COを主要流体とする作動流体を用い、作動流体から熱回収を行なう熱交換器の出口側に作動流体による液頭圧を形成するとともに、太陽熱加熱装置の出口側で作動流体を超臨界状態とすることにより、閉回路に作動流体の自然循環を形成させるようにし、これによって、無動力で作動流体を循環させることにより、装置構成を簡素化し、省エネと低コストを実現したものである。 As described above, in the present invention, the working fluid having CO 2 as the main fluid is used, and the liquid head pressure is formed by the working fluid on the outlet side of the heat exchanger that recovers heat from the working fluid. By making the working fluid in a supercritical state on the side, the natural circulation of the working fluid is formed in the closed circuit, and thereby the working fluid is circulated without power, thereby simplifying the device configuration, saving energy and reducing the The cost is realized.

本発明方法において、太陽熱加熱装置に設けられた集熱管のうち少なくとも作動流体の加熱が始まり超臨界状態に変わるまでの部分を作動流体の流れ方向下流側に向かって上向き勾配となるように配置するとよい。このように構成すれば、この上向き勾配をなす集熱管内での作動流体の相変化(液体→超臨界状態)によって超臨界状態となった作動流体が太陽熱加熱装置の出口側に向う上昇力が発生する。そして、この上昇力が該閉回路内での自然循環の形成を助ける作用をなす。   In the method of the present invention, when at least a portion of the heat collecting tube provided in the solar heating device until heating of the working fluid starts and changes to the supercritical state is arranged to have an upward gradient toward the downstream side in the flow direction of the working fluid. Good. If comprised in this way, the rising force which the working fluid which became the supercritical state by the phase change (liquid-> supercritical state) of the working fluid in the heat collecting tube which makes this upward gradient will go to the exit side of a solar heating apparatus will be carried out. appear. This ascending force serves to help the formation of a natural circulation in the closed circuit.

太陽熱加熱装置の集熱量や周囲温度の日々の変動、あるいは季節などで太陽熱の集熱量が変動するため、作動流体を高温にして効率良く熱回収したり、あるいは作動流体の循環量を抑制し高圧になるのを防ぐ必要がある。本発明方法において、太陽熱加熱装置の出口側閉回路に設けた検出器により作動流体の超臨界状態の有無を検出し、該検出結果に応じて該太陽熱加熱装置の出口側と前記熱交換器の入口側とを接続する閉回路に介設した流量調整弁の開度を調節することにより、該太陽熱加熱装置の出口側閉回路に常に作動流体の超臨界状態を形成するようにするとよい。   Because the amount of solar heat collected by the solar heating device varies from day to day, or due to seasonal fluctuations, the amount of heat collected from the solar fluid varies depending on the season. It is necessary to prevent becoming. In the method of the present invention, the presence or absence of a supercritical state of the working fluid is detected by a detector provided in the closed circuit on the outlet side of the solar heating device, and the outlet side of the solar heating device and the heat exchanger are detected according to the detection result. The supercritical state of the working fluid may be always formed in the closed circuit on the outlet side of the solar heating device by adjusting the opening degree of the flow rate adjusting valve provided in the closed circuit connecting the inlet side.

これによって、太陽熱加熱装置の出口側閉回路に常に作動流体の超臨界状態を形成できるため、作動流体の集熱量を高め、作動流体を高温にして熱交換器での熱回収効率を高めたり、あるいは作動流体の循環量を制御して閉回路内が高圧になるのを防ぐことができる。このため、熱回収流体の温度を用途に応じて必要な温度に制御することができ、あるいは、冬季で太陽からの日射量が少ない時でも、高い温度の熱回収流体を得ることができる。   As a result, a supercritical state of the working fluid can always be formed in the closed circuit on the outlet side of the solar heating device, so the amount of heat collected from the working fluid is increased, the working fluid is heated to a high temperature, and the heat recovery efficiency in the heat exchanger is increased. Alternatively, it is possible to prevent the closed circuit from becoming a high pressure by controlling the circulation amount of the working fluid. For this reason, the temperature of the heat recovery fluid can be controlled to a required temperature according to the application, or a high temperature heat recovery fluid can be obtained even when the amount of solar radiation from the sun is small in winter.

なお、作動流体の超臨界状態の有無を検出する検出器としては、太陽光の日射量を計測して、該日射量から太陽熱加熱装置の集熱量を演算する機器や、あるいは太陽熱加熱装置の出入り口の作動流体の温度差又は圧力差を計測して、該計測値から太陽熱加熱装置の集熱量を演算する機器、あるいは太陽熱加熱装置出口部での作動流体の温度又は圧力を検出してその検出値から作動流体の超臨界状態を検出する機器が適用できる。   The detector for detecting the presence or absence of the supercritical state of the working fluid is a device that measures the amount of solar radiation and calculates the amount of heat collected by the solar heating device from the amount of solar radiation, or the entrance and exit of the solar heating device. The temperature difference or pressure difference of the working fluid is measured, and the temperature or pressure of the working fluid at the outlet of the solar heating device or the device that calculates the heat collection amount of the solar heating device from the measured value is detected and the detected value A device for detecting the supercritical state of the working fluid can be applied.

また、本発明方法において、好ましくは、作動流体として、COとCOに対してジメチルエーテルを1〜35モル%配合したものを用いるとよい。熱交換器で熱回収流体を循環して熱回収を行なう場合、夏季などで、太陽熱加熱装置での集熱量が多い場合は、熱交換器に供給する熱回収流体の温度は高くなり、そのため、熱交換器での作動流体の凝縮が不十分となる場合が生じる。 Further, in the method of the present invention, preferably, as the working fluid, the dimethyl ether with respect to CO 2 and CO 2 may be used a material obtained by blending 1 to 35 mol%. When heat recovery is performed by circulating the heat recovery fluid in the heat exchanger, the temperature of the heat recovery fluid supplied to the heat exchanger becomes higher when the amount of heat collected by the solar heating device is large in summer, etc. In some cases, the condensation of the working fluid in the heat exchanger becomes insufficient.

作動流体として、COにジメチルエーテルを配合すると、COにジメチルエーテルが溶解する。これによって、作動流体の沸点がCOのみの場合より上昇する。
炭酸ガスの臨界温度は31.05℃であるが、ジメチルエーテルを配合することによって、作動流体の凝縮温度を高くすることができる。これによって、作動流体の温度域が高くなっても凝縮しやすくなる。従って、熱交換器内で作動流体が液化しやすくなり、液頭圧を形成しやすくなるので、閉回路での自然循環を安定して形成することができる。
When dimethyl ether is added to CO 2 as a working fluid, dimethyl ether dissolves in CO 2 . As a result, the boiling point of the working fluid rises more than when only CO 2 is present.
Although the critical temperature of carbon dioxide is 31.05 ° C., the condensation temperature of the working fluid can be increased by adding dimethyl ether. This makes it easy to condense even if the temperature range of the working fluid increases. Accordingly, the working fluid is easily liquefied in the heat exchanger and the liquid head pressure is easily formed, so that natural circulation in a closed circuit can be stably formed.

また、COにジメチルエーテルを配合することで、作動流体の圧力を低下させることができる。COは蒸気圧が3.485MPa(293K)と高くなる物性を有するが、ジメチルエーテルを配合することで作動流体の圧力を下げることができ、作動流体が流れる閉回路の配管系を低コストとすることができる。なお、ジメチルエーテルの配合割合を大きくすると、可燃性になると共に、ジメチルエーテルは比較的液粘度が高いので(149.0×10−6Pa/s(298K))、輸送動力が上昇する。従って、COに対する配合割合が1〜35モル%(不燃域又は微燃域)での使用が望ましい。 In addition, by blending dimethyl ether CO 2, it is possible to reduce the pressure of the working fluid. CO 2 has a physical property of a vapor pressure as high as 3.485 MPa (293 K), but by adding dimethyl ether, the pressure of the working fluid can be lowered, and the cost of the closed circuit piping system through which the working fluid flows is reduced. be able to. In addition, when the compounding ratio of dimethyl ether is increased, it becomes combustible and dimethyl ether has a relatively high liquid viscosity (149.0 × 10 −6 Pa / s (298 K)), so that the transportation power increases. Therefore, it is desirable to use the compounding ratio with respect to CO 2 in the range of 1 to 35 mol% (non-combustible region or slightly combustible region).

また、本発明方法において、作動流体がCOとCOに対して炭化水素系自然冷媒を1〜35モル%配合したものとするとよい。このように、炭化水素系自然冷媒、例えば、イソブタン、プロパン、エタン等を配合すると、凝縮温度を上昇させ、かつ作動流体の圧力を低下させる利点がある。 Further, in the process of the present invention, it may be assumed that the working fluid is 1 to 35 mol% blended hydrocarbon natural refrigerant with respect to CO 2 and CO 2. As described above, when a natural hydrocarbon refrigerant such as isobutane, propane, ethane or the like is blended, there is an advantage that the condensation temperature is raised and the pressure of the working fluid is lowered.

また、本発明装置において、好ましくは、太陽熱加熱装置に設けられた集熱管のうち少なくとも作動流体の加熱が始まり超臨界状態に変わるまでの部分を作動流体の流れ方向下流側に向かって上向き勾配となるように配置し、作動流体を該太陽熱加熱装置の底部から流入して上部から流出させ、前記熱交換器において前記閉回路と接続される伝熱管を作動流体の流れ方向下流側に向かって下向き勾配となるように配置し、作動流体を該熱交換器の上部から流入して底部から流出させるように構成するとよい。   In the device of the present invention, it is preferable that at least a portion of the heat collecting tube provided in the solar heating device until the working fluid starts to change to the supercritical state has an upward gradient toward the downstream side in the working fluid flow direction. The working fluid flows in from the bottom of the solar heating device and flows out from the top, and the heat transfer pipe connected to the closed circuit in the heat exchanger is directed downward toward the downstream side in the flow direction of the working fluid. It is good to arrange | position so that it may become a gradient and to comprise so that a working fluid may flow in from the upper part of this heat exchanger, and may flow out from a bottom part.

かかる構成をすることにより、太陽熱加熱装置に設けられた集熱管のうち少なくとも作動流体の加熱が始まり超臨界状態に変わるまでの部分が上向きに配置されるので、作動流体の相変化(液体→超臨界状態)によって超臨界状態となった作動流体が太陽熱加熱装置の出口側に向う上昇力が発生する。この上昇力が該閉回路内での自然循環の形成を助ける作用をなす。
また、熱交換器内では作動流体が流れる伝熱管が下向きに形成されるので、熱交換器の出口側で作動流体の液頭圧を形成しやすくなる。このように、前記構成によって、作動流体の自然循環流を形成するのが容易になる。
With this configuration, at least a portion of the heat collection tube provided in the solar heating device until the working fluid starts to be heated and changes to the supercritical state is arranged upward, so that the phase change of the working fluid (liquid → super Ascending force is generated in the working fluid that has become supercritical due to the critical state) toward the outlet of the solar heating device. This ascending force serves to help form a natural circulation in the closed circuit.
Further, since the heat transfer tube through which the working fluid flows is formed downward in the heat exchanger, it is easy to form the head pressure of the working fluid on the outlet side of the heat exchanger. In this way, the configuration facilitates the formation of a natural circulation flow of the working fluid.

作動流体の自然循環を形成するためには、通常、太陽熱加熱装置を下方の位置に配置し、熱交換器を上方の位置に配置するようにするが、本発明装置では、粘性が小さいCOを作動流体の主要流体として用いていており、かつ前記構成とすることにより、熱交換器を太陽熱加熱装置に対して同一高さに配置しても、自然循環を可能とする。従って、集熱装置が嵩高とならず、集熱装置をコンパクトにすることができる。 To form a natural circulation of the working fluid is typically disposed solar heating apparatus to the position of the lower, but so as to place the heat exchanger in the upper position, in the apparatus of the present invention, the viscosity is less CO 2 Is used as the main fluid of the working fluid, and the above configuration allows natural circulation even when the heat exchanger is arranged at the same height with respect to the solar heating device. Therefore, the heat collecting device does not become bulky, and the heat collecting device can be made compact.

また、本発明装置において、熱交換器に流入するか若しくは該熱交換器から流出する作動流体の温度、又は該熱交換器から流出する熱回収流体の温度を検出する検出器と、該熱交換器に熱回収流体を流通させる出入り配管及び該出入り配管に設けられた流量調整弁と、該検出器の温度検出値に基づいて該流量調整弁の開度を調節するコントローラとを備えるようにするとよい。これによって、熱回収流体の温度を用途に応じて必要な温度に調節することができる。従って、冬季で日射量が少ない時でも、高い温度の熱回収流体を得ることができる。   In the apparatus of the present invention, a detector for detecting the temperature of the working fluid flowing into or out of the heat exchanger, or the temperature of the heat recovery fluid flowing out of the heat exchanger, and the heat exchange An inlet / outlet pipe for allowing the heat recovery fluid to flow through the vessel, a flow rate adjusting valve provided in the inlet / outlet pipe, and a controller for adjusting the opening degree of the flow rate adjusting valve based on the temperature detection value of the detector. Good. Thereby, the temperature of the heat recovery fluid can be adjusted to a necessary temperature according to the application. Therefore, a high temperature heat recovery fluid can be obtained even in winter when the amount of solar radiation is small.

また、本発明装置において、熱交換器の出口部の閉回路に分岐管路を並設し、該分岐管路に開閉弁を介して液化した炭酸ガスの貯留容器を設け、該貯留容器に貯留する作動流体量を調節することにより作動流体の液頭圧を調節可能に構成するとよい。
夏季と冬季とでは作動流体の比重が異なる。そのため、熱交換器下流側に形成される液頭圧に夏季と冬季で差が出てくる。液頭圧が変動すると、作動流体の自然循環を安定して維持できなくなる。これに対し、前記構成とすることにより、液頭圧を常に所定の高さに調節することができるので、常に自然循環を安定して形成することができる。
In the apparatus of the present invention, a branch pipe is provided in parallel with the closed circuit of the outlet portion of the heat exchanger, and a storage container for carbon dioxide gas liquefied through an on-off valve is provided on the branch pipe, and the storage is stored in the storage container. It is preferable that the liquid head pressure of the working fluid can be adjusted by adjusting the amount of working fluid to be adjusted.
The specific gravity of the working fluid differs between summer and winter. Therefore, there is a difference in the liquid head pressure formed on the downstream side of the heat exchanger between summer and winter. When the liquid head pressure fluctuates, the natural circulation of the working fluid cannot be stably maintained. On the other hand, since the liquid head pressure can always be adjusted to a predetermined height with the above-described configuration, the natural circulation can always be stably formed.

また、本発明装置の太陽熱加熱装置において、作動流体が流れる集熱管を真空容器の内部に配置するようにするとよい。これによって、集合管からの伝導、対流による熱の放散を小さくし、熱損失を小さくすることができる。   Moreover, in the solar heating apparatus of this invention apparatus, it is good to arrange | position the heat collection tube through which a working fluid flows inside a vacuum vessel. Thereby, heat dissipation due to conduction and convection from the collecting pipe can be reduced, and heat loss can be reduced.

本発明方法は、熱交換器に作動流体の流入側と流出側とで高低差をもうけて該熱交換器の作動流体流出側に作動流体による液頭圧を形成するとともに、太陽熱加熱装置の集熱により該太陽熱加熱装置出口側の作動流体を超臨界状態とすることにより、作動流体が流れる閉回路に作動流体の自然循環を形成するようにしたので、作動流体を循環させる動力を不要として省エネを可能とし、かつ装置構成を簡素化して低コストを実現することができる。   The method of the present invention creates a head pressure due to the working fluid on the working fluid outflow side of the heat exchanger by providing a difference in height between the working fluid inflow side and the outflow side in the heat exchanger, and also collecting the solar heating device. Since the working fluid on the outlet side of the solar heating device is brought into a supercritical state by heat, a natural circulation of the working fluid is formed in the closed circuit through which the working fluid flows, so that the power to circulate the working fluid is unnecessary and energy is saved. In addition, the apparatus configuration can be simplified and low cost can be realized.

また、本発明装置は、作動流体の保有熱を回収して液化させるとともに、作動流体の流入側と作動流体の流出する流出側とで高低差をもうけて作動流体の流出側に作動流体により液頭圧を形成させる熱交換器と、作動流体の閉回路に介設され液化した作動流体に集熱して出口側の作動流体を超臨界状態となす太陽熱加熱装置とを備え、該閉回路で作動流体の自然循環を形成させるようにように構成したため、閉回路を流れる炭酸ガスの自然循環を可能にし、これによって、作動流体を循環させる動力を不要として省エネを達成でき、かつ装置構成を簡素化して低コストを実現することができる。   In addition, the device of the present invention recovers and liquefies the retained heat of the working fluid, and creates a difference in level between the inflow side of the working fluid and the outflow side from which the working fluid flows out. A heat exchanger for generating a head pressure and a solar heating device for collecting heat into the liquefied working fluid interposed in the closed circuit of the working fluid to bring the working fluid on the outlet side into a supercritical state, and operate in the closed circuit Since it is configured to form a natural circulation of fluid, it enables the natural circulation of carbon dioxide gas flowing in a closed circuit, which can save energy by eliminating the power to circulate the working fluid, and simplify the device configuration And low cost can be realized.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
[実施形態1]
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.
[Embodiment 1]

次に本発明に係る太陽熱集熱装置の第1実施形態を図1〜図4に基づいて説明する。図1は本実施形態に係る系統図である。図1において、太陽熱を採集する集熱器2と、集熱器2で採取した太陽熱を回収する熱交換器3とが略同一高さに設けられている。これらの間には、集熱器2の出口部と熱交換器3の入口部とを接続する流路1aと、熱交換器3の出口部と集熱器2の入口部とを接続する流路1bとからなる閉回路1が設けられ、閉回路1を通って集熱器2と熱交換器3との間を作動流体が循環するように構成されている。作動流体として、CO又は、CO及びCOに対して1〜35モル%の割合で配合されたジメチルエーテルからなる作動流体が用いられる。 Next, 1st Embodiment of the solar-heat collecting apparatus which concerns on this invention is described based on FIGS. 1-4. FIG. 1 is a system diagram according to the present embodiment. In FIG. 1, a heat collector 2 that collects solar heat and a heat exchanger 3 that recovers solar heat collected by the heat collector 2 are provided at substantially the same height. Between these, the flow path 1a connecting the outlet portion of the heat collector 2 and the inlet portion of the heat exchanger 3, and the flow connecting the outlet portion of the heat exchanger 3 and the inlet portion of the heat collector 2 are connected. A closed circuit 1 including a path 1 b is provided, and the working fluid is circulated between the heat collector 2 and the heat exchanger 3 through the closed circuit 1. As the working fluid, a working fluid made of dimethyl ether blended at a ratio of 1 to 35 mol% with respect to CO 2 or CO 2 and CO 2 is used.

集熱器2の構造を図2及び図3に基づいて説明する。図2は集熱器2の斜視図、図3は図2中のA部拡大図である。図2及び図3において、流路1bに接続される下部集合管22は上下方向に傾きをもって配置され、その上端が集熱器2のケーシング21に取り付けられている。下部集合管22はケーシング21の内部に配設された下部ヘッダ23に接続されている。ケーシング21の内部で下部ヘッダ23には複数の集熱管24が並列に接続されている。流路1bから下部集合管22に流入してきた作動流体wは、下部ヘッダ23を経て集熱管24に分配される。集熱管24は上下方向に入口側が低く、出口側が高くなるようにある傾きをもって配置され、入口側と出口側とで高低差をもつように配置されている。   The structure of the heat collector 2 is demonstrated based on FIG.2 and FIG.3. FIG. 2 is a perspective view of the heat collector 2, and FIG. 3 is an enlarged view of a portion A in FIG. 2 and 3, the lower collecting pipe 22 connected to the flow path 1 b is disposed with an inclination in the vertical direction, and the upper end thereof is attached to the casing 21 of the heat collector 2. The lower collecting pipe 22 is connected to a lower header 23 disposed inside the casing 21. A plurality of heat collecting tubes 24 are connected in parallel to the lower header 23 inside the casing 21. The working fluid w flowing into the lower collecting pipe 22 from the flow path 1 b is distributed to the heat collecting pipe 24 through the lower header 23. The heat collecting tubes 24 are arranged with a certain inclination so that the inlet side is low in the vertical direction and the outlet side is high, and are arranged so as to have a height difference between the inlet side and the outlet side.

集熱管24の周囲は密封構造の透明なガラス管25で囲まれ、ガラス管25の内部は真空状態に保持されている。これによって、集熱管24からの熱伝導、熱対流による熱の放散を小さくし、熱損失を少なくすることができる。
ガラス管25の下側周囲には放物面状をなす反射板26が配置されている。反射板26は放物線とインボリュート曲線で構成され、高い反射率を有する増反射コーティングが施されたアルミニウム板をプレス加工して製作されている。反射板26で反射された太陽光sは集熱管24に集光される。
The periphery of the heat collecting tube 24 is surrounded by a transparent glass tube 25 having a sealed structure, and the inside of the glass tube 25 is maintained in a vacuum state. Thus, heat conduction from the heat collecting tube 24 and heat dissipation due to heat convection can be reduced, and heat loss can be reduced.
A parabolic reflector 26 is disposed around the lower side of the glass tube 25. The reflection plate 26 is composed of a parabola and an involute curve, and is manufactured by pressing an aluminum plate to which a high reflection coating having a high reflectance is applied. The sunlight s reflected by the reflecting plate 26 is collected on the heat collecting tube 24.

作動流体wは、集熱管24を通る間に集熱管24に向けて集光された太陽光sで加熱される。その後、作動流体wはケーシング21内に設けられた上部ヘッダ27で合流して上部集合管28に流出し、上部集合管28から流路1aに流出する。上部集合管28も上下方向に傾きをもって配置され、その下端部がケーシング21に取り付けられている。反射板26の下側には、グラスウール等からなる図示しない断熱材が配設され、ケーシング21の外側に熱が放散するのを防止している。   The working fluid w is heated by sunlight s collected toward the heat collecting tube 24 while passing through the heat collecting tube 24. Thereafter, the working fluid w joins at the upper header 27 provided in the casing 21, flows out into the upper collecting pipe 28, and flows out from the upper collecting pipe 28 into the flow path 1a. The upper collecting pipe 28 is also arranged with an inclination in the vertical direction, and the lower end thereof is attached to the casing 21. A heat insulating material (not shown) made of glass wool or the like is disposed on the lower side of the reflection plate 26 to prevent heat from being diffused to the outside of the casing 21.

図1において、集熱器2で加熱された作動流体w(集熱器2出口部で70〜90℃)は、電磁弁9を経て熱交換器3に到達する。熱交換器3では、作動流体wの入口部が熱交換器3の上部に接続され、作動流体wの出口部が熱交換器3の下部に接続されている。そして、該入口部と該出口部とは、熱交換器3の内部で上下方向に配設された伝熱管3aで接続されている。熱交換器3には、熱交換器3の下部に接続された供給管4から熱回収流体fが供給され、熱回収流体fは作動流体wと間接熱交換を行なって作動流体wから熱回収を行なった後、熱交換器3の上部に接続された戻り管5から排出される。   In FIG. 1, the working fluid w heated by the heat collector 2 (70 to 90 ° C. at the outlet portion of the heat collector 2) reaches the heat exchanger 3 through the electromagnetic valve 9. In the heat exchanger 3, the inlet part of the working fluid w is connected to the upper part of the heat exchanger 3, and the outlet part of the working fluid w is connected to the lower part of the heat exchanger 3. The inlet portion and the outlet portion are connected by a heat transfer tube 3a disposed in the vertical direction inside the heat exchanger 3. The heat exchanger 3 is supplied with a heat recovery fluid f from a supply pipe 4 connected to the lower part of the heat exchanger 3, and the heat recovery fluid f performs indirect heat exchange with the working fluid w to recover heat from the working fluid w. Then, the heat is discharged from the return pipe 5 connected to the upper part of the heat exchanger 3.

伝熱管3aを流れる作動流体wと伝熱管3aの周囲を流れる熱回収流体fとは、図1に示すように、互いに逆方向に流れるので、熱交換効率を向上させることができる。このように、集熱管24を真空状態としたガラス管25内に配置し、かつ熱交換器3で作動流体wと熱回収流体fとを対向流としたことにより、高温の熱回収流体fを回収することができる。   Since the working fluid w flowing through the heat transfer tube 3a and the heat recovery fluid f flowing around the heat transfer tube 3a flow in opposite directions as shown in FIG. 1, heat exchange efficiency can be improved. As described above, the heat collection tube 24 is placed in the glass tube 25 in a vacuum state, and the working fluid w and the heat recovery fluid f are counterflowed by the heat exchanger 3, so that the high temperature heat recovery fluid f is changed. It can be recovered.

前述のように、集熱器2において、下部集合管22、集熱管24及び上部集合管28は、それぞれ作動流体wの流れ方向下流側に向かって上向き勾配となるように配置され、下部集合管22と上部集合管28とは高低差を有しているので、集熱管24内で加熱され超臨界状態となった作動流体wは上昇力を発生して集熱管24の出口側に向う。集熱器2を出た作動流体wは、流路1aを通って熱交換器3の上部に配置された入口部から熱交換器3に入り、熱交換器3の下部に配置された出口部で流路1bに接続されている。そのため、流路1aは流路1bより上方に配置され、流路1aと流路1bとは高低差を有している。   As described above, in the heat collector 2, the lower collecting pipe 22, the heat collecting pipe 24, and the upper collecting pipe 28 are arranged so as to have an upward gradient toward the downstream side in the flow direction of the working fluid w. Since 22 and the upper collecting pipe 28 have a height difference, the working fluid w heated in the heat collecting pipe 24 to be in a supercritical state generates a rising force toward the outlet side of the heat collecting pipe 24. The working fluid w that has exited the heat collector 2 enters the heat exchanger 3 from the inlet portion disposed at the upper portion of the heat exchanger 3 through the flow path 1 a, and the outlet portion disposed at the lower portion of the heat exchanger 3. And connected to the flow path 1b. Therefore, the flow path 1a is disposed above the flow path 1b, and the flow path 1a and the flow path 1b have a height difference.

作動流体wから熱回収した熱回収流体fは戻り管5から出て、各用途、例えば、給湯、暖房、融雪等に供される。一方、熱回収流体fと熱交換を行なって作動流体wの凝縮温度以下(例えば15〜25℃)に冷却された作動流体wは液化して、下方に流下する。熱交換器3の出口管路1cは上下方向に配置されて、伝熱管3a内で液化し伝熱管3aの下部と出口管路1cとに溜まった作動流体wにより液頭圧Hを形成することができるように構成されている。液頭圧Hを形成することによって、閉回路1の作動流体wは矢印a方向に自然循環流を形成することができる。そのため、熱交換器3を出た作動流体wは集熱器2に移動する。   The heat recovery fluid f recovered from the working fluid w exits from the return pipe 5 and is used for various purposes such as hot water supply, heating, and snow melting. On the other hand, the working fluid w that has been subjected to heat exchange with the heat recovery fluid f and cooled to a temperature equal to or lower than the condensation temperature of the working fluid w (for example, 15 to 25 ° C.) is liquefied and flows downward. The outlet pipe 1c of the heat exchanger 3 is arranged in the vertical direction, and a liquid head pressure H is formed by the working fluid w liquefied in the heat transfer pipe 3a and accumulated in the lower part of the heat transfer pipe 3a and the outlet pipe 1c. It is configured to be able to. By forming the liquid head pressure H, the working fluid w in the closed circuit 1 can form a natural circulation flow in the direction of arrow a. Therefore, the working fluid w exiting the heat exchanger 3 moves to the heat collector 2.

集熱器2の出口部の上部集合管28には、作動流体wの温度を検出する温度検出器7が設けられ、流路1aには流量調整弁9が介設されている。そして、温度検出器7で検出した検出値をコントローラ6に入力し、コントローラ6で流量調整弁9の開度を調節することにより、流路1aを流れる作動流体wの流量を調節する。流量調整弁9の開度を調節することにより、集熱器2の出口部で作動流体wが常に超臨界状態を形成するように、集熱器2出口部での作動流体wの温度を制御することができる。   The upper collecting pipe 28 at the outlet of the heat collector 2 is provided with a temperature detector 7 for detecting the temperature of the working fluid w, and the flow rate adjusting valve 9 is interposed in the flow path 1a. The detected value detected by the temperature detector 7 is input to the controller 6, and the controller 6 adjusts the flow rate of the working fluid w flowing through the flow path 1a by adjusting the opening of the flow rate adjusting valve 9. By adjusting the opening of the flow rate adjusting valve 9, the temperature of the working fluid w at the outlet of the collector 2 is controlled so that the working fluid w always forms a supercritical state at the outlet of the collector 2. can do.

なお、温度検出器7の代わりに、集熱器2に日射量測定器8を設け、日射量測定器8で集熱器2に照射される太陽光sの日射量を測定し、この日射量測定値に基づいて流量調整弁9の開度を調節するようにしてもよい。あるいは、集熱器2の入口部と出口部との温度差又は圧力差を検出し、それらの差から集熱器2の集熱量を演算し、該演算値に基づいて流量調整弁9を調節するようにしてもよい。あるいは集熱器2の出口部の作動流体wの圧力を検出し、該圧力値に基づいて流量調整弁9を調節するようにしてもよい。   Instead of the temperature detector 7, a solar radiation amount measuring device 8 is provided in the heat collector 2, and the solar radiation amount irradiating the heat collector 2 is measured by the solar radiation amount measuring device 8, and this solar radiation amount is measured. You may make it adjust the opening degree of the flow regulating valve 9 based on a measured value. Alternatively, the temperature difference or pressure difference between the inlet and outlet of the heat collector 2 is detected, the amount of heat collected by the heat collector 2 is calculated from the difference, and the flow rate adjustment valve 9 is adjusted based on the calculated value. You may make it do. Alternatively, the pressure of the working fluid w at the outlet of the heat collector 2 may be detected, and the flow rate adjustment valve 9 may be adjusted based on the pressure value.

また、熱回収流体の戻り管5には、流量調整弁10と熱回収流体fの温度を検出する温度検出器11が設けられており、温度検出器11の検出値をコントローラ6に入力し、該検出値に基づいて流量調整弁10を調節することによって、戻り管5を流れる熱回収流体fの温度を調節することができる。これによって、所望の温度の熱回収流体fを得ることができる。   The return pipe 5 for the heat recovery fluid is provided with a flow rate adjusting valve 10 and a temperature detector 11 for detecting the temperature of the heat recovery fluid f, and the detected value of the temperature detector 11 is input to the controller 6. The temperature of the heat recovery fluid f flowing through the return pipe 5 can be adjusted by adjusting the flow rate adjustment valve 10 based on the detected value. Thereby, the heat recovery fluid f having a desired temperature can be obtained.

また、出口管路1cには分岐管路12が出口管路1cに対して並設され、分岐管路12には出口管路1cを流れる作動流体wの一部を貯留する貯留容器13が介設されている。貯留容器13の入口側及び出口側には開閉弁14及び15が設けられている。   Further, a branch pipe 12 is provided in parallel with the outlet pipe 1c in the outlet pipe 1c, and a storage container 13 for storing a part of the working fluid w flowing through the outlet pipe 1c is interposed in the branch pipe 12. It is installed. Opening and closing valves 14 and 15 are provided on the inlet side and the outlet side of the storage container 13.

閉回路1内の作動流体wの流れを安定化するためには、集熱器2で作動流体wの蒸発域を形成し、かつ熱交換器3で作動流体wの凝縮域を形成するとともに、熱交換器3の伝熱管3aと出口管路1cに形成される作動流体wの液頭圧Hを一定にする必要がある。しかし、夏季と冬季では温度の違いにより作動流体wの比重が異なるため、液頭圧Hに差が出てくる。このため、前記のように、出口管路1cに並列に設けた分岐管路12に貯留容器13を介設し、貯留容器13に作動流体wの一部を貯留し、その貯留量を調節することによって、集熱器2の蒸発域と熱交換器3の凝縮域を確保するとともに、液頭圧Hが常に一定になるように調節することができる。   In order to stabilize the flow of the working fluid w in the closed circuit 1, an evaporation region of the working fluid w is formed by the heat collector 2, and a condensing region of the working fluid w is formed by the heat exchanger 3, It is necessary to make the head pressure H of the working fluid w formed in the heat transfer pipe 3a and the outlet pipe 1c of the heat exchanger 3 constant. However, since the specific gravity of the working fluid w differs depending on the temperature in summer and winter, a difference appears in the liquid head pressure H. For this reason, as mentioned above, the storage container 13 is interposed in the branch pipe 12 provided in parallel with the outlet pipe 1c, a part of the working fluid w is stored in the storage container 13, and the storage amount is adjusted. By this, while ensuring the evaporation area | region of the heat collector 2 and the condensation area | region of the heat exchanger 3, it can adjust so that the liquid head pressure H may become always constant.

かかる構成を有する本実施形態において、上向き勾配となるように配置された集熱管24及び上部集合管28の内部で蒸発し超臨界状態となった作動流体に発生する上昇力と、熱交換器3内の伝熱管3a及び出口管路1cに形成された液頭圧Hとによって、閉回路1で作動流体wの自然循環を行なう。そして、集熱器2で太陽光sの熱を集めて作動流体wを加熱し、加熱した作動流体wを熱交換器3で熱回収流体fと間接熱交換させる。これによって、作動流体wの保有熱を熱回収流体fに回収させ、熱回収流体fに回収した熱を各用途、例えば、給湯、暖房あるいは融雪等に使用する。   In the present embodiment having such a configuration, the rising force generated in the working fluid evaporated in the supercritical state by evaporating inside the heat collecting tube 24 and the upper collecting tube 28 arranged to have an upward gradient, and the heat exchanger 3 The working fluid w is naturally circulated in the closed circuit 1 by the heat transfer pipe 3a and the liquid head pressure H formed in the outlet pipe 1c. Then, the heat of the sunlight s is collected by the heat collector 2 to heat the working fluid w, and the heated working fluid w is indirectly heat-exchanged with the heat recovery fluid f by the heat exchanger 3. As a result, the retained heat of the working fluid w is recovered in the heat recovery fluid f, and the heat recovered in the heat recovery fluid f is used for each application, for example, hot water supply, heating, or snow melting.

本実施形態の作動流体wのモリエル線図(圧力−エンタルピ線図)を図4に示す。図4において、Kは臨界点(圧力7.3MPa、温度31℃)であり、臨界点以上で超臨界状態となる。本実施形態は、作動流体wが閉回路1内を自然循環するため、圧力の変動はなく、同一圧力で集熱器2での気化(超臨界状態)と熱交換器3での凝縮との間を往復するサイクルbを繰り返す。作動流体wに含まれるCOは、高圧高密度でも粘性が変わらず、臨界点(圧力7.3MPa、温度31℃)以上で超臨界状態となり、超臨界状態で粘度が小さくなるので、作動流体wを集熱器2と熱交換器3間に配設された閉回路1を循環させる場合に、自然循環が容易に形成できるとともに、作動流体wの移動に要する力を小さくすることができる。また、COは高圧になるほど比熱が減少し、特に高温での集熱がしやすくなるという利点をもつ。 A Mollier diagram (pressure-enthalpy diagram) of the working fluid w of this embodiment is shown in FIG. In FIG. 4, K is a critical point (pressure 7.3 MPa, temperature 31 ° C.), and becomes a supercritical state above the critical point. In this embodiment, since the working fluid w naturally circulates in the closed circuit 1, there is no fluctuation in pressure, and vaporization (supercritical state) in the heat collector 2 and condensation in the heat exchanger 3 at the same pressure. Cycle b that reciprocates between them is repeated. The viscosity of CO 2 contained in the working fluid w does not change even at high pressure and high density, becomes a supercritical state at a critical point (pressure 7.3 MPa, temperature 31 ° C.) or higher, and decreases in the supercritical state. When w is circulated through the closed circuit 1 disposed between the heat collector 2 and the heat exchanger 3, natural circulation can be easily formed and the force required to move the working fluid w can be reduced. In addition, CO 2 has an advantage that the specific heat decreases as the pressure increases, and heat collection is particularly easy at a high temperature.

本実施形態によれば、集熱器2に設けられた集熱管24を作動流体wの流れ方向下流側に向かって上向き勾配となるように配置するとともに、上下部集合管22及び28も同様な配置とし、熱交換器3の伝熱管3aを上下方向に配置し、集熱器2の出口側と熱交換器3の入口側とを流路1aで接続し、熱交換器3の出口側と集熱器2の入口側とを流路1bで接続することにより、流路1aと流路1bとに高低差をもうけることができる。   According to the present embodiment, the heat collecting pipes 24 provided in the heat collector 2 are arranged so as to have an upward gradient toward the downstream side in the flow direction of the working fluid w, and the upper and lower collecting pipes 22 and 28 are similar. The heat exchanger tube 3a of the heat exchanger 3 is arranged in the vertical direction, the outlet side of the heat collector 2 and the inlet side of the heat exchanger 3 are connected by a flow path 1a, and the outlet side of the heat exchanger 3 By connecting the inlet side of the heat collector 2 with the flow path 1b, it is possible to make a height difference between the flow path 1a and the flow path 1b.

かかる構成により、集熱管24内で相変化(液体→超臨界状態)によって超臨界状態となった作動流体wが集熱器2の出口側に向う上昇力を発生する。この上昇力が閉回路1内での自然循環の形成を助ける作用をなす。   With this configuration, the working fluid w that has become a supercritical state due to a phase change (liquid → supercritical state) in the heat collecting tube 24 generates a rising force toward the outlet side of the heat collector 2. This ascending force serves to assist the formation of natural circulation in the closed circuit 1.

また、伝熱管3aと伝熱管3aの出口側に接続される出口管路1cとで作動流体wの液頭圧Hを形成することができる。そして、集熱器2の出口側流路1aに超臨界状態を形成することによって発生する上昇力と該液頭圧Hとにより、閉回路1内で作動流体wの自然循環流を形成することができる。これによって、作動流体wの循環にポンプ動力を不要とするので、集熱装置の稼動を省エネかつ低コストで行なうことができる。   Moreover, the head pressure H of the working fluid w can be formed by the heat transfer tube 3a and the outlet pipe line 1c connected to the outlet side of the heat transfer tube 3a. Then, a natural circulation flow of the working fluid w is formed in the closed circuit 1 by the ascending force generated by forming the supercritical state in the outlet-side flow path 1a of the heat collector 2 and the liquid head pressure H. Can do. This eliminates the need for pump power to circulate the working fluid w, so that the heat collecting device can be operated with energy saving and low cost.

また、熱交換器3の出口管路1cに並設した分岐管路12に貯留容器13を設け、作動流体wの一部を貯留容器13に貯留し、該貯留量を調節することにより、閉回路1での作動流体wの循環を安定化させることができる。   Further, a storage container 13 is provided in the branch pipe 12 arranged in parallel with the outlet pipe 1c of the heat exchanger 3, a part of the working fluid w is stored in the storage container 13, and the storage amount is adjusted so that the storage container 13 is closed. The circulation of the working fluid w in the circuit 1 can be stabilized.

また、作動流体wとしてCOとCOに対して1〜35モル%のジメチルエーテルを配合した作動流体を用いた場合には、作動流体の沸点をCOだけを作動流体として用いた場合より上昇させることができる。これによって、凝縮温度域を高くすることができる。そのため、作動流体の温度域が高くなっても、作動流体が凝縮しやすくなり、液頭圧Hを形成しやすくなるので、作動流体の自然循環を確実に行なうことができる。 In addition, when a working fluid containing 1 to 35 mol% dimethyl ether based on CO 2 and CO 2 is used as the working fluid w, the boiling point of the working fluid is higher than when only CO 2 is used as the working fluid. Can be made. Thereby, the condensation temperature range can be increased. Therefore, even if the temperature range of the working fluid increases, the working fluid is likely to condense and the liquid head pressure H is easily formed, so that natural circulation of the working fluid can be performed reliably.

さらに、ジメチルエーテルを配合することで、作動流体の圧力を下げることができ、作動流体の配管系を低圧仕様にすることができて低コストとすることができる。   Furthermore, by blending dimethyl ether, the pressure of the working fluid can be lowered, the piping system of the working fluid can be made into a low pressure specification, and the cost can be reduced.

また、集熱器2の出口部の上部集合管28に作動流体wの温度を検出する温度検出器7を設けるか、又は集熱器2の日射量を測定する日射量測定器8を設け、コントローラ6でこれらの測定値に基づいて流量調整弁9の開度を調節しているので、集熱器2出口側の作動流体wの温度を所望の温度に調節することができる。これによって、集熱器2の出口側流路1aに作動流体wの超臨界状態を安定して形成できるので、自然循環を安定して形成できるとともに、集熱器2での作動流体wによる集熱効率を向上させることができる。   Further, a temperature detector 7 for detecting the temperature of the working fluid w is provided in the upper collecting pipe 28 at the outlet of the heat collector 2 or a solar radiation amount measuring device 8 for measuring the solar radiation amount of the heat collector 2 is provided. Since the controller 6 adjusts the opening degree of the flow rate adjusting valve 9 based on these measured values, the temperature of the working fluid w on the outlet side of the heat collector 2 can be adjusted to a desired temperature. As a result, the supercritical state of the working fluid w can be stably formed in the outlet-side flow path 1a of the heat collector 2, so that natural circulation can be stably formed, and the working fluid w in the heat collector 2 can be collected by the working fluid w. Thermal efficiency can be improved.

また、戻り管5に流量調整弁10及び熱回収流体の温度を検出する温度検出器11を設け、コントローラ6で該温度検出値に基づいて流量調整弁10の開度を調節するようにしているので、用途に応じて熱回収流体の温度を所望の温度に調節することができる。従って、冬季のように日射量が少ない時期でも、高い温度の熱回収流体を得ることができる。
[実施形態2]
Further, the return pipe 5 is provided with a flow rate adjusting valve 10 and a temperature detector 11 for detecting the temperature of the heat recovery fluid, and the controller 6 adjusts the opening degree of the flow rate adjusting valve 10 based on the detected temperature value. Therefore, the temperature of the heat recovery fluid can be adjusted to a desired temperature according to the application. Therefore, a high temperature heat recovery fluid can be obtained even when the amount of solar radiation is small, such as in winter.
[Embodiment 2]

次に本発明の第2実施形態を図5に基づいて説明する。図5において、前記第1実施形態と同一符号を付した機器又は部品は、第1実施形態と同一の機器又は部品を示すので、これらの説明を省略する。本実施形態では、集熱器2で加熱された作動流体wの熱を回収する熱回収部30で、熱回収流体との熱交換を行なわずに、直接熱供給を必要とする対象物との熱交換を行なうようにした場合である。その他の構成は前記第1実施形態と同一である。   Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 5, devices or parts having the same reference numerals as those in the first embodiment indicate the same devices or parts as those in the first embodiment, and thus description thereof is omitted. In the present embodiment, the heat recovery unit 30 that recovers the heat of the working fluid w heated by the heat collector 2 does not exchange heat with the heat recovery fluid, and does not exchange heat with the target that requires direct heat supply. This is a case where heat exchange is performed. Other configurations are the same as those of the first embodiment.

例えば、熱回収部30で閉回路1に接続された伝熱管31を空調対象空間r中に配置し、空調対象空間rの雰囲気をファン32で伝熱管31に当るように循環させることで、空調対象空間rを暖房するようにする。あるいは、別の用途として、伝熱管31を融雪を必要とする場所、例えば寒冷地の道路に埋設して融雪を行なうようにする。このように、本実施形態では、前記第1実施形態の作用効果に加えて、伝熱管31を流れる作動流体wを直接加熱対象物と熱交換するので、熱回収効率を向上させることができる。
[実施形態3]
For example, by arranging the heat transfer pipe 31 connected to the closed circuit 1 in the heat recovery unit 30 in the air conditioning target space r and circulating the atmosphere of the air conditioning target space r so as to hit the heat transfer pipe 31 by the fan 32, the air conditioning The target space r is heated. Alternatively, as another application, the heat transfer tube 31 is buried in a place where snow melting is required, for example, a road in a cold region, so as to melt snow. Thus, in this embodiment, in addition to the effect of the said 1st Embodiment, since the working fluid w which flows through the heat exchanger tube 31 is directly heat-exchanged with a heating target object, heat recovery efficiency can be improved.
[Embodiment 3]

次に本発明の第3実施形態を図6に基づいて説明する。図6に示す第3実施形態の集熱装置の構成は図1に示す第1実施形態と同一である。従って、第3実施形態において、第1実施形態と同一の機器又は部品は第1実施形態と同一の符号を付し、それら同一の機器又は部品の説明を省略する。   Next, a third embodiment of the present invention will be described with reference to FIG. The configuration of the heat collecting apparatus of the third embodiment shown in FIG. 6 is the same as that of the first embodiment shown in FIG. Accordingly, in the third embodiment, the same devices or parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description of those same devices or parts is omitted.

以下、本実施形態において、前記第1実施形態と異なる点を説明する。図6において、熱交換器3で作動流体wと間接熱交換して、作動流体wが保有する熱を回収した熱回収流体の戻り管5に貯留タンク41を接続し、熱回収した熱回収流体を貯留タンク41に貯留する。貯留タンク41の隔壁は断熱性材で構成され、断熱性を有する。昼間集熱装置で得た高温の熱回収流体を貯留タンク41に貯留しておくことで、熱回収流体fの保有熱を夜間にも利用することができる。   Hereinafter, in the present embodiment, points different from the first embodiment will be described. In FIG. 6, a heat recovery fluid is recovered by connecting a storage tank 41 to the return pipe 5 of the heat recovery fluid that has indirectly recovered heat from the working fluid w in the heat exchanger 3 and recovered the heat held by the working fluid w. Is stored in the storage tank 41. The partition wall of the storage tank 41 is made of a heat insulating material and has heat insulating properties. By storing the high-temperature heat recovery fluid obtained by the daytime heat collecting device in the storage tank 41, the retained heat of the heat recovery fluid f can be used even at night.

さらに、貯留タンク41内の熱回収流体を吸収冷凍機42に供給するように構成している。貯留タンク41に貯留する熱回収流体fは回収温度が高いため、この熱回収流体fを吸収冷凍機42に供給することで、夏季の空調に適用可能である。また、貯留タンク41に貯留した熱回収流体fとして、水道水等の飲料水を使用することで、給湯にも適用可能である。その他、冬季の暖房や、あるいはビニールハウスでの暖房、温水プールの補助熱源や、寒冷地での融雪対策等に適用可能である。例えば、熱交換方式として、給湯など高温回収が望ましい場合には、前述のように、集熱器2での2重管方式による真空断熱及び熱交換器3での対向流式熱交換を採用するとよい。   Further, the heat recovery fluid in the storage tank 41 is configured to be supplied to the absorption refrigerator 42. Since the heat recovery fluid f stored in the storage tank 41 has a high recovery temperature, supplying the heat recovery fluid f to the absorption refrigerator 42 can be applied to air conditioning in summer. Moreover, it is applicable to hot water supply by using drinking water such as tap water as the heat recovery fluid f stored in the storage tank 41. In addition, it is applicable to heating in winter, heating in a greenhouse, auxiliary heat source for a hot water pool, and snowmelt countermeasures in cold regions. For example, when high temperature recovery such as hot water supply is desirable as the heat exchange method, as described above, the vacuum insulation by the double tube method in the heat collector 2 and the counter flow type heat exchange in the heat exchanger 3 are adopted. Good.

このように、本実施形態によれば、前記第1実施形態による作用効果に加えて、前記のような作用効果を得ることができる。
[実施例]
Thus, according to this embodiment, in addition to the effect by the said 1st Embodiment, the above effect can be obtained.
[Example]

次に本発明の前記第1実施形態を実際に実施した場合の実施例を図7及び図8に基づいて説明する。図7に本実施例の運転条件を示し、図8に得られた実験データを示している。なお、本実施例は、冬季(1月から3月)の晴天時に行なった実験の平均値を示し、熱交換器3における熱回収流体fとして水を用いている。図8から、80%以上の高い集熱率と回収率を得られることがわかる。   Next, an example in which the first embodiment of the present invention is actually implemented will be described with reference to FIGS. FIG. 7 shows the operating conditions of this example, and FIG. 8 shows the experimental data obtained. In addition, the present Example shows the average value of the experiment conducted at the time of fine weather in winter (January to March), and water is used as the heat recovery fluid f in the heat exchanger 3. It can be seen from FIG. 8 that a high heat collection rate and recovery rate of 80% or more can be obtained.

なお、作動流体として、COにジメチルエーテルを配合した作動流体を用いた場合は、COのみを用いた場合と比べ、凝縮温度を高くすることができるので、液頭圧を形成しやすくなる。また、作動流体として水を用いた場合の熱回収率が60%であるのに対して、作動流体として、COとジメチルエーテルとを配合した作動流体を用いた場合は、80%以上の高い熱回収率を得ることができる。 Incidentally, as the working fluid, in the case of using a working fluid containing a combination of dimethyl ether to CO 2, compared with the case of using only CO 2, it is possible to increase the condensation temperature, it becomes easy to form a Ekiatama圧. In addition, the heat recovery rate when water is used as the working fluid is 60%, whereas when the working fluid containing CO 2 and dimethyl ether is used as the working fluid, a high heat of 80% or more. A recovery rate can be obtained.

図9は、冬季(2月)の晴天時に行なった実験データを示す。これは、作動流体としてCOにジメチルエーテル10モル%を配合した作動流体を用いた場合の集熱器2(1.5m当り)による集熱量と日射量を計測したものである。実験は、午前10時過ぎにスタートし、外気温が8〜16℃の中で行なったものである。図9から、日射量に対して高い集熱量を得ていることがわかる。 FIG. 9 shows experimental data performed in winter (February) on a clear day. This is a measurement of the amount of heat collected and the amount of solar radiation by the heat collector 2 (per 1.5 m 2 ) when a working fluid containing 10 mol% of dimethyl ether in CO 2 is used as the working fluid. The experiment started after 10:00 am and was performed at an outside temperature of 8 to 16 ° C. It can be seen from FIG. 9 that a high amount of heat collection is obtained with respect to the amount of solar radiation.

本発明によれば、COを主要流体とする作動流体が循環する閉回路を形成し、該閉回路で作動流体を自然循環させることで、動力を不要とし、低コストで集熱能力の高い太陽熱集熱手段を実現することができる。 According to the present invention, a closed circuit in which a working fluid whose main fluid is CO 2 circulates is formed, and the working fluid is naturally circulated in the closed circuit, so that no power is required, and the heat collecting capability is low and high in cost. A solar heat collecting means can be realized.

本発明の第1実施形態の系統図である。It is a systematic diagram of a 1st embodiment of the present invention. 前記第1実施形態の集熱器の斜視図である。It is a perspective view of the heat collector of the first embodiment. 図2中のA部拡大図である。It is the A section enlarged view in FIG. 前記第1実施形態のモリエル線図である。It is a Mollier diagram of the first embodiment. 本発明の第2実施形態の系統図である。It is a systematic diagram of 2nd Embodiment of this invention. 本発明の第3実施形態の系統図である。It is a systematic diagram of 3rd Embodiment of this invention. 本発明の前記第1実施形態を実施した実施例の運転条件を示す図表である。It is a graph which shows the driving | running conditions of the Example which implemented the said 1st Embodiment of this invention. 前記実施例の実験データを示す図表である。It is a graph which shows the experimental data of the said Example. 前記実施例の実験データを示す線図である。It is a diagram which shows the experimental data of the said Example.

符号の説明Explanation of symbols

1 閉回路
1c 出口管路
2 集熱器(太陽熱加熱装置)
3 熱交換器
3a 伝熱管
4 熱回収流体供給管
5 熱回収流体戻り管
6 コントローラ
7,11 温度検出器
8 日射量測定器
9,10 流量調整弁
12 分岐管路
13 貯留容器
14,15 開閉弁
24 集熱管
25 ガラス管(真空容器)
f 熱回収流体
H 液頭圧
r 空調対象空間
w 作動流体
DESCRIPTION OF SYMBOLS 1 Closed circuit 1c Outlet pipe line 2 Heat collector (solar heating device)
DESCRIPTION OF SYMBOLS 3 Heat exchanger 3a Heat transfer pipe 4 Heat recovery fluid supply pipe 5 Heat recovery fluid return pipe 6 Controller 7,11 Temperature detector 8 Solar radiation amount measuring instrument 9,10 Flow control valve 12 Branch pipe 13 Storage container 14,15 On-off valve 24 Heat collection tube 25 Glass tube (vacuum container)
f Heat recovery fluid H Liquid head pressure r Air-conditioned space w Working fluid

Claims (13)

COを主要流体とする作動流体が循環する閉回路を形成し、太陽熱加熱装置で集熱された該作動流体から熱交換器で熱回収する集熱方法において、
前記熱交換器に作動流体の流入側と流出側とで高低差をもうけて該熱交換器の作動流体流出側に作動流体による液頭圧を形成するとともに、
該太陽熱加熱装置の集熱により該太陽熱加熱装置出口側の作動流体を超臨界状態とすることにより、該閉回路に作動流体の自然循環を形成するようにしたことを特徴とする集熱方法。
In a heat collecting method for forming a closed circuit in which a working fluid having CO 2 as a main fluid circulates and recovering heat from the working fluid collected by a solar heating device using a heat exchanger,
Forming a liquid head pressure by the working fluid on the working fluid outflow side of the heat exchanger by creating a difference in height between the inflow side and the outflow side of the working fluid in the heat exchanger;
A heat collecting method, wherein the working fluid on the outlet side of the solar heating device is brought into a supercritical state by collecting heat from the solar heating device, thereby forming a natural circulation of the working fluid in the closed circuit.
前記閉回路に作動流体の圧縮又は揚程作用を伴う物理的な強制循環機器を介設していないことを特徴とする請求項1に記載の集熱方法。   2. The heat collecting method according to claim 1, wherein a physical forced circulation device with a working fluid compression or lifting action is not interposed in the closed circuit. 前記太陽熱加熱装置に設けられた集熱管のうち少なくとも作動流体の加熱が始まり超臨界状態に変わるまでの部分を作動流体の流れ方向下流側に向かって上向き勾配となるように配置したことを特徴とする請求項1に記載の集熱方法。   Of the heat collecting tubes provided in the solar heating device, at least a portion until heating of the working fluid starts and changes to a supercritical state is arranged so as to have an upward gradient toward the downstream side in the flow direction of the working fluid, The heat collecting method according to claim 1. 前記太陽熱加熱装置の出口側閉回路に設けた検出器により作動流体の超臨界状態の有無を検出し、
該検出結果に応じて該太陽熱加熱装置の出口側と前記熱交換器の入口側とを接続する閉回路に介設した流量調整弁の開度を調節することにより、該太陽熱加熱装置の出口側閉回路に常に作動流体の超臨界状態を形成するようにしたことを特徴とする請求項1に記載の集熱方法。
The presence or absence of a supercritical state of the working fluid is detected by a detector provided in the closed circuit on the outlet side of the solar heating device,
According to the detection result, the outlet side of the solar heating device is adjusted by adjusting the opening of a flow rate adjusting valve provided in a closed circuit connecting the outlet side of the solar heating device and the inlet side of the heat exchanger. 2. The heat collecting method according to claim 1, wherein a supercritical state of the working fluid is always formed in the closed circuit.
前記検出器が、前記太陽熱加熱装置の集熱量を検出する検出器、又は該太陽熱加熱装置出口側の閉回路を流れる作動流体の温度若しくは圧力を検出する検出器であることを特徴とする請求項4に記載の集熱方法。   The detector is a detector that detects a heat collection amount of the solar heating device, or a detector that detects a temperature or pressure of a working fluid flowing in a closed circuit on the outlet side of the solar heating device. 4. The heat collecting method according to 4. 前記作動流体がCOとCOに対してジメチルエーテルを1〜35モル%配合したものであることを特徴とする請求項1に記載の集熱方法。 The heat collecting method according to claim 1, wherein the working fluid is a mixture of 1 to 35 mol% of dimethyl ether with respect to CO 2 and CO 2 . 前記作動流体がCOとCOに対して炭化水素系自然冷媒を1〜35モル%配合したものであることを特徴とする請求項1に記載の集熱方法。 The heat collecting method according to claim 1, wherein the working fluid is a blend of 1 to 35 mol% of a hydrocarbon-based natural refrigerant with respect to CO 2 and CO 2 . COを主要流体とする作動流体が循環する閉回路を形成し、作動流体に集熱する太陽熱加熱装置と、集熱された作動流体から熱回収する熱交換器とを備えた集熱装置において、
作動流体の保有熱を回収して液化させるとともに、作動流体の流入側と作動流体の流出する流出側とで高低差をもうけて作動流体の流出側に作動流体により液頭圧を形成させる熱交換器と、
該閉回路に介設され液化した作動流体に集熱して出口側の作動流体を超臨界状態となす太陽熱加熱装置とを備え、
該閉回路で作動流体の自然循環を形成させるように構成したことを特徴とする集熱装置。
In a heat collecting apparatus including a solar heating device that forms a closed circuit in which a working fluid having CO 2 as a main fluid circulates and collects heat in the working fluid, and a heat exchanger that recovers heat from the collected working fluid ,
Heat exchange that collects and liquefies the retained heat of the working fluid and creates a head pressure with the working fluid on the working fluid outflow side by creating a level difference between the working fluid inflow side and the working fluid outflow side And
A solar heating device that collects heat into the liquefied working fluid interposed in the closed circuit and brings the working fluid on the outlet side into a supercritical state,
A heat collecting apparatus configured to form a natural circulation of a working fluid in the closed circuit.
前記太陽熱加熱装置に設けられた集熱管のうち少なくとも作動流体の加熱が始まり超臨界状態に変わるまでの部分を作動流体の流れ方向下流側に向かって上向き勾配となるように配置し、作動流体を該太陽熱加熱装置の底部から流入して上部から流出させ、前記熱交換器において前記閉回路と接続される伝熱管を作動流体の流れ方向下流側に向かって下向き勾配となるように配置し、作動流体を該熱交換器の上部から流入して底部から流出させるように構成したことを特徴とする請求項8に記載の集熱装置。   Of the heat collecting tubes provided in the solar heating device, at least a portion until the working fluid starts heating and changes to a supercritical state is arranged so as to have an upward gradient toward the downstream side in the flow direction of the working fluid, and the working fluid is The solar heat heating device flows in from the bottom and flows out from the top, and the heat exchanger tube connected to the closed circuit in the heat exchanger is disposed so as to have a downward gradient toward the downstream side in the flow direction of the working fluid. The heat collecting apparatus according to claim 8, wherein the fluid is configured to flow in from the top of the heat exchanger and flow out from the bottom. 前記熱交換器が前記太陽熱加熱装置に対して同程度又は同程度以上の高さに配置されたことを特徴とする請求項9に記載の集熱装置。   The heat collecting apparatus according to claim 9, wherein the heat exchanger is disposed at a height that is about the same as or higher than the height of the solar heating apparatus. 前記熱交換器に流入するか若しくは該熱交換器から流出する作動流体の温度、又は該熱交換器から流出する熱回収流体の温度を検出する検出器と、
該熱交換器に熱回収流体を流通させる出入り配管及び該出入り配管に設けられた流量調整弁と、
該検出器の温度検出値に基づいて該流量調整弁の開度を調節するコントローラとを備えたことを特徴とする請求項8に記載の集熱装置。
A detector for detecting the temperature of the working fluid flowing into or out of the heat exchanger, or the temperature of the heat recovery fluid flowing out of the heat exchanger;
An inlet / outlet pipe through which the heat recovery fluid flows through the heat exchanger, and a flow rate adjusting valve provided in the inlet / outlet pipe;
The heat collecting apparatus according to claim 8, further comprising a controller that adjusts an opening degree of the flow rate adjustment valve based on a temperature detection value of the detector.
前記熱交換器の出口部の前記閉回路に分岐管路を並設し、該分岐管路に開閉弁を介して液化した作動流体の貯留容器を設け、
該貯留容器に貯留する作動流体量を調節することにより作動流体の液頭圧を調節可能に構成したことを特徴とする請求項8に記載の集熱装置。
A branch pipe is provided in parallel with the closed circuit at the outlet of the heat exchanger, and a storage container for the working fluid liquefied via an on-off valve is provided in the branch pipe.
The heat collecting apparatus according to claim 8, wherein the head pressure of the working fluid can be adjusted by adjusting the amount of the working fluid stored in the storage container.
前記太陽熱加熱装置において作動流体が流れる集熱管を真空容器の内部に配置したことを特徴とする請求項8〜10のいずれかの項に記載の集熱装置。   The heat collecting apparatus according to any one of claims 8 to 10, wherein a heat collecting tube through which a working fluid flows in the solar heating apparatus is disposed inside a vacuum vessel.
JP2007157698A 2007-06-14 2007-06-14 Heat collecting method and heat collecting device Pending JP2008309402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157698A JP2008309402A (en) 2007-06-14 2007-06-14 Heat collecting method and heat collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157698A JP2008309402A (en) 2007-06-14 2007-06-14 Heat collecting method and heat collecting device

Publications (1)

Publication Number Publication Date
JP2008309402A true JP2008309402A (en) 2008-12-25

Family

ID=40237162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157698A Pending JP2008309402A (en) 2007-06-14 2007-06-14 Heat collecting method and heat collecting device

Country Status (1)

Country Link
JP (1) JP2008309402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056941B1 (en) 2009-10-06 2011-08-16 인하대학교 산학협력단 Dish-Type Solar Collectors
WO2012081301A1 (en) * 2010-12-15 2012-06-21 株式会社日立プラントテクノロジー Cooling system
CN110468457A (en) * 2019-09-12 2019-11-19 大连工业大学 Super (Asia) the critical CO of one kind2Scouring of wool device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056941B1 (en) 2009-10-06 2011-08-16 인하대학교 산학협력단 Dish-Type Solar Collectors
WO2012081301A1 (en) * 2010-12-15 2012-06-21 株式会社日立プラントテクノロジー Cooling system
JP2012127566A (en) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd Cooling system
CN103282726A (en) * 2010-12-15 2013-09-04 株式会社日立制作所 Cooling system
AU2011342551B2 (en) * 2010-12-15 2015-04-16 Hitachi Ltd. Cooling system
CN110468457A (en) * 2019-09-12 2019-11-19 大连工业大学 Super (Asia) the critical CO of one kind2Scouring of wool device
CN110468457B (en) * 2019-09-12 2022-02-08 大连工业大学 Super (sub) critical CO2Wool washing device

Similar Documents

Publication Publication Date Title
US9316404B2 (en) Heat pump with integral solar collector
CN101793422B (en) Liquid circulation heating system and method of controlling the same
US4552208A (en) Heat actuated system for circulating heat transfer fluids
US20110030404A1 (en) Heat pump with intgeral solar collector
JP5549376B2 (en) Hot water system
KR100619444B1 (en) Chilled water storage type hybrid heating and cooling system using a solar heat system
CN103069174B (en) Solar energy compressor/pump combines
JPWO2011004866A1 (en) Steam supply device
JP4607232B2 (en) Solar heat collecting method and apparatus
US20080047285A1 (en) Solar air conditioning system
US11073305B2 (en) Solar energy capture, energy conversion and energy storage system
JP2008309402A (en) Heat collecting method and heat collecting device
Chen et al. Performance and economic evaluation of a solar-air hybrid source energy heating system installed in cold region of China
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JP5976447B2 (en) Solar heat generation cold generation system
KR101516913B1 (en) Liquefied natural gas vaporizer
KR20200060856A (en) Solar Module assisted Heat Pump System
KR101425962B1 (en) Binary Geothermal Power Generation System
Jakob Investigations into solar powered diffusion-absorption cooling machines
JP2005257140A (en) Solar heat pump system and its operation method
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
JP2009281644A (en) Heating system
JP2008190447A (en) Solar heat utilizing system
JP2016099099A (en) Drying system
CN115200256B (en) Solar heat pump system and control method thereof