JP2008307628A - Small-diameter cemented carbide endmill - Google Patents

Small-diameter cemented carbide endmill Download PDF

Info

Publication number
JP2008307628A
JP2008307628A JP2007156662A JP2007156662A JP2008307628A JP 2008307628 A JP2008307628 A JP 2008307628A JP 2007156662 A JP2007156662 A JP 2007156662A JP 2007156662 A JP2007156662 A JP 2007156662A JP 2008307628 A JP2008307628 A JP 2008307628A
Authority
JP
Japan
Prior art keywords
diameter
shank
blade
half angle
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007156662A
Other languages
Japanese (ja)
Other versions
JP4856586B2 (en
Inventor
Yusuke Kubota
祐介 久保田
Hirotsugu Takahama
宏貢 高濱
Yasuo Hamatake
恭生 浜武
Jiro Osawa
二朗 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2007156662A priority Critical patent/JP4856586B2/en
Publication of JP2008307628A publication Critical patent/JP2008307628A/en
Application granted granted Critical
Publication of JP4856586B2 publication Critical patent/JP4856586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-diameter cemented carbide endmill having end cutting edges having an outside diameter D1 of 0.5 mm or less, which endmill can improve machining precision and durability by suppressing the deflection and breakage of the tool by improving the stiffness and strength of the cutting edges, and also can be easily treated in resharpening the cutting edges and in a setting-up operation. <P>SOLUTION: A diameter increasing portion 16 for smoothly and continuously increasing the diameter is provided between the cutting edge portion 14 and a shank 12 so as to make a tip end half angle α 15° or larger. Therefore, the projecting length L2 from the shank 12 to the tip end of the cutting edge portion 14 becomes small, and the mechanical strength and the stiffness of the projecting portion including the cutting edge portion 14 become high, and the deflection and breakage of the tool can be suppressed. As a result, the high machining precision can be achieved in a cutting operation, and the durability can be improved. On the other hand, the breakage of the cutting edge portion 14 in resharpening the cutting edge portion 14 and in a setting-up time, etc. for mounting the endmill in a holder can be suppressed. Therefore, the endmill can be easily handled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は小径超硬エンドミルに係り、特に、工具の撓み変形や折損を抑制して高い加工精度が得られる高寿命の小径超硬エンドミルに関するものである。   The present invention relates to a small-diameter carbide end mill, and more particularly, to a long-life small-diameter carbide end mill that can suppress bending deformation and breakage of a tool and obtain high machining accuracy.

超硬合金にて構成されているとともに、底刃および外周刃を有する刃部がシャンクの先端側に同軸に一体に設けられており、且つその底刃の外径D1が0.5mm以下の小径超硬エンドミルが提案されている。特許文献1に記載のエンドミルはその一例で、シャンクの先端側には、径寸法が直線的に小さくなる第1テーパ部と、径寸法が一定の首部と、径寸法が直線的に小さくなる第2テーパ部と、を介して小径の刃部が一体に設けられている。
特開2006−88229号公報
A blade portion that is made of a cemented carbide and has a bottom blade and an outer peripheral blade that are coaxially and integrally provided on the front end side of the shank, and has an outer diameter D1 of 0.5 mm or less. Carbide end mills have been proposed. An example of the end mill described in Patent Document 1 is a first taper portion having a linearly smaller diameter dimension, a neck portion having a constant radial dimension, and a first linearly smaller diameter dimension at the front end side of the shank. A small-diameter blade portion is integrally provided through two taper portions.
JP 2006-88229 A

しかしながら、このような従来の小径超硬エンドミルは、シャンクから刃部までの突出寸法が大きくなるため、剛性や機械的強度を確保することが困難で、切削加工時に撓み変形や折損が生じ易く、十分な加工精度や耐久性が得られ難いばかりでなく、刃部の研削加工時やホルダに装着する際の段取り時等にも折損する可能性があり、取り扱いが容易でなかった。   However, since such a conventional small-diameter carbide end mill has a large protruding dimension from the shank to the blade part, it is difficult to ensure rigidity and mechanical strength, and bending deformation and breakage are liable to occur during cutting, Not only is it difficult to obtain sufficient processing accuracy and durability, but there is a possibility of breakage during grinding of the blade portion or setup during mounting on the holder, and handling is not easy.

本発明は以上の事情を背景として為されたもので、その目的とするところは、底刃の外径D1が0.5mm以下の小径超硬エンドミルにおいて、刃部の剛性や機械的強度を高くし、工具の撓み変形や折損を抑制して加工精度や耐久性を向上させるとともに、刃部の研削加工時や段取り時等の取り扱いを容易にすることにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to increase the rigidity and mechanical strength of the blade in a small-diameter carbide end mill having an outer diameter D1 of the bottom blade of 0.5 mm or less. In addition, it is intended to improve processing accuracy and durability by suppressing bending deformation and breakage of the tool, and to facilitate handling at the time of grinding or setting up the blade portion.

かかる目的を達成するために、第1発明は、超硬合金にて構成されているとともに、底刃および外周刃を有する刃部がシャンクの先端側に同軸に一体に設けられており、且つその底刃の外径D1が0.5mm以下の小径超硬エンドミルであって、前記底刃と外周刃とを接続しているコーナと前記シャンクの先端外周縁とを結ぶ傾斜直線Sが、中心線Oに対して傾斜する先端半角αが、15°以上になるように、前記刃部と前記シャンクとの間にその刃部と同じ外径からシャンクと同じ外径になるまでシャンク側へ向かうに従って径寸法が大きくなる径増大部を備えていることを特徴とする。   In order to achieve such an object, the first invention is made of a cemented carbide, and a blade portion having a bottom blade and an outer peripheral blade is integrally provided coaxially on the front end side of the shank, and An inclined straight line S connecting a corner connecting the bottom blade and the outer peripheral blade and the outer peripheral edge of the shank is a center line with a small-diameter carbide end mill having an outer diameter D1 of the bottom blade of 0.5 mm or less. As the tip half angle α that is inclined with respect to O is 15 ° or more, it goes from the same outer diameter of the blade portion to the shank until it reaches the same outer diameter as that of the shank between the blade portion and the shank. It is characterized by having a diameter increasing portion in which the diameter dimension increases.

第2発明は、第1発明の小径超硬エンドミルにおいて、前記径増大部は、前記刃部から前記シャンクに達するまで径寸法が滑らかに連続的に増大させられていることを特徴とする。   The second invention is characterized in that, in the small-diameter carbide end mill of the first invention, the diameter-increasing portion has a diameter that is smoothly and continuously increased from the blade portion to the shank.

第3発明は、第2発明の小径超硬エンドミルにおいて、前記径増大部は、(a) 前記刃部から前記シャンク側へ向かうに従って、その刃部と同じ外径から径寸法が直線的に大きくなるテーパ部を、その刃部に連続して備えているとともに、(b) そのテーパ部に滑らかに接続されるとともに、軸方向の外形線が凹円弧状となるように径寸法が非線形に増大させられて前記シャンクの先端外周縁に達している凹円弧形状部を、そのテーパ部とシャンクとの間に備えていることを特徴とする。   According to a third aspect of the present invention, there is provided the small-diameter carbide end mill according to the second aspect, wherein the diameter-increasing portion is (a) linearly larger in diameter from the same outer diameter as the blade portion toward the shank side. (B) The diameter is increased nonlinearly so that the outer contour in the axial direction becomes a concave arc shape. A concave arc-shaped portion which is caused to reach the outer peripheral edge of the tip of the shank is provided between the tapered portion and the shank.

第4発明は、第3発明の小径超硬エンドミルにおいて、前記凹円弧形状部は、前記軸方向の外形線が一定の半径Rで湾曲させられていることを特徴とする。   According to a fourth aspect of the present invention, in the small-diameter carbide end mill according to the third aspect, the concave arcuate portion is curved with a constant radius R in the axial outline.

第5発明は、第4発明の小径超硬エンドミルにおいて、前記先端半角αは15°〜35°の範囲内で、前記テーパ部のテーパ半角βは5°以上、20°未満の範囲内であることを特徴とする。
なお、テーパ半角βは、テーパ角度の1/2のことである。
The fifth aspect of the invention is the small-diameter carbide end mill of the fourth aspect, wherein the tip half angle α is in the range of 15 ° to 35 °, and the taper half angle β of the tapered portion is in the range of 5 ° or more and less than 20 °. It is characterized by that.
The taper half angle β is ½ of the taper angle.

このような小径超硬エンドミルにおいては、先端半角αが15°以上になるように刃部とシャンクとの間に径増大部が設けられているため、シャンクから刃部の先端までの突出寸法が小さくなり、刃部を含む突出部分の機械的強度や剛性が高くなって工具の撓み変形や折損が抑制される。これにより、切削加工時に高い加工精度が得られるとともに耐久性が向上する一方、刃部の研削加工時やホルダに装着する際の段取り時等における折損も抑制されて、取り扱いが容易になる。   In such a small-diameter carbide end mill, since the diameter increasing portion is provided between the blade portion and the shank so that the tip half angle α is 15 ° or more, the protruding dimension from the shank to the tip of the blade portion is small. It becomes small and the mechanical strength and rigidity of the protrusion part including a blade part become high, and the bending deformation and breakage of a tool are suppressed. As a result, high machining accuracy can be obtained during cutting and durability can be improved. On the other hand, breakage during grinding of the blade portion or setup during mounting on the holder is suppressed, and handling is facilitated.

第2発明では、上記径増大部の径寸法が滑らかに連続的に増大させられているため、径寸法の急な変化に起因する応力集中が防止され、切削加工時等の折損が一層効果的に抑制される。   In the second invention, since the diameter of the diameter-increased portion is increased smoothly and continuously, stress concentration due to a sudden change in the diameter is prevented, and breakage during cutting is more effective. To be suppressed.

第3発明では、径増大部がテーパ部と凹円弧形状部とを備えているため、径寸法の急な変化による応力集中を防止しつつ前記先端半角αを容易に15°以上として、機械的強度や剛性を向上させることができる。   In the third invention, since the diameter increasing portion includes the tapered portion and the concave arc-shaped portion, the tip half angle α is easily set to 15 ° or more while preventing stress concentration due to a sudden change in the diameter. Strength and rigidity can be improved.

第4発明では、凹円弧形状部が一定の半径Rで湾曲させられているため、その設計や加工が容易で、高い寸法精度で凹円弧形状部を加工することができる。   In the fourth invention, since the concave arc-shaped portion is curved with a constant radius R, its design and processing are easy, and the concave arc-shaped portion can be processed with high dimensional accuracy.

第5発明では、テーパ部のテーパ半角βが20°未満であるため、径寸法の急な変化による刃部との境界部分の応力集中が防止される一方、そのテーパ半角βは5°以上であるため、テーパ部による応力集中防止作用を享受しつつ凹円弧形状部によって前記先端半角αが15°以上になるようにすることができる。また、先端半角αが35°以下とされているため、テーパ部として所定長さを確保しつつ、一定の半径Rの凹円弧形状部によってシャンクと同じ外径まで径寸法を増大させることができる。   In the fifth invention, since the taper half angle β of the taper portion is less than 20 °, stress concentration at the boundary portion with the blade portion due to a sudden change in diameter is prevented, while the taper half angle β is 5 ° or more. Therefore, the tip half angle α can be made to be 15 ° or more by the concave arc-shaped portion while enjoying the stress concentration preventing action by the tapered portion. Moreover, since the tip half angle α is set to 35 ° or less, the diameter can be increased to the same outer diameter as the shank by the concave arc-shaped portion having a constant radius R while ensuring a predetermined length as the tapered portion. .

本発明の小径超硬エンドミルは、底刃の外径D1が0.5mm以下であれば良く、その外径D1と同じ一定の径寸法の外周刃を備えているストレート刃のエンドミルや、径寸法が外径D1から直線的に大きくなるテーパ刃エンドミルに好適に適用されるが、底刃が半球面上に設けられているボールエンドミルなどの他のエンドミルにも適用され得る。本発明は外径D1が0.1mm以下のエンドミルに好適に適用される一方、外径D1が0.5mmより大きいエンドミルについても、本発明と同様に構成することが可能である。   The small-diameter cemented carbide end mill of the present invention only needs to have an outer diameter D1 of the bottom blade of 0.5 mm or less, and an end mill of a straight blade having an outer peripheral blade having the same constant diameter as the outer diameter D1, Is suitably applied to a tapered blade end mill that linearly increases from the outer diameter D1, but can also be applied to other end mills such as a ball end mill in which a bottom blade is provided on a hemispherical surface. While the present invention is preferably applied to an end mill having an outer diameter D1 of 0.1 mm or less, an end mill having an outer diameter D1 larger than 0.5 mm can be configured in the same manner as the present invention.

刃部には、切り屑排出用の溝が形成され、その溝に沿って外周刃が設けられるとともに、その外周刃に連続するように底刃が設けられる。溝としてはねじれ溝が望ましいが、加工が容易な直溝を採用することもできる。溝数すなわち刃数は、極めて小径であることから2本(2枚刃)が適当であるが、1本(1枚刃)または3本(3枚刃)以上とすることも可能である。   In the blade portion, a chip discharging groove is formed, an outer peripheral blade is provided along the groove, and a bottom blade is provided so as to be continuous with the outer peripheral blade. As the groove, a twisted groove is desirable, but a straight groove that can be easily processed may be employed. Since the number of grooves, that is, the number of blades, is very small, two (two blades) are appropriate. However, one (one blade) or three (three blades) can be used.

先端半角αが15°より小さいと、シャンクから刃部の先端までの突出寸法が大きくなり、機械的強度や剛性が得られ難くなるため、先端半角αが15°以上になるように径増大部を構成する必要がある。径増大部を、刃部に接続されるテーパ部と、シャンクに接続される一定の半径Rの凹円弧形状部とによって構成した場合には、所定の長さ寸法のテーパ部を確保する上で、先端半角αが35°以下の範囲で径増大部を構成することが望ましい。   If the tip half angle α is smaller than 15 °, the projecting dimension from the shank to the tip of the blade becomes large, and it becomes difficult to obtain mechanical strength and rigidity. Therefore, the diameter increasing portion so that the tip half angle α is 15 ° or more. Need to be configured. When the diameter increasing portion is constituted by a tapered portion connected to the blade portion and a concave arc-shaped portion having a certain radius R connected to the shank, it is necessary to secure a tapered portion having a predetermined length dimension. In addition, it is desirable to configure the diameter increasing portion in the range where the tip half angle α is 35 ° or less.

径増大部は、第2発明のように径寸法を滑らかに連続的に増大させることが望ましいが、第1発明の実施に際しては、径寸法が一定の円筒部や、径寸法の変化率が不連続に変化している不連続変化部などを備えていても良い。なお、第2発明では、径増大部における径寸法が滑らかに連続的に増大させられておれば良く、刃部と径増大部との境界や、径増大部とシャンクとの境界では、径寸法の変化率が不連続に変化していても良い。   Although it is desirable for the diameter-increasing portion to increase the diameter dimension smoothly and continuously as in the second aspect of the invention, when the first aspect of the invention is carried out, the cylindrical part having a constant diameter dimension and the rate of change in the diameter dimension are inconsequential. You may provide the discontinuous change part etc. which are changing continuously. In the second aspect of the invention, it is sufficient that the diameter dimension in the diameter-increasing part is increased smoothly and continuously. At the boundary between the blade part and the diameter-increasing part, or at the boundary between the diameter-increasing part and the shank, The rate of change of may change discontinuously.

第3発明では、径増大部が刃部に接続されるテーパ部とシャンクに接続される凹円弧形状部とを備えているが、他の発明の実施に際しては、刃部に接続される凹円弧形状部とシャンクに接続されるテーパ部とによって構成したり、刃部に接続されるテーパ部と、中間の凹円弧形状部と、シャンクに接続されるテーパ部とによって構成したり、或いは凹円弧形状部のみで構成したりするなど、種々の態様が可能である。   In the third aspect of the invention, the diameter-increased portion includes the tapered portion connected to the blade portion and the concave arc shape portion connected to the shank. Consists of a shape part and a taper part connected to the shank, or a taper part connected to the blade part, an intermediate concave arc shape part, and a taper part connected to the shank, or a concave arc Various modes are possible, such as a configuration with only the shape portion.

第4発明では、凹円弧形状部が一定の半径Rで湾曲させられているが、他の発明の実施に際しては、例えばシャンクに向かうに従って曲率が連続的に大きくなるなど、曲率が変化している凹円弧形状部を採用することもできる。   In the fourth invention, the concave arc-shaped portion is curved with a constant radius R. However, in implementing other inventions, the curvature changes, for example, the curvature continuously increases toward the shank. A concave arc-shaped portion can also be employed.

第5発明では、テーパ部のテーパ半角βが5°以上、20°未満であり、20°以上になると刃部との境界部分に応力集中が生じ易くなり、5°未満では先端半角αを15°以上にすることが難しくなるが、他の発明の実施に際しては必ずしもテーパ半角βを5°以上、20°未満の範囲内で設定する必要はない。   In the fifth aspect of the invention, the taper half angle β of the taper portion is 5 ° or more and less than 20 °. When the taper half angle β is 20 ° or more, stress concentration is likely to occur at the boundary portion with the blade portion. However, it is not always necessary to set the taper half angle β within the range of 5 ° or more and less than 20 ° when implementing other inventions.

シャンクは、例えば外径が一定の円柱形状のストレートシャンクが好適に用いられるが、径寸法が直線的に変化しているテーパシャンクを採用することも可能で、少なくとも先端部が円形状を成していれば良い。   As the shank, for example, a cylindrical straight shank having a constant outer diameter is preferably used. However, it is possible to adopt a taper shank whose diameter is linearly changed, and at least the tip portion has a circular shape. It should be.

シャンクの先端部の外径D2は、そのシャンクを把持するホルダの規格等に応じて適宜定められる一方、シャンクから刃部の先端までの突出寸法L2は、前記先端半角αおよびシャンクの外径D2に応じて定まり、例えばD2≒4mmで、先端半角α≒15°であれば、突出寸法L2は7.4mm程度になり、突出寸法L2が7.4mm以下になるように径増大部を構成するようにしても良い。D2≒5mmで、先端半角α≒15°であれば、突出寸法L2は9.3mm程度になり、D2≒10mmで、先端半角α≒15°であれば、突出寸法L2は18.6mm程度になるが、剛性や機械的強度は突出寸法L2が大きくなるのに伴って低下するため、シャンクの外径D2が大きくなるに従って前記先端半角αを大きくすることが望ましい。例えば、シャンクの先端部の外径D2の大きさに拘らず、突出寸法L2が所定値(例えば7.4mm)以下になるように先端半角αを設定するようにしても良い。   The outer diameter D2 of the tip portion of the shank is appropriately determined according to the standard of the holder that holds the shank, while the projecting dimension L2 from the shank to the tip of the blade portion is the tip half angle α and the outer diameter D2 of the shank. For example, if D2≈4 mm and the tip half angle α≈15 °, the protruding dimension L2 is about 7.4 mm, and the diameter increasing portion is configured so that the protruding dimension L2 is 7.4 mm or less. You may do it. If D2≈5 mm and the tip half angle α≈15 °, the protrusion dimension L2 is about 9.3 mm. If D2≈10 mm and the tip half angle α≈15 °, the protrusion dimension L2 is about 18.6 mm. However, since the rigidity and mechanical strength decrease as the protrusion dimension L2 increases, it is desirable to increase the tip half angle α as the outer diameter D2 of the shank increases. For example, the tip half angle α may be set so that the protruding dimension L2 is a predetermined value (eg, 7.4 mm) or less regardless of the outer diameter D2 of the tip of the shank.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である2枚刃の小径超硬エンドミル10を示す図で、(a) は中心線Oと直角方向から見た拡大正面図、(b) は先端部分を更に拡大して示す正面図、(c) は刃部14を更に拡大して示す正面図、(d) は刃部14を更に拡大して斜め先端側から見た斜視図である。この小径超硬エンドミル10は、超硬合金にて構成されているとともに、円柱形状のシャンク(ストレートシャンク)12と、そのシャンク12の先端側に設けられた刃部14と、それ等の間の径増大部16とが、共通の中心線O上に一体に設けられている。刃部14は、ストレート刃のエンドミルとして機能するもので、径増大部16の先端部分に達するように一対のねじれ溝18が砥石による研削加工によって設けられており、そのねじれ溝18に沿って径寸法が一定の外周刃20が形成されているとともに、軸方向の先端部には、その外周刃20に連続して底刃22が設けられている。底刃22の外径D1すなわち工具径は0.5mm以下で、本実施例では0.05mmであり、刃長L1は0.075mmである。また、シャンク12の外径D2は4mmである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a two-blade small-diameter carbide end mill 10 according to an embodiment of the present invention, where (a) is an enlarged front view seen from a direction perpendicular to the center line O, and (b) is a front end portion. The front view further enlarged, (c) is a front view showing the blade portion 14 further enlarged, and (d) is a perspective view of the blade portion 14 further enlarged and seen from the oblique tip side. The small-diameter carbide end mill 10 is made of a cemented carbide alloy, and has a cylindrical shank (straight shank) 12, a blade portion 14 provided on the tip side of the shank 12, and a space between them. The diameter increasing portion 16 is integrally provided on the common center line O. The blade portion 14 functions as an end mill of a straight blade, and a pair of twist grooves 18 are provided by grinding with a grindstone so as to reach the tip portion of the diameter increasing portion 16, and the diameter along the twist groove 18 is An outer peripheral blade 20 having a constant dimension is formed, and a bottom blade 22 is provided continuously at the distal end in the axial direction. The outer diameter D1, that is, the tool diameter of the bottom blade 22 is 0.5 mm or less, 0.05 mm in this embodiment, and the blade length L1 is 0.075 mm. The outer diameter D2 of the shank 12 is 4 mm.

前記径増大部16は、刃部14からシャンク12側へ向かうに従って刃部14と同じ外径(底刃22の外径D1)から径寸法が直線的に大きくなるテーパ部30を刃部14に連続して備えているとともに、そのテーパ部30とシャンク12との間に、テーパ部30に滑らかに接続されるとともに軸方向の外形線が凹円弧状となるように径寸法が非線形に増大させられてシャンク12の先端外周縁に達する凹円弧形状部32を備えており、刃部14からシャンク12に達するまで径寸法が滑らかに連続的に増大させられている。凹円弧形状部32は、軸方向の外形線が一定の半径Rで湾曲させられており、テーパ部30との境界では円弧の接線がテーパ部30の外周面(テーパの母線)と一致している。これ等のテーパ部30および凹円弧形状部32は、底刃22と外周刃20とを接続しているコーナC1とシャンク12の先端外周縁C2とを結ぶ傾斜直線Sが、中心線Oに対して傾斜する先端半角αが、15°〜35°の範囲内となり、且つテーパ部30のテーパ半角βが5°以上、20°未満の範囲内となるように構成されている。本実施例では、テーパ半角β=10°、半径R=3mmで、先端半角αが20°となるように設計されており、シャンク12から刃部14の先端までの突出寸法L2は約5.5mmで、テーパ部30と凹円弧形状部32との境界の径寸法D3は約1.2mmである。   The diameter-increasing portion 16 has a tapered portion 30 whose diameter is linearly increased from the same outer diameter (outer diameter D1 of the bottom blade 22) as the blade portion 14 from the blade portion 14 toward the shank 12 side. In addition to being continuously provided, the diameter dimension is increased nonlinearly so that the taper portion 30 and the shank 12 are smoothly connected to the taper portion 30 and the axial outline becomes a concave arc shape. The concave arc-shaped portion 32 reaching the outer peripheral edge of the tip of the shank 12 is provided, and the diameter is smoothly and continuously increased from the blade portion 14 to the shank 12. The concave arc-shaped portion 32 has an axial outline curved with a certain radius R, and the tangent of the arc coincides with the outer peripheral surface (taper generatrix) of the tapered portion 30 at the boundary with the tapered portion 30. Yes. The tapered portion 30 and the concave arc-shaped portion 32 are such that an inclined straight line S connecting the corner C1 connecting the bottom blade 22 and the outer peripheral blade 20 and the outer peripheral edge C2 of the shank 12 with respect to the center line O The tip half angle α that inclines is within the range of 15 ° to 35 °, and the taper half angle β of the tapered portion 30 is within the range of 5 ° or more and less than 20 °. In the present embodiment, the taper half angle β = 10 °, the radius R = 3 mm, and the tip half angle α is designed to be 20 °, and the protruding dimension L2 from the shank 12 to the tip of the blade portion 14 is about 5. At 5 mm, the diameter D3 of the boundary between the tapered portion 30 and the concave arc-shaped portion 32 is about 1.2 mm.

図2は、本実施例の小径超硬エンドミル10の先端部分の電子顕微鏡写真で、(a) はシャンク12よりも先端側部分の拡大写真、(b) は(a) の白丸で囲った部分の拡大写真、(c) は(b) の白丸で囲った部分の拡大写真、(d) は(c) の白丸で囲った部分の拡大写真、(e) は刃部14を斜め先端側から写した写真である。この図2の(a) 、(d) 、および(e) は、それぞれ図1の(b) 、(c) 、(d) に対応する。   FIG. 2 is an electron micrograph of the tip portion of the small-diameter carbide end mill 10 of the present embodiment, (a) is an enlarged photograph of the tip side portion of the shank 12, and (b) is a portion surrounded by a white circle of (a). (C) is an enlarged photograph of the part surrounded by the white circle in (b), (d) is an enlarged photograph of the part surrounded by the white circle in (c), (e) is the blade part 14 from the oblique tip side. It is a photograph taken. (A), (d), and (e) in FIG. 2 correspond to (b), (c), and (d) in FIG. 1, respectively.

このような本実施例の小径超硬エンドミル10によれば、先端半角αが15°以上になるように刃部14とシャンク12との間に径増大部16が設けられているため、シャンク12から刃部14の先端までの突出寸法L2が小さくなり、刃部14を含む突出部分の機械的強度や剛性が高くなって工具の撓み変形や折損が抑制される。これにより、切削加工時に高い加工精度が得られるとともに耐久性が向上する一方、刃部14の研削加工時やホルダに装着する際の段取り時等における折損も抑制されて、取り扱いが容易になる。   According to the small-diameter carbide end mill 10 of this embodiment, since the diameter increasing portion 16 is provided between the blade portion 14 and the shank 12 so that the tip half angle α is 15 ° or more, the shank 12 The protrusion dimension L2 from the blade edge 14 to the tip of the blade portion 14 is reduced, the mechanical strength and rigidity of the protrusion portion including the blade portion 14 are increased, and the bending deformation and breakage of the tool are suppressed. As a result, high machining accuracy can be obtained during cutting and durability can be improved. On the other hand, breakage during grinding of the blade portion 14 or setup during mounting on the holder is also suppressed, and handling is facilitated.

また、本実施例では、径増大部16の径寸法が滑らかに連続的に増大させられているため、径寸法の急な変化に起因する応力集中が防止され、切削加工時等の折損が一層効果的に抑制される。   Further, in this embodiment, the diameter of the diameter increasing portion 16 is increased smoothly and continuously, so that stress concentration due to a sudden change in the diameter is prevented, and breakage at the time of cutting or the like is further reduced. Effectively suppressed.

また、上記径増大部16がテーパ部30と凹円弧形状部32とを備えているため、径寸法の急な変化による応力集中を防止しつつ先端半角αを容易に15°以上として、機械的強度や剛性を向上させることができる。   Further, since the diameter increasing portion 16 includes the tapered portion 30 and the concave arc-shaped portion 32, the tip half angle α is easily set to 15 ° or more while preventing stress concentration due to a sudden change in the diameter. Strength and rigidity can be improved.

また、凹円弧形状部32が一定の半径Rで湾曲させられているため、その設計や加工が容易で、高い寸法精度で凹円弧形状部32を加工することができる。   Further, since the concave arc-shaped portion 32 is curved with a constant radius R, the design and processing are easy, and the concave arc-shaped portion 32 can be processed with high dimensional accuracy.

また、テーパ部30のテーパ半角βが20°未満であるため、径寸法の急な変化による刃部14との境界部分の応力集中が防止される一方、そのテーパ半角βは5°以上であるため、テーパ部32による応力集中防止作用を享受しつつ凹円弧形状部32により先端半角αが15°以上になるようにして突出寸法L2を小さくすることができる。   Further, since the taper half angle β of the taper portion 30 is less than 20 °, stress concentration at the boundary portion with the blade portion 14 due to a sudden change in diameter is prevented, while the taper half angle β is 5 ° or more. Therefore, while enjoying the stress concentration preventing effect by the tapered portion 32, the protruding dimension L2 can be reduced by the concave arc-shaped portion 32 so that the tip half angle α becomes 15 ° or more.

また、先端半角αが35°以下とされているため、テーパ部30として所定長さを確保しつつ、一定の半径Rの凹円弧形状部32によってシャンク12と同じ外径D2まで径寸法を滑らかに増大させることができる。   Further, since the tip half angle α is set to 35 ° or less, the diameter of the tapered portion 30 is ensured to the same outer diameter D2 as the shank 12 by the concave arc-shaped portion 32 having a constant radius R while ensuring a predetermined length. Can be increased.

図3は、前記先端半角αを種々変更して、径増大部16を設計した場合の形状を具体的に説明する図で、テーパ部30のテーパ半角βは何れも10°である。図3の(a) は先端半角α=18°の場合で、半径R=3mmであり、突出寸法L2は約6mm、境界の径寸法D3は約1.5mmである。(b) は先端半角α=23°の場合で、半径R=3mmであり、突出寸法L2は約4.7mm、境界の径寸法D3は約1mmである。(c) は先端半角α=30°の場合で、半径R=3mmであり、突出寸法L2は約3.4mm、境界の径寸法D3は約0.5mmである。(d) は先端半角α=37°の場合で、半径R=2.5mmであり、突出寸法L2は約2.6mm、境界の径寸法D3は約0.3mmである。この(d) では、一応テーパ部30が存在するが、その長さ寸法が短く、径寸法の急な変化による応力集中を防止するというテーパ部30の効果が必ずしも十分に得られないため、シャンク12の外径D2によっても異なるが、先端半角αは35°以下が望ましい。   FIG. 3 is a diagram for specifically explaining the shape when the diameter increasing portion 16 is designed by variously changing the tip half angle α, and the taper half angle β of the taper portion 30 is 10 °. FIG. 3A shows a case where the tip half angle α = 18 °, the radius R = 3 mm, the protrusion dimension L2 is about 6 mm, and the boundary diameter dimension D3 is about 1.5 mm. (b) is the case where the tip half angle α = 23 °, the radius R = 3 mm, the protruding dimension L2 is about 4.7 mm, and the boundary radial dimension D3 is about 1 mm. (c) is the case where the tip half angle α = 30 °, the radius R = 3 mm, the protrusion dimension L2 is about 3.4 mm, and the boundary diameter dimension D3 is about 0.5 mm. (d) is the case where the tip half angle α = 37 °, the radius R = 2.5 mm, the protrusion dimension L2 is about 2.6 mm, and the boundary diameter dimension D3 is about 0.3 mm. In this (d), the tapered portion 30 exists temporarily, but its length dimension is short, and the effect of the tapered portion 30 to prevent stress concentration due to a sudden change in the radial dimension is not necessarily sufficiently obtained. The tip half angle α is preferably 35 ° or less, although it varies depending on the outer diameter D2.

また、図4は、テーパ部30のテーパ半角βを5°〜20°の範囲で変更して折損までの耐久性を調べた結果を説明する図である。すなわち、テーパ半角β=5°、10°、15°、20°の4種類の小径超硬エンドミル10をそれぞれ3本(No1〜No3)ずつ用意し、以下の加工条件で溝切削加工を行なって工具折損までの切削距離を調べたものである。なお、テーパ半角β以外の工具諸元は同じで、工具径すなわち底刃22の外径D1=0.05mm、刃数は2枚、刃長L1=0.075mm、先端半角α=25°、凹円弧形状部32の半径R=3mmである。
《加工条件》
・被削材:プリハードン鋼(HRC40)
・被削材寸法:100mm×30mm、板厚5mm
・回転数:40000min-1
・切込み:0.002mm
・送り:50mm/min
・加工溝形状:長さ100mm、幅0.05mm、深さ0.05mm
・加工方法:長さ100mmの溝を深さ(切込み)0.002mmずつステップ加工
Moreover, FIG. 4 is a figure explaining the result of having investigated the durability to breakage by changing taper half angle (beta) of the taper part 30 in the range of 5 degrees-20 degrees. That is, three small-diameter carbide end mills 10 (No. 1 to No. 3) each having a taper half angle β = 5 °, 10 °, 15 °, and 20 ° are prepared, and groove cutting is performed under the following processing conditions. The cutting distance until the tool breakage was examined. The tool specifications other than the taper half angle β are the same, the tool diameter, that is, the outer diameter D1 of the bottom blade 22, D2 = 0.05 mm, the number of blades, the blade length L1 = 0.075 mm, the tip half angle α = 25 °, The radius R of the concave arc-shaped portion 32 is 3 mm.
"Processing conditions"
-Work material: Pre-hardened steel (HRC40)
Work material dimensions: 100mm x 30mm, plate thickness 5mm
・ Rotation speed: 40000 min -1
・ Incision: 0.002mm
・ Feeding: 50mm / min
・ Processed groove shape: length 100mm, width 0.05mm, depth 0.05mm
・ Machining method: Groove 100mm in length (cut) step by 0.002mm

図4の切削距離は、ステップ加工の合計切削距離で、例えば切削距離が220mmの場合は、切込み0.002mmで長さ100mmの溝加工を2回行なった後、3回目の溝加工の途中(20mm)で工具が折損したことを意味している。また、評価の欄の「○」は合格、「×」は不合格を意味し、平均切削距離が200mm以上の場合を「○」、200mm未満を「×」とした。   The cutting distance in FIG. 4 is the total cutting distance of the step machining. For example, when the cutting distance is 220 mm, the groove machining with a depth of 0.002 mm and a length of 100 mm is performed twice, and then the third grooving process is in progress ( 20 mm) means that the tool is broken. In the evaluation column, “◯” indicates pass, “x” indicates failure, “◯” indicates that the average cutting distance is 200 mm or more, and “X” indicates less than 200 mm.

図4の結果から明らかなように、テーパ半角βが5°〜15°の場合は、何れも平均切削距離が200mm以上であったのに対し、テーパ半角β=20°の場合は、平均切削距離が125.7mmで、テーパ半角β=5°〜15°の場合の半分程度である。これは、テーパ半角βが20°になると、径寸法の急な変化によって刃部14との境界部分に応力集中が生じて折損し易くなるためと考えられる。したがって、テーパ半角βは20°未満であることが望ましい。   As is apparent from the results of FIG. 4, when the taper half angle β is 5 ° to 15 °, the average cutting distance is 200 mm or more in all cases, whereas when the taper half angle β is 20 °, the average cutting distance is The distance is 125.7 mm, which is about half of the taper half angle β = 5 ° to 15 °. This is presumably because when the taper half angle β is 20 °, stress concentration occurs at the boundary portion with the blade portion 14 due to a sudden change in the diameter dimension, and breakage easily occurs. Therefore, it is desirable that the taper half angle β is less than 20 °.

また、図5は、先端半角αを10°〜30°の範囲で変更して溝の加工精度を調べた結果を説明する図である。すなわち、先端半角α=10°、15°、20°、25°、30°の5種類の小径超硬エンドミル10をそれぞれ3本(No1〜No3)ずつ用意し、深さ0.002mmの溝切削加工を行なって溝幅を顕微鏡で測定し、加工前の実際の刃径(外径D1)と比較した。加工条件は、前記図4の耐久性試験の時と同じであるが、切込み0.002mmで1回だけ溝加工を行なって溝幅寸法を測定した。また、溝幅および刃径(外径D1)を測定する測定顕微鏡の測定精度は0.2μmである。なお、先端半角α以外の工具諸元は同じで、工具径すなわち底刃22の外径D1=0.05mm、刃数は2枚、刃長L1=0.075mm、テーパ半角β=10°、凹円弧形状部32の半径R=3mmである。   FIG. 5 is a diagram for explaining the result of examining the machining accuracy of the groove by changing the tip half angle α in the range of 10 ° to 30 °. That is, three small-diameter carbide end mills 10 (No. 1 to No. 3) each having a tip half angle α = 10 °, 15 °, 20 °, 25 °, and 30 ° are prepared, and a groove is cut to a depth of 0.002 mm. Processing was performed and the groove width was measured with a microscope, and compared with the actual blade diameter (outer diameter D1) before processing. The processing conditions were the same as those in the durability test of FIG. 4, but the groove width was measured by performing groove processing only once with a notch of 0.002 mm. Moreover, the measurement accuracy of the measuring microscope for measuring the groove width and the blade diameter (outer diameter D1) is 0.2 μm. The tool specifications other than the tip half angle α are the same, the tool diameter, that is, the outer diameter D1 of the bottom blade 22, 0.05 mm, the number of blades, the blade length L1 = 0.075 mm, the taper half angle β = 10 °, The radius R of the concave arc-shaped portion 32 is 3 mm.

図5の結果から明らかなように、先端半角αが15°〜30°の場合は、何れも差の平均が0.001mm以下であったのに対し、先端半角α=10°の場合は、差の平均が0.0032mmで、先端半角α=15°〜30°の場合の3倍以上である。これは、先端半角αが小さくなるに従ってシャンク12からの突出寸法L2が大きくなり、先端半角α=10°の場合には突出寸法L2≒11mmになるため、工具の撓み変形による振れで溝幅が拡大するものと考えられる。なお、評価の欄の「○」は合格、「×」は不合格を意味し、差の平均が0.001mm以下の場合を「○」、0.001mmを超える場合を「×」とした。   As is clear from the results of FIG. 5, when the tip half angle α is 15 ° to 30 °, the average of the difference was 0.001 mm or less in all cases, whereas when the tip half angle α = 10 °, The average of the differences is 0.0032 mm, which is three times or more of the case where the tip half angle α = 15 ° to 30 °. This is because the protrusion dimension L2 from the shank 12 increases as the tip half angle α decreases, and the protrusion dimension L2≈11 mm when the tip half angle α = 10 °. It is expected to expand. In the evaluation column, “◯” means pass, “x” means fail, and “◯” means that the average difference is 0.001 mm or less, and “×” means it exceeds 0.001 mm.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention implements in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

本発明が適用された小径超硬エンドミルを説明する図で、(a) は中心線Oと直角方向から見た拡大正面図、(b) は先端部分を更に拡大して示した正面図、(c) は刃部を更に拡大して示した正面図、(d) は刃部を更に拡大して斜め先端側から見た斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the small diameter carbide end mill to which this invention was applied, (a) is the enlarged front view seen from the direction perpendicular to the center line O, (b) is the front view which expanded and showed the tip part further. (c) is a front view showing the blade portion further enlarged, and (d) is a perspective view of the blade portion further enlarged and seen from the oblique tip side. 図1の小径超硬エンドミルの先端部分の電子顕微鏡写真を示す図で、(a) はシャンクよりも先端側部分を写した写真、(b) は(a) の白丸で囲った部分の拡大写真、(c) は(b) の白丸で囲った部分の拡大写真、(d) は(c) の白丸で囲った部分の拡大写真、(e) は刃部を斜め先端側から写した拡大写真である。Fig. 2 is an electron micrograph of the tip of the small-diameter carbide end mill shown in Fig. 1, where (a) is a photograph showing the tip side of the shank, and (b) is an enlarged photograph of the part surrounded by white circles in (a). , (C) is an enlarged photograph of the part surrounded by the white circle in (b), (d) is an enlarged photograph of the part enclosed by the white circle in (c), and (e) is an enlarged photograph of the blade part taken from the oblique tip side. It is. 先端半角αを種々変更して径増大部を設計した場合の形状を具体的に示す図で、(a) はα=18°の場合、(b) はα=23°の場合、(c) はα=30°の場合、(d) はα=37°の場合である。The figure which shows specifically the shape at the time of designing the diameter increase part by changing the tip half angle α variously, (a) when α = 18 °, (b) when α = 23 °, (c) Is the case where α = 30 °, and (d) is the case where α = 37 °. テーパ半角βが異なる複数種類の試験品を用いて折損までの耐久性を調べた結果を説明する図である。It is a figure explaining the result of having investigated durability to breakage using several types of test goods from which taper half angle (beta) differs. 先端半角αが異なる複数種類の試験品を用いて加工精度を調べた結果を説明する図である。It is a figure explaining the result of having investigated processing accuracy using a plurality of kinds of test goods from which tip half angle alpha differs.

符号の説明Explanation of symbols

10:小径超硬エンドミル 12:シャンク 14:刃部 16:径増大部 20:外周刃 22:底刃 30:テーパ部 32:凹円弧形状部 S:傾斜直線 O:中心線 α:先端半角 β:テーパ半角   10: Small diameter carbide end mill 12: Shank 14: Blade portion 16: Diameter increasing portion 20: Outer peripheral blade 22: Bottom blade 30: Tapered portion 32: Concave arc shape portion S: Inclined straight line O: Center line α: Tip half angle β: Tapered half angle

Claims (5)

超硬合金にて構成されているとともに、底刃および外周刃を有する刃部がシャンクの先端側に同軸に一体に設けられており、且つ該底刃の外径D1が0.5mm以下の小径超硬エンドミルであって、
前記底刃と外周刃とを接続しているコーナと前記シャンクの先端外周縁とを結ぶ傾斜直線Sが、中心線Oに対して傾斜する先端半角αが、15°以上になるように、前記刃部と前記シャンクとの間に該刃部と同じ外径から該シャンクと同じ外径になるまで該シャンク側へ向かうに従って径寸法が大きくなる径増大部を備えている
ことを特徴とする小径超硬エンドミル。
A small portion having a bottom blade and an outer peripheral blade that are made of cemented carbide, are integrally provided coaxially on the front end side of the shank, and has an outer diameter D1 of 0.5 mm or less. A carbide end mill,
The inclined straight line S connecting the corner connecting the bottom blade and the outer peripheral blade and the outer peripheral edge of the shank is such that the tip half angle α inclined with respect to the center line O is 15 ° or more. A small-diameter portion having a diameter-increasing portion that increases in diameter as it goes toward the shank from the same outer diameter as the blade portion to the same outer diameter as the shank between the blade portion and the shank. Carbide end mill.
前記径増大部は、前記刃部から前記シャンクに達するまで径寸法が滑らかに連続的に増大させられている
ことを特徴とする請求項1に記載の小径超硬エンドミル。
2. The small-diameter carbide end mill according to claim 1, wherein the diameter-increasing portion has a diameter that is smoothly and continuously increased from the blade portion to the shank.
前記径増大部は、
前記刃部から前記シャンク側へ向かうに従って、該刃部と同じ外径から径寸法が直線的に大きくなるテーパ部を、該刃部に連続して備えているとともに、
該テーパ部に滑らかに接続されるとともに、軸方向の外形線が凹円弧状となるように径寸法が非線形に増大させられて前記シャンクの先端外周縁に達している凹円弧形状部を、該テーパ部と該シャンクとの間に備えている
ことを特徴とする請求項2に記載の小径超硬エンドミル。
The diameter increasing portion is
The taper portion is continuously provided with a taper portion in which the diameter dimension increases linearly from the same outer diameter as the blade portion toward the shank side, and
A concave arc-shaped portion that is smoothly connected to the tapered portion and whose diameter is increased nonlinearly so that the axial outline is a concave arc shape and reaches the outer peripheral edge of the shank. The small-diameter carbide end mill according to claim 2, further comprising a taper portion and the shank.
前記凹円弧形状部は、前記軸方向の外形線が一定の半径Rで湾曲させられている
ことを特徴とする請求項3に記載の小径超硬エンドミル。
The small-diameter carbide end mill according to claim 3, wherein the concave arcuate portion is curved with a constant radius R in the axial outline.
前記先端半角αは15°〜35°の範囲内で、前記テーパ部のテーパ半角βは5°以上、20°未満の範囲内である
ことを特徴とする請求項4に記載の小径超硬エンドミル。
5. The small-diameter carbide end mill according to claim 4, wherein the tip half angle α is in a range of 15 ° to 35 °, and the taper half angle β of the tapered portion is in a range of 5 ° or more and less than 20 °. .
JP2007156662A 2007-06-13 2007-06-13 Small-diameter carbide end mill Expired - Fee Related JP4856586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156662A JP4856586B2 (en) 2007-06-13 2007-06-13 Small-diameter carbide end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156662A JP4856586B2 (en) 2007-06-13 2007-06-13 Small-diameter carbide end mill

Publications (2)

Publication Number Publication Date
JP2008307628A true JP2008307628A (en) 2008-12-25
JP4856586B2 JP4856586B2 (en) 2012-01-18

Family

ID=40235705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156662A Expired - Fee Related JP4856586B2 (en) 2007-06-13 2007-06-13 Small-diameter carbide end mill

Country Status (1)

Country Link
JP (1) JP4856586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000771A (en) * 2007-06-20 2009-01-08 Osg Corp Small-diameter ultrahard end mill

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196617A (en) * 1984-10-18 1986-05-15 松下電工株式会社 Rainproof exposure type switch
JP2004202646A (en) * 2002-12-26 2004-07-22 Mitsubishi Materials Kobe Tools Corp End mill and working method using this end mill
JP2005186189A (en) * 2003-12-25 2005-07-14 Hitachi Tool Engineering Ltd Minute diameter end mill
JP2005288647A (en) * 2004-04-02 2005-10-20 Hitachi Tool Engineering Ltd Stepped cylindrical member
JP2006088229A (en) * 2004-09-21 2006-04-06 Hitachi Tool Engineering Ltd Small-diameter coated tool and method of coating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196617A (en) * 1984-10-18 1986-05-15 松下電工株式会社 Rainproof exposure type switch
JP2004202646A (en) * 2002-12-26 2004-07-22 Mitsubishi Materials Kobe Tools Corp End mill and working method using this end mill
JP2005186189A (en) * 2003-12-25 2005-07-14 Hitachi Tool Engineering Ltd Minute diameter end mill
JP2005288647A (en) * 2004-04-02 2005-10-20 Hitachi Tool Engineering Ltd Stepped cylindrical member
JP2006088229A (en) * 2004-09-21 2006-04-06 Hitachi Tool Engineering Ltd Small-diameter coated tool and method of coating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000771A (en) * 2007-06-20 2009-01-08 Osg Corp Small-diameter ultrahard end mill

Also Published As

Publication number Publication date
JP4856586B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
KR101351727B1 (en) Radius end mill and cutting method
JP4418408B2 (en) Step drill
WO2010084805A1 (en) Radius end mill
WO2016056266A1 (en) Radius end mill
JP2006212744A (en) End mill
JP5842708B2 (en) Ball end mill
JP2011189463A (en) End mill
JP5194680B2 (en) Radius end mill
JP4677722B2 (en) 3-flute ball end mill
WO2017043129A1 (en) Drill
JP2008110453A (en) End mill
KR102461075B1 (en) taper end mill
JP2007015025A (en) Taper neck end mill
JP4856586B2 (en) Small-diameter carbide end mill
JP5849817B2 (en) Square end mill
JP6825400B2 (en) Taper ball end mill
JP4996363B2 (en) Small-diameter carbide end mill
JP5402575B2 (en) End mill
JP5786991B2 (en) Radius end mill
KR20110023709A (en) Rotary cutting tool
JP6930404B2 (en) End mill
JP6102568B2 (en) End mill
JP5177982B2 (en) End mill
JP4797333B2 (en) End mill
JP2005319538A (en) Ball endmill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees