JP2008307180A - Laminated structure three-dimensional scaffold and its manufacturing method - Google Patents

Laminated structure three-dimensional scaffold and its manufacturing method Download PDF

Info

Publication number
JP2008307180A
JP2008307180A JP2007156562A JP2007156562A JP2008307180A JP 2008307180 A JP2008307180 A JP 2008307180A JP 2007156562 A JP2007156562 A JP 2007156562A JP 2007156562 A JP2007156562 A JP 2007156562A JP 2008307180 A JP2008307180 A JP 2008307180A
Authority
JP
Japan
Prior art keywords
scaffold
recess
fragment
mold
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007156562A
Other languages
Japanese (ja)
Inventor
Chiaki Hiyori
千秋 日和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2007156562A priority Critical patent/JP2008307180A/en
Publication of JP2008307180A publication Critical patent/JP2008307180A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scaffold which is a porous structure of through-holes through which blood or a body fluids can pass, has compression strength applicable to a fracture site of a joint or a spine, and can be easily shaped to a complex shape of the fracture site, and to provide its manufacturing method. <P>SOLUTION: The scaffold is composed of any biodegradable resin sheet chosen from a group composed of a polylactic acid, polyglycolic acid, a copolymer of the lactic acid and a glycolic acid, a polycaprolactone, a copolymer of lactic acid and caprolactone and is made by stacking flat scaffold fragments having supports vertically and horizontally arranged in the form of a lattice on the obverse and concavities vertically and horizontally arranged in the form of a lattice on the reverse into which the heads of the supports can be fitted by fitting the heads of the supports into the concavities of the upper scaffold fragments. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、医療用の組織再生用の足場(スカフォールド)に関するものであり、特に、生分解性の樹脂からなる複合材によるスカフォールド及びその作製方法に関するものである。スカフォールドの構造体内部に幹細胞や骨芽細胞などを注入して、組織の欠損部に施術することで骨組織や神経組織の再生を図るものである。 The present invention relates to a scaffold for medical tissue regeneration, and more particularly to a scaffold made of a composite material made of a biodegradable resin and a method for producing the same. Bone tissue and nerve tissue are regenerated by injecting stem cells, osteoblasts, and the like into the scaffold structure and performing treatment on the tissue defect.

人体に何らかの欠損が生じた場合、自然治癒される場合が多い。しかし、欠損が大きくなると自然治癒力では修復できない場合がでてくる。このような時に未分化細胞である幹細胞などで組織を再生する再生医療技術は、人体のあらゆる場所にその適用を広げつつある。その際、必要となるものは組織再生を誘導するための足場(スカフォールド)であり、このスカフォールドには、組織再生に従い体内で分解する生分解性樹脂が用いられている。 When a defect occurs in the human body, it is often cured naturally. However, when the defect grows larger, there are cases where it cannot be repaired by natural healing power. Regenerative medical technology that regenerates tissue with stem cells that are undifferentiated cells at such times is spreading its application to all parts of the human body. In this case, what is required is a scaffold for inducing tissue regeneration, and a biodegradable resin that is decomposed in the body according to tissue regeneration is used for this scaffold.

この生分解性樹脂は生体内または通常の環境下で自ら分解していくため、再生医療において重要な位置を占めている。医療用に使用されている生分解性樹脂としては、ポリ乳酸 (Polylactic acid; PLA) 樹脂やポリカプロラクトン(Polycaprolacton;PCL) 樹脂などがある。特に、PLA樹脂は生体内分解吸収性に優れており、高強度と生体適合性、さらに自己分解性を兼ね備えた新しい医療用材料として期待されている。   Since this biodegradable resin decomposes itself in vivo or in a normal environment, it occupies an important position in regenerative medicine. Examples of biodegradable resins used for medical purposes include polylactic acid (PLA) resin and polycaprolactone (PCL) resin. In particular, PLA resin is excellent in biodegradability and absorbability, and is expected as a new medical material having both high strength, biocompatibility, and self-degradability.

既に本発明者は、生分解性樹脂からなるスカフォールドを開発している(特許文献1)。かかるスカフォールドは構造的に開口部を有し、臨床時に注射による播種が可能であるとともに、PLA樹脂から成る繊維とバインダーとして用いるPCL樹脂の複合化により、剛性に優れ、人体活動による荷重の支持が可能であるものである。
また、欠損部への上皮進入や細菌性プラークの堆積を防ぐ構造を設けたり、施術後に欠損部との界面でただちに生分解させる構造を設けて、速やかにスカフォールド内に体液を循環させて、組織再生によりよい環境を整えることができるなど多くの機能を有している。
The present inventor has already developed a scaffold made of a biodegradable resin (Patent Document 1). Such a scaffold has an opening structurally, can be seeded by injection at the time of clinical use, and is excellent in rigidity by combining a fiber made of PLA resin and a PCL resin used as a binder, and can support a load due to human activity. It is possible.
In addition, a structure that prevents epithelial entry into the defect and accumulation of bacterial plaque is provided, or a structure that immediately biodegrades at the interface with the defect after the treatment is performed, so that body fluid is quickly circulated in the scaffold, It has many functions such as a better environment for playback.

また、三次元プリンタ(3DP:3D−printer),光重合成形法(SLA:Stereo-lithography)、レーザー焼結法(SLS:Selective laser sintering),衝撃粒子造形法(BPM:Ballistic particle manufacturing),溶融積層造形法(FDM: Fusion Deposition Modeling)などの方法により、生分解性樹脂を直接目的とする欠損部の形状に成形でき、個々の患者の状態に応じたスカフォールドの作製が可能となっている(例えば、特許文献2〜特許文献4を参照)。   3D printer (3DP: 3D-printer), photopolymerization molding method (SLA: Stereo-lithography), laser sintering method (SLS: Selective laser sintering), impact particle molding method (BPM: Ballistic particle manufacturing), melting The biodegradable resin can be directly molded into the shape of the target defect by methods such as FDM (Fusion Deposition Modeling), and it is possible to produce a scaffold according to the individual patient's condition ( For example, see Patent Literature 2 to Patent Literature 4).

こういった個々の患者の状態に応じたスカフォールドの作製は、特に再生医療において、患者の個々の組織の患部・欠損部に対してオーダーメードの先端的医療を進めるに際し重要なプロセスである。つまり、スカフォールドとして、関節や脊椎などの組織、あるいは傷害または外科的切除による欠損の形状や大きさを三次元的に正確に修復するため、ポーラスな構造体を有するスカフォールドの作製が必要となっている。   The production of a scaffold according to the condition of each individual patient is an important process in the advancement of tailor-made advanced medicine for the affected / defected part of the individual tissue of the patient, particularly in regenerative medicine. In other words, as a scaffold, it is necessary to produce a scaffold having a porous structure in order to accurately three-dimensionally repair the shape and size of a tissue such as a joint or spine, or a defect caused by injury or surgical excision. Yes.

特開2003−169845号公報JP 2003-169845 A 特許第2930420号公報Japanese Patent No. 2930420 米国特許第5518680号公報US Pat. No. 5,518,680 米国特許第6730252号公報US Pat. No. 6,730,252

本発明が解決しようとする課題は、血液や体液が通過できるような連通孔のポーラス構造体であって、関節や脊椎の欠損部に適用できるような圧縮強度を有し、欠損部の複雑な形状に整形することが容易に作製可能なスカフォールドとその製造方法を提供することを目的とする。   The problem to be solved by the present invention is a porous structure having a communication hole through which blood and body fluid can pass, and has a compressive strength that can be applied to a defect in a joint or spine. It is an object of the present invention to provide a scaffold that can be easily formed into a shape and a method for manufacturing the same.

上記目的を達成するため、本発明の積層構造三次元スカフォールドは、ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸のコポリマー、ポリカプロラクトン、乳酸とカプロラクトンのコポリマーからなる群より選択されたいずれか生分解性樹脂シートから成り、表面に縦横格子状に配列された支柱と、裏面に同じく縦横格子状に配列された前記支柱の頭部を嵌合し得る凹部とを備えた平板状のスカフォールド断片を、それぞれ支柱の頭部を上部のスカフォールド断片の凹部に嵌合させて積層したことを特徴とする。   To achieve the above object, the laminated three-dimensional scaffold of the present invention is any one of biodegradation selected from the group consisting of polylactic acid, polyglycolic acid, a copolymer of lactic acid and glycolic acid, polycaprolactone, and a copolymer of lactic acid and caprolactone. A plate-like scaffold fragment comprising a support resin resin sheet and arranged on the front surface in the form of a vertical and horizontal grid and a recess on the back surface that can fit the heads of the columns arranged in a vertical and horizontal grid pattern. Each of the column heads is stacked by being fitted into the recesses of the upper scaffold fragment.

ここで、上記スカフォールド断片が、組織欠損部の断層撮像データに基づき整形されたものであることが好ましい。スカフォールド断片を積層しただけで、欠損部形状に適合するスカフォールドができるからである。
また、支柱の頭部は緩いテーパー状に、凹部は底部にくらべ開口部がやや広い逆テーバー状にすることで、積層工程が容易となる。
Here, it is preferable that the scaffold fragment is shaped based on tomographic imaging data of a tissue defect portion. This is because a scaffold that conforms to the shape of the defect can be formed simply by stacking the scaffold fragments.
Also, the stacking process is facilitated by making the heads of the pillars have a loose taper shape and the recesses have an inverted taber shape with a slightly wider opening than the bottom.

隣接する支柱の間隙と隣接するスカフォールド断片の層隙とに生じる空隙に、血液や体液が通過できるため、細胞に好ましい環境を提供することができる。生体吸収性材料であるポリ乳酸等の生分解性樹脂シートから、微細構造の金型によって一層の平板状のスカフォールド断片を作製し、患者の欠損部の断層撮像データを基づきスカフォールド断片を切断して、その断片をブロックのように積層して組織再生用の三次元構造のスカフォールドを製作しようとするものである。   Since blood and body fluid can pass through the gap formed in the gap between the adjacent struts and the layer gap of the adjacent scaffold fragment, it is possible to provide a favorable environment for the cells. From a biodegradable resin sheet, such as polylactic acid, which is a bioabsorbable material, a single-layer plate-like scaffold fragment is produced with a microstructure mold, and the scaffold fragment is cut based on tomographic data of a patient's defect. The fragments are stacked like blocks to produce a three-dimensional scaffold for tissue regeneration.

本発明の積層三次元スカフォールドは、支柱を備えたスカフォールド断片をブロックのように積層して作製されることで、血液や体液が通過できるような連通孔のポーラス構造体を備える。また、生分解樹脂シートに、関節や脊椎の欠損部に適用できるような圧縮強度を有する樹脂を選択することで、関節や脊椎の欠損部に適用できる。さらに、スカフォールド断片を個々に整形して積層することで、欠損部の複雑な形状に適合する三次元形状を容易に構築することができる。   The laminated three-dimensional scaffold according to the present invention includes a porous structure with a communication hole through which blood and body fluid can pass by being produced by laminating scaffold fragments having support columns like a block. Moreover, it can apply to the defect part of a joint or a spine by selecting the resin which has compressive strength which can be applied to the defect part of a joint or the spine for a biodegradable resin sheet. Furthermore, by shaping and stacking the scaffold fragments individually, it is possible to easily construct a three-dimensional shape that matches the complex shape of the defect.

また、最上部のスカフォールド断片には、支柱が設けられていないことが好ましい。最上部のスカフォールド断片に接する周囲の組織を保護するためである。   Moreover, it is preferable that the uppermost scaffold fragment is not provided with a support. This is to protect the surrounding tissue in contact with the uppermost scaffold fragment.

また、本発明の積層三次元スカフォールドは、上記構成に加え、ポリカプロラクトン樹脂、乳酸とグリコール酸の共重合体、ポリグリコール酸のいずれかを積層三次元スカフォールドの凹部及び/又は支柱頭部に塗布し、支柱と凹部のバインダーとして用いることが好ましい。支柱と凹部のバインダーを設けるのは、接着により三次元構造のスカフォールドの上下方向の伸張に対する強度を高めるためである。
上記のバインダー以外に、ポリ乳酸をアセトンに溶解したものを積層三次元スカフォールドの凹部及び/又は支柱頭部に塗布してもよい。
In addition to the above-described structure, the laminated three-dimensional scaffold of the present invention is coated with a polycaprolactone resin, a copolymer of lactic acid and glycolic acid, or polyglycolic acid on the concave portion and / or the column head of the laminated three-dimensional scaffold. In addition, it is preferable to use it as a binder for the support and the recess. The reason for providing the support and the concave binder is to increase the strength of the scaffold having a three-dimensional structure against the vertical extension by bonding.
In addition to the binder described above, polylactic acid dissolved in acetone may be applied to the concave portions and / or the column heads of the laminated three-dimensional scaffold.

また、本発明の積層三次元スカフォールドの作製方法の観点からは、上述の積層三次元スカフォールドの支柱若しくは凹部を成型するための金型形状が丸棒の表面上に形成され、ロールによる圧延方式で前記生分解性樹脂シートを成型し得る金型が提供される。
支柱成型のための金型が表面に形成された丸棒と、凹部成型のための金型が表面に形成された丸棒を、並行にして相反回転させ、生分解性樹脂シートを挟み込み加圧しながら送り出すことで、表面に縦横格子状に配列された支柱と、裏面に同じく縦横格子状に配列された凹部とを備えた平板状のスカフォールド断片を作製することができる。
In addition, from the viewpoint of the method for producing the laminated three-dimensional scaffold of the present invention, a mold shape for molding the above-mentioned laminated three-dimensional scaffold support or recess is formed on the surface of the round bar, and a rolling method using a roll. A mold capable of molding the biodegradable resin sheet is provided.
A round bar with a mold for support molding formed on the surface and a round bar with a mold for recess molding formed on the surface are reciprocally rotated in parallel and sandwiched with a biodegradable resin sheet and pressed. By feeding it out, it is possible to produce a plate-like scaffold fragment having struts arranged in a vertical and horizontal grid pattern on the front surface and recesses arranged in a vertical and horizontal grid pattern on the back surface.

また、本発明の積層三次元スカフォールドの作製方法の観点からは、以下の工程(1)〜(5)の積層三次元スカフォールドの作製方法が提供される。
(1)ポリ乳酸樹脂ペレットを所定温度で溶解して、ホットプレスし直後に冷却して生分解性樹脂シートを作製する。
(2)支柱と成型する第1の金型と、凹部を成型する第2の金型を所定温度に加熱し、前記生分解性樹脂シートを挟み込み加圧してプレス成形し、表面に縦横格子状に配列された支柱と、裏面に同じく縦横格子状に配列された前記支柱の頭部を嵌合し得る凹部とを備えた平板状のスカフォールド断片を作製する。
(3)前記スカフォールド断片を組織欠損部の断層撮像データに基づき整形する。
(4)ポリ乳酸をアセトンに溶解したものを前記凹部及び/又は前記支柱頭部に塗布する。
(5)整形されたスカフォールド断片を、それぞれ前記支柱の頭部を上部のスカフォールド断片の凹部に嵌合させて積層する。
In addition, from the viewpoint of the method for producing a laminated three-dimensional scaffold of the present invention, a method for producing a laminated three-dimensional scaffold in the following steps (1) to (5) is provided.
(1) A polylactic acid resin pellet is melted at a predetermined temperature, hot-pressed and then cooled immediately to produce a biodegradable resin sheet.
(2) The first mold to be molded with the support and the second mold to mold the recess are heated to a predetermined temperature, the biodegradable resin sheet is sandwiched and pressed, and press-molded. A plate-like scaffold fragment is prepared, which is provided with struts arranged on the back surface and recesses into which the heads of the struts arranged in the vertical and horizontal grids can be fitted.
(3) The scaffold fragment is shaped based on tomographic imaging data of a tissue defect portion.
(4) A solution of polylactic acid dissolved in acetone is applied to the recess and / or the column head.
(5) The shaped scaffold fragments are stacked by fitting the heads of the columns to the recesses of the upper scaffold fragments, respectively.

本発明の積層三次元スカフォールドは、表面に縦横格子状に配列された支柱と裏面に同じく縦横格子状に配列された支柱の頭部を嵌合し得る凹部とを備えた平板状のスカフォールド断片を、それぞれ支柱の頭部を上部のスカフォールド断片の凹部に嵌合させて積層して三次元形状を形成させることにより、血液や体液が通過できるような連通孔のポーラス構造体で、関節や脊椎の欠損部に適用できるような圧縮強度を有し、欠損部の複雑な形状に整形することが容易に作製できるといった効果がある。   The laminated three-dimensional scaffold according to the present invention comprises a plate-like scaffold fragment having columns arranged on the front surface in a vertical and horizontal grid pattern and concave portions on the back surface that can fit the heads of the columns arranged in the vertical and horizontal grid pattern. Each of the pillar heads is fitted with a recess in the upper scaffold fragment and stacked to form a three-dimensional shape, which is a porous structure with a communication hole through which blood and body fluid can pass. It has a compressive strength that can be applied to the defect portion, and has an effect that it can be easily formed into a complicated shape of the defect portion.

以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

以下に、実施例1の積層三次元スカフォールドの作製フローについて、図1を参照しながら説明する。ここで、図1は、実施例1の積層三次元スカフォールドの作製工程を示している。また、図2は、CT画像を用いて切断されたスカフォールド断片を用いた積層三次元スカフォールドの作製構成を示している。   Hereinafter, a production flow of the laminated three-dimensional scaffold of Example 1 will be described with reference to FIG. Here, FIG. 1 shows a manufacturing process of the laminated three-dimensional scaffold of the first embodiment. FIG. 2 shows a production configuration of a stacked three-dimensional scaffold using a scaffold fragment cut using a CT image.

(1)先ず、ポリ乳酸樹脂ペレットを200℃で溶解して、ホットプレスにより厚さ0.7mmの生分解性樹脂シートを作製する。この樹脂シートは作製直後に水により急冷却する。作製直後に急冷却することにより、樹脂シートはアモルファスな分子構造となって樹脂シートの強度と靭性が増大するからである。 (1) First, polylactic acid resin pellets are melted at 200 ° C., and a biodegradable resin sheet having a thickness of 0.7 mm is produced by hot pressing. This resin sheet is rapidly cooled with water immediately after production. This is because the resin sheet becomes an amorphous molecular structure by rapid cooling immediately after the production, thereby increasing the strength and toughness of the resin sheet.

(2)次に、成型するための金型をあらかじめ180℃程度に加熱しておき、上記(1)の工程で作製した樹脂シートを挟み込み加圧してプレス成形する。
金型の一実施形態を図2に示す。この金型は、支柱を型取る縦横5.0mm、厚み1.0mmのものと、凹部を型取る縦横5.0mm、厚み2.0mmのものがある。それぞれ詳細な金型形状の仕様を図3と図4に示す。
この2種の金型を用いて、樹脂シートを挟み込み加圧してプレス成形すると、図5の模式図に示すようなスカフォールド断片が作製できる。
実際に作製したスカフォールド断片の外観写真を図6に示す。
(2) Next, a mold for molding is heated to about 180 ° C. in advance, and the resin sheet produced in the above step (1) is sandwiched and pressed to perform press molding.
One embodiment of the mold is shown in FIG. There are two types of molds, one having a vertical column of 5.0 mm and a thickness of 1.0 mm, which molds a support column, and one having a vertical and horizontal column which molds a recess, and having a thickness of 5.0 mm and a thickness of 2.0 mm. Detailed specifications of the mold shapes are shown in FIGS.
When these two types of molds are used to sandwich and press the resin sheet and press mold, a scaffold fragment as shown in the schematic diagram of FIG. 5 can be produced.
An appearance photograph of the actually produced scaffold fragment is shown in FIG.

(3)作製された一層のスカフォールドは、樹脂が直径0.2mmの円柱で、円柱と円柱の間隙幅が0.5mmの縦横の格子でできており、格子の交点には高さ0.7mm、直径0.2mmの柱があり、交点部の下側(裏側)には直径0.2mm、深さ0.2mmの円孔が成形されている。本実施例では、海綿骨構造に近い構造を作成するために,0.2mm径の支柱を備えるスカフォールド断片を作製する。なお円柱の直径や間隔および円柱の高さは、再生医療に使用する部位によって任意に変更可能である。
作製した一層のスカフォールド断片は、圧縮試験において0.2mm変形させるために300N/cm2の圧縮力に耐えることを確認した。これにより、本スカフォールド断片を積層した積層三次元スカフォールドは、負荷荷重が大きな顎や膝の関節に使用可能であることがわかる。
(3) The produced single-layer scaffold is a cylinder having a diameter of 0.2 mm, and a vertical and horizontal grid with a gap width of 0.5 mm between the cylinders. The height of the grid is 0.7 mm. There is a pillar having a diameter of 0.2 mm, and a circular hole having a diameter of 0.2 mm and a depth of 0.2 mm is formed on the lower side (back side) of the intersection. In the present embodiment, a scaffold fragment having a 0.2 mm diameter column is prepared in order to create a structure close to the cancellous bone structure. The diameter and interval of the cylinders and the height of the cylinders can be arbitrarily changed depending on the site used for regenerative medicine.
It was confirmed that the fabricated one-layer scaffold fragment withstands a compressive force of 300 N / cm 2 in order to deform 0.2 mm in the compression test. Thereby, it turns out that the lamination | stacking three-dimensional scaffold which laminated | stacked this scaffold fragment | piece can be used for the joint of a jaw and knee with a heavy load load.

(4)ここで、組織を再生する欠損部での負荷荷重方向をZ軸にとり、欠損の空間をX−Y−Z軸で表現したとする。Z軸にピッチを0.5mm程度に取った時のそれぞれのX−Y平面に合わせてシート状のスカフォールド断片を切断する。この切断する際、患者のCTスキャン像による患部の断層撮影写真をデータとして切断してもよい。 (4) Here, it is assumed that the load-load direction in the defect part that regenerates the tissue is taken as the Z axis, and the defect space is expressed as the XYZ axis. A sheet-like scaffold fragment is cut in accordance with each XY plane when the pitch is set to about 0.5 mm along the Z axis. At the time of cutting, a tomographic photograph of the affected part based on a CT scan image of the patient may be cut as data.

(5)そして、切断したシート状のスカフォールド断片を、ブロックを積層するように各シート状のスカフォールド断片の縦柱を上部のシート状のスカフォールド断片の円孔に挿入して積み重ね、積層三次元スカフォールドを成形する。 (5) Then, the cut sheet-like scaffold fragments are stacked by inserting the vertical columns of the respective sheet-like scaffold fragments into the circular holes of the upper sheet-like scaffold fragments so as to stack the blocks, and stacking the three-dimensional scaffolds. Is molded.

(6)この積み重ねる際に、ポリ乳酸をアセトンに溶解したバインダーを円孔に塗布して積層することで、接着によりスカフォールドの強度を高めることが可能である。
なお、縦柱方向のみ圧縮荷重が負荷される場合には、バインダーによる接着は必須ではない。
(6) At the time of stacking, the strength of the scaffold can be increased by adhesion by applying and laminating a binder in which polylactic acid is dissolved in acetone to the circular holes.
In addition, when a compressive load is applied only in the longitudinal column direction, adhesion with a binder is not essential.

(7)また最上部のシート状のスカフォールド断片には支柱の無いものを用いることにより、最上部のスカフォールド断片に隣接した周囲の組織に、過度に刺激を与えることを回避することができる。 (7) Further, by using the uppermost sheet-like scaffold fragment without a support, it is possible to avoid excessively stimulating the surrounding tissue adjacent to the uppermost scaffold fragment.

(8)一般的にスカフォールドは、ガンマ線などで滅菌処理した後に、予め患者自身の幹細胞を培養したものを播種しておき、その細胞を播種した状態で接着・増殖させてから患部に移植するのであるが、欠損が大きくてスカフォールドに予めの細胞増殖ができない場合には、移植時の手術の際にスカフォールドをいくつかのブロックに分割しておいて、これに増殖した幹細胞を各ブロック上に播種した後、組み合わせて積層して成形した後に移植することが可能である。 (8) Generally, the scaffold is sterilized with gamma rays, etc., and then seeded with the patient's own stem cells cultured in advance, and then transplanted to the affected area after adhering and proliferating in the seeded state. If there is a large defect and the cell cannot be proliferated in advance, the scaffold is divided into several blocks during transplantation, and the stem cells grown there are seeded on each block. Then, it can be transplanted after being combined and laminated and molded.

本発明の積層三次元スカフォールドは、負荷荷重が大きな顎や膝の関節に使用できるスカフォールドとして、すなわち、幹細胞や骨芽細胞などを本発明のスカフォールド構造体の内部に注入し、組織の欠損部に施術することで、顎や膝の関節組織の再生材料として利用が期待される。
また、細胞を培養するバイオリアクターとしても有用である。
The laminated three-dimensional scaffold of the present invention is a scaffold that can be used for a joint of a jaw or knee having a large load, that is, a stem cell, an osteoblast, or the like is injected into the scaffold structure of the present invention to form a tissue defect. The treatment is expected to be used as a regenerative material for jaw and knee joint tissues.
It is also useful as a bioreactor for culturing cells.

実施例1の積層三次元スカフォールドの作製フロー図Production flow diagram of laminated three-dimensional scaffold of Example 1 CT画像を用いて切断されたスカフォールド断片を用いた積層三次元スカフォールドの作製フロー図Production flow diagram of stacked 3D scaffolds using scaffold fragments cut using CT images 金型の一実施形態の図面(支柱を型取る金型図面)Drawing of an embodiment of a mold (mold drawing for casting a support) 金型の一実施形態の図面(凹部を型取る金型図面)Drawing of an embodiment of a mold (mold drawing for molding a recess) 一層のスカフォールド断片の模式図Schematic diagram of a single-layer scaffold fragment 実際に作製したスカフォールド断片の外観写真Appearance photograph of the actually produced scaffold fragment

符号の説明Explanation of symbols

1 積層三次元スカフォールド
2 スカフォールド断片
3 支柱
4 凹部
10 支柱を成型するための金型
11 凹部を成型するための金型
DESCRIPTION OF SYMBOLS 1 Stacked three-dimensional scaffold 2 Scaffold fragment 3 Prop 4 Recess 10 Mold for molding prop 11 Mold for molding recess

Claims (7)

ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸のコポリマー、ポリカプロラクトン、乳酸とカプロラクトンのコポリマーからなる群より選択されたいずれか生分解性樹脂シートから成り、表面に縦横格子状に配列された支柱と、裏面に同じく縦横格子状に配列された前記支柱の頭部を嵌合し得る凹部とを備えた平板状のスカフォールド断片を、それぞれ前記支柱の頭部を上部のスカフォールド断片の凹部に嵌合させて積層したことを特徴とする積層三次元スカフォールド。   Polylactic acid, polyglycolic acid, a copolymer of lactic acid and glycolic acid, polycaprolactone, a support made of any biodegradable resin sheet selected from the group consisting of a copolymer of lactic acid and caprolactone and arranged on the surface in a matrix pattern A plate-like scaffold fragment having a recess that can fit the heads of the columns arranged in a vertical and horizontal lattice on the back surface, and the heads of the columns are fitted into the recesses of the upper scaffold fragment, respectively. Laminated three-dimensional scaffold characterized by layering. 前記スカフォールド断片が、組織欠損部の断層撮像データに基づき整形されたものであることを特徴とする請求項1に記載の積層三次元スカフォールド。   The stacked three-dimensional scaffold according to claim 1, wherein the scaffold fragment is shaped based on tomographic imaging data of a tissue defect portion. 最上部のスカフォールド断片には、前記支柱が設けられていないことを特徴とする請求項1又は2に記載の積層三次元スカフォールド。   The stacked three-dimensional scaffold according to claim 1 or 2, wherein the uppermost scaffold fragment is not provided with the support column. ポリカプロラクトン樹脂、乳酸とグリコール酸の共重合体、ポリグリコール酸のいずれかを前記凹部及び/又は前記支柱頭部に塗布し、前記支柱と凹部のバインダーとして用いることを特徴とする請求項1乃至3のいずれか1項に記載の積層三次元スカフォールド。   The polycaprolactone resin, a copolymer of lactic acid and glycolic acid, or polyglycolic acid is applied to the recess and / or the head of the column, and used as a binder for the column and the recess. The laminated three-dimensional scaffold according to any one of 3. ポリ乳酸をアセトンに溶解したものを前記凹部及び/又は前記支柱頭部に塗布し、前記支柱と凹部のバインダーとして用いることを特徴とする請求項1乃至3のいずれか1項に記載の積層三次元スカフォールド。   The laminated tertiary according to any one of claims 1 to 3, wherein polylactic acid dissolved in acetone is applied to the recess and / or the column head and used as a binder for the column and the recess. Former scaffold. 請求項1に記載の積層三次元スカフォールドを成型するための金型であって、前記支柱若しくは前記凹部を成型するための金型形状が丸棒の表面上に形成され、ロールによる圧延方式で前記生分解性樹脂シートを成型することを特徴とする金型。   It is a metal mold | die for shape | molding the lamination | stacking three-dimensional scaffold of Claim 1, Comprising: The metal mold | die shape for shape | molding the said support | pillar or the said recessed part is formed on the surface of a round bar, The said rolling method by a roll A mold characterized by molding a biodegradable resin sheet. 下記工程を含むことを特徴とする積層三次元スカフォールドの作製方法。
(1)ポリ乳酸樹脂ペレットを所定温度で溶解して、ホットプレスし直後に冷却して生分解性樹脂シートを作製する。
(2)支柱と成型する第1の金型と、凹部を成型する第2の金型を所定温度に加熱し、前記生分解性樹脂シートを挟み込み加圧してプレス成形し、表面に縦横格子状に配列された支柱と、裏面に同じく縦横格子状に配列された前記支柱の頭部を嵌合し得る凹部とを備えた平板状のスカフォールド断片を作製する。
(3)前記スカフォールド断片を組織欠損部の断層撮像データに基づき整形する。
(4)ポリ乳酸をアセトンに溶解したものを前記凹部及び/又は前記支柱頭部に塗布する。
(5)整形されたスカフォールド断片を、それぞれ前記支柱の頭部を上部のスカフォールド断片の凹部に嵌合させて積層する。
The manufacturing method of the lamination three-dimensional scaffold characterized by including the following process.
(1) A polylactic acid resin pellet is melted at a predetermined temperature, hot-pressed and then cooled immediately to produce a biodegradable resin sheet.
(2) The first mold to be molded with the support and the second mold to mold the recess are heated to a predetermined temperature, the biodegradable resin sheet is sandwiched and pressed, and press-molded. A plate-like scaffold fragment is prepared, which is provided with struts arranged on the back surface and recesses into which the heads of the struts arranged in the vertical and horizontal grids can be fitted.
(3) The scaffold fragment is shaped based on tomographic imaging data of a tissue defect portion.
(4) A solution of polylactic acid dissolved in acetone is applied to the recess and / or the column head.
(5) The shaped scaffold fragments are stacked by fitting the heads of the columns to the recesses of the upper scaffold fragments, respectively.
JP2007156562A 2007-06-13 2007-06-13 Laminated structure three-dimensional scaffold and its manufacturing method Pending JP2008307180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156562A JP2008307180A (en) 2007-06-13 2007-06-13 Laminated structure three-dimensional scaffold and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156562A JP2008307180A (en) 2007-06-13 2007-06-13 Laminated structure three-dimensional scaffold and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008307180A true JP2008307180A (en) 2008-12-25

Family

ID=40235342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156562A Pending JP2008307180A (en) 2007-06-13 2007-06-13 Laminated structure three-dimensional scaffold and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008307180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534843A (en) * 2011-10-18 2014-12-25 ポステック アカデミー−インダストリー ファンデーション Membrane type artificial support and method for producing the same
WO2018061846A1 (en) 2016-09-27 2018-04-05 富士フイルム株式会社 Method for producing cell tissue, and porous film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534843A (en) * 2011-10-18 2014-12-25 ポステック アカデミー−インダストリー ファンデーション Membrane type artificial support and method for producing the same
US9439764B2 (en) 2011-10-18 2016-09-13 Postech Academy-Industry Foundation Membrane-type artificial scaffold and method for fabricating same
WO2018061846A1 (en) 2016-09-27 2018-04-05 富士フイルム株式会社 Method for producing cell tissue, and porous film
US11633523B2 (en) 2016-09-27 2023-04-25 Fujifilm Corporation Method for producing cell tissue, and porous film

Similar Documents

Publication Publication Date Title
Hutmacher Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives
CN108273137A (en) A kind of porous bionical material for repairing skull and personalized production method
EP3270821B1 (en) Artificial tympanic membrane devices
Seunarine et al. 3D polymer scaffolds for tissue engineering
Singh et al. Advances in bioprinting using additive manufacturing
DE102016000236B4 (en) Device for covering and/or reconstructing a bone defect site; Method for producing an attachment of a covering device for a bone defect site
Santos et al. Additive manufacturing techniques for scaffold-based cartilage tissue engineering: a review on various additive manufacturing technologies in generating scaffolds for cartilage tissue engineering
US10357297B2 (en) Bionic fixing apparatus
KR101019186B1 (en) Method for preparing 3-dimensional porous polymer scaffold
Lee et al. Bioprinting of multimaterials with computer-aided design/computer-aided manufacturing
CN106031800A (en) Hollow stent for inducing regeneration and moulding of cartilage/bone tissues
Colasante et al. Current trends in 3D printing, bioprosthetics, and tissue engineering in plastic and reconstructive surgery
Riza et al. Selective laser sintering in biomedical manufacturing
Balla et al. Biointegration of three-dimensional–printed biomaterials and biomedical devices
JP2008307180A (en) Laminated structure three-dimensional scaffold and its manufacturing method
Amiri et al. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering
Liu et al. Overview of rapid prototyping for fabrication of bone tissue engineering scaffold
Oderinde et al. Multifaceted polymeric materials in three‐dimensional processing (3DP) technologies: Current progress and prospects
Mohammed et al. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies
Francisco et al. Poly (ɛ-caprolactone) and Polyethylene Glycol Diacrylate-based Scaffolds for TMJ Bioengineered Disc Implants
Teng et al. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends
Tomar et al. Advances in tissue engineering approaches for craniomaxillofacial bone reconstruction
Lawrence et al. Topological Design Optimisation of Tissue Engineering Scaffolds
Foerster et al. Current market for biomedical implants
Sharma et al. Biomaterials and 3D printing for sustainable applications