JP2008306816A - Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor - Google Patents

Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor Download PDF

Info

Publication number
JP2008306816A
JP2008306816A JP2007150616A JP2007150616A JP2008306816A JP 2008306816 A JP2008306816 A JP 2008306816A JP 2007150616 A JP2007150616 A JP 2007150616A JP 2007150616 A JP2007150616 A JP 2007150616A JP 2008306816 A JP2008306816 A JP 2008306816A
Authority
JP
Japan
Prior art keywords
manufacturing
stator
electric wire
core
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007150616A
Other languages
Japanese (ja)
Inventor
Shingo Oohashi
紳悟 大橋
Shinichi Iizuka
慎一 飯塚
Eiji Yamada
英治 山田
Yutaka Komatsu
裕 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007150616A priority Critical patent/JP2008306816A/en
Publication of JP2008306816A publication Critical patent/JP2008306816A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a divided stator which comprises a process for reducing a gap between electric wires by pressing an electric wire layer formed by winding the electric wires to a core in a core direction, and is suppressed in a problem such as the displacement of the electric wires, and a slide between the electric wires which occur at the pressing. <P>SOLUTION: The manufacturing method of the divided stator comprises: a winding step for winding on the core an insulation-coated electric wire having a conductive wire and an insulation layer which coats the conductive wire layer, and forming the electric wire layer; and a compression process which presses the electric wire layer to the core direction. The manufacturing method of the divided stator is characterized in that the pressing is performed while a temperature is kept within the same range after the insulation-coated electric wire is heated to a temperature range in which a temperature is not lower than 160°C, and lower than a melting point of the insulating layer. There are also provided a manufacturing method of a stator which uses the divided stator obtained by the manufacturing method of the divided stator, and a manufacturing method of a motor which uses the stator obtained by the manufacturing method of the stator. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータや発電機のステータを構成する分割ステータの製造方法に関する。本発明は、さらに、この分割ステータを用いることを特徴とするステータの製造方法、及びこのステータを用いることを特徴とするモータの製造方法に関する。   The present invention relates to a method of manufacturing a split stator that constitutes a stator of a motor or a generator. The present invention further relates to a stator manufacturing method characterized by using this divided stator, and a motor manufacturing method characterized by using this stator.

モータや発電機、すなわち回転電機を、より高出力化するために、回転電機を構成するステータとして、ヨーク、つば及びヨークとつばを結合するティースからなるコア、コアを被覆する絶縁材(インシュレータ)、及びインシュレータを介してティース上に電線を多層に整列巻きしてなる電線層(ソレノイド部)、により構成される分割ステータを、ヨークを外周側にして円環状に配置してなるステータが広く用いられている。このステータを用いることにより、高出力が得られるとともに、ステータの製造における電線の巻回の容易化を図ることができる。そして、電線を整列巻きする方法が、特開平7−183152号公報や特開2003−333782号公報等において提案されている。   In order to increase the output of motors and generators, i.e., rotating electrical machines, as a stator constituting the rotating electrical machines, a yoke, a collar, a core composed of teeth connecting the yoke and the collar, and an insulating material (insulator) covering the core In addition, a stator in which a split stator composed of a wire layer (solenoid part) formed by winding an electric wire in multiple layers on a tooth via an insulator is used in an annular shape with a yoke as an outer peripheral side is widely used. It has been. By using this stator, a high output can be obtained and the winding of the electric wire in the manufacture of the stator can be facilitated. And the method of aligning and winding an electric wire is proposed in Unexamined-Japanese-Patent No. 7-183152, Unexamined-Japanese-Patent No. 2003-333882, etc.

さらに高出力化を図るためには、巻回された電線間の間隙を減少することが望まれる。そのため前記分割ステータの製造において、コア上に電線を巻回して電線層を形成後、それを外側からコア方向へプレスして圧縮する方法も考えられている。このプレスにより巻回された電線の断面が変形とともに、電線間の間隙が減少する。
特開平7−183152号公報 特開2003−333782号公報
In order to further increase the output, it is desirable to reduce the gap between the wound wires. For this reason, in manufacturing the split stator, a method is also considered in which an electric wire is wound on a core to form an electric wire layer, and then pressed from the outside toward the core to be compressed. The cross section of the electric wire wound by this press is deformed, and the gap between the electric wires is reduced.
JP-A-7-183152 JP 2003-333882 A

しかし、この方法では、プレスの際に加えられる応力が大きい場合、前記電線層を構成する電線間の断層ずれ(電線間のずれ)、電線同士の擦れ、コア等の変形による磁気特性の低下等の問題が生じやすい。電線のずれが生じると電線間の間隙がかえって大きくなり、又電線間の擦れは絶縁層の破壊につながることもある。   However, in this method, when the stress applied during the pressing is large, fault displacement between the wires constituting the wire layer (shift between the wires), friction between the wires, deterioration of magnetic properties due to deformation of the core, etc. The problem is likely to occur. When the electric wire is displaced, the gap between the electric wires becomes larger, and the rubbing between the electric wires may lead to destruction of the insulating layer.

図5は、前記の問題の一例である電線のずれをより具体的に説明する模式断面図である。図5(a)は、コア5に巻回される電線21の断面図である。電線21は、銅等よりなる導体線23とその外周を被覆する絶縁層24からなるエナメル線である。絶縁層24の材質としてはポリアミドイミドやポリイミド等が用いられるが、これらからなる絶縁層は互いに滑りやすい。図5(b)は、コア5を、分割ステータが配列される方向の面で切ったときの断面図であって、中心軸からの片側のみを表す概念断面図であり、コア5に電線21が巻回された状態を示す。   FIG. 5 is a schematic cross-sectional view for more specifically explaining the deviation of the electric wire, which is an example of the above problem. FIG. 5A is a cross-sectional view of the electric wire 21 wound around the core 5. The electric wire 21 is an enameled wire including a conductor wire 23 made of copper or the like and an insulating layer 24 covering the outer periphery thereof. Polyamideimide, polyimide, or the like is used as the material of the insulating layer 24, but the insulating layers made of these are easily slidable with each other. FIG. 5B is a cross-sectional view of the core 5 taken along a plane in the direction in which the divided stators are arranged, and is a conceptual cross-sectional view showing only one side from the central axis. Shows a state where is wound.

電線間の間隙をより小さくするため、図中の矢印Pの方向(コア5の方向)に、電線層をプレスする。絶縁層24は互いに滑りやすいので、プレスの応力が大きい場合電線間にずれや擦れ等が生じやすい。図5(c)は、図5(b)で表されるコア5における、プレス後の電線のずれの様子を示す概念断面図である。図中の、楕円で囲まれた部分Lに、電線間のずれが生じていることが示されている。   In order to further reduce the gap between the electric wires, the electric wire layer is pressed in the direction of the arrow P (the direction of the core 5) in the drawing. Since the insulating layers 24 are slidable with each other, displacement and rubbing are likely to occur between the wires when the stress of the press is large. FIG.5 (c) is a conceptual sectional drawing which shows the mode of the shift | offset | difference of the electric wire after a press in the core 5 represented by FIG.5 (b). In the figure, it is shown that a deviation between the electric wires occurs in a portion L surrounded by an ellipse.

本発明は、以上で説明した分割ステータの製造における問題の解決を課題とする。すなわち、コアに電線を巻回して形成された電線層をコア方向にプレスして、電線間の間隙を減少させる工程を有する分割ステータの製造方法であって、プレス時に生じる電線のずれや電線間の滑り等の問題が抑制された方法を提供することを課題とする。   An object of the present invention is to solve the problems in the production of the split stator described above. That is, a method of manufacturing a split stator including a step of pressing an electric wire layer formed by winding an electric wire around a core in a core direction to reduce a gap between the electric wires. It is an object of the present invention to provide a method in which problems such as slippage are suppressed.

本発明者は検討の結果、前記圧縮行程において、電線層を所定温度以上に加熱することにより、前記課題が達成されることを見出し、以下に示す構成からなる本発明を完成した。   As a result of the study, the present inventors have found that the above-mentioned problem can be achieved by heating the electric wire layer to a predetermined temperature or higher in the compression step, and have completed the present invention having the following configuration.

本発明は、導体線及びその導体線を被覆する絶縁層を有する絶縁被覆電線を、コア上に巻回して電線層を形成する巻回工程、及び前記電線層をコア方向にプレスする圧縮工程を有する分割ステータの製造方法であって、
前記プレスが、絶縁被覆電線を、160℃以上かつ絶縁層の融点未満の温度範囲に加熱した後、同範囲内に温度を保ちながら行われることを特徴とする分割ステータの製造方法(請求項1)である。
The present invention includes a winding process in which a conductor wire and an insulation-coated electric wire having an insulating layer covering the conductor wire are wound on a core to form a wire layer, and a compression process in which the wire layer is pressed in the core direction. A method of manufacturing a split stator comprising:
The method of manufacturing a split stator, wherein the pressing is performed while heating the insulation-coated electric wire to a temperature range of 160 ° C. or higher and lower than the melting point of the insulating layer, and maintaining the temperature within the same range (Claim 1). ).

この製造方法は、電線をコア上に巻回して電線層を形成する巻回工程、及び、その後電線層をコア方向にプレスする圧縮工程を有する点では、前記で説明したような従来の分割ステータの製造方法と同様である。又巻回される電線は、導体線とその導体線を被覆する絶縁層からなる点でも、従来の分割ステータの製造方法と同様であり、例えば前記の図5(b)に示される電線と同様な電線が用いられる。   This manufacturing method has the conventional split stator as described above in that it includes a winding step of winding an electric wire on a core to form an electric wire layer, and a compression step of subsequently pressing the electric wire layer in the core direction. This is the same as the manufacturing method. The wound wire is the same as the conventional split stator manufacturing method in that it is composed of a conductor wire and an insulating layer covering the conductor wire. For example, it is the same as the wire shown in FIG. A simple electric wire is used.

本発明の製造方法は、巻回工程後に、電線層が160℃以上かつ絶縁層の融点未満の温度まで加熱され、160℃以上かつ絶縁層の融点未満の温度で電線層がコア方向にプレスされ、圧縮工程が行われることを特徴とする。   In the manufacturing method of the present invention, after the winding step, the electric wire layer is heated to a temperature of 160 ° C. or higher and lower than the melting point of the insulating layer, and the electric wire layer is pressed in the core direction at a temperature of 160 ° C. or higher and lower than the melting point of the insulating layer. The compression process is performed.

電線層が160℃以上の温度に加熱されることにより、電線の導体が軟らかくなり、プレスにおいてより小さい応力で、電線の断面を変形させ、電線間の間隙を減少させることができる。プレスをより小さい応力で行うことができる結果、プレス時に生じる電線のずれや電線間の滑り、コアの変形等の問題を抑制することができる。   When the electric wire layer is heated to a temperature of 160 ° C. or higher, the electric conductor of the electric wire becomes soft, and the cross section of the electric wire can be deformed with a smaller stress in the press, and the gap between the electric wires can be reduced. As a result of being able to perform the press with a smaller stress, problems such as a shift of the electric wire, slippage between the electric wires, and deformation of the core that occur during pressing can be suppressed.

前記の課題を達成するためには、加熱の温度は、160℃以上であることが必要である。導体をより軟らかくし、プレスに必要な応力をより小さくするためには、加熱の温度はより高い方が好ましい。しかし、加熱の温度が、絶縁層の融点以上となると、プレスの際に絶縁層が破壊、変形されて絶縁破壊が生じやすくなるので、加熱の温度は、絶縁層の融点未満とする必要がある。なお、ここで絶縁層の融点とは、絶縁層の軟化開始温度を意味する。軟化開始温度は、示差走査熱量分析(DSC)を用いて測定することが出来る。   In order to achieve the above-mentioned problem, the heating temperature needs to be 160 ° C. or higher. In order to make the conductor softer and reduce the stress required for pressing, it is preferable that the heating temperature be higher. However, if the heating temperature is equal to or higher than the melting point of the insulating layer, the insulating layer is broken and deformed during pressing, and dielectric breakdown tends to occur. Therefore, the heating temperature must be lower than the melting point of the insulating layer. . Here, the melting point of the insulating layer means the softening start temperature of the insulating layer. The softening start temperature can be measured using differential scanning calorimetry (DSC).

電線の導体をより軟らかくし、かつ絶縁破壊を確実に防ぐためには、絶縁被覆電線を、絶縁層の融点より60℃低い温度範囲以上(かつ160℃以上)で、かつ絶縁層の融点より10℃低い温度以下の範囲に加熱した後、同範囲内に温度を保ちながらプレスすることが好ましい(請求項2)。例えば、融点が260℃近傍のポリアミドイミドからなる絶縁層を有する絶縁被覆電線、いわゆるエナメル線の場合は、200〜250℃程度の加熱が好ましい。   In order to make the conductor of the electric wire softer and reliably prevent dielectric breakdown, the insulated coated electric wire should be at least 60 ° C. lower than the melting point of the insulating layer (and 160 ° C. or higher) and 10 ° C. above the melting point of the insulating layer. After heating to a range below a low temperature, it is preferable to press while keeping the temperature within the same range (Claim 2). For example, in the case of an insulation-coated electric wire having an insulating layer made of polyamideimide having a melting point near 260 ° C., that is, an enameled wire, heating at about 200 to 250 ° C. is preferable.

圧縮工程でのプレスの方法は、回転電機用の分割ステータの製造方法において従来行われていた方法と同様に行うことができ、例えば、フラットパンチ等を用いて行うことができる。プレスにより、電線間の間隙、さらに電線とコア(インシュレータ)の間隙が減少する。   The pressing method in the compression step can be performed in the same manner as conventionally performed in the method of manufacturing a split stator for a rotating electrical machine, and can be performed using, for example, a flat punch. The press reduces the gap between the electric wires and the gap between the electric wires and the core (insulator).

本発明は、さらにその好ましい態様として、前記コアが、前記分割ステータの外周の側面と平行な側面を有することを特徴とする分割ステータの製造方法を提供する(請求項3)。後述するように、分割ステータは円環状に配列されてステータを形成するが、高い出力を得るためには分割ステータを隙間なく配列する必要があり、そのためには、配列される方向の面で切ったときの分割ステータの断面形状を、ヨーク側で大きくつば側で小さい台形状にする必要がある。従って、分割ステータの、配列される方向側にある両側面(分割ステータの外周の側面)は互いに傾くことになり、例えば図5(b)で表されるように、分割ステータを2等分する中心軸面Cに対しても分割ステータの外周の側面Dのそれぞれが傾くことになる。   The present invention further provides, as a preferred embodiment thereof, a method of manufacturing a split stator, wherein the core has a side surface parallel to a side surface of the outer periphery of the split stator. As will be described later, the divided stators are arranged in an annular shape to form a stator. However, in order to obtain a high output, it is necessary to arrange the divided stators without gaps. It is necessary to make the sectional shape of the split stator into a trapezoidal shape that is large on the yoke side and small on the collar side. Therefore, both side surfaces (side surfaces of the outer periphery of the divided stator) on the arrangement direction side of the divided stator are inclined with respect to each other. For example, as shown in FIG. 5B, the divided stator is divided into two equal parts. Each of the side surfaces D on the outer periphery of the divided stator is inclined with respect to the central axis surface C.

そこで、図5(b)で表される例のように、分割ステータが配列される方向側にあるコア5の側面が中心軸面Cに平行の場合は、電線層の最外周では電線を階段状になるように巻回せざるを得ず、その結果、プレスの際に部分的な応力集中が生じてずれ等が生じやすくなる。図2で示されるように、分割ステータが配列される方向側において、コアの側面Bを、分割ステータの外周の側面Dと平行にすれば、電線層の最外周でも電線を階段状にする必要はなく、プレスの際の応力集中やずれ等の発生をより抑制することができる。   Therefore, as in the example shown in FIG. 5B, when the side surface of the core 5 on the direction side where the divided stators are arranged is parallel to the central axis surface C, the wires are stepped on the outermost periphery of the wire layer. As a result, a partial stress concentration occurs during pressing, and a deviation or the like is likely to occur. As shown in FIG. 2, if the side surface B of the core is parallel to the side surface D of the outer periphery of the split stator on the direction side in which the split stator is arranged, the wires need to be stepped even at the outermost periphery of the wire layer. No, it is possible to further suppress the occurrence of stress concentration and deviation during pressing.

本発明は、前記請求項3の分割ステータの製造方法のさらに好ましい態様として、前記平行な側面が、電線層の厚みの整数倍と略等しい高さの段差を有することを特徴とする分割ステータの製造方法を提供する(請求項4)。コアが、前記分割ステータの外周の側面と平行な側面を有すると、このコアでは、その断面積がヨーク側からつば側に向かって小さくなり、その結果、磁気特性が低下する。そこで、図1で示されるように、コアに段差を設けることにより、ヨーク側からつば側に向かってのコアの断面積の変動を小さくすることができ、その結果、磁気特性の低下を抑制することができる。   According to the present invention, as a further preferred aspect of the method for manufacturing a split stator according to claim 3, the parallel side surface has a step having a height substantially equal to an integral multiple of the thickness of the electric wire layer. A manufacturing method is provided (claim 4). If the core has a side surface parallel to the outer peripheral side surface of the divided stator, the cross-sectional area of the core decreases from the yoke side toward the collar side, and as a result, the magnetic characteristics deteriorate. Therefore, as shown in FIG. 1, by providing a step in the core, the variation in the cross-sectional area of the core from the yoke side toward the collar side can be reduced, and as a result, the deterioration of the magnetic characteristics is suppressed. be able to.

段差の高さは、電線層の厚みの整数倍と略等しい高さである。この高さとすることにより、段差の部分においても電線層のずれを生じることがなく、電線を密接かつ整列して巻回することができる。   The height of the step is a height substantially equal to an integral multiple of the thickness of the wire layer. With this height, the electric wire layer is not displaced even at the stepped portion, and the electric wire can be wound closely and aligned.

本発明は、又、前記本発明の分割ステータの製造方法により製造された分割ステータの複数を、互いに隣接させて円環状に組立てることを特徴とするステータの製造方法を提供する(請求項5)。このステータの製造方法によれば、分割ステータ毎に、電線の巻回及びプレスが行われるので、電線の巻回(コイルの形成)が容易であり、又電線間の間隙を減少するためのプレスも容易に行うことができる。   The present invention also provides a method for manufacturing a stator, wherein a plurality of divided stators manufactured by the method for manufacturing a split stator according to the present invention are assembled in an annular shape adjacent to each other. . According to this stator manufacturing method, the winding and pressing of the electric wire is performed for each divided stator, so that the winding of the electric wire (coil formation) is easy and the press for reducing the gap between the electric wires. Can also be done easily.

本発明は、さらに又、前記ステータの製造方法で得られるステータを用いることを特徴とするモータの製造方法を提供する(請求項6)。前記ステータは、電線間の間隙が減少された分割ステータを円環状に配置してなるものであり、これを用いることにより、高出力のモータを大型化することなく得ることができる。   The present invention further provides a method for manufacturing a motor using a stator obtained by the method for manufacturing a stator. The stator is formed by annularly arranging divided stators in which the gaps between the wires are reduced. By using this, a high output motor can be obtained without increasing the size.

本発明の分割ステータの製造方法によれば、電線間のずれや擦れ、コアの変形の発生等を抑制しながら、電線間の間隙が減少された分割ステータを製造することができる。本発明のステータの製造方法によれば、電線の巻回が容易であり、又電線間の間隙を減少するためのプレスも容易に行うことができる。この方法により製造されたステータを用いることにより、高い出力のモータを容易に得ることができる。   According to the method for manufacturing a split stator of the present invention, it is possible to manufacture a split stator in which the gap between the electric wires is reduced while suppressing the deviation and rubbing between the electric wires and the occurrence of deformation of the core. According to the stator manufacturing method of the present invention, winding of the electric wire is easy, and pressing for reducing the gap between the electric wires can be easily performed. By using the stator manufactured by this method, a high output motor can be easily obtained.

次に本発明の実施形態を、図を用いてより具体的に説明するが、本発明の範囲はこの形態に限定されるものではない。   Next, embodiments of the present invention will be described more specifically with reference to the drawings. However, the scope of the present invention is not limited to these embodiments.

図4(b)は、本発明の分割ステータを構成するコア5の形状を表す。コア5は、ヨーク11とティース12とつば13からなる。コアとしては、例えばコア5のような形状であって、鉄等の磁性体からなるものを用いることができる。通常、コアは、電線との絶縁性を確保するためのインシュレータで被覆されている。   FIG. 4B shows the shape of the core 5 constituting the split stator of the present invention. The core 5 includes a yoke 11, a tooth 12 and a collar 13. As the core, for example, a core made of a magnetic material such as iron can be used. Usually, the core is covered with an insulator for ensuring insulation from the electric wire.

インシュレータの材料としては、ポリフェニレンスルフィド(PPS)が代表例として挙げられるが、他にも、ポリエチレン、ポリイミド、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)などが用いられる。インシュレータには、巻線の整列巻を容易にするように案内溝(図示されていない)が設けられていてもよい。   A typical example of the insulator material is polyphenylene sulfide (PPS), but polyethylene, polyimide, polyetheretherketone (PEEK), liquid crystal polymer (LCP), and the like are also used. The insulator may be provided with guide grooves (not shown) to facilitate the winding of the windings.

断面が図5(a)で表される電線21は、ティース12を被覆するインシュレータ上に巻回され、電線層が形成される。図4(b)に示されるように、ヨーク11はつば13より長い。電線21は、断面が円形の丸線であるが、電線としては、丸線の他に平角線等の多角形線を用いることができる。又、複数の巻線を同時に巻回する多本線でもよい。   The electric wire 21 whose cross section is represented in FIG. 5A is wound on an insulator that covers the teeth 12 to form an electric wire layer. As shown in FIG. 4B, the yoke 11 is longer than the collar 13. The electric wire 21 is a round wire having a circular cross section, but as the electric wire, a polygonal wire such as a flat wire can be used in addition to the round wire. Moreover, the multiple wire | winding which winds several coil | windings simultaneously may be sufficient.

前記のように、図5(b)は、電線21が巻回され、電線層が形成された後のコア5を、分割ステータが配列される方向の面で切ったときの断面図であって、中心軸面Cからの片側のみを表す概念断面図である。図5(b)において、14はインシュレータを、17はプレスに使用するフラットパンチを表す。また、Pはプレスの方向を表し、電線21が巻回され電線層が形成された後、この電線層は、フラットパンチ17によりP方向にプレスされる様子が示されている。   As described above, FIG. 5B is a cross-sectional view when the core 5 after the electric wire 21 is wound and the electric wire layer is formed is cut along a plane in the direction in which the divided stators are arranged. FIG. 3 is a conceptual cross-sectional view showing only one side from a central axis plane C. In FIG.5 (b), 14 represents an insulator and 17 represents the flat punch used for a press. P indicates the direction of pressing, and after the electric wire 21 is wound and the electric wire layer is formed, the electric wire layer is shown pressed in the P direction by the flat punch 17.

図5(b)に示されるように、分割ステータの、配列される方向側にある側面(分割ステータの外周の側面)Dは、分割ステータを2等分する中心軸面Cに対して傾いている。図5(b)に示される分割ステータのコアでは、コアの側面Bは、中心軸面Cと平行であり、従って、分割ステータの側面Dと傾いている。その結果、電線21を、互いに密接、整列させかつ隣接する分割ステータと干渉しない最大の範囲に巻回しようとすると、電線層の最外周では電線を階段状になるように巻回せざるを得ず、デッドスペース7が生じ、プレスの際の応力集中が生じやすい。   As shown in FIG. 5 (b), the side surface (side surface of the outer periphery of the divided stator) D on the arrangement direction side of the divided stator is inclined with respect to the central axis plane C that bisects the divided stator. Yes. In the core of the split stator shown in FIG. 5B, the side surface B of the core is parallel to the central axis surface C, and is therefore inclined with respect to the side surface D of the split stator. As a result, if the electric wires 21 are closely aligned with each other and are to be wound in the maximum range where they do not interfere with the adjacent divided stator, the electric wires must be wound in a stepped manner at the outermost periphery of the electric wire layer. A dead space 7 is generated, and stress concentration is likely to occur during pressing.

図2も、図5(b)と同様に、電線21が巻回され、電線層が形成された後のコア5を、分割ステータが配列される方向の面で切ったときの断面図であって、中心軸面Cからの片側のみを表す概念断面図である。ただし、図2に示される分割ステータのコア5では、コア5の側面Bは、分割ステータの側面Dと平行であり、その結果、電線層の最外周も分割ステータの側面Dと平行になり、デッドスペースを生じない。従って、フラットパンチ17により、P方向にプレスされるときでも、応力集中が生じにくい。   FIG. 2 is also a cross-sectional view when the core 5 after the electric wire 21 is wound and the electric wire layer is formed is cut along a plane in the direction in which the divided stators are arranged, similarly to FIG. FIG. 6 is a conceptual cross-sectional view showing only one side from the central axis plane C. However, in the core 5 of the split stator shown in FIG. 2, the side surface B of the core 5 is parallel to the side surface D of the split stator, and as a result, the outermost periphery of the wire layer is also parallel to the side surface D of the split stator. No dead space occurs. Therefore, even when the flat punch 17 is pressed in the P direction, stress concentration hardly occurs.

図2に示される分割ステータのコア5では、その断面積がヨーク11側よりつば13側に行くに従い小さくなり、ステータの磁気特性が低下する問題が生じる場合がある。図1に示される分割ステータのコア5では、コア5の側面Bは、分割ステータの側面Dと平行であるとともに、電線層の1層の厚みと略等しい高さの段差8を有している。その結果、ヨーク11側からつば13側に向かってのコアの断面積の変動を小さくすることができ、磁気特性の低下を抑制することができる。また、段差8の高さは、電線層の1層の厚みと略等しいので、整列巻きも容易にすることができる。段差8は、好ましくは、中心軸面Cとコア5の側面B間の距離が、ティース12の長さ方向において、段差の高さ以上の変動をしないように配置される。   In the core 5 of the split stator shown in FIG. 2, the cross-sectional area becomes smaller as it goes from the yoke 11 side to the collar 13 side, which may cause a problem that the magnetic characteristics of the stator are deteriorated. In the core 5 of the split stator shown in FIG. 1, the side surface B of the core 5 is parallel to the side surface D of the split stator and has a step 8 having a height substantially equal to the thickness of one layer of the electric wire layer. . As a result, the fluctuation of the cross-sectional area of the core from the yoke 11 side toward the collar 13 side can be reduced, and the deterioration of the magnetic characteristics can be suppressed. Moreover, since the height of the level | step difference 8 is substantially equal to the thickness of 1 layer of an electric wire layer, an alignment winding can also be made easy. The step 8 is preferably arranged so that the distance between the central axis surface C and the side surface B of the core 5 does not vary more than the height of the step in the length direction of the teeth 12.

次に、本発明の分割ステータの製造方法を、図1、図2の例に基づいて具体的に説明する。先ず、コア5のティース12を被覆するインシュレータ14上に、電線21を、密接かつ並列して巻回して、その外周面(隣接する分割ステータ側)が、隣接する分割ステータとの境界面(分割ステータの側面Dとほぼ一致する面)を越える電線層が形成される(巻回工程)。図1、図2は、この電線層が形成された様子を示す。   Next, the manufacturing method of the divided stator according to the present invention will be specifically described based on the examples of FIGS. First, the electric wire 21 is wound closely and in parallel on the insulator 14 covering the teeth 12 of the core 5, and the outer peripheral surface (adjacent divided stator side) is a boundary surface (divided) with the adjacent divided stator. An electric wire layer exceeding a surface substantially coincident with the side surface D of the stator is formed (winding step). 1 and 2 show a state in which the electric wire layer is formed.

電線層が形成された後、この外周面が分割ステータの側面D内となるまで、コア5の方向(ティース12の方向)にプレスされる。図1、図2は、フラットパンチ17により、電線層が、図中の矢印Pの方向にプレスされる圧縮行程の様子を示している。   After the electric wire layer is formed, it is pressed in the direction of the core 5 (the direction of the teeth 12) until the outer peripheral surface is in the side surface D of the split stator. 1 and 2 show a compression process in which the electric wire layer is pressed in the direction of the arrow P in the figure by the flat punch 17.

本発明では、前記巻回工程後、電線層は、160℃以上かつ絶縁層の融点未満の温度に加熱される。加熱方法としては、特に限定されないが、電線層への温風の吹付け、電線21に通電してジュール熱で加熱する等の方法を採用することができる。   In the present invention, after the winding step, the electric wire layer is heated to a temperature of 160 ° C. or higher and lower than the melting point of the insulating layer. Although it does not specifically limit as a heating method, The method of blowing the warm air to an electric wire layer, energizing the electric wire 21, and heating with a Joule heat etc. is employable.

フラットパンチ17によるプレスは、この加熱の後行われ、プレスのときの温度も、160℃以上かつ絶縁層の融点未満の温度に保たれる。その結果、電線21の導体線23が軟らかくなり、小さいプレスの応力で、電線21の断面を変形させ、電線21間の間隙を減少させることができる。プレスをより小さい応力で行うことができる結果、プレス時に生じる電線のずれや電線間の滑り、コアの変形等の問題を抑制することができる。   The pressing by the flat punch 17 is performed after this heating, and the temperature at the time of pressing is also maintained at a temperature of 160 ° C. or higher and lower than the melting point of the insulating layer. As a result, the conductor wire 23 of the electric wire 21 becomes soft, and the cross section of the electric wire 21 can be deformed with a small press stress, and the gap between the electric wires 21 can be reduced. As a result of being able to perform the press with a smaller stress, problems such as a shift of the electric wire, slippage between the electric wires, and deformation of the core that occur during pressing can be suppressed.

図3は、図1の例の分割ステータが、前記のようにしてプレスされた後の様子を示す模式断面図である。プレスにより電線層の外周面は、分割ステータの側面Dとほぼ一致する位置となる。このようにプレスすることにより、ステータを形成したとき、隣接する分割ステータとの干渉を避けることができる。   FIG. 3 is a schematic cross-sectional view showing a state after the divided stator in the example of FIG. 1 is pressed as described above. By pressing, the outer peripheral surface of the electric wire layer becomes a position that substantially coincides with the side surface D of the split stator. By pressing in this way, when the stator is formed, interference with the adjacent divided stator can be avoided.

図3に示されるように、電線21の断面形状は、コア5と接する部分や表面部を除いて、多角形(6角形)となっており、加圧前に各電線21間にあった間隙がほとんど消滅している。その結果、いわゆる占積率が向上し、高い出力のモータを大型化せずに製造できるようになる。   As shown in FIG. 3, the cross-sectional shape of the electric wire 21 is a polygon (hexagonal shape) except for the portion in contact with the core 5 and the surface portion, and there is almost no gap between the electric wires 21 before pressurization. It has disappeared. As a result, the so-called space factor is improved, and a high output motor can be manufactured without increasing the size.

図4(a)は、本発明の分割ステータを、中心Oの周りに円環状に配置してステータを形成する様子を示す概念図である。図示を分かりやすくするため、分割ステータは、その1つであるAのみを示し、断面が円環状のステータそのものは点線で示している。又、分割ステータAは、コア5と電線層6からなるが、電線層6は網掛けで示し個々の電線やインシュレータの図示は省略している。   FIG. 4A is a conceptual diagram showing how the stator is formed by arranging the divided stator of the present invention in an annular shape around the center O. FIG. In order to make the illustration easy to understand, the split stator shows only one of them, and the stator having an annular cross section is shown by a dotted line. The split stator A includes a core 5 and an electric wire layer 6. The electric wire layer 6 is shaded, and illustration of individual electric wires and insulators is omitted.

このようなステータは、分割ステータを図に示すように円周状に配列し、互いに固定さして得ることができる。互いに固定する方法としては、隣接する分割ステータ間を固定具で固着する方法、分割ステータのヨーク部やつば部に設けられている鉤により互いに固定する方法、リング状の部材上に各分割ステータを固定させる方法等が挙げられるが、これらは図示されていない。   Such a stator can be obtained by arranging divided stators circumferentially as shown in the figure and fixing them together. As a method of fixing each other, a method of fixing adjacent split stators with a fixing tool, a method of fixing each other by a hook provided on a yoke part or a collar part of the split stator, and each split stator on a ring-shaped member. Although the method of fixing etc. is mentioned, these are not illustrated.

分割ステータの電線層がプレスされる様子を示す模式断面図である。It is a schematic cross section which shows a mode that the electric wire layer of a division | segmentation stator is pressed. 分割ステータの電線層がプレスされる様子を示す模式断面図である。It is a schematic cross section which shows a mode that the electric wire layer of a division | segmentation stator is pressed. 分割ステータの電線層がプレスされた後の様子を示す模式断面図である。It is a schematic cross section which shows a mode after the electric wire layer of a split stator is pressed. ステータにおいて、分割ステータが配置されている様子を示す断面図、及び、分割ステータのコアを示す斜視図である。In a stator, it is sectional drawing which shows a mode that the division | segmentation stator is arrange | positioned, and a perspective view which shows the core of a division | segmentation stator. 分割ステータを形成する電線の断面図、及び、分割ステータの電線層がプレスされる様子を示す模式断面図である。It is sectional drawing of the electric wire which forms a division | segmentation stator, and a schematic cross section which shows a mode that the electric wire layer of a division | segmentation stator is pressed.

符号の説明Explanation of symbols

5 コア
6 電線層
8 段差
11 ヨーク
12 ティース
13 つば
14 インシュレータ
17 フラットパンチ
21 電線
23 導体線
24 絶縁層
B : コアの側面
C : 中心軸面
D : 分割ステータの側面
P : プレスされる方向
5 Core 6 Electric wire layer 8 Step 11 Yoke 12 Teeth 13 Brim 14 Insulator 17 Flat punch 21 Electric wire 23 Conductor wire 24 Insulating layer B: Core side surface C: Central axis surface D: Split stator side surface P: Direction to be pressed

Claims (6)

導体線及びその導体線を被覆する絶縁層を有する絶縁被覆電線を、コア上に巻回して電線層を形成する巻回工程、及び前記電線層をコア方向にプレスする圧縮工程を有する分割ステータの製造方法であって、
前記プレスが、絶縁被覆電線を、160℃以上かつ絶縁層の融点未満の温度範囲に加熱した後、同範囲内に温度を保ちながら行われることを特徴とする分割ステータの製造方法。
A split stator having a winding step of forming an electric wire layer by winding an insulating coated electric wire having a conductor wire and an insulating layer covering the conductor wire on the core, and a compression step of pressing the electric wire layer in the core direction A manufacturing method comprising:
A method of manufacturing a split stator, wherein the pressing is performed while heating the insulated coated electric wire to a temperature range of 160 ° C. or higher and lower than the melting point of the insulating layer, and maintaining the temperature within the same range.
前記プレスが、絶縁被覆電線を、絶縁層の融点より60〜10℃低い温度範囲に加熱した後、同範囲内に温度を保ちながら行われることを特徴とする請求項1に記載の分割ステータの製造方法。   2. The split stator according to claim 1, wherein the pressing is performed while heating the insulation-coated electric wire to a temperature range lower by 60 to 10 ° C. than the melting point of the insulating layer, and maintaining the temperature within the same range. Production method. 前記コアが、前記分割ステータの外周の側面と平行な側面を有することを特徴とする請求項1又は請求項2に記載の分割ステータの製造方法。   The method of manufacturing a split stator according to claim 1, wherein the core has a side surface parallel to a side surface of the outer periphery of the split stator. 前記平行な側面が、電線層の厚みの整数倍と略等しい高さの段差を有することを特徴とする請求項3に記載の分割ステータの製造方法。   The method of manufacturing a split stator according to claim 3, wherein the parallel side surface has a step having a height substantially equal to an integral multiple of the thickness of the electric wire layer. 請求項1ないし請求項4のいずれかに記載の分割ステータの製造方法により製造された分割ステータの複数を、互いに隣接させて円環状に組立てることを特徴とするステータの製造方法。   A stator manufacturing method, wherein a plurality of split stators manufactured by the method of manufacturing a split stator according to any one of claims 1 to 4 are assembled in an annular shape adjacent to each other. 前記請求項5に記載のステータの製造方法により製造されたステータを用いることを特徴とするモータの製造方法。   A method for manufacturing a motor, comprising using the stator manufactured by the method for manufacturing a stator according to claim 5.
JP2007150616A 2007-06-06 2007-06-06 Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor Pending JP2008306816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150616A JP2008306816A (en) 2007-06-06 2007-06-06 Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150616A JP2008306816A (en) 2007-06-06 2007-06-06 Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor

Publications (1)

Publication Number Publication Date
JP2008306816A true JP2008306816A (en) 2008-12-18

Family

ID=40235028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150616A Pending JP2008306816A (en) 2007-06-06 2007-06-06 Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor

Country Status (1)

Country Link
JP (1) JP2008306816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042341A1 (en) * 2011-09-19 2013-03-28 Nidec Corporation Motor and method of manufacturing motor
DE102012222318A1 (en) 2012-12-05 2014-06-05 Robert Bosch Gmbh Toothed segment coil combination for an electric machine
WO2015133518A1 (en) * 2014-03-05 2015-09-11 株式会社ミツバ Armature core, armature, and electric motor
JP5901846B2 (en) * 2013-04-26 2016-04-13 三菱電機株式会社 Armature coil and manufacturing method thereof
WO2023066422A1 (en) * 2021-10-20 2023-04-27 Schaeffler Technologies AG & Co. KG Method and device for compacting coil windings of segmented stators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296151A (en) * 2005-04-14 2006-10-26 Sumitomo Electric Ind Ltd Method of manufacturing stator
JP2007135397A (en) * 2006-12-01 2007-05-31 Sumitomo Electric Ind Ltd Process for manufacturing armature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296151A (en) * 2005-04-14 2006-10-26 Sumitomo Electric Ind Ltd Method of manufacturing stator
JP2007135397A (en) * 2006-12-01 2007-05-31 Sumitomo Electric Ind Ltd Process for manufacturing armature

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531222B2 (en) 2011-09-19 2016-12-27 Nidec Corporation Stator core having convex protruding portion coinciding with adjacent coils
CN103023167A (en) * 2011-09-19 2013-04-03 日本电产株式会社 Motor and method of manufacturing motor
JP2013066313A (en) * 2011-09-19 2013-04-11 Nippon Densan Corp Motor and manufacturing method therefor
WO2013042341A1 (en) * 2011-09-19 2013-03-28 Nidec Corporation Motor and method of manufacturing motor
DE102012222318A1 (en) 2012-12-05 2014-06-05 Robert Bosch Gmbh Toothed segment coil combination for an electric machine
WO2014086513A3 (en) * 2012-12-05 2015-01-29 Robert Bosch Gmbh Toothed segment/coil combination for an electric machine
CN104813566A (en) * 2012-12-05 2015-07-29 罗伯特·博世有限公司 Toothed segment/coil combination for an electric machine
WO2014086513A2 (en) 2012-12-05 2014-06-12 Robert Bosch Gmbh Toothed segment/coil combination for an electric machine
CN104813566B (en) * 2012-12-05 2019-01-15 罗伯特·博世有限公司 The Stator and electrical machine with tooth segment-coil-combination, motor for motor
JP5901846B2 (en) * 2013-04-26 2016-04-13 三菱電機株式会社 Armature coil and manufacturing method thereof
JPWO2014174658A1 (en) * 2013-04-26 2017-02-23 三菱電機株式会社 Armature coil and manufacturing method thereof
WO2015133518A1 (en) * 2014-03-05 2015-09-11 株式会社ミツバ Armature core, armature, and electric motor
WO2023066422A1 (en) * 2021-10-20 2023-04-27 Schaeffler Technologies AG & Co. KG Method and device for compacting coil windings of segmented stators

Similar Documents

Publication Publication Date Title
US8013490B2 (en) Armature
US10164490B2 (en) Rotary electric machine and manufacturing method therefor
US10476337B2 (en) Stator
US20130193798A1 (en) Rotary electric machine
US20130300247A1 (en) Stator of rotating electric machine and winding method therefor
KR20140047729A (en) Conductive wire and electrical rotating machine
US20130192057A1 (en) Manufacturing method for coil unit
JP5837213B2 (en) Armature of rotating electric machine and method for manufacturing the same
JP2008306816A (en) Manufacturing method of divided stator, manufacturing method of stator, and manufacturing method of motor
WO2013187501A1 (en) Coiled member and coil device
JP5609211B2 (en) Rotating electric machine stator and method of manufacturing rotating electric machine stator
WO2017098917A1 (en) Armature for rotary electric machine
JP5359463B2 (en) Stator and rotating electric machine
JP2007336780A (en) Stator
EP1744434B1 (en) Method for manufacuring a rotor of an electric rotating machine
JP2015073341A (en) Rotary electric machine
JP2016152743A (en) Stator of electric motor and electric motor
JP6093266B2 (en) Segment coil and stator
JP2007135397A (en) Process for manufacturing armature
JP5856498B2 (en) Stator and segment coil
JP2013055279A (en) Stationary induction apparatus
JP2009148084A (en) Armature
JP2009038905A (en) Split stator
JP2020068356A (en) Stationary induction apparatus winding
JP7452272B2 (en) Armature manufacturing method and armature

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120405

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120416

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120810