JP2008306456A - Radio transmission apparatus - Google Patents

Radio transmission apparatus Download PDF

Info

Publication number
JP2008306456A
JP2008306456A JP2007151631A JP2007151631A JP2008306456A JP 2008306456 A JP2008306456 A JP 2008306456A JP 2007151631 A JP2007151631 A JP 2007151631A JP 2007151631 A JP2007151631 A JP 2007151631A JP 2008306456 A JP2008306456 A JP 2008306456A
Authority
JP
Japan
Prior art keywords
signal
frequency component
monitor signal
frequency
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007151631A
Other languages
Japanese (ja)
Inventor
Osamu Minase
修 皆瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007151631A priority Critical patent/JP2008306456A/en
Publication of JP2008306456A publication Critical patent/JP2008306456A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio transmission apparatus for efficiently monitoring an operating state of an analogue transmitting section, with a simple structure. <P>SOLUTION: The radio transmission apparatus is provided with the analogue transmitting section for converting a D/A converted transmission signal into an intermediate-frequency signal and a radio frequency signal and amplifying them, a monitor signal extracting section for extracting the amplified radio frequency signal and converting it to the intermediate frequency signal to form a monitor signal, and a determining section for determining whether or not the analogue transmitting section is abnormal by comparing a frequency component of the monitor signal with an expectation value preliminarily set to the frequency component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は無線送信装置に関し、例えば、移動通信システムにおける基地局の下り送信部に適用して好適なるものである。   The present invention relates to a radio transmission apparatus, and is preferably applied to, for example, a downlink transmission unit of a base station in a mobile communication system.

移動通信システムでは、基地局の下り送信部に異常があるとサービスエリア内の移動端末に多大の影響を与えるため、故障を迅速に検出し、修理する必要がある。一般に、基地局送信部の異常は、在圏する移動端末の受信不調を介して間接的に知り得るが、無線環境が悪い場合も有り、実際に不調か否かは当該送信部を工場等に戻して専用の試験設備で確認しないと、故障判定を行えない。更に、故障と分かっても、どの部分が故障なのかを特定するのが困難であり、異常の回復に時間を要していた。   In a mobile communication system, if there is an abnormality in the downlink transmission unit of a base station, it has a great influence on mobile terminals in the service area, so it is necessary to quickly detect and repair the failure. In general, abnormalities in the base station transmission unit can be known indirectly through reception malfunctions of mobile terminals located in the area, but there may be cases where the wireless environment is bad. Failure determination cannot be performed unless it is returned and checked with a dedicated test facility. Furthermore, even if it is known that a failure has occurred, it is difficult to identify which part is the failure, and it takes time to recover the abnormality.

この点、従来は、ディジタル変調波のスペクトラム歪みをモニタすることで、ディジタル変調回路の動作異常を検出するディジタル変調波のモニタ方式が知られている(特許文献1)。   In this regard, conventionally, there is known a digital modulation wave monitoring method for detecting an abnormal operation of a digital modulation circuit by monitoring spectrum distortion of the digital modulation wave (Patent Document 1).

また、従来は、アンプ入力の検波出力と、アンプ出力の検波出力とを比較して該アンプのゲインを算出し、該ゲインの変動量からアンプの正常/異常を判定可能な送信装置が知られている(特許文献2)。
特開平7−87142号公報 特開2005−223827
Conventionally, there is known a transmission apparatus that compares the detection output of the amplifier input with the detection output of the amplifier to calculate the gain of the amplifier and can determine the normality / abnormality of the amplifier from the fluctuation amount of the gain. (Patent Document 2).
JP-A-7-87142 JP-A-2005-223827

しかし、一般に、基地局の下り送信部にはフィルタ、ミキサ(周波数コンバータ)、パワーアンプ等の様々なアナログ回路が含まれており、上記特定の部位(ディジタル変調回路,パワーアンプ等)毎にモニタ回路を設ける方式であると、下り送信部の全体が複雑化すると共に、大幅なコストアップになる。   However, in general, the downlink transmission unit of the base station includes various analog circuits such as filters, mixers (frequency converters), power amplifiers, etc., and monitors each specific part (digital modulation circuit, power amplifier, etc.). When the circuit is provided, the entire downstream transmission unit becomes complicated and the cost is greatly increased.

本発明は上記従来技術の問題点に鑑みなされたもので、その目的は、簡単な構成でアナログ送信部の動作状態を効率よく監視可能な無線送信装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a wireless transmission device capable of efficiently monitoring the operation state of an analog transmission unit with a simple configuration.

本発明の第1の態様による無線送信装置は、D/A変換後の送信信号を中間周波信号及び無線周波信号に変換して増幅するアナログ送信部と、前記増幅後の無線周波信号を抽出して中間周波信号に変換した後、A/D変換してモニタ信号を形成するモニタ信号抽出部と、前記モニタ信号の周波数成分と、該周波数成分について予め設定された期待値とを比較することによりアナログ送信部の異常有無を判定する判定部と、を備えるものである。   The radio transmission apparatus according to the first aspect of the present invention extracts an analog transmission unit that converts and amplifies a D / A converted transmission signal into an intermediate frequency signal and a radio frequency signal, and extracts the amplified radio frequency signal. A monitor signal extraction unit that converts the signal into an intermediate frequency signal and then performs A / D conversion to form a monitor signal, and compares the frequency component of the monitor signal with an expected value set in advance for the frequency component. A determination unit that determines whether the analog transmission unit is abnormal.

本発明によれば、増幅後の無線周波信号について形成したモニタ信号の周波数成分と、該周波数成分について予め設定された期待値とを比較する簡単な構成により、アナログ送信部の全帯域に渡る関係各部の動作異常を効率よく判定可能である。   According to the present invention, the relationship over the entire band of the analog transmission unit is achieved by a simple configuration that compares the frequency component of the monitor signal formed for the amplified radio frequency signal with the expected value preset for the frequency component. It is possible to efficiently determine the abnormal operation of each part.

本発明の第2の態様では、前記モニタ信号抽出部は、前記アナログ送信部の複数の監視点より信号を抽出してモニタ信号を形成し、前記判定部は、前記各監視点からのモニタ信
号の周波数成分と、該周波数成分について予め設定された期待値とを比較することにより前記アナログ送信部の異常箇所を特定するものである。
In the second aspect of the present invention, the monitor signal extraction unit extracts a signal from a plurality of monitoring points of the analog transmission unit to form a monitor signal, and the determination unit receives the monitor signal from each of the monitoring points. Is compared with an expected value set in advance for the frequency component to identify an abnormal portion of the analog transmission unit.

本発明では、アナログ送信部の複数監視点より信号を抽出してそのモニタ信号を形成し、それらの周波数成分を共通の比較部で各期待値と比較する簡単な構成により、各部の動作異常を効率よく判定できる。また、複数監視点についての比較結果を総合的に解析することで、故障箇所を確実に切り分け(特定)可能となる。   In the present invention, a signal is extracted from a plurality of monitoring points of the analog transmission unit to form a monitor signal, and the frequency components are compared with each expected value by a common comparison unit, so that the abnormal operation of each unit is detected. Can be judged efficiently. Further, by comprehensively analyzing the comparison results for a plurality of monitoring points, it is possible to reliably isolate (specify) a failure location.

本発明の第3の態様では、前記期待値は、アナログ送信部の正常動作時に取得したモニタ信号の周波数成分である。本発明によれば、通常の出荷工程時に各装置を正しく調整するだけで、各装置の正しい期待値が容易に得られるため、正しい期待値の取得及び管理が容易である。   In the third aspect of the present invention, the expected value is a frequency component of the monitor signal acquired during normal operation of the analog transmission unit. According to the present invention, it is easy to obtain and manage the correct expected value because the correct expected value of each device can be easily obtained simply by correctly adjusting each device during the normal shipping process.

本発明の第4の態様では、前記判定部は、各監視点のモニタ信号が所定の帯域幅を有する場合は、該帯域幅内の複数の周波数成分と、該周波数成分について予め設定された複数の期待値とを比較する。従って、アナログ送信部全体の回路特性の木目細かい評価及び異常判定が可能である。   In the fourth aspect of the present invention, when the monitor signal at each monitoring point has a predetermined bandwidth, the determination unit includes a plurality of frequency components within the bandwidth and a plurality of frequency components preset for the frequency components. Compare the expected value of. Therefore, detailed evaluation and abnormality determination of the circuit characteristics of the entire analog transmission unit are possible.

本発明の第5の態様では、前記判定部は、通常はアナログ送信部最終段の監視点からのモニタ信号の周波数成分とその期待値とを比較すると共に、比較異常を検出した場合は、それより前段部の監視点からのモニタ信号の周波数成分とその期待値とを比較する。従って、アナログ送信部の正常動作時における検査負担が軽くなると共に、異常検出時は、異常箇所の特定を速やかに行える。   In the fifth aspect of the present invention, the determination unit normally compares the frequency component of the monitor signal from the monitoring point at the final stage of the analog transmission unit with its expected value, and if a comparison abnormality is detected, The frequency component of the monitor signal from the monitoring point in the previous stage is compared with the expected value. Accordingly, the inspection burden during normal operation of the analog transmission unit is reduced, and when an abnormality is detected, the abnormal part can be quickly identified.

以上述べた如く本発明によれば、簡単な構成によりアナログ送信部の動作状態を効率よく監視可能となる。   As described above, according to the present invention, the operation state of the analog transmitter can be efficiently monitored with a simple configuration.

以下、添付図面に従って本発明に好適なる複数の実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。   Hereinafter, a plurality of preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.

図1は第1の実施の形態による無線送信装置を説明する図で、本発明の基地局下り送信装置への適用例を示している。図において、11は送信データの拡散,多重、ディジタル変調等を行うベースバンド(BB)処理部、12はD/Aコンバータ、17はPLL方式によるローカル(LO)信号の発振器、13はD/A変換後の中間周波(IF)信号をLO信号で無線(RF)信号にアップコンバートするミキサ、14はRF信号の電力増幅を行う電力増幅器(AMP)、16はAMP14の出力の一部RF信号を抽出する方向性結合器(カプラ)、18は抽出したRF信号をLO信号でIF信号にダウンコンバートするミキサ、19はダウンコンバート後のIF信号をサンプリングしてモニタ用ディジタル信号に変換するA/D変換器、23は回路動作の監視に必要な数のモニタデータを抽出する検出部、21は予め本装置の工場出荷時や修理時等に取得した期待値(例えば、本装置の正常動作時におけるモニタデータを周波数解析した周波数成分等)を記憶しているメモリ(MEM)、22は前記検出部23で抽出したモニタデータの周波数成分と期待値とを比較して異常有無を判定する判定部、そして、24は無線送信回路の検査を制御する制御部である。   FIG. 1 is a diagram for explaining a radio transmission apparatus according to the first embodiment and shows an application example of the present invention to a base station downlink transmission apparatus. In the figure, 11 is a baseband (BB) processing unit that performs spreading, multiplexing, digital modulation, etc. of transmission data, 12 is a D / A converter, 17 is a local (LO) signal oscillator according to the PLL system, and 13 is a D / A. A mixer that up-converts the converted intermediate frequency (IF) signal into a radio (RF) signal using an LO signal, 14 is a power amplifier (AMP) that amplifies the power of the RF signal, and 16 is a partial RF signal output from the AMP 14. A directional coupler (coupler) for extraction, 18 is a mixer for down-converting the extracted RF signal into an IF signal using an LO signal, and 19 is an A / D for sampling the IF signal after down-conversion and converting it into a monitor digital signal. A converter 23 is a detection unit that extracts a number of monitor data necessary for monitoring circuit operation, and 21 is acquired in advance at the time of factory shipment or repair of the apparatus. A memory (MEM) 22 that stores an expected value (for example, a frequency component obtained by frequency analysis of monitor data during normal operation of the apparatus), 22 is a frequency component of the monitor data extracted by the detection unit 23 and an expected value A determination unit that determines whether or not there is an abnormality by comparing the two, and 24 is a control unit that controls the inspection of the wireless transmission circuit.

本実施の形態ではD/Aコンバータ12の出力側のアナログ送信回路部が検査対象であり、AMP14出力の一部RF信号を抽出してIF信号にダウンコンバートし、かつこれをA/D変換してモニタ用信号データとする。該モニタ用信号データは不図示の歪み補
正回路に入力されて主信号帯域(例えば20MHz)の外側成分(歪成分)の存在有無を検査されると共に、制御部24の制御下で一部(所定時間分)の信号データが検出部23に読み込まれる。検出部23では、信号データを例えばFFT(Fast Fourier Transform)によりフーリェ変換して信号電力の周波数成分(スペクトラム)を求める。この周波数成分は少なくとも主信号帯域内の2箇所以上について求める。なお、主信号帯域を複数のサブ帯域(例えば5MHz)に分割して運用している場合は、少なくとも各サブ帯域毎に2箇所異常の周波数成分を求める。これにより周波数成分の傾きを含む木目細かい比較・判定が行える。
In the present embodiment, the analog transmission circuit section on the output side of the D / A converter 12 is the inspection target, and a part of the AMP 14 output RF signal is extracted, down-converted to an IF signal, and A / D converted. Monitor signal data. The monitor signal data is input to a distortion correction circuit (not shown) to check the presence / absence of an outer component (distortion component) of the main signal band (for example, 20 MHz) and a part (predetermined under the control of the control unit 24). Signal data) is read into the detector 23. In the detection unit 23, the signal data is subjected to Fourier transform by, for example, FFT (Fast Fourier Transform) to obtain a frequency component (spectrum) of the signal power. This frequency component is obtained at least at two or more locations in the main signal band. When the main signal band is divided into a plurality of sub-bands (for example, 5 MHz) and operated, at least two abnormal frequency components are obtained for each sub-band. As a result, detailed comparison / determination including the slope of the frequency component can be performed.

判定部22は、前記求めた周波数成分とメモリ21に記憶されている正常動作時の周波数成分(期待値)とを比較し、前記求めた周波数成分が期待値を基準とする所定範囲内に入っている場合には動作正常と判定し、一部でも外れている場合は動作異常と判定する。このような検査は、稼働状態の送信回路に別段の影響を与えないでも行えるため、常時検査を行うことが可能である。また、カプラ16をアンテナ(不図示)の近傍に設けることで、アナログ送信部全体を通過した信号を抽出可能であり、これによりアナログ送信部全体の動作良否を効率よく監視できる。   The determination unit 22 compares the obtained frequency component with a frequency component (expected value) during normal operation stored in the memory 21, and the obtained frequency component falls within a predetermined range based on the expected value. If it is determined that the operation is normal, it is determined that the operation is abnormal. Since such an inspection can be performed without affecting the transmission circuit in the operating state, it is possible to always perform the inspection. In addition, by providing the coupler 16 in the vicinity of the antenna (not shown), it is possible to extract a signal that has passed through the entire analog transmission unit, thereby efficiently monitoring the operation of the entire analog transmission unit.

図2は第2の実施の形態による無線送信装置を説明する図で、アナログ送信部における故障箇所を自動的に特定可能な場合を示している。図において、15はAMP14の入力の一部RF信号を抽出する方向性結合器(カプラ)、SW1,SW2はモニタ信号の検出ルートを切り替える高周波スイッチである。また、この例のメモリ21は複数の検査箇所に応じて予め正常動作時に取得した期待値をそれぞれ記憶している。また、制御部24はスイッチSW1,SW2の切替制御を行うための制御信号S1,S2を生成する。   FIG. 2 is a diagram for explaining a radio transmission apparatus according to the second embodiment, and shows a case where a failure point in an analog transmission unit can be automatically identified. In the figure, 15 is a directional coupler (coupler) that extracts a part of the RF signal input to the AMP 14, and SW 1 and SW 2 are high-frequency switches that switch the detection route of the monitor signal. Further, the memory 21 in this example stores the expected values acquired in advance during normal operation according to a plurality of inspection locations. In addition, the control unit 24 generates control signals S1 and S2 for performing switching control of the switches SW1 and SW2.

挿入図(a)に高周波スイッチSW2の回路例を示す。PINダイオードD1,D2のカソード側を共通の出力端子に接続すると共に、D1のアノードを高周波遮断コイルL1を介してスイッチ制御信号S2でバイアスし、かつD2のアノードをコイルL2を介してスイッチ制御信号S2/(S2の反転信号)によりバイアスしている。これにより、スイッチ制御信号S2が論理1(ハイレベル)の場合は、監視ルートb側が導通すると共に、監視ルートa側が遮断し、またスイッチ制御信号S2が論理0(ローレベル)の場合は、監視ルートb側が遮断すると共に、監視ルートa側が導通する。なお、他にも、接点が機械的に切り替わるようなリレースイッチ等を使用してもよい。その他の構成については上記図1で述べたものと同様で良い。   Inset (a) shows a circuit example of the high-frequency switch SW2. The cathodes of the PIN diodes D1 and D2 are connected to a common output terminal, the anode of D1 is biased with a switch control signal S2 through a high frequency cutoff coil L1, and the anode of D2 is switched with a switch control signal through a coil L2. Biased by S2 / (inverted signal of S2). As a result, when the switch control signal S2 is logic 1 (high level), the monitoring route b side is conducted and the monitoring route a side is cut off. When the switch control signal S2 is logic 0 (low level), the monitoring is performed. The route b side is blocked and the monitoring route a side is conducted. In addition, you may use the relay switch etc. which a contact switches mechanically. Other configurations may be the same as those described in FIG.

図3,図4は実施の形態による故障検査処理のフローチャート(1),(2)で、図2の送信回路部を使用してその故障箇所を自動的に特定可能な場合を示している。この検査処理は図2の制御部24により実行される。図3はメイン処理を示しており、本通信装置の稼働と共にこの処理が実行される。ステップS11では切替スイッチSW1,2を共にOFFにし、監視ルートaのモニタ信号を監視できるようにする。ステップS12では検査パラメータaを伴って図4の故障検査処理を実行(CALL)する。   3 and 4 are flowcharts (1) and (2) of the failure inspection process according to the embodiment, and show a case where the failure location can be automatically specified using the transmission circuit unit of FIG. This inspection process is executed by the control unit 24 of FIG. FIG. 3 shows the main process, and this process is executed along with the operation of the communication apparatus. In step S11, the selector switches SW1 and SW2 are both turned OFF so that the monitor signal of the monitoring route a can be monitored. In step S12, the failure inspection process of FIG. 4 is executed (CALL) with the inspection parameter a.

ここで、図4の故障検査処理(サブルーチン)を説明しておく。ステップS31ではこの処理の実行元で指定された検査パラメータ(監視ルートa,b又はcの検査を表す検査パラメータ)を取得する。ステップS32では所定時間分のモニタデータを取得し、ステップS33では該取得したモニタデータをフーリェ変換(FFT)して送信信号の周波数成分を抽出する。ステップS34では前記求めた周波数成分と、検査パラメータa,b又はcに応じてメモリ21から読み出した期待値a,b又はcとを比較し、ステップS35では故障(異常)の有無を判定する。   Here, the failure inspection process (subroutine) in FIG. 4 will be described. In step S31, the inspection parameter designated by the execution source of this process (inspection parameter indicating the inspection of the monitoring route a, b, or c) is acquired. In step S32, monitor data for a predetermined time is acquired. In step S33, the acquired monitor data is subjected to Fourier transform (FFT) to extract the frequency component of the transmission signal. In step S34, the obtained frequency component is compared with the expected value a, b, or c read from the memory 21 according to the inspection parameter a, b, or c, and in step S35, the presence or absence of a failure (abnormality) is determined.

挿入図(a)にモニタ信号のグラフイメージを示す。横軸は周波数f、縦軸は送信電力
の周波数成分である。例えば、全帯域20MHzを5MHzづつに4分割して運用する場合に、各サブ帯域C0〜C3に複数の周波数成分が含まれるように全帯域の周波数成分を求める。通信事業者は、例えば、サブ帯域C0は通話専用、C1はHSDPA(High Speed Downlink Packet Access) 専用等として用途分けし、運用している。送信回路部が正常動作している場合は図の実線で示す如く全帯域20MHzに渡ってフラットな周波数成分が得られる。グラフは周波数成分の大きさを包絡線で表示している。しかし、何らかの障害がある場合は、図の点線で示すように、周波数成分の振幅が一様では無くなる。このような状態を検出することで異常状態を容易に判定できる。
Inset (a) shows a graph image of the monitor signal. The horizontal axis is the frequency f, and the vertical axis is the frequency component of the transmission power. For example, when the entire band 20 MHz is divided into 5 MHz and operated, the frequency components of the entire band are obtained so that each of the sub-bands C0 to C3 includes a plurality of frequency components. The telecommunications carrier, for example, uses the sub-band C0 as a dedicated call and C1 as a dedicated HSDPA (High Speed Downlink Packet Access). When the transmission circuit unit is operating normally, a flat frequency component can be obtained over the entire band of 20 MHz as shown by the solid line in the figure. The graph displays the magnitude of the frequency component with an envelope. However, when there is some obstacle, the amplitude of the frequency component is not uniform as shown by the dotted line in the figure. An abnormal state can be easily determined by detecting such a state.

図3に戻り、ステップS13では異常検出か否かを判別し、異常検出でない場合はステップS12に戻る。これにより、通常は、アナログ通信部の全体を監視ルートaの検査によって効率よく監視できる。また、上記ステップS13の判別で異常を検出した場合は、ステップS14以降の処理で異常箇所を特定する。即ち、ステップS14では検査結果aをメモリ21に保持する。ステップS15ではスイッチSW2をON側に切り替えると共に、ステップS16では監視ルートbの検査処理を実行し、ステップS17ではその検査結果bをメモリ21に保持する。更に、ステップS18ではスイッチSW1をON側に切り替えると共に、ステップS19では監視ルートcの検査処理を実行し、ステップS20ではその検査結果cをメモリ21に保持する。そして、ステップS21では上記保持した各検査結果a〜cに基づき故障箇所を特定し、上位システムに報告する。   Returning to FIG. 3, in step S <b> 13, it is determined whether or not an abnormality is detected. If no abnormality is detected, the process returns to step S <b> 12. Thereby, normally, the whole analog communication unit can be efficiently monitored by the inspection of the monitoring route a. If an abnormality is detected in the determination in step S13, the abnormal part is specified in the processing after step S14. That is, in step S14, the inspection result a is held in the memory 21. In step S15, the switch SW2 is switched to the ON side, and in step S16, the inspection process for the monitoring route b is executed. In step S17, the inspection result b is held in the memory 21. In step S18, the switch SW1 is switched to the ON side, and in step S19, the inspection process for the monitoring route c is executed. In step S20, the inspection result c is held in the memory 21. In step S21, the failure location is identified based on the stored inspection results a to c and reported to the host system.

例えば、検査結果aが異常で、かつ検査結果bが正常の場合は、AMP14に故障が有ると判定できる。また、検査結果a,bが異常で、かつ検査結果cが正常の場合は、ミキサ13に故障が有ると判定できる。   For example, when the inspection result a is abnormal and the inspection result b is normal, it can be determined that the AMP 14 has a failure. Further, when the inspection results a and b are abnormal and the inspection result c is normal, it can be determined that the mixer 13 has a failure.

なお、上記実施の形態では基地局が輻輳中か否かによらず送信回路の検査を行ったが、これに限らない。基地局の空き状態(又は接続している端末が少ない等の状態)を検出して検査を行えば、基地局制御部の処理負担を軽減できる。基地局が輻輳中か否かは、例えばRRC(Radio Resource Control)の呼処理信号に基づき移動端末の出入り状況を監視することで容易に判定できる。RRCの主な機能の一つに、端末−基地局間におけるRRCコネクションの確立/切断時の再確立/維持/解放がある。基地局の処理負担は、RRCコネクションの確立/再確立によって増加し、RRCコネクションの開放によって緩和される。そこで、自局に在圏する移動端末数を管理することで、基地局が空き状態か否かを容易に判別できる。   In the above embodiment, the transmission circuit is inspected regardless of whether or not the base station is congested. However, the present invention is not limited to this. If the inspection is performed by detecting a vacant state of the base station (or a state in which there are few connected terminals, etc.), the processing load on the base station control unit can be reduced. Whether or not the base station is congested can be easily determined by monitoring the access status of the mobile terminal based on, for example, an RRC (Radio Resource Control) call processing signal. One of the main functions of RRC is re-establishment / maintenance / release at the time of establishment / disconnection of the RRC connection between the terminal and the base station. The processing load on the base station increases due to the establishment / re-establishment of the RRC connection, and is alleviated by releasing the RRC connection. Therefore, it is possible to easily determine whether or not the base station is idle by managing the number of mobile terminals located in the local station.

また、上記実施の形態出ではカプラを使用して送信信号の一部を抽出したが、これに限らない。送信信号の全てを切り替えて検査回路に入力するように構成しても良い。この場合の検査は、基地局の空き時間を検出して行う。   In the above embodiment, a part of the transmission signal is extracted using the coupler. However, the present invention is not limited to this. You may comprise so that all the transmission signals may be switched and input into a test | inspection circuit. The inspection in this case is performed by detecting the idle time of the base station.

また、上記実施の形態ではFFT演算により全帯域の周波数成分を求めたが、これに限らない。サブ帯域毎に設けたバンドパスフィルタ回路の出力をそれぞれ検波することで周波数成分を検出しても良い。   In the above embodiment, the frequency components of the entire band are obtained by FFT calculation, but the present invention is not limited to this. The frequency component may be detected by detecting the output of the bandpass filter circuit provided for each subband.

また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組合せの様々な変更が行えることは言うまでも無い。   Moreover, although several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part, control, a process, and these combination can be variously changed within the range which does not deviate from this invention. .

第1の実施の形態による無線送信装置を説明する図である。It is a figure explaining the radio | wireless transmission apparatus by 1st Embodiment. 第2の実施の形態による無線送信装置を説明する図である。It is a figure explaining the radio | wireless transmission apparatus by 2nd Embodiment. 実施の形態による故障検査処理のフローチャート(1)である。It is a flowchart (1) of failure inspection processing by an embodiment. 実施の形態による故障検査処理のフローチャート(2)である。It is a flowchart (2) of the failure inspection process by embodiment.

符号の説明Explanation of symbols

11 ベースバンド(BB)処理部
13,18 ミキサ
14 電力増幅器(AMP)
15,16 方向性結合器(カプラ)
17 ローカル発振器
21 メモリ(MEM)
22 判定部
23 検出部
24 制御部
11 Baseband (BB) processing unit 13, 18 Mixer 14 Power amplifier (AMP)
15,16 Directional coupler (coupler)
17 Local oscillator 21 Memory (MEM)
22 determination unit 23 detection unit 24 control unit

Claims (5)

D/A変換後の送信信号を中間周波信号及び無線周波信号に変換して増幅するアナログ送信部と、
前記増幅後の無線周波信号を抽出して中間周波信号に変換した後、A/D変換してモニタ信号を形成するモニタ信号抽出部と、
前記モニタ信号の周波数成分と、該周波数成分について予め設定された期待値とを比較することによりアナログ送信部の異常有無を判定する判定部と、
を備えることを特徴とする無線送信装置。
An analog transmitter for converting and amplifying the transmission signal after D / A conversion into an intermediate frequency signal and a radio frequency signal;
A monitor signal extraction unit that extracts the amplified radio frequency signal and converts it to an intermediate frequency signal, and then performs A / D conversion to form a monitor signal;
A determination unit that determines whether the analog transmission unit is abnormal by comparing the frequency component of the monitor signal with an expected value set in advance for the frequency component;
A wireless transmission device comprising:
前記モニタ信号抽出部は、前記アナログ送信部の複数の監視点より信号を抽出してモニタ信号を形成し、
前記判定部は、前記各監視点からのモニタ信号の周波数成分と、該周波数成分について予め設定された期待値とを比較することにより前記アナログ送信部の異常箇所を特定することを特徴とする請求項1記載の無線送信装置。
The monitor signal extraction unit extracts a signal from a plurality of monitoring points of the analog transmission unit to form a monitor signal,
The determination unit identifies an abnormal portion of the analog transmission unit by comparing a frequency component of a monitor signal from each of the monitoring points with an expected value set in advance for the frequency component. Item 2. The wireless transmission device according to Item 1.
前記期待値は、アナログ送信部の正常動作時に取得したモニタ信号の周波数成分であることを特徴とする請求項1又は2記載の無線送信装置。 The radio transmission apparatus according to claim 1, wherein the expected value is a frequency component of a monitor signal acquired during normal operation of the analog transmission unit. 前記判定部は、各監視点のモニタ信号が所定の帯域幅を有する場合は、該帯域幅内の複数の周波数成分と、該周波数成分について予め設定された複数の期待値とを比較することを特徴とする請求項3記載の無線送信装置。 When the monitor signal at each monitoring point has a predetermined bandwidth, the determination unit compares a plurality of frequency components within the bandwidth with a plurality of expected values preset for the frequency components. The wireless transmission device according to claim 3, wherein: 前記判定部は、通常はアナログ送信部最終段の監視点からのモニタ信号の周波数成分とその期待値とを比較すると共に、比較異常を検出した場合は、それより前段部の監視点からのモニタ信号の周波数成分とその期待値とを比較することを特徴とする請求項2記載の無線送信装置。 The determination unit usually compares the frequency component of the monitor signal from the monitoring point at the final stage of the analog transmission unit with its expected value, and if a comparison abnormality is detected, monitors from the monitoring point at the preceding stage. 3. The radio transmission apparatus according to claim 2, wherein the frequency component of the signal is compared with an expected value thereof.
JP2007151631A 2007-06-07 2007-06-07 Radio transmission apparatus Withdrawn JP2008306456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151631A JP2008306456A (en) 2007-06-07 2007-06-07 Radio transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151631A JP2008306456A (en) 2007-06-07 2007-06-07 Radio transmission apparatus

Publications (1)

Publication Number Publication Date
JP2008306456A true JP2008306456A (en) 2008-12-18

Family

ID=40234785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151631A Withdrawn JP2008306456A (en) 2007-06-07 2007-06-07 Radio transmission apparatus

Country Status (1)

Country Link
JP (1) JP2008306456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080298A (en) * 2010-09-30 2012-04-19 Fujitsu Ltd Nonlinear distortion compensation amplification device and nonlinear distortion compensation method
JP2013070253A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Train wireless radio
DE102018209437A1 (en) 2017-06-13 2018-12-13 Koito Manufacturing Co., Ltd. Monitoring device and light distribution control device for a lamp

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080298A (en) * 2010-09-30 2012-04-19 Fujitsu Ltd Nonlinear distortion compensation amplification device and nonlinear distortion compensation method
JP2013070253A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Train wireless radio
DE102018209437A1 (en) 2017-06-13 2018-12-13 Koito Manufacturing Co., Ltd. Monitoring device and light distribution control device for a lamp
FR3067533A1 (en) 2017-06-13 2018-12-14 Koito Manufacturing Co., Ltd. MONITORING DEVICE AND LIGHT DISTRIBUTION CONTROL DEVICE FOR FIRE
US10449891B2 (en) 2017-06-13 2019-10-22 Koito Manufacturing Co., Ltd. Monitoring device and light distribution control device for lamp

Similar Documents

Publication Publication Date Title
US8909133B2 (en) Gain measurement and monitoring for wireless communication systems
JP3040093B2 (en) Mobile communication system base station abnormality detection method
KR100933168B1 (en) Signal detection method and apparatus in wireless identification system
JP5042955B2 (en) Radio base station and receiver fault diagnosis method
US9379748B2 (en) Interference adaptive wideband receiver
US20070135056A1 (en) System and method to monitor broadband radio frequency transport systems
US8918060B2 (en) 2G, 2.5G RF loopback arrangement for mobile device self-testing
KR20060014730A (en) Simultaneous mode usage of tdd transceiver and self diagnostic method
CN106804044B (en) Communication fault detection method and device and radio remote unit
US10462757B2 (en) Automatic gain control based on signal spectrum sensing
US8082006B2 (en) Base station, receiving apparatus, and receiver trouble diagnosing method
RU2153224C1 (en) Self-test method and device for detection of faults in transceiver of receiving radio communication unit of base transceiver station
JP2008306456A (en) Radio transmission apparatus
JP2009038688A (en) Radio apparatus
CN113645016A (en) Signal processing system and method
JP2010004342A (en) Radio base station device, receiver, fault detection method therefor, and program
JP2014053696A (en) Radio communication apparatus, control program, and control method for the radio communication device
KR101942492B1 (en) Apparatus and system for monitoring mobile communication service
JP5097175B2 (en) Wireless receiver and test method thereof
EP2757711A1 (en) Communication device and method for monitoring performance thereof
KR100336844B1 (en) Remote monitoring system of base station for wireless communication device
US8280371B2 (en) Base station and receiver failure diagnosing method
KR100732172B1 (en) Anntena system
KR101540466B1 (en) Method for preventing over-input of backward signal and repeater applying it
KR20170059942A (en) Digital input overflow processing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907