JP2008305824A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2008305824A
JP2008305824A JP2007148953A JP2007148953A JP2008305824A JP 2008305824 A JP2008305824 A JP 2008305824A JP 2007148953 A JP2007148953 A JP 2007148953A JP 2007148953 A JP2007148953 A JP 2007148953A JP 2008305824 A JP2008305824 A JP 2008305824A
Authority
JP
Japan
Prior art keywords
anode
lead wire
anode lead
solid electrolytic
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007148953A
Other languages
Japanese (ja)
Other versions
JP4798717B2 (en
Inventor
Akira Takasaki
亮 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007148953A priority Critical patent/JP4798717B2/en
Publication of JP2008305824A publication Critical patent/JP2008305824A/en
Application granted granted Critical
Publication of JP4798717B2 publication Critical patent/JP4798717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having a welding strength sufficiently durable to various loads in an assembling manufacture process even if the cross sectional area of an anode lead wire is enhanced and a copper-based raw material having a low resistance value is used for an anode terminal, and enabling a low ESR without causing deterioration in leakage current characteristic and ESR characteristic. <P>SOLUTION: A capacitor element 1 comprises an anode body made of a valve act metal and a dielectric layer formed on the surface of the anode body, a solid electrolytic layer formed in contact with the dielectric layer and a cathode layer formed in contact with the solid electrolytic layer, and an anode lead wire 2 formed by pulling one end of the anode body. In the capacitor element 1, a groove 7 in a direction perpendicular to the pulling direction is formed on one part of a connection portion between the anode lead wire 2 and the anode terminal. The forward portion of the groove 7 is a welding portion 6 with the anode terminal. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、固体電解コンデンサに関し、特にその陽極リード線と陽極端子との接続構造に関するものである。   The present invention relates to a solid electrolytic capacitor, and more particularly to a connection structure between an anode lead wire and an anode terminal.

近年、電子機器の高速化、デジタル化に伴い、これら機器に使用される固体電解コンデンサにおいては大容量化と高周波領域でのESR(等価直列抵抗)の低減が要求されている。   In recent years, with the increase in speed and digitization of electronic devices, solid electrolytic capacitors used in these devices are required to have a large capacity and a reduction in ESR (equivalent series resistance) in a high frequency region.

図4に、従来の固体電解コンデンサの一例の断面図を示す。通常、固体電解コンデンサは、弁作用金属の焼結体からなる陽極体11と陽極体11の表面に形成された誘電体層と誘電体層に接して形成された固体電解質層12と固体電解質層12に接して形成された陰極層13と陽極体11の一端を引き出してなる陽極リード線50とから構成されたコンデンサ素子51を有しており、陽極リード線50の先端には溶接などの機械的接続によって陽極端子52が接続されている。コンデンサ素子51の外表面の陰極層13には、導電接着剤を介して平板状の陰極端子4が接続されている。   FIG. 4 shows a cross-sectional view of an example of a conventional solid electrolytic capacitor. Usually, the solid electrolytic capacitor includes an anode body 11 made of a sintered body of a valve action metal, a dielectric layer formed on the surface of the anode body 11, a solid electrolyte layer 12 formed in contact with the dielectric layer, and a solid electrolyte layer. 12 has a capacitor element 51 composed of a cathode layer 13 formed in contact with the anode 12 and an anode lead wire 50 from which one end of the anode body 11 is drawn, and a machine such as welding is provided at the tip of the anode lead wire 50. The anode terminal 52 is connected by a general connection. A flat cathode terminal 4 is connected to the cathode layer 13 on the outer surface of the capacitor element 51 via a conductive adhesive.

このように端子の接続が行われた後、外装樹脂部5が成型金型等により形成される。その後、固体電解コンデンサのリード成形工程においては、外装樹脂部5より引き出された陽極端子52、陰極端子4は金型等により所定の形状に切断、成形が行われる。すなわち、陽極端子52、陰極端子4は外装樹脂部5を基準とし、外装樹脂部5に沿うように曲げ成形される。成形時は、複数回に分離された曲げ金型を使用し、曲げ箇所別に順次成形を実施する。従来の固体電解コンデンサの陽極リード線と陽極端子との接続工程の一例が特許文献1に記載されている。   After the terminals are thus connected, the exterior resin portion 5 is formed by a molding die or the like. Thereafter, in the lead molding process of the solid electrolytic capacitor, the anode terminal 52 and the cathode terminal 4 drawn out from the exterior resin portion 5 are cut into a predetermined shape and molded by a mold or the like. That is, the anode terminal 52 and the cathode terminal 4 are bent and formed along the exterior resin portion 5 with the exterior resin portion 5 as a reference. At the time of molding, a bending mold separated into a plurality of times is used, and molding is sequentially performed for each bending portion. An example of a connection process between a conventional anode lead wire and an anode terminal of a solid electrolytic capacitor is described in Patent Document 1.

特開2004−311976号公報JP 2004-311976 A

上述のような従来の固体電解コンデンサでは、高周波領域でのESR値を下げるために、固体電解質層12や陰極層13の形状を大きくして静電容量を大きくしたり、陽極端子52や陰極端子4に抵抗値の低い銅系素材を使用したり、また、陽極リード線50の径を太くしたりしている。さらに、複数の陽極体、陽極リード線を設けることで全体として陽極リード線の断面積を増やし抵抗を低減する方法がある。   In the conventional solid electrolytic capacitor as described above, in order to lower the ESR value in the high frequency region, the shape of the solid electrolyte layer 12 or the cathode layer 13 is increased to increase the capacitance, or the anode terminal 52 or the cathode terminal. 4, a copper-based material having a low resistance value is used, and the diameter of the anode lead wire 50 is increased. Furthermore, there is a method of increasing the cross-sectional area of the anode lead wire as a whole and reducing the resistance by providing a plurality of anode bodies and anode lead wires.

コンデンサ素子51や陽極端子52、陰極端子4の基本的な形状や材料は変えずにESR特性値を下げようとした場合、一番簡単で他の特性に影響を及ぼさない方法は陽極リード線50の径を太くする方法である。陽極リード線50を太くすることで断面積が大きくなるため陽極リード線50の線抵抗を下げることができる。また、陽極体11、誘電体層、固体電解質層12の間のそれぞれの接触面積が増えるため接触抵抗も低減することができる。   When the ESR characteristic value is to be lowered without changing the basic shapes and materials of the capacitor element 51, the anode terminal 52, and the cathode terminal 4, the simplest method that does not affect other characteristics is the anode lead wire 50. This is a method of increasing the diameter of the. Since the cross-sectional area is increased by making the anode lead wire 50 thick, the wire resistance of the anode lead wire 50 can be lowered. Further, since the respective contact areas between the anode body 11, the dielectric layer, and the solid electrolyte layer 12 are increased, the contact resistance can also be reduced.

しかし、従来の固体電解コンデンサでは、陽極リード線50の径を太くすると組立製造工程において陽極リード線50を切断する時にかかる負荷が増加してしまう。このため、切断時に応力を受けた陽極リード線50及び一体となっている陽極体11を通して固体電解質層12や誘電体層に応力が加わり、その応力印加部分でダメージや位置ズレが発生し、漏れ電流特性やESR特性に影響を及ぼし特性が劣化する。実際に通常の円形断面の陽極リード線の線径は上記の切断時の影響のため一定寸法(約0.5mm)以上にすることはできない。   However, in the conventional solid electrolytic capacitor, when the diameter of the anode lead wire 50 is increased, the load applied when the anode lead wire 50 is cut in the assembly manufacturing process increases. For this reason, stress is applied to the solid electrolyte layer 12 and the dielectric layer through the anode lead wire 50 and the integrated anode body 11 which are stressed at the time of cutting, and damage and misalignment occur at the stress application portion, and leakage occurs. The current characteristics and ESR characteristics are affected and the characteristics deteriorate. Actually, the wire diameter of the anode lead wire having a normal circular cross section cannot be made a certain dimension (about 0.5 mm) or more because of the influence at the time of cutting.

なお、陽極リード線を複数本にした場合、1本の断面積が同じでも合計の断面積が大きくなるため全体として抵抗は下げることができるが、切断工程において外部からの応力が加わる回数は複数回に増えてしまい特性が劣化する可能性も大きくなる。   When a plurality of anode lead wires are used, the total cross-sectional area is increased even if one cross-sectional area is the same, so that the overall resistance can be lowered. However, the number of times external stress is applied in the cutting process is plural. The number of times increases and the possibility of deterioration of the characteristics increases.

上記の切断時の負荷を低減する方法としては、陽極リード線の断面積は同じにして、通常は円形である断面形状を潰して楕円形状とすること、さらに扁平な平板状の陽極リード線とすることが考えられる。これにより切断厚さは減少するので切断時の負荷が減少し、陽極リード線にかかる応力も減少する。図5はコンデンサ素子51の陽極リード線の形状を示す斜視図であり、図5(a)は通常の円形断面形状の陽極リード線50、図5(b)は線径を太くして扁平化した平板状の陽極リード線60を示す。   As a method of reducing the load at the time of cutting, the cross-sectional area of the anode lead wire is the same, the cross-sectional shape that is usually circular is crushed into an elliptical shape, and a flat plate-like anode lead wire and It is possible to do. As a result, the cutting thickness is reduced, so that the load during cutting is reduced and the stress applied to the anode lead wire is also reduced. 5A and 5B are perspective views showing the shape of the anode lead wire of the capacitor element 51. FIG. 5A is an anode lead wire 50 having a normal circular cross section, and FIG. A flat plate-like anode lead wire 60 is shown.

しかし、このように陽極リード線を平板状にした場合、陽極リード線50と陽極端子52の接続工程において新たな問題が生ずる。第一の問題は、上記接続には一般的に抵抗溶接が用いられるので、扁平な形状では陽極リード線50と陽極端子52を重ね合わせ電流を流した場合に電極などの接触面積が大きくなるため接触抵抗が小さくなってしまい、溶融のための十分な加熱が得られないという問題である。図6は陽極リード線と陽極端子の抵抗溶接による接続工程を説明するための断面図であり、陽極リード線60が陽極端子52と重ね合わされ、溶接機の溶接電極8と9の間に挟まれて電流が印加され加熱される。このとき、溶接電極8と陽極リード線60、陽極リード線60と陽極端子52、および溶接電極9と陽極端子52の間の各接触抵抗はそれぞれ小さくなり、陽極リード線60と陽極端子52の溶融が安定して行えない。特に陽極端子52に抵抗の低い銅系素材を使用した場合には接触抵抗がさらに小さくなるため安定な接続は見込めない。各溶接用電極にそれぞれの素材がくっついてしまう現象も発生する。実際にこのように単に陽極リード線を扁平にしただけでは上記のように溶接強度が不安定になる傾向が現れるので陽極リード線の元の線径は0.5mm程度以上にはできない。   However, when the anode lead wire is flattened in this way, a new problem arises in the process of connecting the anode lead wire 50 and the anode terminal 52. The first problem is that resistance welding is generally used for the above connection. Therefore, in the flat shape, when the anode lead wire 50 and the anode terminal 52 are overlapped and a current flows, the contact area of the electrode and the like becomes large. This is a problem that contact resistance becomes small and sufficient heating for melting cannot be obtained. FIG. 6 is a cross-sectional view for explaining a connecting process by resistance welding between the anode lead wire and the anode terminal, in which the anode lead wire 60 is overlapped with the anode terminal 52 and sandwiched between the welding electrodes 8 and 9 of the welding machine. Current is applied and heated. At this time, the respective contact resistances between the welding electrode 8 and the anode lead wire 60, the anode lead wire 60 and the anode terminal 52, and the welding electrode 9 and the anode terminal 52 are reduced, and the anode lead wire 60 and the anode terminal 52 are melted. Cannot be performed stably. In particular, when a copper-based material having a low resistance is used for the anode terminal 52, the contact resistance is further reduced, so that a stable connection cannot be expected. There also occurs a phenomenon in which each material sticks to each welding electrode. Actually, simply flattening the anode lead wire tends to make the welding strength unstable as described above. Therefore, the original wire diameter of the anode lead wire cannot be increased to about 0.5 mm or more.

第二の問題は、陽極リード線60と陽極端子52は面接触となるため陽極リード線60と陽極端子52との接触圧力が大きな面積に分散し、陽極端子52に対する陽極リード線60の十分な沈み込みが見込めないためアンカー部分が得られないことである。このため陽極リード線60と陽極端子52との接続部は後の陽極端子の曲げ工程などでその負荷に耐える接続強度が得られないことになる。上記の沈み込みを得ようとする場合、溶接時の陽極リード線60と陽極端子52との密着圧力を上げる方法があるが、この場合、逆に陽極リード線60と陽極端子52との接触抵抗が小さくなるため溶接時の溶融は少なくなり、やはり十分な接続強度は得にくくなる。   The second problem is that since the anode lead wire 60 and the anode terminal 52 are in surface contact, the contact pressure between the anode lead wire 60 and the anode terminal 52 is dispersed over a large area, and the anode lead wire 60 is sufficiently attached to the anode terminal 52. Since the sinking cannot be expected, the anchor portion cannot be obtained. For this reason, the connection portion between the anode lead wire 60 and the anode terminal 52 cannot obtain a connection strength that can withstand the load in the subsequent bending process of the anode terminal. In order to obtain the above-described subsidence, there is a method of increasing the contact pressure between the anode lead wire 60 and the anode terminal 52 during welding. In this case, conversely, the contact resistance between the anode lead wire 60 and the anode terminal 52 is increased. Therefore, melting at the time of welding is reduced, and it is difficult to obtain sufficient connection strength.

第三の問題は、上記のような接触抵抗が低い溶接では接触面の発熱を得るために溶接電流値を上げなくてはならなく、このような大電流の溶接ではスパークが発生しやすく、スパークにより陽極端子52の銅系素材がチップ状に溶融し飛散することである。この溶融したチップは陽極リード線60と陽極端子52の接合面に水平に飛散し、コンデンサ素子に付着してしまう。この結果、固体電解コンデンサの漏れ電流特性が劣化する。   The third problem is that the welding current value must be increased in order to obtain heat generated on the contact surface in welding with low contact resistance as described above, and sparks are easily generated in such high current welding. Thus, the copper-based material of the anode terminal 52 is melted and scattered in a chip shape. The melted chip scatters horizontally on the joint surface between the anode lead wire 60 and the anode terminal 52 and adheres to the capacitor element. As a result, the leakage current characteristic of the solid electrolytic capacitor is deteriorated.

従って、本発明の課題は、上記の問題を解決し、固体電解コンデンサにおいて、陽極リード線の断面積を大きくし、抵抗値の低い銅系素材を陽極端子に使用した場合においても、組立製造工程において各種負荷に十分に耐える溶接強度を保ち、漏れ電流特性やESR特性が劣化することなく低ESR化を可能にする固体電解コンデンサを提供することである。   Therefore, the object of the present invention is to solve the above-mentioned problems, and in the solid electrolytic capacitor, even when the cross-sectional area of the anode lead wire is increased and a copper-based material having a low resistance value is used for the anode terminal, the assembly manufacturing process It is intended to provide a solid electrolytic capacitor that can maintain a welding strength that can sufficiently withstand various loads and that can reduce ESR without deteriorating leakage current characteristics and ESR characteristics.

上記課題を達成するため、本発明の固体電解コンデンサは、弁作用金属からなる陽極体と該陽極体の表面に形成された誘電体層と該誘電体層に接して形成された固体電解質層と該固体電解質層に接して形成された陰極層と前記陽極体の一端を引き出してなる陽極リード線とから構成されたコンデンサ素子と、前記陽極リード線に接続された陽極端子と、前記陰極層に接続された陰極端子とからなる固体電解コンデンサにおいて、前記陽極リード線の前記陽極端子との接続部分の一部分に前記引き出し方向に直交する方向の溝を設けたことを特徴とする。   In order to achieve the above object, a solid electrolytic capacitor of the present invention includes an anode body made of a valve metal, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer formed in contact with the dielectric layer. A capacitor element composed of a cathode layer formed in contact with the solid electrolyte layer and an anode lead wire from which one end of the anode body is drawn, an anode terminal connected to the anode lead wire, and a cathode layer A solid electrolytic capacitor comprising a connected cathode terminal is characterized in that a groove in a direction orthogonal to the lead-out direction is provided in a part of the anode lead wire connected to the anode terminal.

前記陽極端子は、その先端が前記陽極リード線の溝が形成された部分に位置し、前記陽極リード線の溝が形成された部分より先端の部分において前記陽極リード線と重ね合わされて抵抗溶接されてもよく、また、前記陽極リード線の形状は、平板形の形状または断面が楕円形状であることが望ましい。   The anode terminal is positioned at the portion where the groove of the anode lead wire is formed, and is overlapped with the anode lead wire at the tip portion from the portion where the groove of the anode lead wire is formed and resistance-welded. The anode lead wire may have a flat plate shape or an elliptical cross section.

上述のように、本発明では、線径の太い陽極リード線を用いた場合、それを平板形の形状または断面を楕円形状となるよう潰し加工し、かつ、陽極端子との接続部分の一部分に引き出し方向に直交する方向の溝を設けることにより、溶接領域を限定して溶接時の接触抵抗値を高めことにより溶接状態の安定性を改善すると同時にその溝をアンカーとして作用させることにより接続強度を改善し、上記の課題の解決をはかったものである。   As described above, in the present invention, when an anode lead wire with a large wire diameter is used, it is crushed so as to have a flat plate shape or an elliptical cross section, and a part of the connection portion with the anode terminal is used. By providing a groove in the direction perpendicular to the pulling direction, the welding resistance is limited and the contact resistance value during welding is increased to improve the stability of the welded state, and at the same time, the groove acts as an anchor to increase the connection strength. It was improved and the above problems were solved.

以上のように、本発明によれば、陽極リード線の断面積を大きくし、抵抗値の低い銅系素材を陽極端子に使用した場合においても、組立製造工程において各種負荷に十分に耐える溶接強度を保ち、漏れ電流特性やESR特性が劣化することなく低ESR化を可能にする固体電解コンデンサが得られる。   As described above, according to the present invention, even when the cross-sectional area of the anode lead wire is increased and a copper-based material having a low resistance value is used for the anode terminal, the welding strength sufficiently withstands various loads in the assembly manufacturing process. Thus, a solid electrolytic capacitor capable of reducing ESR without deteriorating leakage current characteristics and ESR characteristics can be obtained.

次に、本発明に係る固体電解コンデンサの実施の形態について図面を参照して説明する。   Next, an embodiment of a solid electrolytic capacitor according to the present invention will be described with reference to the drawings.

図1は、本発明による固体電解コンデンサの一実施の形態に使用するコンデンサ素子の斜視図であり、陽極リード線の構造を示す図である。図1は、図4の従来の固体電解コンデンサと同様に、弁作用金属からなる陽極体と陽極体の表面に形成された誘電体層と該誘電体層に接して形成された固体電解質層と該固体電解質層に接して形成された陰極層と前記陽極体の一端を引き出してなる陽極リード線とから構成されたコンデンサ素子1を示しているが、ここでは、その陽極リード線2の陽極端子との接続部分の一部分に引き出し方向に直交する方向の溝7を設けている。そして溝7より先の部分が陽極端子との溶接部6となっている。   FIG. 1 is a perspective view of a capacitor element used in an embodiment of a solid electrolytic capacitor according to the present invention, and shows a structure of an anode lead wire. 1 shows an anode body made of a valve metal, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer formed in contact with the dielectric layer, as in the conventional solid electrolytic capacitor of FIG. 1 shows a capacitor element 1 composed of a cathode layer formed in contact with the solid electrolyte layer and an anode lead wire from which one end of the anode body is drawn. Here, an anode terminal of the anode lead wire 2 is shown. A groove 7 in a direction perpendicular to the pulling direction is provided in a part of the connecting portion. And the part ahead of the groove | channel 7 is the welding part 6 with an anode terminal.

コンデンサ素子1の成形においては、断面積が円形状の弁作用金属の焼結体で成形された線を加工により平板形の形状または断面を楕円形状に成形し、それを陽極体および陽極リード線として使用する。この成形においては例えば成形金型等を使用する。その後、表面に誘電体層を形成し、コンデンサ素子1の成形金型にセットして固体電解質層となる粉末を挿入して圧縮成形を行い、陰極層形成などの素子形成工程を経てコンデンサ素子1の組立を完了する。   In the formation of the capacitor element 1, a line formed of a valve action metal sintered body having a circular cross-sectional area is processed to form a flat plate shape or a cross-section into an elliptical shape, which are formed into an anode body and an anode lead wire. Use as In this molding, for example, a molding die or the like is used. Thereafter, a dielectric layer is formed on the surface, set in a molding die of the capacitor element 1, inserted into a powder that becomes a solid electrolyte layer, compression-molded, and subjected to an element formation process such as cathode layer formation to form the capacitor element 1. Complete the assembly.

次に、コンデンサ素子1は陽極リード線2を規定寸法に切断し、陽極リード線2と陽極端子を抵抗溶接によって、電気的に且つ機械的に接続を行う。本実施の形態においては、このとき、陽極リード線2の先端付近の陽極端子との接続部分の一部分には溝7が設けられている。この溝7の成形方法については、例えば陽極リード線2の切断時に溝7が形成される部分を押圧すること、または溝7の部分に切り込みを入れることなどにより、切断と同時に溝形成を行う方法がある。   Next, the capacitor element 1 cuts the anode lead wire 2 to a specified size, and electrically and mechanically connects the anode lead wire 2 and the anode terminal by resistance welding. In the present embodiment, at this time, a groove 7 is provided in a part of the connection portion with the anode terminal near the tip of the anode lead wire 2. As a method for forming the groove 7, for example, a method of forming a groove at the same time as cutting by pressing a portion where the groove 7 is formed at the time of cutting the anode lead wire 2 or by making a cut in the groove 7 portion. There is.

陽極リード線2の溝7から切断端面までの部分である溶接部6の長さについては、溶接時に陽極端子と重ね合わせたときに最適な溶接条件が得られるような長さとなるように設定し、また、溶接時には陽極リード線2と陽極端子を重ねたときに、陽極端子の先端が溝7の中に位置するように設定する。   About the length of the welding part 6 which is the part from the groove | channel 7 of the anode lead wire 2 to a cutting end surface, it sets so that it may become the length which can obtain optimal welding conditions when it overlaps with an anode terminal at the time of welding. Further, at the time of welding, when the anode lead wire 2 and the anode terminal are overlapped, the tip of the anode terminal is set so as to be positioned in the groove 7.

図2は、本実施の形態の陽極リード線と陽極端子の抵抗溶接による接続工程を説明するための断面図である。陽極リード線2が陽極端子3と重ね合わされ、溶接機の溶接電極8と溶接電極9の間に挟まれて電流が印加され加熱される。本実施の形態では陽極リード線2と陽極端子3は陽極リード線2の溶接部6の部分だけ重ね合わされているので両者の間の接触面積が少なく、図6に示した従来の場合よりその接触抵抗が高くなる。また、図2に示すように溶接電極8、9を陽極リード線2の先端側に配置し、陽極リード線2と溶接部6の部分のみで接触するように配置することで、溶接電極8、9と陽極リード線2、および陽極端子3との接触面積も従来の図6の場合より小さくなり、さらに溶接電流は溝7で一部がブロックされるため、抵抗値が上昇して抵抗溶接に必要な安定した発熱が得られる。陽極端子3に銅系の材料を用いた場合の抵抗溶接においても安定して溶接を行うことができる。   FIG. 2 is a cross-sectional view for explaining a connection process by resistance welding of the anode lead wire and the anode terminal according to the present embodiment. The anode lead wire 2 is overlapped with the anode terminal 3 and is sandwiched between the welding electrode 8 and the welding electrode 9 of the welding machine, and an electric current is applied and heated. In the present embodiment, the anode lead wire 2 and the anode terminal 3 are overlapped only at the welded portion 6 of the anode lead wire 2, so that the contact area between the two is small, and the contact between them is smaller than in the conventional case shown in FIG. Resistance increases. Further, as shown in FIG. 2, the welding electrodes 8 and 9 are arranged on the tip end side of the anode lead wire 2, and arranged so as to be in contact with only the anode lead wire 2 and the welded portion 6. 9, the contact area between the anode lead wire 2 and the anode terminal 3 is also smaller than in the conventional case of FIG. 6, and the welding current is partially blocked by the groove 7, so that the resistance value increases and resistance welding is performed. The necessary stable heat generation is obtained. Also in resistance welding when a copper-based material is used for the anode terminal 3, welding can be performed stably.

また、陽極リード線2は先端の溶接部6のみで陽極端子3と接触し接触圧力が分散しないため溶接部6は陽極端子3内にクサビの様に埋め込まれてしまう。また、溝7の側にはみ出した陽極端子3の先端部は抵抗溶接時には接触圧力がかかっていないため、抵抗溶接時の発熱により陽極リード線2の溝7の部分に溶け込んでしまう。この両方の効果により、図2に示すような陽極リード線2と陽極端子3との間の噛み合わされたアンカー構造が得られ、従来の接触状態での抵抗溶接では実現できない強い接続強度が得られる。   Further, since the anode lead wire 2 is in contact with the anode terminal 3 only at the tip welding portion 6 and the contact pressure is not dispersed, the welding portion 6 is embedded in the anode terminal 3 like a wedge. In addition, since the contact pressure is not applied to the tip of the anode terminal 3 protruding to the groove 7 side during resistance welding, it melts into the groove 7 portion of the anode lead wire 2 due to heat generation during resistance welding. Due to both effects, a meshed anchor structure between the anode lead wire 2 and the anode terminal 3 as shown in FIG. 2 is obtained, and a strong connection strength that cannot be realized by resistance welding in the conventional contact state is obtained. .

上述のように低ESR化のため陽極端子3の母材に銅系素材を使用する場合、抵抗溶接では、陽極リード線と陽極端子との接触抵抗が低くなるため、接触面の発熱を得るために溶接電流値を上げる必要があり、このとき従来の溶接状態ではスパークにより溶融飛散したチップがコンデンサ素子に付着する結果、固体電解コンデンサの漏れ電流特性が劣化する。   As described above, when a copper-based material is used for the base material of the anode terminal 3 to reduce the ESR, contact resistance between the anode lead wire and the anode terminal is lowered in resistance welding, so that heat is generated on the contact surface. It is necessary to increase the welding current value at this time. At this time, in the conventional welding state, the chip melted and scattered by the spark adheres to the capacitor element, resulting in deterioration of the leakage current characteristic of the solid electrolytic capacitor.

一方、本実施の形態では陽極端子の先端は溝7の中に流れ込むように溶融するので、そこから飛散するチップは溝7のコンデンサ素子1側の壁により防御され、溝7よりコンデンサ素子1側へのチップの飛散を防ぐことができる。この結果、漏れ電流特性は抵抗溶接前後で劣化することがない。   On the other hand, in the present embodiment, the tip of the anode terminal is melted so as to flow into the groove 7, so that the chips scattered from the anode terminal are protected by the wall on the capacitor element 1 side of the groove 7, and from the groove 7 to the capacitor element 1 side. It is possible to prevent chips from being scattered. As a result, the leakage current characteristic does not deteriorate before and after resistance welding.

図3は、上記の工程により形成された本実施の形態の固体電解コンデンサの断面図を示す。コンデンサ素子1の外側全周面に陰極層13が形成されており、この陰極層13と陰極端子4を導電性接着剤により電気的に接続する。その後、外装樹脂により全体を覆い成形し外装樹脂部5を形成する。この後は従来と同様な方法で陽極端子3、陰極端子4を所定寸法にて切断、成形し最終形状を得る。   FIG. 3 shows a cross-sectional view of the solid electrolytic capacitor of the present embodiment formed by the above process. A cathode layer 13 is formed on the entire outer peripheral surface of the capacitor element 1, and the cathode layer 13 and the cathode terminal 4 are electrically connected by a conductive adhesive. Thereafter, the exterior resin portion 5 is formed by covering and molding the entire surface with the exterior resin. Thereafter, the anode terminal 3 and the cathode terminal 4 are cut and formed in predetermined dimensions by a method similar to the conventional method to obtain a final shape.

以上のように、本発明により陽極リード線の断面積を大きくし、抵抗値の低い銅系素材を陽極端子に使用した場合においても、組立製造工程において各種負荷に十分に耐える溶接強度を保ち、漏れ電流特性やESR特性が劣化することなく低ESR化を可能にする固体電解コンデンサが得られる。   As described above, according to the present invention, the cross-sectional area of the anode lead wire is increased, and even when a copper-based material having a low resistance value is used for the anode terminal, the welding strength sufficiently withstanding various loads is maintained in the assembly manufacturing process, A solid electrolytic capacitor that enables low ESR without deteriorating leakage current characteristics and ESR characteristics can be obtained.

なお、本発明は、上述の実施の形態に限定されるものではないことは言うまでもなく、本発明に使用する陽極リード線、陽極端子の材料や形状および溝の形状などは目的に合わせて任意に設計することができる。   Needless to say, the present invention is not limited to the above-described embodiment, and the material and shape of the anode lead wire and anode terminal used in the present invention, the shape of the groove, and the like are arbitrarily set according to the purpose. Can be designed.

本発明による固体電解コンデンサの一実施の形態に使用するコンデンサ素子の斜視図、陽極リード線の構造を示す図。The perspective view of the capacitor | condenser element used for one embodiment of the solid electrolytic capacitor by this invention, and the figure which shows the structure of an anode lead wire. 本実施の形態の陽極リード線と陽極端子の抵抗溶接による接続工程を説明するための断面図。Sectional drawing for demonstrating the connection process by the resistance welding of the anode lead wire and anode terminal of this Embodiment. 本実施の形態の固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor of this Embodiment. 従来の固体電解コンデンサの一例の断面図。Sectional drawing of an example of the conventional solid electrolytic capacitor. 従来のコンデンサ素子の部分の陽極リード線の形状を示す斜視図、図5(a)は円形断面形状の陽極リード線を示す斜視図、図5(b)は平板状の陽極リード線を示す斜視図。FIG. 5A is a perspective view showing a shape of an anode lead wire of a conventional capacitor element portion, FIG. 5A is a perspective view showing an anode lead wire having a circular cross section, and FIG. 5B is a perspective view showing a plate-like anode lead wire. Figure. 従来の陽極リード線と陽極端子の抵抗溶接による接続工程を説明するための断面図。Sectional drawing for demonstrating the connection process by the resistance welding of the conventional anode lead wire and an anode terminal.

符号の説明Explanation of symbols

1、51 コンデンサ素子
2、50、60 陽極リード線
3、52 陽極端子
4 陰極端子
5 外装樹脂部
6 溶接部
7 溝
8,9 溶接電極
11 陽極体
12 固体電解質層
13 陰極層
DESCRIPTION OF SYMBOLS 1, 51 Capacitor element 2, 50, 60 Anode lead wire 3, 52 Anode terminal 4 Cathode terminal 5 Exterior resin part 6 Welding part 7 Groove 8, 9 Welding electrode 11 Anode body 12 Solid electrolyte layer 13 Cathode layer

Claims (3)

弁作用金属からなる陽極体と該陽極体の表面に形成された誘電体層と該誘電体層に接して形成された固体電解質層と該固体電解質層に接して形成された陰極層と前記陽極体の一端を引き出してなる陽極リード線とから構成されたコンデンサ素子と、前記陽極リード線に接続された陽極端子と、前記陰極層に接続された陰極端子とからなる固体電解コンデンサにおいて、前記陽極リード線の前記陽極端子との接続部分の一部分に前記引き出し方向に直交する方向の溝を設けたことを特徴とする固体電解コンデンサ。   An anode body made of a valve metal, a dielectric layer formed on the surface of the anode body, a solid electrolyte layer formed in contact with the dielectric layer, a cathode layer formed in contact with the solid electrolyte layer, and the anode A solid electrolytic capacitor comprising a capacitor element composed of an anode lead wire formed by pulling out one end of the body, an anode terminal connected to the anode lead wire, and a cathode terminal connected to the cathode layer. A solid electrolytic capacitor characterized in that a groove in a direction perpendicular to the lead-out direction is provided in a part of a connecting portion of a lead wire with the anode terminal. 前記陽極端子は、その先端が前記陽極リード線の溝が形成された部分に位置し、前記陽極リード線の溝が形成された部分より先端の部分において前記陽極リード線と重ね合わされて抵抗溶接されることを特徴とする請求項1記載の固体電解コンデンサ。   The anode terminal is positioned at the portion where the groove of the anode lead wire is formed, and is overlapped with the anode lead wire at the tip portion from the portion where the groove of the anode lead wire is formed and resistance-welded. The solid electrolytic capacitor according to claim 1. 前記陽極リード線の形状は、平板形の形状または断面が楕円形状であることを特徴とする請求項1または2記載の固体電解コンデンサ。   3. The solid electrolytic capacitor according to claim 1, wherein the anode lead wire has a flat plate shape or an elliptical cross section.
JP2007148953A 2007-06-05 2007-06-05 Solid electrolytic capacitor Active JP4798717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148953A JP4798717B2 (en) 2007-06-05 2007-06-05 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148953A JP4798717B2 (en) 2007-06-05 2007-06-05 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008305824A true JP2008305824A (en) 2008-12-18
JP4798717B2 JP4798717B2 (en) 2011-10-19

Family

ID=40234318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148953A Active JP4798717B2 (en) 2007-06-05 2007-06-05 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4798717B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516029A (en) * 2009-01-20 2012-07-12 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Tantalum wire used for anode lead wire of tantalum capacitor and manufacturing method thereof
JP2013229565A (en) * 2012-04-24 2013-11-07 Avx Corp Solid electrolytic capacitor containing multiple sinter-bonded anode leadwires
GB2502703A (en) * 2012-05-30 2013-12-04 Avx Corp Solid Electrolytic Capacitor comprising a sintered porous body with a notched anode lead
US20130321985A1 (en) * 2012-05-30 2013-12-05 Avx Corporation Notched Lead Wire for a Solid Electrolytic Capacitor
US20130321986A1 (en) * 2012-05-30 2013-12-05 Avx Corporation Notched Lead Tape for a Solid Electrolytic Capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023008573A (en) 2021-07-06 2023-01-19 株式会社トーキン Solid electrolytic capacitor and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149625U (en) * 1983-03-25 1984-10-06 日本電気ホームエレクトロニクス株式会社 solid electrolytic capacitor
JP2002222732A (en) * 2001-01-25 2002-08-09 Rohm Co Ltd Structure of solid-state electrolytic capacitor and its manufacturing method
JP2005064238A (en) * 2003-08-12 2005-03-10 Elna Co Ltd Chip type solid electrolytic capacitor
JP2007067124A (en) * 2005-08-31 2007-03-15 Nichicon Corp Manufacturing method of solid-state electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149625U (en) * 1983-03-25 1984-10-06 日本電気ホームエレクトロニクス株式会社 solid electrolytic capacitor
JP2002222732A (en) * 2001-01-25 2002-08-09 Rohm Co Ltd Structure of solid-state electrolytic capacitor and its manufacturing method
JP2005064238A (en) * 2003-08-12 2005-03-10 Elna Co Ltd Chip type solid electrolytic capacitor
JP2007067124A (en) * 2005-08-31 2007-03-15 Nichicon Corp Manufacturing method of solid-state electrolytic capacitor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516029A (en) * 2009-01-20 2012-07-12 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Tantalum wire used for anode lead wire of tantalum capacitor and manufacturing method thereof
US10121597B2 (en) 2009-01-20 2018-11-06 Ningxia Orient Tantalum Industry Co., Ltd. Tantalum wire used for anode lead of tantalum capacitor and manufacturing method thereof
JP2014112726A (en) * 2009-01-20 2014-06-19 Ningxia Orient Tantalum Industry Co Ltd Tantalum line used for anode lead line of tantalum capacitor and manufacturing method for the same
JP2013229565A (en) * 2012-04-24 2013-11-07 Avx Corp Solid electrolytic capacitor containing multiple sinter-bonded anode leadwires
JP2013251543A (en) * 2012-05-30 2013-12-12 Avx Corp Notched lead for solid electrolytic capacitor
KR20130135149A (en) * 2012-05-30 2013-12-10 에이브이엑스 코포레이션 Notched lead for a solid electrolytic capacitor
US20130321986A1 (en) * 2012-05-30 2013-12-05 Avx Corporation Notched Lead Tape for a Solid Electrolytic Capacitor
US20130321985A1 (en) * 2012-05-30 2013-12-05 Avx Corporation Notched Lead Wire for a Solid Electrolytic Capacitor
US8842419B2 (en) * 2012-05-30 2014-09-23 Avx Corporation Notched lead tape for a solid electrolytic capacitor
GB2502703B (en) * 2012-05-30 2016-09-21 Avx Corp Notched lead for a solid electrolytic capacitor
US9776281B2 (en) * 2012-05-30 2017-10-03 Avx Corporation Notched lead wire for a solid electrolytic capacitor
GB2502703A (en) * 2012-05-30 2013-12-04 Avx Corp Solid Electrolytic Capacitor comprising a sintered porous body with a notched anode lead
KR102163475B1 (en) * 2012-05-30 2020-10-12 에이브이엑스 코포레이션 Notched lead for a solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4798717B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4798717B2 (en) Solid electrolytic capacitor
JP4922897B2 (en) Crimp terminal, electric wire with terminal, and manufacturing method thereof
US8221171B2 (en) Crimp terminal, terminal-provided wire, and manufacturing method thereof
EP3595044A1 (en) Secondary battery and electrode plate
US8956485B2 (en) Electric functional unit and method for the production thereof
CN103563176A (en) Electrical line with terminal and method for producing same
JP2009266931A (en) Solid-state electrolytic capacitor
JP2002075807A (en) Solid electrolyte capacitor and its manufacturing method
JP2007184308A (en) Manufacturing method of chip-like solid electrolytic capacitor
JP2005123505A (en) Solid electrolytic capacitor, and manufacturing method thereof
JP2011049225A (en) Solid electrolytic capacitor
WO2013157275A1 (en) Capacitor and method for manufacturing same
JP4775958B2 (en) Bottom electrode type solid electrolytic capacitor
KR102327940B1 (en) Manufacturing method of laminated metal foil
JP4880431B2 (en) Chip-shaped solid electrolytic capacitor
JP2009182265A (en) Electrode terminal for film capacitor, and the film capacitor
JP2006269865A (en) Chip type solid electrolytic capacitor and lead frame used therefor
JP2007096021A (en) Chip type solid electrolytic capacitor and lead frame therefor
JP2008311583A (en) Solid electrolytic capacitor, and its manufacturing method
JP4352802B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5262448B2 (en) Thermistor
JP2006269864A (en) Solid electrolytic capacitor
JP5546919B2 (en) Solid electrolytic capacitor
JP6108867B2 (en) Wire harness and terminals
CN113748577B (en) Spark plug electrode and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250