JP2008304093A - Evaporative cooling system - Google Patents

Evaporative cooling system Download PDF

Info

Publication number
JP2008304093A
JP2008304093A JP2007149882A JP2007149882A JP2008304093A JP 2008304093 A JP2008304093 A JP 2008304093A JP 2007149882 A JP2007149882 A JP 2007149882A JP 2007149882 A JP2007149882 A JP 2007149882A JP 2008304093 A JP2008304093 A JP 2008304093A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
air
vaporization
evaporative cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007149882A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
猛 加藤
Yoshihiro Kondo
義広 近藤
Tatsuya Saito
達也 齊藤
Naoki Hamanaka
直樹 濱中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007149882A priority Critical patent/JP2008304093A/en
Priority to US12/155,614 priority patent/US20080302505A1/en
Publication of JP2008304093A publication Critical patent/JP2008304093A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20809Liquid cooling with phase change within server blades for removing heat from heat source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporative cooling system capable of cooling a heating element with high efficiency, to improve packaging density of a device having the heating element, and to achieve high performance. <P>SOLUTION: This evaporative cooling system is composed of evaporative cooling modules 10, 11, a liquid sending system composed of a liquid sending pump 50 and a tube 51, and supplying a refrigerant liquid to the evaporative cooling modules, an air supply system composed of air supply tubes 60, 61, and supplying warm air to the evaporative cooling module, an exhaust system composed of an exhaust pump 70 and a tube 71, and discharging the air including refrigerant vapor from the evaporative cooling modules, a returning system composed of a primary heat exchanger 80 and a return tube 81, condensing the refrigerant vapor and returning the same to the liquid supply system, and a heat exhausting system composed of a secondary heat exchanger 90 and a tube 91, and discharging the heat absorbed from the primary heat exchanger. The warm air of high saturated vapor pressure and low relative humidity, and the refrigerant liquid are supplied to an evaporation plate kept into contact with the heating element over the inside of the evaporative cooling modules 10, 11, thus the evaporation is promoted and high cooling efficiency can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は発熱体に対する冷却システムに係り、特に高性能、高密度化が求められるサーバ、ネットワーク、ストレージ等の情報プラットフォーム装置に好適な気化冷却システムに関する。   The present invention relates to a cooling system for a heating element, and more particularly to a vaporization cooling system suitable for information platform devices such as servers, networks, and storages that require high performance and high density.

従来、プロセッサ、LSI、電子機器、電力機器、動力機器等の発熱体を効率良く冷却する手段として気化冷却が知られている。発熱体から冷媒への熱伝導や熱伝達を利用する空冷や液冷に比べて、冷媒の潜熱を利用する気化冷却は、冷却効率の向上と冷却系の小型軽量化に向けて有望視されている。   Conventionally, evaporative cooling is known as means for efficiently cooling a heating element such as a processor, an LSI, an electronic device, a power device, and a power device. Compared to air cooling and liquid cooling using heat conduction and heat transfer from the heating element to the refrigerant, evaporative cooling using the latent heat of the refrigerant is considered promising for improving cooling efficiency and reducing the size and weight of the cooling system. Yes.

例えば、100Wの発熱体に対して空冷と水冷と気化冷却を比較する。空気の比熱を1.0J/g・K、密度を0.0012g/cm3、水の比熱を4.2J/g・K、密度を1 g/cm3、気化熱を2300J/gとして、空冷と水冷における冷媒の温度上昇を30Kと仮定する。この想定条件で発熱体を冷却するために必要な冷媒の重量比は、空冷:水冷:気化冷却=3.3g/s:0.79g/s:0.043g/s=77:18:1、冷媒の体積比は2800 cm3/s:0.79cm3/s:0.043cm3/s=64000:18:1となり、気化冷却が空冷や水冷に比べて桁違いの潜在性能を有することが分かる。但し、実用上の冷却性能は冷媒の供給手段や気化条件等に大きく依存する。   For example, air cooling, water cooling, and vaporization cooling are compared for a 100 W heating element. Air and water cooling with specific heat of air of 1.0 J / g · K, density of 0.0012 g / cm 3, specific heat of water of 4.2 J / g · K, density of 1 g / cm 3, and heat of vaporization of 2300 J / g It is assumed that the temperature rise of the refrigerant at 30K is 30K. The weight ratio of the refrigerant necessary for cooling the heating element under this assumption is air cooling: water cooling: evaporative cooling = 3.3 g / s: 0.79 g / s: 0.043 g / s = 77: 18: 1, The volume ratio of the refrigerant is 2800 cm <3> / s: 0.79 cm <3> / s: 0.043 cm <3> / s = 64000: 18: 1, and it can be seen that evaporative cooling has orders of magnitude performance compared to air cooling and water cooling. However, the practical cooling performance greatly depends on the refrigerant supply means, vaporization conditions, and the like.

気化冷却手段として幾つかの公知例が知られている。米国特許6085831号公報(特許文献1)では、発熱体である半導体チップにジャケットを被せ、その内部で冷媒を循環させている。発熱体により冷媒液体が気化し、ジャケット外部の空冷フィンにより冷媒蒸気が冷やされて凝結し、再び冷媒液体が発熱体に戻り、冷媒がジャケット内部を循環している。   Several known examples are known as evaporative cooling means. In US Pat. No. 6,085,831 (Patent Document 1), a semiconductor chip, which is a heating element, is covered with a jacket, and a refrigerant is circulated therein. The refrigerant liquid is vaporized by the heating element, the refrigerant vapor is cooled and condensed by the air cooling fin outside the jacket, the refrigerant liquid returns to the heating element again, and the refrigerant circulates inside the jacket.

特開2000−252671号公報(特許文献2)では、発熱体であるマイクロプロセッサに循環配管を取り付けている。発熱体により気化した冷媒蒸気が配管内部を移動し、空冷フィンから成る熱交換部において蒸気が凝結して冷媒液体と空気に分離され、両者が別々の配管でノズルに送られ、冷媒液体がノズルから発熱体の表面へ圧電膜により噴射され、再び冷媒液体が発熱体により気化し、循環系が構成されている。   In Japanese Patent Laid-Open No. 2000-252671 (Patent Document 2), a circulation pipe is attached to a microprocessor that is a heating element. The refrigerant vapor vaporized by the heating element moves inside the pipe, and the vapor condenses and separates into refrigerant liquid and air in the heat exchange section consisting of air-cooled fins, and both are sent to the nozzle through separate pipes, and the refrigerant liquid is in the nozzle From the heat generating body to the surface of the heating element by the piezoelectric film, and the refrigerant liquid is again vaporized by the heating element to constitute a circulation system.

米国特許6205799公報(特許文献3)では、発熱体である半導体デバイスが搭載された回路基板が筐体に収納され、筐体内部のスプレー器から冷媒液体が発熱体に向けて噴射されている。気化した冷媒蒸気が筐体に繋がった配管を経て熱交換器に送られ、凝結した冷媒液体がポンプにより貯留槽に送られ、貯留槽から再びスプレー器に送られ、循環している。スプレー器は、プリンタ印刷技術であるサーマルインクジェット方式に倣って、シリコン基板に形成されたヒータ、チャンバ、開口部等から構成されている。   In US Pat. No. 6,205,799 (Patent Document 3), a circuit board on which a semiconductor device, which is a heating element, is mounted is housed in a casing, and a refrigerant liquid is sprayed toward the heating element from a sprayer inside the casing. The vaporized refrigerant vapor is sent to the heat exchanger through a pipe connected to the casing, and the condensed refrigerant liquid is sent to the storage tank by the pump, and sent from the storage tank to the sprayer again and circulated. The sprayer is composed of a heater, a chamber, an opening, and the like formed on a silicon substrate in accordance with a thermal ink jet method that is a printer printing technique.

米国特許6889515号公報(特許文献4)では、発熱体である半導体にスプレーモジュールを取り付け、モジュールに同軸チューブを配管している。冷媒液体がポンプから同軸チューブの内管を経て発熱体へ噴射され、冷媒蒸気がモジュール内部の開口部から回収され、同軸チューブの外管を経て凝結器へ送られ、液化した冷媒が凝結器から貯留槽に送られ、再びポンプにより発熱体に噴射され、循環している。   In US Pat. No. 6,888,515 (Patent Document 4), a spray module is attached to a semiconductor which is a heating element, and a coaxial tube is connected to the module. The refrigerant liquid is injected from the pump through the inner tube of the coaxial tube to the heating element, the refrigerant vapor is recovered from the opening inside the module, sent to the condenser through the outer tube of the coaxial tube, and the liquefied refrigerant is sent from the condenser. It is sent to the storage tank, and is again injected into the heating element by the pump and circulates.

特開2006−39916号公報(文献5)では、発熱体であるCPUに蒸気発生器を取り付けている。発生器の内部で冷媒が気化し、冷媒蒸気が発生器に繋がった凝縮器に送られ、空冷ファンにより冷却されて冷媒が液化して受液槽へ送られ、受液槽から再び発生器に送られ、循環サイクルが形成されている。   In JP 2006-39916 A (reference 5), a steam generator is attached to a CPU that is a heating element. The refrigerant is vaporized inside the generator, and the refrigerant vapor is sent to a condenser connected to the generator, cooled by an air cooling fan, liquefied by the refrigerant, sent to the liquid receiving tank, and again from the liquid receiving tank to the generator. Sent to form a circulation cycle.

特開平11−26665号公報(文献6)では、発熱体であるCPUの筐体に中空のヒートシンクを取り付け、ヒートシンク内部の貯水ピットから発熱体に接するヒートシンクの内面へ毛細管現象により冷媒を供給している。ヒートシンク内部で冷媒が気化し、冷媒蒸気を含む空気がファンにより配管を通って熱交換器及び減湿器へ送られ、熱交換器で液化した冷媒がポンプにより再びヒートシンクの貯水ピットへ戻され、減湿器で乾燥した空気が圧縮機によりヒートシンクへ戻され、循環系が構成されている。   In Japanese Patent Application Laid-Open No. 11-26665 (reference 6), a hollow heat sink is attached to the casing of a CPU that is a heating element, and a coolant is supplied by capillary action from a water storage pit inside the heat sink to the inner surface of the heat sink. Yes. The refrigerant evaporates inside the heat sink, the air containing the refrigerant vapor is sent to the heat exchanger and the dehumidifier through the pipe by the fan, and the refrigerant liquefied by the heat exchanger is returned again to the water pit of the heat sink by the pump, The air dried by the dehumidifier is returned to the heat sink by the compressor, and a circulation system is configured.

米国特許6085831号公報US Patent No. 6085831 特開2000−252671号公報JP 2000-252671 A 米国特許6205799号公報US Pat. No. 6,205,799 米国特許6889515号公報US Pat. No. 6,889,515 特開2006−39916号公報JP 2006-39916 A 特開平11−26665号公報Japanese Patent Laid-Open No. 11-26665

特許文献1や特許文献2では、ジャケットや循環配管に冷媒が封入され、冷媒蒸気と液体が同じ空間に混在しているので、発熱体近傍の冷媒の蒸気圧が高くなり気化し難いという問題がある。また、ジャケットや循環配管と空冷フィンが一体化しているので、発熱体周囲にこれらの搭載領域を設ける必要があり、発熱体の実装密度を上げられないという問題がある。   In patent document 1 and patent document 2, since a refrigerant | coolant is enclosed with a jacket or circulation piping and a refrigerant | coolant vapor | steam and a liquid are mixed in the same space, the vapor pressure of the refrigerant | coolant of a heat generating body vicinity becomes high, and there exists a problem that it is hard to vaporize. is there. Further, since the jacket and the circulation pipe are integrated with the air-cooling fins, it is necessary to provide these mounting regions around the heating element, and there is a problem that the mounting density of the heating element cannot be increased.

特許文献3や特許文献4では、発熱体へ冷媒液体を噴射するスプレー器やスプレーモジュール、冷媒を凝結させる熱交換器や凝結器、冷媒を貯めておく貯留槽、スプレーに冷媒液体を送るポンプ等により冷却系が構成されている。文献1や文献2と同様に冷媒蒸気と液体が混送されているので、発熱体近傍の飽和蒸気圧層を破壊し気化を促進するにはサーマルインクジェットやコンプレッサによるスプレー機構の付与が必要であり、これらが小型化や信頼性にとって妨げになる問題がある。   In Patent Document 3 and Patent Document 4, a sprayer or spray module for injecting a refrigerant liquid to a heating element, a heat exchanger or a condenser for condensing the refrigerant, a storage tank for storing the refrigerant, a pump for sending the refrigerant liquid to the spray, etc. Thus, a cooling system is configured. Since the refrigerant vapor and liquid are mixed in the same way as in Literature 1 and Literature 2, it is necessary to provide a spray mechanism with a thermal ink jet or a compressor in order to destroy the saturated vapor pressure layer near the heating element and promote vaporization. These have problems that hinder miniaturization and reliability.

文献5では、発熱体に取り付けられた蒸気発生器、空冷による凝縮器、受液槽等から冷却系が構成されているが、文献1から文献4と同様に冷媒蒸気と液体が同じ循環系に密封されているので、循環系内部で冷媒の蒸気圧が高くなり気化効率が低くなるという問題がある。   In Reference 5, the cooling system is composed of a steam generator attached to the heating element, an air-cooled condenser, a liquid receiving tank, and the like. However, as in References 1 to 4, the refrigerant vapor and the liquid are in the same circulation system. Since it is sealed, there is a problem that the vapor pressure of the refrigerant is increased inside the circulation system and the vaporization efficiency is lowered.

特許文献6では、発熱体とほぼ同面積の中空ヒートシンク、ヒートシンク内部で気化した冷媒蒸気を空冷ファンで冷却して液化する熱交換器、ヒートシンクからの排気を乾燥する減湿器、熱交換器から冷媒液体をヒートシンクに戻すポンプ、減湿器から乾燥空気をヒートシンクに送る圧縮機等から冷却系が構成されている。特許文献1から特許文献5と同様の閉鎖的な循環系において、ヒートシンク内部の蒸気圧を下げ気化を促進するため減湿器を設けているが、これが小型軽量化の妨げになる。また、ヒートシンクに対して冷媒液体と乾燥空気をヒートシンクに対して同一方向から供給しているので、前方で気化が行なわれるに連れて後方では蒸気圧が高まり気化し難くなるという問題がある。   In Patent Document 6, a hollow heat sink having substantially the same area as the heating element, a heat exchanger that cools and liquefies the refrigerant vapor evaporated inside the heat sink with an air cooling fan, a dehumidifier that heats exhaust from the heat sink, and a heat exchanger The cooling system includes a pump that returns the refrigerant liquid to the heat sink, a compressor that sends dry air from the dehumidifier to the heat sink, and the like. In a closed circulation system similar to Patent Document 1 to Patent Document 5, a dehumidifier is provided to lower the vapor pressure inside the heat sink and promote vaporization, but this hinders reduction in size and weight. Further, since the refrigerant liquid and the dry air are supplied to the heat sink from the same direction with respect to the heat sink, there is a problem that vaporization is increased and vaporization is difficult to vaporize in the rear as vaporization is performed in the front.

以上述べたように、従来技術は気化冷却効率が低く冷却系の小型軽量化が難しいという問題がある。本発明の主な課題は、気化冷却を効率良く行なうことにより冷却系を小型軽量化し、情報プラットフォーム装置の実装密度を向上させ高性能化を実現することにある。このため、気化冷却の原理を踏まえた冷媒や雰囲気の供給、気化条件の最適化を行ない、高密度化に適した気化冷却システムを提供する。   As described above, the conventional technology has a problem that the evaporative cooling efficiency is low and it is difficult to reduce the size and weight of the cooling system. The main object of the present invention is to reduce the size and weight of the cooling system by efficiently performing evaporative cooling, improve the mounting density of the information platform device, and achieve high performance. For this reason, the evaporative cooling system suitable for higher density is provided by supplying the refrigerant and atmosphere based on the evaporative cooling principle and optimizing the evaporating conditions.

気化冷却モデルは、Penman−Monteith法に基づき、気化蒸発量が飽和蒸気圧と雰囲気の蒸気圧との差分に比例するとして求められる。潜熱フラックス(発熱体からの除熱密度)をLa(W/cm3)、冷媒の気化熱をε(J/g)、飽和蒸気圧をes(hPa)、雰囲気の蒸気圧をea(hPa)、係数をk(g/cm2・s・hPa)として(数1)のように表わせる。   The evaporative cooling model is obtained based on the Penman-Monteith method, assuming that the vaporized evaporation amount is proportional to the difference between the saturated vapor pressure and the atmospheric vapor pressure. The latent heat flux (heat removal density from the heating element) is La (W / cm 3), the heat of vaporization of the refrigerant is ε (J / g), the saturated vapor pressure is es (hPa), the vapor pressure of the atmosphere is ea (hPa), The coefficient can be expressed as (Equation 1) with k (g / cm 2 · s · hPa).

Figure 2008304093
Figure 2008304093

潜熱フラックスLaは気化熱εと、飽和蒸気圧と蒸気圧との差分(es −ea)に比例するが、飽和蒸気圧esに対する雰囲気の蒸気圧eaの百分率ψ(%)、いわゆる相対湿度を用いると、(数1)は(数2)のように書き換えられる。潜熱フラックスLaを大きくするには、気化熱εの大きい冷媒を用いること、飽和蒸気圧esが高い条件下で気化させること、冷却対象近傍の蒸気圧eaを低くして相対湿度ψを下げることが重要である。 Latent heat flux La is the heat of vaporization epsilon, is proportional to the difference (es -e a) the saturated vapor pressure and the vapor pressure, the percentage [psi (%) of the vapor pressure ea atmosphere for the saturated vapor pressure e s, so-called relative humidity (Equation 1) can be rewritten as (Equation 2). In order to increase the latent heat flux La, a refrigerant having a large vaporization heat ε is used, vaporization is performed under a condition where the saturated vapor pressure es is high, and the relative humidity ψ is decreased by decreasing the vapor pressure ea in the vicinity of the object to be cooled. This is very important.

Figure 2008304093
Figure 2008304093

(数2)の右辺第一項の係数kは、冷媒の供給手段(冷媒の液量、膜厚、熱伝導率、熱抵抗等)、空気の供給手段(空気の密度、比熱、風速、風向等)、発熱体の気化面の状態(冷媒との親和性、表面形状、表面処理等)に依存すると考えられる。発熱体から冷媒が気化しやすいように気化面の実効面積を広げ、冷媒を薄く均一に供給して係数kを大きくすることが必要である。   The coefficient k in the first term on the right side of (Expression 2) is the refrigerant supply means (refrigerant liquid amount, film thickness, thermal conductivity, thermal resistance, etc.), air supply means (air density, specific heat, wind speed, wind direction). Etc.) and the state of the vaporization surface of the heating element (affinity with refrigerant, surface shape, surface treatment, etc.). It is necessary to increase the coefficient k by expanding the effective area of the vaporization surface so that the refrigerant is easily vaporized from the heating element, supplying the refrigerant thinly and uniformly.

冷媒として気化熱が比較的大きい水を例にとると、第二項の気化熱εは温度t(℃)に対して(数3)のような近似式で表せる。温度tが常温to(℃)から沸点100℃までの範囲で変化しても、気化熱εの温度依存性は比較的小さい。   Taking water having a relatively large heat of vaporization as an example, the heat of vaporization ε of the second term can be expressed by an approximate expression such as (Equation 3) with respect to temperature t (° C.). Even if the temperature t changes in the range from room temperature to (° C.) to a boiling point of 100 ° C., the temperature dependence of the vaporization heat ε is relatively small.

Figure 2008304093
Figure 2008304093

冷媒が水の場合に第三項の飽和蒸気圧esは、Tetensの式により(数4)のように表わせる。温度tが高くなると飽和蒸気圧esが概ね指数的に大きくなる。潜熱フラックスLaを大きくするには、冷却対象近傍の雰囲気温度tを高くすることが有効である。 When the refrigerant is water, the saturated vapor pressure e s in the third term can be expressed as (Equation 4) by the Tetens equation. As the temperature t increases, the saturated vapor pressure e s increases exponentially. To increase the latent heat flux L a, it is effective to increase the ambient temperature t of the cooling object neighborhood.

Figure 2008304093
Figure 2008304093

同じく水の場合に第四項(1−ψ/100)は、常温toにおける相対湿度ψo(%)とTetensの式を用いて(数5)のように表せる。第四項の値を大きくするには、常温toよりも雰囲気温度tを高くして、温度tにおける相対湿度ψを下げ、雰囲気の蒸気圧eaを低くすれば良い。 Similarly, in the case of water, the fourth term (1-ψ / 100) can be expressed as (Equation 5) using the relative humidity ψo (%) at room temperature to and the Tetens equation. In order to increase the value of the fourth term, the ambient temperature t is set higher than the normal temperature to, the relative humidity ψ at the temperature t is lowered, and the vapor pressure e a of the atmosphere is lowered.

Figure 2008304093
Figure 2008304093

図13は、冷媒として水を用いた場合の温度tに対する潜熱フラックスLaの依存性を示す。(数2)へ(数3)から(数5)を代入し、常温toを20℃、相対湿度ψoを60%RH、係数kをパラメータとして計算している。図13から温度tが高くなるほど潜熱フラックスLaが大きくなることが分かる。 Figure 13 shows the dependence of the latent heat flux L a with respect to the temperature t in the case of using water as coolant. By substituting (Equation 3) to (Equation 5) into (Equation 2), normal temperature to is 20 ° C., relative humidity ψo is 60% RH, and coefficient k is a parameter. Latent heat flux L a from 13 as the temperature t increases is can be seen that large.

気化冷却では、発熱体の単位面積当たりの発熱密度と潜熱フラックスLa(除熱密度)との平衡状態が冷却温度となる。発熱体からの除熱量を増して気化冷却効率を上げるためには、気化熱εの大きい冷媒を用い、冷媒が気化する領域の面積を広げ、上述したような方法により潜熱フラックスLaを大きくすることが肝要である。 In evaporative cooling, the equilibrium state between heat generation density and latent heat flux L a (heat removal density) per unit area of the heating element is cooling temperature. To increase the evaporative cooling efficiency by increasing the quantity of heat removed from the heating element, with a large refrigerant heat of vaporization epsilon, spread the area of the region where the refrigerant vaporizes, increasing the latent heat flux L a by the method described above It is important.

本発明の代表的実施例の特徴は、発熱体の発熱部より広い面積を有する気化板を発熱体に取り付けることにより、潜熱フラックスLaが得られる領域の面積を広げ、全体の除熱量を増大させる。 Features of exemplary embodiments of the present invention, by attaching the vaporizing plate having a larger area than the heating portion of the heating element to the heating element, widening the area of the region latent heat flux L a is obtained, increase the overall heat removal quantity Let

本発明の代表的実施例の別の特徴は、発熱体に接する気化板の表面に冷媒との親和性を増す表面処理、形状加工、または毛細管体を付与することにより、実効面積を稼ぐと共に冷媒液体を薄膜状に供給し、係数kを大きくし、潜熱フラックスLaを増やす。 Another feature of the exemplary embodiment of the present invention is that the surface of the vaporization plate in contact with the heating element is given a surface treatment, shape processing, or capillary body that increases the affinity with the refrigerant, thereby increasing the effective area and the refrigerant. the liquid was supplied into a thin film, by increasing the coefficient k, increases the latent heat flux L a.

さらに別の特徴は、発熱体の上限温度以下の温風を気化板へ供給することにより、気化板周辺の飽和蒸気圧esを高めると共に相対湿度ψを下げ、潜熱フラックスLaを増大させる。同様に発熱体の上限温度以下の冷媒液体を気化板へ供給することによっても、潜熱フラックスLaを増大させる効果を得ることができる。 Yet another feature is that by supplying the maximum temperature following the hot air of the heating element into the vaporizing plate, lowering the relative humidity ψ to increase the saturated vapor pressure e s near vaporizing plate, increases the latent heat flux L a. Similarly, by providing the upper limit temperature or less of the refrigerant liquid in the heating element to the vaporizing plate, it is possible to obtain the effect of increasing the latent heat flux L a.

さらに別の特徴は、冷媒液体と空気を気化板に対して異なる方向から供給することにより、相対湿度ψを低く保ちつつ空気を供給して気化板表面の飽和蒸気圧層を除去し、雰囲気の蒸気圧eaを低めて潜熱フラックスLaを向上させる。 Yet another feature is that by supplying the refrigerant liquid and air to the vaporization plate from different directions, the air is supplied while keeping the relative humidity ψ low, and the saturated vapor pressure layer on the vaporization plate surface is removed. by lowering the vapor pressure e a to improve the latent heat flux L a.

さらに別の特徴は、第一及び第二の発熱体を有する構成において、第二の発熱体で生じた温気を第一の発熱体の気化板へ供給することにより、温風を発生する機構を省いて送気系を小型化する。   Still another feature is a mechanism that generates warm air by supplying warm air generated by the second heating element to the vaporizing plate of the first heating element in the configuration having the first and second heating elements. Reduce the size of the air supply system by omitting.

さらに別の特徴は、発熱体より高い位置から気化板へ冷媒を自重で供給することにより、冷媒の送液系を簡素化する。   Yet another feature simplifies the coolant feeding system by supplying the coolant by its own weight to the vaporizing plate from a position higher than the heating element.

さらに別の特徴は、冷媒蒸気を含む空気を気化板から強制排気する排気系により、常圧に対して気化板側を負圧として送液または送気を行なうと共に、排気から冷媒蒸気を凝結させ冷媒液体を送液系に戻す還流側を正圧として還流を行ない、送液系または送気系と還流系の構成部品を削減する。   Yet another feature is that an exhaust system that forcibly exhausts air containing refrigerant vapor from the vaporization plate performs liquid supply or air supply with the vaporization plate side being a negative pressure relative to normal pressure, and condenses the refrigerant vapor from the exhaust. Recirculation is performed with the reflux side returning the refrigerant liquid to the liquid supply system as a positive pressure, and the components of the liquid supply system or the air supply system and the reflux system are reduced.

さらに別の特徴は、面状の発熱体が概ね垂直に配置され、冷媒液体を気化板の上部へ供給し、気化板の下部から冷媒蒸気を含む空気と冷媒液体の残液を排出する。これにより、垂直な発熱体に適した送液系または排出系となり、冷却系を小型化することができる。   Yet another feature is that the planar heating elements are arranged substantially vertically, supply the refrigerant liquid to the upper part of the vaporization plate, and discharge the air containing the refrigerant vapor and the residual liquid of the refrigerant liquid from the lower part of the vaporization plate. Thereby, it becomes a liquid feeding system or discharge system suitable for a vertical heat generating body, and a cooling system can be reduced in size.

さらに別の特徴は、冷媒を気化板へ供給する送液系と排気系と冷媒を送液系に戻す還流系から成る閉回路系と、外気から空気を取り込む送気系と排気系と外気へ空気を排出する還流系から成る開回路系を構成する。これにより、冷媒は閉回路系内で循環させつつ、簡素な開回路系で外気を利用して気化板へ蒸気圧eaの低い空気を供給して潜熱フラックスLaを増す。 Still another feature is a closed circuit system comprising a liquid feed system for supplying refrigerant to the vaporization plate, an exhaust system, and a reflux system for returning the refrigerant to the liquid feed system, and an air feed system for taking in air from the outside air, an exhaust system, and the outside air. An open circuit system comprising a reflux system for discharging air is configured. Accordingly, the refrigerant while circulating in the closed circuit system, to supply low air vapor pressure e a by utilizing the ambient air with a simple open circuit system to the vaporizing plate increasing the latent heat flux L a.

さらに別の特徴は、第一次熱交換系において発熱体から熱を奪った第一の冷媒蒸気を第二の冷媒で冷却して凝結させ、第二次熱交換系において第二の冷媒が第一の冷媒蒸気から吸収した熱を排出することにより、排気から第一次熱交換系を経て還流する系を小型化し、第二次熱交換系により発熱体周囲から排熱場所を遠ざけて冷却効率を向上させる。   Yet another feature is that the first refrigerant vapor that has taken heat from the heating element in the primary heat exchange system is cooled and condensed by the second refrigerant, and the second refrigerant is the second refrigerant in the secondary heat exchange system. By exhausting the heat absorbed from one refrigerant vapor, the system that recirculates from the exhaust through the primary heat exchange system is downsized, and the secondary heat exchange system keeps the exhaust heat area away from the surroundings of the heating element, thereby cooling efficiency To improve.

さらに別の特徴は、発熱体の発熱量、消費電力、動作率、または温度に応じて送液量、送液温、送気量、または送気温を制御することにより、気化板へ必要量の冷媒と空気を供給し、効率よく気化冷却を行なわせる。   Yet another feature is that the required amount of heat is supplied to the vaporization plate by controlling the amount of liquid delivered, the temperature of liquid delivered, the amount of air delivered, or the temperature of air delivered according to the amount of heat generation, power consumption, operating rate, or temperature of the heating element. Refrigerant and air are supplied for efficient evaporative cooling.

本発明の第一から第五の手段によれば、発熱密度の高い発熱体に対しても潜熱フラックスLaを増大させ気化冷却を効率良く行なうことができ、第六から第十三の手段によれば送液系、送気系、排気系、還流系等から成る冷却系を小型軽量化できる。これらの手段は、特にサーバ、ネットワーク、ストレージ等の情報プラットフォーム装置において、プロセッサやLSI等の主要デバイスの実装密度を向上させ高性能化を提供できる効果がある。 According the first aspect of the present invention to the fifth means, the even for high heat density heating element to increase the latent heat flux L a evaporative cooling can be efficiently performed, the thirteenth means from the sixth Accordingly, the cooling system including the liquid supply system, the air supply system, the exhaust system, the reflux system, and the like can be reduced in size and weight. These means have an effect of improving the mounting density of main devices such as processors and LSIs and providing higher performance, particularly in information platform devices such as servers, networks and storages.

以下、本発明による気化冷却システムの実施形態を図面に基づき説明する。   Hereinafter, an embodiment of an evaporative cooling system according to the present invention will be described with reference to the drawings.

図1は本発明による実施例1の気化冷却システムの構成図であり、本発明をブレードサーバシステムへ適用した例を示す。ブレードサーバシステムは、複数のブレードサーバ40と、これらに接続されるバックプレーン、I/Oモジュール、スイッチモジュール、ストレージモジュール、マネジメントモジュール、電源モジュール、空冷ファンモジュール等と、これらを収納するサーバシャーシ41から成る。ブレードサーバ40は、気化冷却モジュール10、11が装着されたプロセッサと、チップセット20、メモリモジュール21、マザーボード30、バックプレーンに接続するためのコネクタ31等と、これらを覆うケースから成る。   FIG. 1 is a configuration diagram of an evaporative cooling system according to a first embodiment of the present invention, and shows an example in which the present invention is applied to a blade server system. The blade server system includes a plurality of blade servers 40, a backplane, an I / O module, a switch module, a storage module, a management module, a power supply module, an air cooling fan module, and the like connected thereto, and a server chassis 41 that houses them. Consists of. The blade server 40 includes a processor on which the vaporization cooling modules 10 and 11 are mounted, a chip set 20, a memory module 21, a motherboard 30, a connector 31 for connecting to a backplane, and a case that covers these.

気化冷却システムは、発熱体であるプロセッサに接する気化冷却モジュール10、11と、送液ポンプ50と送液チューブ51から成り冷媒液体を気化冷却モジュール10、11へ供給する送液系と、送気チューブ60、61から成り空気を気化冷却モジュール10、11へ供給する送気系と、排気ポンプ70と排気チューブ71から成り冷媒蒸気を含む空気を気化冷却モジュール10、11から排気する排気系と、第一次熱交換器80と還流チューブ81と排気口82から成り冷媒蒸気を凝結させ送液系に戻す還流系と、第二次熱交換器90と送水チューブ91と返水チューブ92から成り第一次熱交換器から吸収した熱を排出する排熱系とから構成される。   The evaporative cooling system includes evaporative cooling modules 10 and 11 that are in contact with a processor that is a heating element, a liquid supply system that includes a liquid supply pump 50 and a liquid supply tube 51 and supplies refrigerant liquid to the evaporative cooling modules 10 and 11, and an air supply An air supply system comprising tubes 60 and 61 for supplying air to the evaporative cooling modules 10 and 11, an exhaust system comprising an exhaust pump 70 and an exhaust tube 71 for exhausting air containing refrigerant vapor from the evaporative cooling modules 10 and 11; A primary heat exchanger 80, a reflux tube 81, and an exhaust port 82, a reflux system that condenses the refrigerant vapor and returns to the liquid feed system, a secondary heat exchanger 90, a water feed tube 91, and a water return tube 92. And an exhaust heat system that exhausts heat absorbed from the primary heat exchanger.

図2は気化冷却モジュール10の構成図、図3はその断面図である。気化冷却モジュール10が装着されるプロセッサパッケージ100は、発熱体であるプロセッサチップ101、チップ101に密着するキャップ102、チップ101が接続されるパッケージ基板103から成り、ソケット104を介してマザーボード30に接続される。気化冷却モジュール10は、キャップ102に熱伝導材105を介して接する気化板110と、気化板110の表面に形成されたウィック111と、送液チューブ51と送気チューブ60と排気チューブ71が繋がるジャケット109から成る。   FIG. 2 is a configuration diagram of the evaporative cooling module 10, and FIG. 3 is a cross-sectional view thereof. The processor package 100 to which the evaporative cooling module 10 is mounted includes a processor chip 101 that is a heating element, a cap 102 that is in close contact with the chip 101, and a package substrate 103 to which the chip 101 is connected, and is connected to the motherboard 30 via a socket 104. Is done. In the evaporative cooling module 10, a vaporization plate 110 that is in contact with the cap 102 via a heat conductive material 105, a wick 111 formed on the surface of the vaporization plate 110, a liquid supply tube 51, an air supply tube 60, and an exhaust tube 71 are connected. It consists of a jacket 109.

プロセッサチップ101が発生した熱は、キャップ102、熱伝導材105を介して気化板110へ伝導する。送液チューブ51から供給された冷媒液体は、送液流112のようにウィック111の毛細管現象により気化板110の表面に広がる。チップセット20やメモリモジュール21の発熱により温められた温気は、送気流113のようにポンプ70の排気圧により送気チューブ60からジャケット109の内部に吸い込まれる。気化板110の表面に広がった冷媒液体は、気化流115のようにプロセッサチップ101からの熱によりジャケット内部の温気中に気化する。冷媒蒸気を含む空気と気化しなかった冷媒液体の残液は、排気流及び排液流115のようにポンプ70により排気チューブ71から排出される。   The heat generated by the processor chip 101 is conducted to the vaporization plate 110 through the cap 102 and the heat conductive material 105. The refrigerant liquid supplied from the liquid feeding tube 51 spreads on the surface of the vaporization plate 110 due to the capillary action of the wick 111 like the liquid feeding flow 112. The warm air heated by the heat generated by the chipset 20 and the memory module 21 is sucked into the jacket 109 from the air supply tube 60 by the exhaust pressure of the pump 70 like the air flow 113. The refrigerant liquid spreading on the surface of the vaporization plate 110 is vaporized into the warm air inside the jacket by the heat from the processor chip 101 like the vaporization flow 115. The air containing the refrigerant vapor and the residual liquid of the refrigerant liquid that has not been vaporized are discharged from the exhaust tube 71 by the pump 70 as in the exhaust flow and the drainage flow 115.

図4は第一次熱交換器80と第二次熱交換器90の構成図である。第一次熱交換器80は、排気チューブ71が繋がる内挿管120と外套管(冷却管)121から成り排気から冷媒蒸気を凝結させる凝結器と、凝結した冷媒液体を貯める液槽122と、凝結後の残気を貯めるチャンバ123と、排気口82とから構成される。第二次熱交換器90は、ラジエータ130、ラジエータを空冷するファン131から成る。冷却水は送水ポンプ93と送水チューブ91により第二次熱交換器90から外套管(冷却管)121へ供給されて内挿管120を通る冷媒蒸気を冷却し、冷媒蒸気から吸熱した温水は返水チューブ92によりラジエータ130へ還流されて冷却され、温水からの排熱は排熱流132のように外気へ放出される。   FIG. 4 is a configuration diagram of the primary heat exchanger 80 and the secondary heat exchanger 90. The primary heat exchanger 80 includes an inner tube 120 and an outer tube (cooling tube) 121 connected to the exhaust tube 71, a condenser that condenses the refrigerant vapor from the exhaust, a liquid tank 122 that stores the condensed refrigerant liquid, and a condensation. The chamber 123 is configured to store the remaining residual air and an exhaust port 82. The secondary heat exchanger 90 includes a radiator 130 and a fan 131 that air-cools the radiator. The cooling water is supplied from the secondary heat exchanger 90 to the outer tube (cooling pipe) 121 by the water supply pump 93 and the water supply tube 91 to cool the refrigerant vapor passing through the inner tube 120, and the hot water absorbed from the refrigerant vapor is returned to the water. The heat is returned to the radiator 130 through the tube 92 and cooled, and the exhaust heat from the hot water is released to the outside air like the exhaust heat flow 132.

図7は実施例1の気化冷却システムの機能図である。冷媒液体は送液ポンプ50と送液チューブから成る送液系から気化冷却モジュール10へ送られ、モジュール10内部で冷媒蒸気へ気化し、冷媒蒸気が残液と共に排気ポンプ70と排気チューブ71から成る排気系から第一次熱交換器80へ送られ、熱交換器80の内部で冷媒蒸気が凝結して冷媒液体に戻り、冷媒液体が第一次熱交換器80と還流チューブ81から成る還流系から再び送液系に送られ、冷媒は閉回路循環系を成している。チップセット20により温められた外気は送気チューブ60から成る送気系から気化冷却モジュール10へ入り、冷媒蒸気を含む空気が排気系から第一次熱交換器80へ送られ、冷媒蒸気が凝結して残った乾いた空気が排気口82から外気へ排出され、空気は開回路系を成している。   FIG. 7 is a functional diagram of the evaporative cooling system according to the first embodiment. The refrigerant liquid is sent to the vaporization cooling module 10 from the liquid feed system including the liquid feed pump 50 and the liquid feed tube, and is vaporized into the refrigerant vapor inside the module 10. The refrigerant vapor is composed of the exhaust pump 70 and the exhaust tube 71 together with the remaining liquid. The refrigerant is sent from the exhaust system to the primary heat exchanger 80, the refrigerant vapor condenses inside the heat exchanger 80 and returns to the refrigerant liquid, and the refrigerant liquid is composed of the primary heat exchanger 80 and the reflux tube 81. To the liquid feeding system again, and the refrigerant forms a closed circuit circulation system. The outside air heated by the chip set 20 enters the evaporative cooling module 10 from the air supply system including the air supply tube 60, and the air containing the refrigerant vapor is sent from the exhaust system to the primary heat exchanger 80, and the refrigerant vapor condenses. The remaining dry air is discharged from the exhaust port 82 to the outside air, and the air forms an open circuit system.

実施例1では以上のような構成により、最大消費電力約100W、上限動作温度65℃、パッケージサイズ約4cm角のプロセッサに対して、通常の室内温度25℃、室内湿度60%RHの雰囲気条件下で、冷媒液体を水、銅から成る気化板110のサイズを約5cm角、送気温を40℃前後とすることにより、約4W/cm2の潜熱フラックスを得て気化冷却を行なっている。冷媒材としては水、フッ素系不活性液体等が考えられるが、実施例1では気化熱が比較的大きい水を使用している。プロセッサの消費電力すなわち発熱量の変動に対して、プロセッサ動作率、消費電力、またはパッケージ温度等をモニタし、これらの値に応じて実施例1では送液量、送気量(排気量)を制御しているが、他に制御因子として送液温、送気温も利用できる。最大消費電力やパッケージサイズ等の仕様が異なるプロセッサを用いる場合には、それに適応して制御因子と共に冷媒材、気化板の材質やサイズ等を設計する。図13に示すように、横軸の温度tに送液温や送気温が関連し、係数kに送液量や送気量が関連しており、これらを踏まえて制御、設計すれば良い。 In the first embodiment, with the above-described configuration, an atmospheric condition of a normal room temperature of 25 ° C. and a room humidity of 60% RH is applied to a processor having a maximum power consumption of about 100 W, an upper limit operating temperature of 65 ° C., and a package size of about 4 cm square. Then, the vaporizing plate 110 made of water and copper as the refrigerant liquid is about 5 cm square, and the air supply temperature is about 40 ° C., so that a latent heat flux of about 4 W / cm 2 is obtained to perform evaporative cooling. As the refrigerant material, water, a fluorine-based inert liquid, or the like can be considered. In Example 1, water having a relatively large heat of vaporization is used. The processor operating rate, power consumption, package temperature, or the like is monitored with respect to fluctuations in the power consumption of the processor, that is, the heat generation amount. Although controlled, liquid supply temperature and air supply temperature can also be used as other control factors. When using processors with different specifications such as maximum power consumption and package size, the material and size of the refrigerant material and vaporization plate are designed together with the control factors. As shown in FIG. 13, the temperature t of the horizontal axis is related to the liquid supply temperature and the air supply temperature, and the liquid supply amount and the air supply amount are related to the coefficient k.

実施例1によれば、発熱体であるプロセッサチップ101より広い面積を有する気化板110を用いているので、気化板へ熱が拡散して潜熱フラックスを得られる領域が広がり、発熱体101やキャップ102の表面から直接気化させるよりも気化を促進して除熱量を上げることができる。効率良く気化領域を広げるため、気化板としてヒートパイプやベーパーチャンバを用いても良い。また、気化板110の表面にウィック111を貼り付けている。ウィック111は網状を成す繊維で形成された毛細管体である。ウィック111の毛細管現象により冷媒液体が気化板110の表面に薄く均一に広がり、冷媒液体の熱抵抗が下がると共に気化領域の実効面積が広がり、潜熱フラックスを向上させることができる。同様の効果を得るため、毛細管体の代わりに、気化板110表面への親和性コーティングや微細凹凸加工を施しても良い。   According to the first embodiment, since the vaporization plate 110 having a larger area than the processor chip 101 which is a heating element is used, a region where heat is diffused to the vaporization plate and a latent heat flux can be obtained is widened. The amount of heat removal can be increased by promoting vaporization rather than vaporizing directly from the surface of 102. In order to efficiently expand the vaporization region, a heat pipe or a vapor chamber may be used as the vaporization plate. A wick 111 is attached to the surface of the vaporizing plate 110. The wick 111 is a capillary body formed of a net-like fiber. Due to the capillary phenomenon of the wick 111, the refrigerant liquid spreads thinly and evenly on the surface of the vaporization plate 110, the thermal resistance of the refrigerant liquid decreases, the effective area of the vaporization region increases, and the latent heat flux can be improved. In order to obtain the same effect, an affinity coating or fine unevenness processing may be applied to the vaporization plate 110 surface instead of the capillary body.

実施例1では、送気チューブ60、61の吸気口はプロセッサチップ101周辺にあるチップセット20もしくはメモリモジュール21の近傍に開口する。つまり、気化冷却モジュール10,11に供給される空気は、チップセット20もしくはメモリモジュール21と熱交換をした空気である。これにより、メモリモジュールやチップセットの冷却の効果を得るとともに、温まった空気が気化板110へ供給される。空気の温度が上がると飽和蒸気圧が高まるので、相対湿度が下がり、潜熱フラックスが増加する。また、チップセット20やメモリモジュール21の発熱を活用しているので、空気を温めるための加熱機構を専用に設ける必要がない上、排気ポンプ70の吸引による負圧で送気チューブ60、61から空気を取り込んでいるので、送気系を簡素化できる。なお、温風の温度はプロセッサチップ101の上限温度を超えることが無いので、動作や信頼性にとって問題は無い。   In the first embodiment, the air inlets of the air supply tubes 60 and 61 open near the chip set 20 or the memory module 21 around the processor chip 101. That is, the air supplied to the evaporative cooling modules 10 and 11 is air that has exchanged heat with the chip set 20 or the memory module 21. Thereby, the effect of cooling the memory module and the chip set is obtained, and warm air is supplied to the vaporizing plate 110. As the temperature of the air increases, the saturated vapor pressure increases, so the relative humidity decreases and the latent heat flux increases. Further, since the heat generated by the chipset 20 and the memory module 21 is utilized, it is not necessary to provide a dedicated heating mechanism for warming the air, and the negative pressure due to the suction of the exhaust pump 70 can be used from the air supply tubes 60 and 61. Since air is taken in, the air supply system can be simplified. In addition, since the temperature of the warm air does not exceed the upper limit temperature of the processor chip 101, there is no problem in operation and reliability.

冷媒液体は送液流112の方向から、空気は送気流113の方向から、気化板110に対して供給されている。空気を冷媒液体と異なる方向から供給することにより、気化板110の表面まで空気の相対湿度を低く保てる上、風圧により気化板110の表面の飽和蒸気圧層を取り除いて気化を促進できる。また、冷媒液体は垂直に立った気化板110の上部に供給されており、液体自身の重力による流れとウィック111の毛細管効果が相まって気化板110の表面に冷媒液体が広がって効率良く気化し、気化せずに余った残液は同じく自重によって気化板110の下部から冷媒蒸気と共に自動的に排出されるので、送液系と排気系を簡素化できる。   The refrigerant liquid is supplied to the vaporizing plate 110 from the direction of the liquid supply flow 112 and the air is supplied from the direction of the air flow 113. By supplying air from a direction different from that of the refrigerant liquid, the relative humidity of the air can be kept low up to the surface of the vaporization plate 110, and vaporization can be promoted by removing the saturated vapor pressure layer on the surface of the vaporization plate 110 by wind pressure. In addition, the refrigerant liquid is supplied to the upper part of the vaporization plate 110 standing vertically, and the refrigerant liquid spreads on the surface of the vaporization plate 110 in combination with the gravity flow of the liquid itself and the capillary effect of the wick 111, and efficiently vaporizes. The remaining liquid remaining without being vaporized is also automatically discharged together with the refrigerant vapor from the lower part of the vaporization plate 110 by its own weight, so that the liquid feeding system and the exhaust system can be simplified.

冷媒液体は送液系、排気系、還流系から成る閉回路系を循環し、空気は外気から送気系、排気系、還流系を経て外気に戻る開回路系を通る。外気を利用することにより気化板110へは蒸気圧の低い空気が供給されるので、気化が促進される。蒸気圧が高まった排気は還流系へ渡り、冷媒蒸気が凝結されるので、蒸気圧が下がった状態で外気に戻される。冷媒は循環しているため頻繁に補充する必要はないが、排気口82からわずかに冷媒蒸気が漏れて液槽122の液量が減った場合には、気化冷却の冷媒と第二次熱交換器の冷媒が同じであることを利用して、送水チューブ91または返水チューブ92からバイパス管を通じて気化冷却用冷媒を液槽122へ自動的に補充しても良い。   The refrigerant liquid circulates in a closed circuit system including a liquid feeding system, an exhaust system, and a reflux system, and air passes through an open circuit system that returns from the outside air to the outside air through the air feeding system, the exhaust system, and the reflux system. Since air with a low vapor pressure is supplied to the vaporization plate 110 by using outside air, vaporization is promoted. The exhaust gas whose vapor pressure has increased goes to the recirculation system and the refrigerant vapor is condensed, so that the exhaust gas is returned to the outside air with the vapor pressure lowered. Since the refrigerant circulates, it is not necessary to replenish frequently. However, when the refrigerant vapor slightly leaks from the exhaust port 82 and the liquid amount in the liquid tank 122 decreases, secondary heat exchange with the evaporative cooling refrigerant is performed. Using the same refrigerant in the vessel, the vaporization cooling refrigerant may be automatically replenished to the liquid tank 122 from the water supply tube 91 or the water return tube 92 through the bypass pipe.

熱の流れは、プロセッサチップ101から発してキャップ102、熱伝導材105、気化板110に伝導し、潜熱として冷媒蒸気に移り、排気系を経て第一次熱交換器80の凝結器で冷媒蒸気が凝結し、潜熱が第二次熱交換器90の冷却水に移り、ラジエータ130から排熱流132として外気に放出される。冷媒蒸気を冷却し凝結させるためには空冷よりも凝結器120、121による水冷の方が効率が良いので、第一次熱交換器80を小型化し、例えばサーバラックの棚の一部やサイドパネル、バックパネル等に設けることができる。また、第一次熱交換器80と外気への排熱場所である第二次熱交換器90とを分離しているので、サーバシャーシ41と第一次熱交換器80をサーバラックに収納してデータセンタ等の室内に置き、第二次熱交換器90を室外に置くことができ、室内温度を上げずに室内の空調負荷すなわち空調電力を軽減できる。   The heat flow is emitted from the processor chip 101 and is conducted to the cap 102, the heat conductive material 105, and the vaporization plate 110, is transferred to the refrigerant vapor as latent heat, passes through the exhaust system, and is condensed in the condenser of the primary heat exchanger 80. As a result, the latent heat is transferred to the cooling water of the secondary heat exchanger 90 and released from the radiator 130 to the outside air as the exhaust heat flow 132. In order to cool and condense the refrigerant vapor, water cooling by the condensers 120 and 121 is more efficient than air cooling. Therefore, the primary heat exchanger 80 is downsized, for example, a part of a server rack shelf or a side panel. It can be provided on a back panel or the like. Further, since the primary heat exchanger 80 and the secondary heat exchanger 90 which is a heat exhausting place to the outside air are separated, the server chassis 41 and the primary heat exchanger 80 are stored in the server rack. Thus, the secondary heat exchanger 90 can be placed outside the room such as a data center, and the indoor air conditioning load, that is, the air conditioning power can be reduced without raising the room temperature.

図5は本発明による実施例2の気化冷却システムの構成図、図8は機能図であり、実施例1と同じくブレードサーバシステムへの適用例を示す。実施例1に対して、実施例2の気化冷却システムは送気系が温風ブロワ62と送気チューブ60、61から成り、排気系が排気チューブ71から成る点が異なっている。   FIG. 5 is a block diagram of the evaporative cooling system according to the second embodiment of the present invention, and FIG. The evaporative cooling system according to the second embodiment is different from the first embodiment in that the air supply system includes the warm air blower 62 and the air supply tubes 60 and 61, and the exhaust system includes the exhaust tube 71.

実施例2では、気化冷却モジュール10、11がプロセッサに取り付けられ、プロセッサチップより広い面積を有して表面に毛細管体を備える気化板から冷媒液体が気化する。冷媒液体は送液チューブ51を介して気化冷却モジュール10、11の上部から供給され、温風は温風ブロワ62から送気チューブ60、61を介してモジュール10、11へ冷媒液体と異なる方向から供給され、モジュール10、11の下部から冷媒蒸気と残液が排出され、第一次熱交換器80に回収され凝結した冷媒液体は再び送液ポンプ50を経てモジュール10、11へ戻る。冷媒は閉回路循環系を成し、空気は温風ブロワ62から第一次熱交換器80の排出口82に至る開回路系を成している。第二次熱交換器90ではプロセッサから冷媒蒸気が吸収した熱が冷却水とラジエータを介して最終的に外気に放出される。   In the second embodiment, the vaporization cooling modules 10 and 11 are attached to the processor, and the refrigerant liquid is vaporized from a vaporization plate having a larger area than the processor chip and having a capillary body on the surface. The refrigerant liquid is supplied from the upper part of the evaporative cooling modules 10 and 11 via the liquid supply tube 51, and the hot air is supplied from the hot air blower 62 to the modules 10 and 11 via the air supply tubes 60 and 61 from a direction different from that of the refrigerant liquid. Then, the refrigerant vapor and the residual liquid are discharged from the lower part of the modules 10 and 11, and the refrigerant liquid collected and condensed in the primary heat exchanger 80 returns to the modules 10 and 11 through the liquid feed pump 50 again. The refrigerant forms a closed circuit circulation system, and the air forms an open circuit system from the hot air blower 62 to the discharge port 82 of the primary heat exchanger 80. In the secondary heat exchanger 90, the heat absorbed by the refrigerant vapor from the processor is finally released to the outside air through the cooling water and the radiator.

実施例2によれば、温風ブロワ62から気化冷却モジュール10、11へ発熱体であるプロセッサチップの上限動作温度以下の温風を供給することにより、モジュール内部での飽和蒸気圧が高まり、送液ポンプ50から供給された冷媒液体が気化し易くなる。また、温風ブロワ62の送気圧により気化冷却モジュール10、11から冷媒蒸気を含む空気と未気化の残液が排出されるので、排気系から排気ポンプ70を省くことができる。プロセッサの発熱量の変動に対しては、プロセッサ動作率、消費電力、またはパッケージ温度等に応じて温風ブロワ62の送気温と送気量(風速)を変えることにより、精度良く潜熱フラックスすなわち冷却能力を制御できる。   According to the second embodiment, by supplying warm air below the upper limit operating temperature of the processor chip, which is a heating element, from the warm air blower 62 to the evaporative cooling modules 10 and 11, the saturated vapor pressure inside the module increases, and The refrigerant liquid supplied from the liquid pump 50 is easily vaporized. Further, since the air containing the refrigerant vapor and the unvaporized residual liquid are discharged from the evaporative cooling modules 10 and 11 by the supply air pressure of the hot air blower 62, the exhaust pump 70 can be omitted from the exhaust system. With respect to fluctuations in the amount of heat generated by the processor, the latent heat flux, that is, cooling can be accurately performed by changing the air temperature and the air supply amount (wind speed) of the hot air blower 62 in accordance with the processor operating rate, power consumption, package temperature, and the like. Can control ability.

図6は本発明による実施例3の気化冷却システムの構成図、図9は機能図である。実施例3ではサーバシャーシ41の内側にブレードシャーシ42があり、その内部に複数のブレードボード30が密封される。ブレードシャーシ42の内部で気化冷却を行なうため、ボード30、プロセッサに取り付けられた気化板110、116、チップセット20、メモリモジュール21、及びコネクタ31等の表面には冷媒液体に対する親和性コーティングを兼ねた防液処理が施される。   FIG. 6 is a block diagram of the evaporative cooling system according to the third embodiment of the present invention, and FIG. 9 is a functional diagram. In the third embodiment, a blade chassis 42 is provided inside the server chassis 41, and a plurality of blade boards 30 are sealed therein. In order to perform evaporative cooling inside the blade chassis 42, the surfaces of the board 30, the vaporization plates 110 and 116 attached to the processor, the chipset 20, the memory module 21, and the connector 31 also serve as an affinity coating for the refrigerant liquid. A liquid-proof treatment is applied.

冷媒液体は送液ポンプ50と送液チューブ51から成る送液系からブレードシャーシ42の上面へ供給され、ブレードサーバ以外(I/Oモジュール、スイッチモジュール、ストレージモジュール、マネジメントモジュール、電源モジュール等)の発熱による温気が排気ポンプ70の排気圧により送気口63からブレードシャーシ42の内部へ取り込まれ、ボード30に搭載された気化板110、116やチップ20、21等から冷媒液体が気化する。排気ポンプ70と排気チューブ71から成る排気系により気化冷却シャーシ42の下面から冷媒蒸気と未気化の残液が排出され、第一次熱交換器80と還流チューブ81を経て冷媒液体が送液系に循環し、残気が排気口82から排気される。   Refrigerant liquid is supplied to the upper surface of the blade chassis 42 from a liquid feeding system including a liquid feeding pump 50 and a liquid feeding tube 51, and other than the blade server (I / O module, switch module, storage module, management module, power supply module, etc.). Warm air due to heat generation is taken into the blade chassis 42 from the air supply port 63 by the exhaust pressure of the exhaust pump 70, and the refrigerant liquid is vaporized from the vaporization plates 110, 116 and chips 20, 21 mounted on the board 30. The exhaust system including the exhaust pump 70 and the exhaust tube 71 discharges the refrigerant vapor and the unvaporized residual liquid from the lower surface of the evaporative cooling chassis 42, and the refrigerant liquid passes through the primary heat exchanger 80 and the reflux tube 81. The residual air is exhausted from the exhaust port 82.

実施例3によれば、プロセッサだけでなくボード30上の周辺チップも合わせて気化冷却を行なえるので、プロセッサ毎に気化冷却モジュールや送液チューブ、送気チューブを設ける必要が無い上、周辺チップを冷却するための空冷ファンを省略でき、ブレードサーバシステムを軽量化できる。なお、実施例3ではプロセッサに気化板を取り付けているが、発熱量に応じて周辺チップに気化板を設けても良い。また、複数のチップにまたがって共通の気化板を取り付けること、防液カバーを兼ねた気化板を設けること等も可能である。   According to the third embodiment, not only the processor but also the peripheral chips on the board 30 can be vaporized and cooled, so there is no need to provide a vaporization cooling module, a liquid supply tube, and an air supply tube for each processor. It is possible to omit an air cooling fan for cooling the blade server system and to reduce the weight of the blade server system. Although the vaporization plate is attached to the processor in the third embodiment, the vaporization plate may be provided on the peripheral chip according to the amount of heat generation. It is also possible to attach a common vaporization plate across a plurality of chips, or to provide a vaporization plate that also serves as a liquid-proof cover.

図10は本発明による実施例4の気化冷却システムの機能図である。実施例4の基本構成は実施例2と同様であるが、温風ブロワ62が第一次熱交換器80のチャンバから吸気チューブ64を介して吸気し、温風を送気チューブ60から気化冷却モジュール10へ送る点が異なっている。第一次熱交換器80に排気口が無く、空気が温風ブロワ62、送気チューブ62、気化冷却モジュール10、排気チューブ71、第一次熱交換器80、吸気チューブ64を巡る閉回路循環系、冷媒が送気ポンプ50、、送気チューブ51、モジュール10、排気チューブ71、第一次熱交換器80、還流チューブ81を巡る閉回路循環系を成している。   FIG. 10 is a functional diagram of the evaporative cooling system according to the fourth embodiment of the present invention. The basic configuration of the fourth embodiment is the same as that of the second embodiment, but the hot air blower 62 sucks air from the chamber of the primary heat exchanger 80 through the intake tube 64 and evaporates and cools the hot air from the air supply tube 60. The point of sending to the module 10 is different. The primary heat exchanger 80 has no exhaust port, and the air is closed circuit circulation around the hot air blower 62, the air supply tube 62, the evaporative cooling module 10, the exhaust tube 71, the primary heat exchanger 80, and the intake tube 64. The system and the refrigerant form a closed circuit circulation system around the air supply pump 50, the air supply tube 51, the module 10, the exhaust tube 71, the primary heat exchanger 80, and the reflux tube 81.

実施例4によれば、冷媒と空気の双方とも閉回路系であるので、もし第一次熱交換器80で冷媒蒸気が凝結された後に空気にわずかに冷媒蒸気が混入しても実施例1や2に比べて冷媒の損失を防ぐことができる。冷媒蒸気が凝結されて残った空気は温風ブロワ62に送られ、飽和蒸気圧が高まって相対湿度が下がり乾燥した空気が気化冷却モジュール10へ供給されるので、気化が促進される。   According to the fourth embodiment, since both the refrigerant and the air are closed circuit systems, even if the refrigerant vapor is slightly mixed in the air after the refrigerant vapor is condensed in the primary heat exchanger 80, the first embodiment. The loss of refrigerant can be prevented compared to 2 and 2. The air remaining after condensation of the refrigerant vapor is sent to the hot air blower 62, the saturated vapor pressure is increased, the relative humidity is lowered, and the dried air is supplied to the evaporative cooling module 10, whereby vaporization is promoted.

図11は本発明による実施例5の気化冷却システムの機能図である。実施例5の基本構成は実施例1に似ているが、送液系において温液ヒータ52により冷媒液体を温め、プロセッサの上限温度以下の温液を気化冷却モジュール10へ供給する点が異なっている。温液を供給することにより、実施例1や2で温気や温風を供給した効果と同様に、モジュール10内部の気化板周辺の飽和蒸気圧が高まって相対湿度が下がり、気化効率が向上する。   FIG. 11 is a functional diagram of the evaporative cooling system according to the fifth embodiment of the present invention. The basic configuration of the fifth embodiment is similar to that of the first embodiment except that the liquid coolant is warmed by the warm liquid heater 52 in the liquid feeding system, and the warm liquid below the upper limit temperature of the processor is supplied to the vaporization cooling module 10. Yes. By supplying the warm liquid, similar to the effect of supplying warm air and warm air in the first and second embodiments, the saturated vapor pressure around the vaporization plate inside the module 10 increases, the relative humidity decreases, and the vaporization efficiency improves. To do.

温液ヒータ52は送液ポンプ50と併設しても良い。送気系では実施例1と同様に周辺チップの発熱による温気を供給しても良いが、発熱量に対して温液の気化促進効果が十分であれば、周辺チップの発熱による空気の昇温は行わなくても良い。つまり送気チューブ60の吸気口の向きを変えることも可能である。   The warm liquid heater 52 may be provided together with the liquid feed pump 50. In the air supply system, warm air generated by the heat generated by the peripheral chips may be supplied in the same manner as in the first embodiment. The temperature does not have to be performed. That is, it is possible to change the direction of the intake port of the air supply tube 60.

図12は本発明による実施例6の気化冷却システムの機能図である。実施例6では排気ポンプ70の排気圧を利用し、気化冷却モジュール10側を負圧にすることにより気化板へ送気チューブ60から温気を供給すると共に、第一次熱交換器80側を正圧とすることにより還流チューブ80から送液タンク53へ冷媒液体を送る。第一次熱交換器80では、排気口82の弁を閉じておくと排気及び排液によりチャンバの内圧が高まり、液槽から還流チューブ81へ冷媒液体が流れる。送液タンク53は気化冷却モジュール10より高位にあり、冷媒液体が送液タンク53からモジュール10へ自重により流れ落ちて、プロセッサ100に接する気化板へ供給される。   FIG. 12 is a functional diagram of the evaporative cooling system according to the sixth embodiment of the present invention. In the sixth embodiment, the exhaust pressure of the exhaust pump 70 is used to set the vaporization cooling module 10 side to a negative pressure so that warm air is supplied from the air supply tube 60 to the vaporization plate, and the primary heat exchanger 80 side is By setting the positive pressure, the refrigerant liquid is sent from the reflux tube 80 to the liquid feeding tank 53. In the primary heat exchanger 80, if the valve of the exhaust port 82 is closed, the internal pressure of the chamber increases due to exhaust and drainage, and the refrigerant liquid flows from the liquid tank to the reflux tube 81. The liquid feed tank 53 is higher than the vaporization cooling module 10, and the refrigerant liquid flows down from the liquid feed tank 53 to the module 10 by its own weight and is supplied to the vaporization plate in contact with the processor 100.

実施例7によれば、排気ポンプの排気圧と冷媒液体の自重を利用することにより送液系から送液ポンプを省けるので、冷却系に必要な電力を減らしブレードサーバシステムを小型化できる。   According to the seventh embodiment, since the liquid feed pump can be omitted from the liquid feed system by utilizing the exhaust pressure of the exhaust pump and the dead weight of the refrigerant liquid, the power required for the cooling system can be reduced and the blade server system can be downsized.

本発明による気化冷却システムは、特に高性能、高密度化が求められるサーバ、ネットワーク、ストレージ等の情報プラットフォーム装置に好適であるが、例えばPCや携帯電話等の電子機器、発電機や燃料電池等の電力機器、自動車や鉄道等の動力機器等、発熱体を有する機器を冷却する用途に広く適用できる。   The evaporative cooling system according to the present invention is particularly suitable for information platform devices such as servers, networks, and storages that require high performance and high density. For example, electronic devices such as PCs and mobile phones, generators, fuel cells, etc. It can be widely applied to uses for cooling equipment having a heating element, such as power equipment of automobiles, power equipment such as automobiles and railways.

本発明による実施例1の気化冷却システムの構成図である。It is a block diagram of the vaporization cooling system of Example 1 by this invention. 本発明による実施例1の気化冷却モジュールの構成図である。It is a block diagram of the vaporization cooling module of Example 1 by this invention. 本発明による実施例1の気化冷却モジュールの断面図である。It is sectional drawing of the vaporization cooling module of Example 1 by this invention. 本発明による実施例1の第一次、第二次熱交換器の構成図である。It is a block diagram of the primary and secondary heat exchanger of Example 1 by this invention. 本発明による実施例2の気化冷却システムの構成図である。It is a block diagram of the vaporization cooling system of Example 2 by this invention. 本発明による実施例3の気化冷却システムの構成図である。It is a block diagram of the vaporization cooling system of Example 3 by this invention. 本発明による実施例1の気化冷却システムの機能図である。It is a functional diagram of the vaporization cooling system of Example 1 by this invention. 本発明による実施例2の気化冷却システムの機能図である。It is a functional diagram of the evaporative cooling system of Example 2 by this invention. 本発明による実施例3の気化冷却システムの機能図である。It is a functional diagram of the vaporization cooling system of Example 3 by this invention. 本発明による実施例4の気化冷却システムの機能図である。It is a functional diagram of the vaporization cooling system of Example 4 by this invention. 本発明による実施例5の気化冷却システムの機能図である。It is a functional diagram of the vaporization cooling system of Example 5 by this invention. 本発明による実施例6の気化冷却システムの機能図である。It is a functional diagram of the vaporization cooling system of Example 6 by this invention. 本発明に係る気化冷却モデルの説明図である。It is explanatory drawing of the vaporization cooling model which concerns on this invention.

符号の説明Explanation of symbols

10、11‥気化冷却モジュール
20‥チップセット、21‥メモリ
30‥マザーボード、31‥コネクタ
40‥ブレードサーバ、41‥サーバシャーシ、42‥ブレードシャーシ
50‥送液ポンプ、51‥送液チューブ、52‥温液ヒータ、53‥送液タンク
60、61‥送気チューブ、62‥温風ブロワ、63‥送気口、64‥吸気チューブ
70‥排気ポンプ、71‥排気チューブ
80‥第一次熱交換器(凝結器)、81‥還流チューブ、82‥排気口
90‥第二次熱交換器、91‥送水チューブ、92‥返水チューブ、93‥送水ポンプ
100‥プロセッサパッケージ、101‥プロセッサチップ(発熱体)
102‥キャップ、103‥パッケージ基板、104‥ソケット、105‥熱伝導材
109‥ジャケット、110、116‥気化板、111‥ウィック
112‥送液流、113‥送気流、114‥気化流、115‥排気流及び排液流
120‥内挿管、121‥外套管、122‥液槽、123‥チャンバ
130‥ラジエータ、131‥空冷ファン、132‥排熱流。
10, 11 ... Evaporative cooling module 20 ... Chipset, 21 ... Memory 30 ... Motherboard, 31 ... Connector 40 ... Blade server, 41 ... Server chassis, 42 ... Blade chassis 50 ... Liquid feed pump, 51 ... Liquid feed tube, 52 ... Warm liquid heater, 53 ... Liquid feed tank 60, 61 ... Air feed tube, 62 ... Warm air blower, 63 ... Air feed port, 64 ... Intake tube 70 ... Exhaust pump, 71 ... Exhaust tube 80 ... Primary heat exchanger (Condenser), 81. Reflux tube, 82 exhaust port 90 secondary heat exchanger, 91 water feed tube, 92 water return tube, 93 water feed pump 100 processor package, 101 processor chip (heating element) )
DESCRIPTION OF SYMBOLS 102 ... Cap, 103 ... Package board | substrate, 104 ... Socket, 105 ... Thermal conductive material 109 ... Jacket, 110, 116 Vaporization plate, 111 ... Wick 112 ... Liquid supply flow, 113 ... Air supply flow, 114 ... Vaporization flow, 115 ... Exhaust flow and drainage flow 120: inner tube, 121: outer tube, 122: liquid tank, 123: chamber 130: radiator, 131: air cooling fan, 132: exhaust heat flow.

Claims (13)

冷媒の気化熱により発熱体を冷却する気化冷却システムであって、
前記発熱体の発熱部より広い面積を有し発熱部に接して熱を拡散し、冷媒液体を冷媒蒸気へ気化させる気化板と、
冷媒液体を前記気化板へ供給する送液系と、
前記気化板へ空気を供給する送気系と、
前記気化板周辺の冷媒蒸気を含む空気を排気する排気系と、
前記排気系の冷媒蒸気を凝結させて冷媒液体を回収し、送液系に戻す還流系とを備えることを特徴とする気化冷却システム。
An evaporative cooling system that cools the heating element with the heat of vaporization of the refrigerant,
A vaporizing plate having a larger area than the heat generating portion of the heat generating element to diffuse heat in contact with the heat generating portion and vaporize the refrigerant liquid into the refrigerant vapor;
A liquid feed system for supplying a refrigerant liquid to the vaporization plate;
An air supply system for supplying air to the vaporization plate;
An exhaust system for exhausting air containing refrigerant vapor around the vaporization plate;
A vaporization cooling system comprising: a reflux system that condenses the refrigerant vapor of the exhaust system to recover a refrigerant liquid and return the refrigerant liquid to a liquid feed system.
前記気化板は、その一方の表面が前記発熱体の発熱部に接し、その他方の表面は前記冷却液体に対して親和性を有し、もしくは毛細管体が被着することを特徴とする請求項1記載の気化冷却システム。   The vaporization plate has one surface in contact with a heat generating portion of the heat generating element, and the other surface has affinity for the cooling liquid, or a capillary body is attached thereto. The evaporative cooling system according to claim 1. 前記送気系は、前記発熱体の上限温度より低い温風を前記気化板に供給することを特徴とする請求項1記載の気化冷却システム。   The evaporative cooling system according to claim 1, wherein the air supply system supplies warm air lower than an upper limit temperature of the heating element to the vaporization plate. 前記送液系は、前記発熱体の上限温度より低い前記冷媒液体を前記気化板に供給することを特徴とする請求項1記載の気化冷却システム。   The evaporative cooling system according to claim 1, wherein the liquid supply system supplies the refrigerant liquid having a temperature lower than an upper limit temperature of the heating element to the vaporization plate. 前記送気系は、前記送液系の前記気化板への前記冷媒液体の供給方向に対して異なる方向から気化板へ空気を供給することを特徴とする請求項1記載の気化冷却システム。   The evaporative cooling system according to claim 1, wherein the air supply system supplies air to the vaporization plate from a direction different from a supply direction of the refrigerant liquid to the vaporization plate of the liquid supply system. 第1及び第2の発熱体を冷却する気化冷却システムであって、
前記第1の発熱体に接して冷媒液体を冷媒蒸気へ気化させる気化板と、
前記冷媒液体を前記気化板へ供給する送液系と、
前記の発熱体の近傍から空気を吸引して前記気化板へ供給し、冷媒蒸気を含む空気を気化板から排気する吸排気系と、
排気された空気から冷媒蒸気を凝結させて冷媒液体を回収し、送液系に戻す還流系とを備えることを特徴とする気化冷却システム。
An evaporative cooling system for cooling the first and second heating elements,
A vaporization plate that contacts the first heating element and vaporizes the refrigerant liquid into refrigerant vapor;
A liquid feed system for supplying the refrigerant liquid to the vaporization plate;
An intake / exhaust system for sucking air from the vicinity of the heating element and supplying the air to the vaporization plate, and exhausting air containing refrigerant vapor from the vaporization plate;
A vaporization cooling system comprising: a reflux system that condenses refrigerant vapor from the exhausted air to collect a refrigerant liquid and return the refrigerant liquid to a liquid feeding system.
前記送液系は、前記気化板より高位から自重により前記冷媒液体を気化板へ供給することを特徴とする請求項1記載の気化冷却システム   The evaporative cooling system according to claim 1, wherein the liquid supply system supplies the refrigerant liquid to the vaporization plate by its own weight from a higher position than the vaporization plate. 前記排気系は、強制排気することで前記気化板側を負圧とし、かつ前記還流系側を正圧とするポンプを含むことを特徴とする請求項1記載の気化冷却システム。   The evaporative cooling system according to claim 1, wherein the exhaust system includes a pump that forcibly exhausts to make the vaporization plate side have a negative pressure and the reflux system side to have a positive pressure. 面状の発明体を概ね垂直に保持する保持手段と、
前記発熱体に接して冷媒液体を冷媒蒸気へ気化させる気化板と、
前記冷媒液体を気化板へ供給する送液系と
前記気化板へ空気を供給する送気系と、
前記気化板から冷媒蒸気を含む空気を排気する排気系と、
前記排気系の冷媒蒸気を凝結させて冷媒液体を回収し、送液系に戻す還流系とを備える気化冷却システム。
Holding means for holding the planar invention body substantially vertically;
A vaporizing plate in contact with the heating element to vaporize the refrigerant liquid into refrigerant vapor;
A liquid supply system for supplying the refrigerant liquid to the vaporization plate; an air supply system for supplying air to the vaporization plate;
An exhaust system for exhausting air containing refrigerant vapor from the vaporization plate;
A vaporization cooling system comprising: a reflux system that condenses the refrigerant vapor of the exhaust system to collect a refrigerant liquid and return the refrigerant liquid to a liquid feed system.
前記排気系は冷媒蒸気を含む空気とともに冷媒液体の残液を気化板から排出する排出系と、ことを特徴とする請求項9記載の気化冷却システム。   The evaporative cooling system according to claim 9, wherein the exhaust system is a discharge system that discharges the residual liquid of the refrigerant liquid from the vaporization plate together with the air containing the refrigerant vapor. 冷媒の気化熱により発熱体を冷却する気化冷却システムであって、
前記発熱体に接して冷媒液体を冷媒蒸気へ気化させる気化板と、
冷媒液体を前記気化板へ供給する送液系と、
外気から空気を取り込み前記気化板へ送風する送気系と、
冷媒蒸気を含む空気を気化板から排気する排気系と、
排気から冷媒蒸気を凝結させ冷媒液体を前期送液系に戻し、残気を外気へ排出する還流系とを備え、
冷媒が前記送液系と前記排気系と前記還流系から成る閉回路を循環し、空気が前記送気系と前記排気系と前記還流系から成る開回路を循環することを特徴とする気化冷却システム。
An evaporative cooling system that cools the heating element with the heat of vaporization of the refrigerant,
A vaporizing plate in contact with the heating element to vaporize the refrigerant liquid into refrigerant vapor;
A liquid feed system for supplying a refrigerant liquid to the vaporization plate;
An air supply system that takes in air from outside air and blows it to the vaporizing plate;
An exhaust system for exhausting air containing refrigerant vapor from the vaporization plate;
With a reflux system that condenses the refrigerant vapor from the exhaust, returns the refrigerant liquid to the liquid delivery system in the previous period, and discharges residual air to the outside air,
The evaporative cooling is characterized in that the refrigerant circulates in a closed circuit including the liquid supply system, the exhaust system, and the reflux system, and the air circulates in an open circuit including the air supply system, the exhaust system, and the reflux system. system.
冷媒の気化熱により発熱体を冷却する気化冷却システムであって、
前記発熱体に接して第1の冷媒液体を第1の冷媒蒸気へ気化させる気化板と、
前記第1の冷媒液体を前記気化板へ供給する送液系と、
前記気化板へ送風する送気系と、
前記第1の冷媒蒸気を含む空気を前記気化板から排気する排気系と、
第2の冷媒液体により前記排気系の空気を冷却して前記第一の冷媒蒸気を凝結させて前記第1の冷媒液体を回収する第一次熱交換系と、
前記第一次熱交換系から第1の冷媒液体を送液系に戻す還流系と、
第2の冷媒液体が第1の冷媒蒸気から吸収した熱を排出する第二次熱交換系とを備えることを特徴とする気化冷却システム。
An evaporative cooling system that cools the heating element with the heat of vaporization of the refrigerant,
A vaporizing plate that contacts the heating element and vaporizes the first refrigerant liquid into the first refrigerant vapor;
A liquid feed system for supplying the first refrigerant liquid to the vaporization plate;
An air supply system for blowing air to the vaporization plate;
An exhaust system for exhausting air containing the first refrigerant vapor from the vaporization plate;
A primary heat exchange system that cools the air in the exhaust system with a second refrigerant liquid and condenses the first refrigerant vapor to recover the first refrigerant liquid;
A reflux system for returning the first refrigerant liquid from the primary heat exchange system to the liquid feed system;
A vaporization cooling system comprising: a second heat exchange system that discharges heat absorbed by the second refrigerant liquid from the first refrigerant vapor.
冷媒の気化熱により発熱体を冷却する気化冷却システムであって、
前記発熱体に接して冷媒液体を冷媒蒸気へ気化させる気化板と、
冷媒液体を前記気化板へ供給する送液系と、
前記気化板へ空気を供給する送気系と、
前記気化板周辺の冷媒蒸気を含む空気を排気する排気系と、
前記排気系の冷媒蒸気を凝結させ冷媒液体を回収し、送液系に戻す還流系と、を備え、
発熱体の発熱量、消費電力、動作率、または温度に応じて送液量、送液温、送気量、または送気温を制御することを特徴とする気化冷却システム。
An evaporative cooling system that cools the heating element with the heat of vaporization of the refrigerant,
A vaporizing plate in contact with the heating element to vaporize the refrigerant liquid into refrigerant vapor;
A liquid feed system for supplying a refrigerant liquid to the vaporization plate;
An air supply system for supplying air to the vaporization plate;
An exhaust system for exhausting air containing refrigerant vapor around the vaporization plate;
A reflux system for condensing the refrigerant vapor of the exhaust system to collect the refrigerant liquid and returning it to the liquid feed system,
An evaporative cooling system that controls a liquid supply amount, a liquid supply temperature, an air supply amount, or an air supply temperature in accordance with a heat generation amount, power consumption, operation rate, or temperature of a heating element.
JP2007149882A 2007-06-06 2007-06-06 Evaporative cooling system Withdrawn JP2008304093A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007149882A JP2008304093A (en) 2007-06-06 2007-06-06 Evaporative cooling system
US12/155,614 US20080302505A1 (en) 2007-06-06 2008-06-06 Evaporative cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149882A JP2008304093A (en) 2007-06-06 2007-06-06 Evaporative cooling system

Publications (1)

Publication Number Publication Date
JP2008304093A true JP2008304093A (en) 2008-12-18

Family

ID=40094774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149882A Withdrawn JP2008304093A (en) 2007-06-06 2007-06-06 Evaporative cooling system

Country Status (2)

Country Link
US (1) US20080302505A1 (en)
JP (1) JP2008304093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130970A1 (en) * 2017-12-26 2019-07-04 キヤノン株式会社 Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479059A1 (en) * 2011-01-19 2012-07-25 Power Research Electronics B.v. Battery charger for electric vehicles
US9585291B2 (en) 2012-06-19 2017-02-28 Microsoft Technology Licensing, Llc Water condensate capture from datacenter power generation
US9605806B2 (en) * 2012-07-19 2017-03-28 Elwha Llc Liquefied breathing gas systems for underground mines
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
US11216048B1 (en) 2016-03-16 2022-01-04 ZT Group Int'l, Inc. System and method for controlling computer cooling using ideal cooling system settings, actual cooling system settings, and computer component data
US10585466B1 (en) 2016-03-16 2020-03-10 ZT Group Int'l, Inc. Power saving fan control with anti fan-oscillation feature
US10222843B1 (en) * 2016-03-16 2019-03-05 ZT Group Int'l, Inc. Server platform thermal control system using component power
JP6720752B2 (en) * 2016-07-25 2020-07-08 富士通株式会社 Immersion cooling device, immersion cooling system, and method of controlling immersion cooling device
US10108233B1 (en) * 2017-04-06 2018-10-23 Johann Wischnesky Computer cooling assembly
US10569615B2 (en) * 2017-04-06 2020-02-25 Johann Wischnesky Computer cooling assembly
US10863650B2 (en) * 2017-04-28 2020-12-08 Dawning Information Industry (Beijing) Co., Ltd Air-vapor separation method for immersed liquid cooling system and device thereof
US10622282B2 (en) * 2017-07-28 2020-04-14 Qualcomm Incorporated Systems and methods for cooling an electronic device
CN110347225A (en) * 2018-04-06 2019-10-18 十二船有限公司 It is able to produce the encryption currency digging system of hot water
DE102018218388A1 (en) * 2018-10-26 2020-04-30 Mahle International Gmbh Power electronics device for a vehicle
US10796977B2 (en) * 2019-03-04 2020-10-06 Intel Corporation Method and apparatus to control temperature of a semiconductor die in a computer system
CN115399083A (en) * 2020-04-03 2022-11-25 大众汽车股份公司 Carrier and main frame for mounting and connecting carrier components
US11909078B2 (en) * 2021-03-15 2024-02-20 Cummins Inc. Systems and methods to utilize water output of fuel cell systems for evaporative cooling of radiators

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085831A (en) * 1999-03-03 2000-07-11 International Business Machines Corporation Direct chip-cooling through liquid vaporization heat exchange
US6205799B1 (en) * 1999-09-13 2001-03-27 Hewlett-Packard Company Spray cooling system
US6349760B1 (en) * 1999-10-22 2002-02-26 Intel Corporation Method and apparatus for improving the thermal performance of heat sinks
US6591626B2 (en) * 2001-12-19 2003-07-15 Industrial Technology Institute Water removal device for refrigeration system
US6889515B2 (en) * 2002-11-12 2005-05-10 Isothermal Systems Research, Inc. Spray cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130970A1 (en) * 2017-12-26 2019-07-04 キヤノン株式会社 Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method
JP2019117231A (en) * 2017-12-26 2019-07-18 キヤノン株式会社 Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method
CN111527452A (en) * 2017-12-26 2020-08-11 佳能株式会社 Cooling device, semiconductor manufacturing apparatus, and semiconductor manufacturing method
CN111527452B (en) * 2017-12-26 2022-08-12 佳能株式会社 Cooling device, semiconductor manufacturing apparatus, and semiconductor manufacturing method

Also Published As

Publication number Publication date
US20080302505A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP2008304093A (en) Evaporative cooling system
US11116113B2 (en) Cooling electronic devices in a data center
US6615912B2 (en) Porous vapor valve for improved loop thermosiphon performance
US8345425B2 (en) Cooling system and electronic apparatus applying the same therein
US8164902B2 (en) Electronic apparatus
WO2013102973A1 (en) Cooling device and electronic equipment using same
JP2004363308A (en) Rack-mounted server system
JP4520487B2 (en) Cooling device for electronic equipment
US7394655B1 (en) Absorptive cooling for electronic devices
JP3959498B2 (en) COOLING SYSTEM AND ELECTRONIC DEVICE HAVING THE COOLING SYSTEM
JP2007094648A (en) Electronic equipment
US20090008063A1 (en) System and Method for Passive Cooling Using a Non-Metallic Wick
JP6070036B2 (en) Loop thermosyphon and electronic equipment
JP2010079401A (en) Cooling system and electronic equipment using the same
JP5786132B2 (en) Electric car
US20090178436A1 (en) Microelectronic refrigeration system and method
JP2004349551A (en) Boiling cooling system
CN108495540A (en) A kind of heat-radiating device of electric component with soaking plate
US20070144199A1 (en) Method and apparatus of using an atomizer in a two-phase liquid vapor enclosure
JP5664046B2 (en) Cooling system
JP2005019907A (en) Cooler
JPH0341754A (en) Cooling apparatus for semiconductor
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2007329185A (en) Cooling device
KR101713715B1 (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110707