JP2008303597A - Environment adaptive board-like heat insulator - Google Patents

Environment adaptive board-like heat insulator Download PDF

Info

Publication number
JP2008303597A
JP2008303597A JP2007151249A JP2007151249A JP2008303597A JP 2008303597 A JP2008303597 A JP 2008303597A JP 2007151249 A JP2007151249 A JP 2007151249A JP 2007151249 A JP2007151249 A JP 2007151249A JP 2008303597 A JP2008303597 A JP 2008303597A
Authority
JP
Japan
Prior art keywords
melting point
polylactic acid
board
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007151249A
Other languages
Japanese (ja)
Inventor
Kiyoshi Muramoto
喜義 村本
Tsutomu Saito
勉 斎藤
Kunihide Saito
邦秀 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITN JAPAN CO Ltd
MURAMOTO KK
Original Assignee
ITN JAPAN CO Ltd
MURAMOTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITN JAPAN CO Ltd, MURAMOTO KK filed Critical ITN JAPAN CO Ltd
Priority to JP2007151249A priority Critical patent/JP2008303597A/en
Publication of JP2008303597A publication Critical patent/JP2008303597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an environment adaptive board-like heat insulator which is excellent in humidity conditioning properties, free from provision of an adhesive for retaining the shape, small in consolidation settlement, and good in ventilation performance. <P>SOLUTION: The environment adaptive board-like heat insulator 1 which is available by being filled in a wall, a ceiling, or an underfloor of a detached house or an apartment house, is prepared by using only wool 11 that is made of natural fibers excellent in humidity conditioning properties, and polylactic fibers 12, 13 having high biodegradability. Specifically the environment adaptive board-like heat insulator 1 is manufactured by preparing a nonwoven laminated body containing the wool of 50 to 80 wt.%, high-melting polylactic fibers having a melting point of not lower than 150°C, of 15 to 35 wt.%, and low-melting polylactic fibers having a melting point of not higher than 120°C, of 5 to 25 wt.%, and then subjecting the resultant nonwoven laminated body to heat seal treatment at a temperature of 130 to 140°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、戸建住宅やマンションの壁、天井、床下等に充填して使用するボード状断熱材の技術分野に属する。   The present invention belongs to the technical field of a board-like heat insulating material used by filling a wall, ceiling, under floor, etc. of a detached house or apartment.

従来、戸建住宅やマンション等の住宅用ボード状断熱材として、合成樹脂発泡体や無機繊維成形体がよく知られている。合成樹脂発泡体としては、ビーズ法ポリスチレン発泡体(いわゆる発泡スチロール)や、ポリスチレン樹脂に発泡剤、難燃剤等を加え、連続的に押し出して発砲させ、板状に成形することで製造される押出法ポリスチレン発泡体、ポリオール及びポリイソシアネート、発泡剤等を混ぜ、短時間に高分子化と発泡成形とを行うことで製造される硬質ウレタン発泡体、ポリエチレン樹脂に発泡剤等を混ぜて製造される半硬質の断熱材である高発泡ポリエチレン発泡体、あるいはフェノールとホルムアルデヒトとの反応によって合成されるフェノール樹脂が原料のフェノール発泡体等が知られている。   Conventionally, synthetic resin foams and inorganic fiber molded bodies are well known as board-like heat insulating materials for houses such as detached houses and apartments. Synthetic resin foams include beaded polystyrene foam (so-called styrofoam) and extrusion methods that are manufactured by adding foaming agents, flame retardants, etc. to polystyrene resins, and continuously extruding them and molding them into plates. Polyurethane foam, polyol and polyisocyanate, foaming agent, etc. are mixed, hard urethane foam manufactured by polymerizing and foaming in a short time, semi-manufactured by mixing foaming agent with polyethylene resin, etc. A highly foamed polyethylene foam, which is a hard heat insulating material, or a phenol foam made from a phenol resin synthesized by a reaction between phenol and formaldehyde is known.

一方、無機繊維成形体としては、けい砂、石英石、苦石灰、長石、ソーダ灰等を高温で溶かして繊維状にし、熱硬化性の接着剤を吹き付けて加圧成形することで製造されるグラスウール、及び、溶鉱炉で鉄を作る際に発生するスラグや玄武岩等を1500〜1600℃の高温で溶かして繊維化した綿状物にフェノール樹脂を加えてフェルト状やマット状に成形したロックウールが知られている。   On the other hand, as an inorganic fiber molded body, silica sand, quartz stone, bitumen, feldspar, soda ash, etc. are melted at a high temperature to form a fiber, and a thermosetting adhesive is sprayed and pressure molded. Glass wool and rock wool that is formed into felt or matte shape by adding phenolic resin to a cotton-like material made by melting slag or basalt generated when iron is made in a blast furnace at a high temperature of 1500 to 1600 ° C. Are known.

また、特許文献1に記載されるように、ポリエチレンテレフタレート(PET)やナイロン、アクリル等の合成繊維をマトリックス繊維とし、PETを含む低融点の複合繊維で前記マトリックス繊維同士を熱融着することによりボード状断熱材としての形態が保持された合成繊維不織布積層体も住宅用ボード状断熱材として提案されている。
特開2005−1382(段落0018、0023)
Moreover, as described in Patent Document 1, synthetic fibers such as polyethylene terephthalate (PET), nylon, and acrylic are used as matrix fibers, and the matrix fibers are heat-sealed with low melting point composite fibers including PET. Synthetic fiber nonwoven fabric laminates that retain their form as board-like heat insulating materials have also been proposed as residential board-like heat insulating materials.
JP 2005-1382 (paragraphs 0018 and 0023)

しかし、いずれの断熱材も、一般に、調湿性の点で劣るため、内部結露を起こし易く、長年の使用により、カビやシロアリが発生する可能性が高くなる。したがって、断熱材と併せて防湿シートの施工が必須となる。また、グラスウールやロックウール等の無機繊維成形体は、形状の付与及び維持のために接着剤を使用するので、その接着剤から放出される揮発性化学物質に留意する必要がある。また、グラスウールは、圧密沈下により部分的に断熱性が著しく低下するという問題がある。一方、合成樹脂発泡体は、通気性が不良なため、発泡体内部に閉じ込められた発泡剤のガスあるいは樹脂原料モノマーのガス等が徐々に部屋に漏れ出す可能性がある。   However, since all the heat insulating materials are generally inferior in terms of humidity control, internal condensation is likely to occur, and the possibility of generation of mold and termites increases with long-term use. Therefore, it is essential to install a moisture-proof sheet together with the heat insulating material. In addition, since inorganic fiber molded bodies such as glass wool and rock wool use an adhesive for imparting and maintaining the shape, attention must be paid to volatile chemical substances released from the adhesive. In addition, glass wool has a problem that the heat insulating property is partially lowered due to consolidation settlement. On the other hand, since the synthetic resin foam has poor air permeability, there is a possibility that the gas of the foaming agent or the gas of the resin raw material monomer trapped inside the foam gradually leaks into the room.

本発明は、従来のボード状断熱材における前記のような不具合に対処するもので、調湿性に優れ、その結果、防湿シートを併せて施工せずに済み、形状の付与及び維持のための接着剤が不要で、その結果、揮発性化学物質の放出を心配する必要がなく、かつ、圧密沈下が少なく、通気性も良好なボード状断熱材を提供することを課題とする。   The present invention addresses the above-mentioned problems in the conventional board-like heat insulating material, and is excellent in humidity control. As a result, it is not necessary to install a moisture-proof sheet together, and adhesion for imparting and maintaining the shape It is an object of the present invention to provide a board-like heat insulating material that does not require an agent and, as a result, does not need to worry about the release of volatile chemical substances, has low consolidation settlement, and has good air permeability.

前記課題を解決するため、本発明では、調湿性に優れた天然繊維である羊毛と、高い生分解性を有するポリ乳酸繊維とだけを用いて、環境適応型のボード状断熱材を作製した。   In order to solve the above-described problems, in the present invention, an environment-adaptive board-like heat insulating material was produced using only wool, which is a natural fiber excellent in moisture conditioning, and polylactic acid fiber having high biodegradability.

すなわち、本願の請求項1に記載の発明は、戸建住宅やマンションの壁、天井、床下等に充填して使用する環境適応型ボード状断熱材であって、羊毛と、高融点型ポリ乳酸繊維と、低融点型ポリ乳酸繊維とを含む不織布積層体が、高融点型ポリ乳酸繊維の融点より低く、低融点型ポリ乳酸繊維の融点より高い温度で熱融着処理されてなることを特徴とする。   That is, the invention according to claim 1 of the present application is an environment-adaptive board-like heat insulating material used by filling walls, ceilings, under floors, etc. of detached houses and apartments, wherein wool, high melting point polylactic acid are used. A nonwoven fabric laminate comprising fibers and a low melting point polylactic acid fiber is heat-bonded at a temperature lower than the melting point of the high melting point polylactic acid fiber and higher than the melting point of the low melting point polylactic acid fiber. And

次に、本願の請求項2に記載の発明は、同じく戸建住宅やマンションの壁、天井、床下等に充填して使用する環境適応型ボード状断熱材であって、羊毛と、融点が150℃以上の高融点型ポリ乳酸繊維と、融点が120℃以下の低融点型ポリ乳酸繊維とを含む不織布積層体が、130〜140℃の温度で熱融着処理されてなることを特徴とする。   Next, the invention described in claim 2 of the present application is an environment-adaptive board-like heat insulating material that is also used by filling a wall, ceiling, under floor, etc. of a detached house or apartment, and has a wool melting point of 150. A nonwoven fabric laminate comprising a high melting point polylactic acid fiber having a melting point of 120 ° C. or higher and a low melting point polylactic acid fiber having a melting point of 120 ° C. or lower is heat-sealed at a temperature of 130 to 140 ° C. .

次に、本願の請求項3に記載の発明は、前記請求項1又は2に記載の環境適応型ボード状断熱材であって、羊毛は50〜80重量%、高融点型ポリ乳酸繊維は15〜35重量%、低融点型ポリ乳酸繊維は5〜25重量%含まれていることを特徴とする。ここで、羊毛、高融点型ポリ乳酸繊維及び低融点型ポリ乳酸繊維の3成分の配合重量%がどのような組合せであっても、その合計が100重量%であることはいうまでもない。   Next, the invention according to claim 3 of the present application is the environment-adaptive board-like heat insulating material according to claim 1 or 2, wherein the wool is 50 to 80% by weight and the high melting point polylactic acid fiber is 15%. -35 wt%, low melting point polylactic acid fiber is contained in 5-25 wt%. Here, it goes without saying that the total amount is 100% by weight regardless of the combination of the three components by weight of wool, the high melting point type polylactic acid fiber and the low melting point type polylactic acid fiber.

まず、請求項1に記載の発明によれば、環境適応型ボード状断熱材は、調湿性に優れた天然繊維である羊毛と、高い生分解性を有するポリ乳酸繊維とだけを用いて作製されているので、このボード状断熱材は、調湿性に優れ、その結果、施工の際に防湿シートを併せて施工せずに済むばかりでなく、形状の付与及び維持のための接着剤が使用されていないので、その接着剤から放出される揮発性化学物質に留意する必要がなくなる。   First, according to the invention described in claim 1, the environment-adaptive board-like heat insulating material is manufactured using only wool, which is a natural fiber excellent in humidity control, and polylactic acid fiber having high biodegradability. Therefore, this board-like heat insulating material is excellent in humidity control, and as a result, not only the moisture-proof sheet is not required to be applied at the time of construction, but also an adhesive for imparting and maintaining the shape is used. This eliminates the need to pay attention to the volatile chemicals released from the adhesive.

また、本発明に係る環境適応型ボード状断熱材は、高融点型と低融点型との2種類のポリ乳酸繊維が使用されており、高融点型ポリ乳酸繊維の融点より低く、低融点型ポリ乳酸繊維の融点より高い温度で熱融着処理されているので、熱融着処理の影響を受けない羊毛及び高融点型ポリ乳酸繊維がマトリックス繊維となり、熱融着処理によって溶融する低融点型ポリ乳酸繊維がマトリックス繊維同士を熱融着するための低融点繊維となって、この結果、断熱材がボード状に良好に保持されることとなる。   In addition, the environment-adaptive board-like heat insulating material according to the present invention uses two types of polylactic acid fibers, a high melting point type and a low melting point type, which are lower than the melting point of the high melting point type polylactic acid fiber, and have a low melting point type. Because it is heat-sealed at a temperature higher than the melting point of polylactic acid fiber, wool and high-melting-point polylactic acid fiber that are not affected by heat-sealing treatment become matrix fibers, and melted by heat-sealing treatment. The polylactic acid fiber becomes a low-melting-point fiber for heat-sealing the matrix fibers, and as a result, the heat insulating material is favorably held in a board shape.

そして、本発明に係る環境適応型ボード状断熱材は、高融点型ポリ乳酸繊維を含有することにより、剛性が向上し、長年の使用によっても、へたり現象が抑制されて、圧密沈下が起こり難くなる。また、本発明に係る環境適応型ボード状断熱材は、不織布積層体であるから、通気性に優れ、不織布積層体内部に樹脂原料モノマー(例えばL−乳酸)が残存することがなく、ボード状断熱材の内部は良好に掃気された状態となる。さらに、羊毛は、揮発性有機化合物(VOC)を吸着して空気を浄化する作用を有するので、本発明に係る環境適応型ボード状断熱材は、部屋の空気を清浄にする機能を備えることとなる。   The environment-adaptive board-like heat insulating material according to the present invention contains high melting point polylactic acid fiber, so that the rigidity is improved, and even after many years of use, the sag phenomenon is suppressed and consolidation settlement occurs. It becomes difficult. Moreover, since the environment-adaptive board-like heat insulating material according to the present invention is a nonwoven fabric laminate, it has excellent breathability, and no resin raw material monomer (for example, L-lactic acid) remains in the nonwoven fabric laminate. The inside of the heat insulating material is well scavenged. Furthermore, since wool has the effect | action which adsorb | sucks a volatile organic compound (VOC) and purifies air, the environment adaptive board-shaped heat insulating material which concerns on this invention is equipped with the function which cleans the air of a room. Become.

このように、本発明に係る環境適応型ボード状断熱材は、マトリックス繊維だけでなく、マトリックス繊維同士を熱融着するための低融点繊維を含め、全ての素材を天然繊維である羊毛と、高い生分解性を有するポリ乳酸繊維とだけを用いて作製したから、この環境適応型ボード状断熱材を廃棄する際には、地球環境や人体等に悪影響を及ぼすことがない。   Thus, the environment-adaptive board-like heat insulating material according to the present invention includes not only matrix fibers but also low-melting fibers for heat-sealing the matrix fibers to each other, and wool, which is a natural fiber, Since it was produced using only polylactic acid fiber having high biodegradability, when this environment-adaptive board-like heat insulating material is discarded, it does not adversely affect the global environment or the human body.

しかも、ポリ乳酸繊維は、トウモロコシやイモ類等から得られるデンプンやグルコースの発酵又はビートやサトウキビ等から得られるショ糖の発酵により乳酸を製造し、この乳酸を重合してポリ乳酸としたのち繊維化することで得ることができるものであるから、天然由来の素材のみを原料とし、生分解性だけでなく、安全性も極めて高いものである。   Moreover, the polylactic acid fiber is produced by producing lactic acid by fermentation of starch or glucose obtained from corn or potatoes or sucrose obtained from beet or sugarcane, etc., and polymerizing this lactic acid to obtain polylactic acid. Therefore, it is possible to obtain only natural-derived materials as raw materials, which is not only biodegradable but also extremely safe.

その場合に、請求項2に記載の発明によれば、高融点型ポリ乳酸繊維の融点が150℃以上、低融点型ポリ乳酸繊維の融点が120℃以下、不織布積層体の熱融着処理温度が130〜140℃とされているから、本発明に係る環境適応型ボード状断熱材は、比較的低い温度で熱融着処理が実行され、その結果、本発明に係る環境適応型ボード状断熱材を製造するためのエネルギー消費量が低く抑えられることとなる。   In that case, according to the invention described in claim 2, the melting point of the high melting point polylactic acid fiber is 150 ° C. or higher, the melting point of the low melting point polylactic acid fiber is 120 ° C. or lower, and the heat fusion treatment temperature of the nonwoven fabric laminate. Therefore, the environment-adaptive board-like heat insulating material according to the present invention is subjected to heat fusion treatment at a relatively low temperature, and as a result, the environment-adaptive board-like heat insulating material according to the present invention. Energy consumption for producing the material will be kept low.

ここで、高融点型ポリ乳酸繊維の融点が150℃を下回ると、高融点型ポリ乳酸繊維の剛性、ひいてはボード状断熱材の剛性が不足するという問題が生じる。一方、低融点型ポリ乳酸繊維の融点が120℃を上回ると、熱融着処理温度もそれに伴って高くなってしまう。なお、請求項2では、高融点型ポリ乳酸繊維の融点の上限値及び低融点型ポリ乳酸繊維の融点の下限値を規定していないが、一般に、高融点型ポリ乳酸繊維の融点の上限値は177〜178℃程度であり、低融点型ポリ乳酸繊維の融点の下限値は100℃程度である。   Here, when the melting point of the high melting point polylactic acid fiber is lower than 150 ° C., there arises a problem that the rigidity of the high melting point type polylactic acid fiber, and hence the rigidity of the board-like heat insulating material, is insufficient. On the other hand, when the melting point of the low melting point polylactic acid fiber exceeds 120 ° C., the heat fusion treatment temperature also increases accordingly. Although the upper limit value of the melting point of the high melting point polylactic acid fiber and the lower limit value of the melting point of the low melting point polylactic acid fiber are not defined in claim 2, generally, the upper limit value of the melting point of the high melting point type polylactic acid fiber is not specified. Is about 177 to 178 ° C., and the lower limit of the melting point of the low melting point polylactic acid fiber is about 100 ° C.

また、一般に、ポリ乳酸には、L−体とD−体との2種類の光学異性体があり、L−体であるかD−体であるかに拘らず、いずれか1種のみからなるホモポリマー(すなわち光学純度が100%)の融点が最も高く(177〜178℃)、両方を含んだコポリマーにおいて、一方の配合比率が例えば98モル%,94モル%,90モル%と小さくなり、他方の配合比率が例えば2モル%,6モル%,10モル%と大きくなるほど(すなわち光学純度が低くなるほど)、融点が低くなることが知られている(例えば日本国特許第3355026号明細書参照)。   In general, polylactic acid has two types of optical isomers, an L-form and a D-form, and consists of only one of them regardless of whether it is an L-form or a D-form. The homopolymer (ie, optical purity is 100%) has the highest melting point (177 to 178 ° C.), and in the copolymer containing both, the blending ratio of one is as small as 98 mol%, 94 mol%, 90 mol%, It is known that the melting point decreases as the other compounding ratio increases, for example, 2 mol%, 6 mol%, and 10 mol% (that is, as the optical purity decreases) (see, for example, Japanese Patent No. 3355026). ).

一例として、融点が150℃以上の高融点型ポリ乳酸は、L−体:D−体=2モル%以下:98モル%以上、又は、L−体:D−体=98モル%以上:2モル%以下のコポリマーとすることで得ることができる。また、融点が120℃以下の低融点型ポリ乳酸は、L−体:D−体=6モル%以上:94モル%以下、又は、L−体:D−体=94モル%以下:6モル%以上のコポリマーとすることで得ることができる。なお、L−体:D−体=10モル%:90モル%、又は、L−体:D−体=90モル%:10モル%のコポリマーで融点が100℃程度となり、L−体:D−体=10モル%以上:90モル%以下、又は、L−体:D−体=90モル%以下:10モル%以上のコポリマーとなると、ポリ乳酸は非晶性となって融点を示さなくなり、繊維化が困難となる。   As an example, the high melting point polylactic acid having a melting point of 150 ° C. or higher is L-form: D-form = 2 mol% or less: 98 mol% or more, or L-form: D-form = 98 mol% or more: 2 It can be obtained by making it a copolymer of mol% or less. Further, the low melting point polylactic acid having a melting point of 120 ° C. or less is L-form: D-form = 6 mol% or more: 94 mol% or less, or L-form: D-form = 94 mol% or less: 6 mol. % Or more of the copolymer. The L-form: D-form = 10 mol%: 90 mol%, or the L-form: D-form = 90 mol%: 10 mol% copolymer having a melting point of about 100 ° C., and the L-form: D -Form = 10 mol% or more: 90 mol% or less, or L-form: D-form = 90 mol% or less: When the copolymer is 10 mol% or more, polylactic acid becomes amorphous and does not exhibit a melting point. , Fiberization becomes difficult.

次に、請求項3に記載の発明によれば、環境適応型ボード状断熱材は、羊毛を50〜80重量%、高融点型ポリ乳酸繊維を15〜35重量%、低融点型ポリ乳酸繊維を5〜25重量%含んでいるから、羊毛による調湿性、高融点型ポリ乳酸繊維による剛性、低融点型ポリ乳酸繊維による熱融着性がバランスよく発現されることとなる。   Next, according to the invention described in claim 3, the environment-adaptive board-like heat insulating material is 50 to 80% by weight of wool, 15 to 35% by weight of high melting point polylactic acid fiber, and low melting point polylactic acid fiber. 5 to 25% by weight, moisture conditioning by wool, rigidity by high melting point polylactic acid fiber, and heat fusion property by low melting point polylactic acid fiber are expressed in a well-balanced manner.

その場合に、羊毛の配合割合が80重量%を上回ると、その分、高融点型ポリ乳酸繊維の配合割合が少なくなり、ボード状断熱材の剛性が過度に不足し、へたり現象が起き易くなる。逆に、羊毛の配合割合が50重量%を下回ると、ボード状断熱材の調湿性が過度に不足する。また、高融点型ポリ乳酸繊維の配合割合が35重量%を上回ると、ボード状断熱材の剛性が過度に高くなり、施工の際の切断作業が困難となる。逆に、高融点型ポリ乳酸繊維の配合割合が15重量%を下回ると、ボード状断熱材の剛性が過度に不足し、へたり現象が起き易くなる。一方、低融点型ポリ乳酸繊維の配合割合が25重量%を上回ると、羊毛と高融点型ポリ乳酸繊維との融着点が過度に増えて、ボード状断熱材が不織布の積層方向において収縮し、ボード状断熱材の厚みが目標とする厚みよりも小さくなってしまう。逆に、低融点型ポリ乳酸繊維の配合割合が5重量%を下回ると、羊毛と高融点型ポリ乳酸繊維との融着点が過度に減って、外からの力により羊毛と高融点型ポリ乳酸繊維とがほぐれ易くなり、ボード状断熱材の形状保持性が低下してしまう。   In that case, if the blending ratio of wool exceeds 80% by weight, the blending ratio of the high melting point polylactic acid fiber is reduced correspondingly, the rigidity of the board-like heat insulating material is excessively insufficient, and the sag phenomenon is likely to occur. Become. On the other hand, if the blending ratio of wool is less than 50% by weight, the humidity conditioning property of the board-like heat insulating material is excessively insufficient. On the other hand, when the blending ratio of the high melting point polylactic acid fiber exceeds 35% by weight, the rigidity of the board-like heat insulating material becomes excessively high, and the cutting work at the time of construction becomes difficult. On the other hand, if the blending ratio of the high melting point polylactic acid fiber is less than 15% by weight, the board-like heat insulating material has insufficient rigidity, and a sag phenomenon is likely to occur. On the other hand, when the blending ratio of the low melting point polylactic acid fiber exceeds 25% by weight, the fusion point between the wool and the high melting point type polylactic acid fiber is excessively increased, and the board-like heat insulating material contracts in the lamination direction of the nonwoven fabric. The thickness of the board-shaped heat insulating material becomes smaller than the target thickness. On the contrary, if the blending ratio of the low melting point polylactic acid fiber is less than 5% by weight, the fusion point between the wool and the high melting point polylactic acid fiber is excessively reduced, and the wool and the high melting point poly Lactic acid fibers are easily loosened, and the shape retainability of the board-like heat insulating material is lowered.

以下、発明の最良の実施の形態及び実施例を通して本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail through the best mode and examples of the present invention.

図1は、本実施形態に係る環境適応型ボード状断熱材1の斜視図である。環境適応型ボード状断熱材1は、調湿性に優れた天然繊維である羊毛11と、高い生分解性を有するポリ乳酸繊維12,13とを含む不織布積層体が、高融点型ポリ乳酸繊維12の融点より低く、低融点型ポリ乳酸繊維13の融点より高い温度で熱融着処理されてボード状に成形されたもので、戸建住宅やマンションの壁、天井、床下等に充填して使用される。原料は、羊毛11、高融点型ポリ乳酸繊維12、及び低融点型ポリ乳酸繊維13であって、羊毛11及び高融点型ポリ乳酸繊維12がマトリックス繊維であり、低融点型ポリ乳酸繊維13がマトリックス繊維11,12同士を熱融着するための低融点繊維である。   FIG. 1 is a perspective view of an environment-adaptive board-like heat insulating material 1 according to this embodiment. The environment-adaptive board-like heat insulating material 1 includes a nonwoven fabric laminate including wool 11 which is a natural fiber excellent in humidity control and polylactic acid fibers 12 and 13 having high biodegradability. It is molded into a board shape by heat-sealing treatment at a temperature lower than the melting point of the low-melting-type polylactic acid fiber 13 and used to fill the walls, ceilings, and under floors of detached houses and apartments. Is done. The raw materials are wool 11, high melting point polylactic acid fiber 12, and low melting point polylactic acid fiber 13, where wool 11 and high melting point polylactic acid fiber 12 are matrix fibers, and low melting point polylactic acid fiber 13 is It is a low melting point fiber for thermally fusing the matrix fibers 11 and 12 together.

羊毛11は、例えばオーストラリアやニュージーランド等の牧畜業で産出される羊毛格外品を好ましく使用することができる。ポリ乳酸繊維12,13は、農作物であるトウモロコシやイモ類等から得られるデンプンやグルコースの発酵又はビートやサトウキビ等から得られるショ糖の発酵により乳酸を製造し、この乳酸を重合してポリ乳酸としたのち繊維化したものを好ましく使用することができる。このような発酵法で乳酸を製造すると、光学異性体のうち、自然界に存在するL−乳酸が得られるが、人工的に合成されたD−乳酸も同様に好ましく使用可能である。ただし、ポリ乳酸繊維の生分解性の観点からは、L−乳酸を多く使うほうが好ましい。   As the wool 11, for example, a non-wool product produced in pastoral operations such as Australia and New Zealand can be preferably used. Polylactic acid fibers 12 and 13 produce lactic acid by fermentation of starch or glucose obtained from corn or potato as agricultural crops, or sucrose obtained from beet or sugarcane, etc., and polymerize this lactic acid to produce polylactic acid Then, a fiberized product can be preferably used. When lactic acid is produced by such a fermentation method, among the optical isomers, L-lactic acid that exists in nature is obtained, but artificially synthesized D-lactic acid can also be preferably used. However, from the viewpoint of biodegradability of the polylactic acid fiber, it is preferable to use a large amount of L-lactic acid.

羊毛11は、ボード状断熱材1の調湿性に寄与する他、ボード状断熱材1の断熱性、通気性、吸音性等にも寄与する。一方、高融点型ポリ乳酸繊維12は、剛性が大きいから、羊毛11を主成分としたボード状断熱材1の剛性を高める機能を有する。また、低融点型ポリ乳酸繊維13は、融点が低いから、羊毛11及び高融点型ポリ乳酸繊維12の混綿物同士を熱融着処理工程で部分的に熱融着してボード状断熱材1の形状を良好に保持する機能を発揮する。   The wool 11 contributes to the humidity control property of the board-like heat insulating material 1 and also contributes to the heat insulating property, air permeability, sound absorbing property, etc. of the board-like heat insulating material 1. On the other hand, the high melting point type polylactic acid fiber 12 has a function of increasing the rigidity of the board-shaped heat insulating material 1 mainly composed of wool 11 because of its high rigidity. Further, since the low melting point polylactic acid fiber 13 has a low melting point, the board-like heat insulating material 1 is obtained by partially heat-sealing the blend of the wool 11 and the high melting point type polylactic acid fiber 12 in a heat-sealing process. Exhibits the function of maintaining the shape of

ここで、ボード状断熱材1を製造するためのエネルギー消費量を低減する観点から、熱融着処理温度は130〜140℃が好ましく、そのためには、高融点型ポリ乳酸繊維12の融点は150℃以上、低融点型ポリ乳酸繊維13の融点は120℃以下とするのがよい。熱融着処理温度が140℃を上回ると、ボード状断熱材1を製造するためのエネルギー消費量が過度に高くなり、環境負荷の増大及びコストの増大を招いてしまう。逆に、熱融着処理温度が130℃を下回ると、その分、低融点型ポリ乳酸繊維13の融点も下げなければならず、低融点型ポリ乳酸繊維13の結晶性が低下して(非晶性に近づいて)繊維化が不安定となる。一方、高融点型ポリ乳酸繊維12の観点からは、その融点が150℃を下回ると、高融点型ポリ乳酸繊維12の剛性、ひいてはボード状断熱材1の剛性が不足するという問題が生じる。また、低融点型ポリ乳酸繊維13の観点からは、その融点が120℃を上回ると、熱融着処理温度もそれに伴って高くなり、ボード状断熱材1を製造するためのエネルギー消費量が増えてしまう。   Here, from the viewpoint of reducing the energy consumption for producing the board-shaped heat insulating material 1, the heat-sealing treatment temperature is preferably 130 to 140 ° C. For that purpose, the melting point of the high melting point polylactic acid fiber 12 is 150. The melting point of the low melting point polylactic acid fiber 13 is preferably 120 ° C. or lower. If the heat sealing temperature exceeds 140 ° C., the energy consumption for producing the board-like heat insulating material 1 becomes excessively high, leading to an increase in environmental load and an increase in cost. On the other hand, when the heat fusion treatment temperature is lower than 130 ° C., the melting point of the low melting point polylactic acid fiber 13 must be lowered accordingly, and the crystallinity of the low melting point type polylactic acid fiber 13 is lowered (non- The fiberization becomes unstable (approaching crystallinity). On the other hand, from the viewpoint of the high melting point polylactic acid fiber 12, when the melting point is lower than 150 ° C., there arises a problem that the rigidity of the high melting point polylactic acid fiber 12, and hence the rigidity of the board-like heat insulating material 1, is insufficient. Further, from the viewpoint of the low melting point type polylactic acid fiber 13, when the melting point exceeds 120 ° C., the heat fusion treatment temperature increases accordingly, and the energy consumption for producing the board-shaped heat insulating material 1 increases. End up.

本実施形態に係る環境適応型ボード状断熱材1は、調湿性に優れた天然繊維である羊毛11と、高い生分解性を有するポリ乳酸繊維12,13とだけを用いて作製されているので、このボード状断熱材1は、図2に示すように、調湿性に優れ、その結果、施工の際に防湿シートを併せて施工せずに済むばかりでなく、形状の付与及び維持のための接着剤が使用されていないので、その接着剤から放出される揮発性化学物質に留意する必要もなくなる。   Since the environment-adaptive board-like heat insulating material 1 according to the present embodiment is produced using only the wool 11 which is a natural fiber excellent in humidity control and the polylactic acid fibers 12 and 13 having high biodegradability. As shown in FIG. 2, this board-like heat insulating material 1 is excellent in humidity control. As a result, not only the moisture-proof sheet is not required to be applied at the time of construction, but also for imparting and maintaining the shape. Since no adhesive is used, there is no need to pay attention to the volatile chemicals released from the adhesive.

また、本実施形態に係る環境適応型ボード状断熱材1は、高融点型と低融点型との2種類のポリ乳酸繊維12,13が使用されており、高融点型ポリ乳酸繊維12の融点より低く、低融点型ポリ乳酸繊維13の融点より高い温度で熱融着処理されているので、熱融着処理の影響を受けない羊毛11及び高融点型ポリ乳酸繊維12がマトリックス繊維となり、熱融着処理によって溶融する低融点型ポリ乳酸繊維13がマトリックス繊維11,12同士を熱融着するための低融点繊維となって、この結果、断熱材1がボード状に良好に保持されることとなる。   In addition, the environment-adaptive board-like heat insulating material 1 according to the present embodiment uses two types of polylactic acid fibers 12 and 13 of a high melting point type and a low melting point type, and the melting point of the high melting point type polylactic acid fiber 12. Since the heat fusion treatment is performed at a lower temperature than the melting point of the low melting point polylactic acid fiber 13, the wool 11 and the high melting point polylactic acid fiber 12 that are not affected by the heat fusion treatment become matrix fibers, and heat The low melting point polylactic acid fiber 13 melted by the fusion process becomes a low melting point fiber for thermally fusing the matrix fibers 11 and 12 together, and as a result, the heat insulating material 1 is well held in a board shape. It becomes.

そして、本実施形態に係る環境適応型ボード状断熱材1は、高融点型ポリ乳酸繊維12を含有することにより、剛性が向上し、長年の使用によっても、へたり現象が抑制されて、圧密沈下が起こり難くなる。また、本実施形態に係る環境適応型ボード状断熱材1は、不織布積層体であるから、図2に示すように、通気性に優れ、不織布積層体内部に樹脂原料モノマー(例えばL−乳酸)が残存することがなく、ボード状断熱材1の内部は良好に掃気された状態となる。さらに、羊毛11は、揮発性有機化合物(VOC)を吸着して空気を浄化する作用を有するので、本実施形態に係る環境適応型ボード状断熱材1は、部屋の空気を清浄にする機能を備えることとなる。   And the environment-adaptive board-shaped heat insulating material 1 which concerns on this embodiment improves rigidity by containing the high melting point type | mold polylactic acid fiber 12, and even if used for many years, a sag phenomenon is suppressed, and it is consolidated. Settlement is less likely to occur. Moreover, since the environment-adaptive board-shaped heat insulating material 1 which concerns on this embodiment is a nonwoven fabric laminated body, as shown in FIG. 2, it is excellent in air permeability and resin raw material monomer (for example, L-lactic acid) inside a nonwoven fabric laminated body. Does not remain, and the inside of the board-shaped heat insulating material 1 is well scavenged. Furthermore, since the wool 11 has the effect | action which adsorb | sucks a volatile organic compound (VOC) and purifies air, the environment adaptive board-shaped heat insulating material 1 which concerns on this embodiment has the function to clean the air of a room. Will be prepared.

本実施形態に係る環境適応型ボード状断熱材1は、マトリックス繊維だけでなく、マトリックス繊維同士を熱融着するための低融点繊維を含め、全ての素材が天然繊維である羊毛11と、高い生分解性を有するポリ乳酸繊維12,13とだけを用いて作製されているから、この環境適応型ボード状断熱材1を廃棄する際には、地球環境や人体等に悪影響を及ぼすことがない。しかも、ポリ乳酸繊維12,13は、発酵法により、天然由来の素材のみを原料として製造することができるから、生分解性だけでなく、安全性も極めて高いものである。したがって、本実施形態に係る環境適応型ボード状断熱材1は、従来にない安全快適で健康的な居住空間を実現するものであると共に、その製造時から保管時、流通時、施工時、廃棄時に至るまで、常に地球環境や人体に対して安全なものである。   The environment-adaptive board-like heat insulating material 1 according to the present embodiment is not only a matrix fiber but also a wool 11 in which all materials are natural fibers, including a low melting point fiber for heat-sealing matrix fibers to each other. Since it is produced using only the polylactic acid fibers 12 and 13 having biodegradability, when the environment-adaptive board-like heat insulating material 1 is discarded, it does not adversely affect the global environment or the human body. . Moreover, since the polylactic acid fibers 12 and 13 can be produced using only naturally-derived materials as raw materials by fermentation, they are not only biodegradable but also extremely safe. Therefore, the environment-adaptive board-like heat insulating material 1 according to the present embodiment realizes an unprecedented safe, comfortable and healthy living space, and from its manufacture to storage, distribution, construction, disposal From time to time, it is always safe for the global environment and the human body.

ここで、本実施形態に係る環境適応型ボード状断熱材1において、羊毛11と、高融点型ポリ乳酸繊維12と、低融点型ポリ乳酸繊維13との配合割合は、羊毛が50〜80重量%、高融点型ポリ乳酸繊維が15〜35重量%、低融点型ポリ乳酸繊維が5〜25重量%であることが好ましい。特に、断熱材1として十分満足な断熱性、調湿性、及び通気性等を確保するためには、羊毛11の配合割合は、60重量%が最も好ましい。   Here, in the environment-adaptive board-like heat insulating material 1 according to the present embodiment, the blending ratio of the wool 11, the high melting point polylactic acid fiber 12, and the low melting point polylactic acid fiber 13 is 50 to 80 wt. %, The high melting point polylactic acid fiber is preferably 15 to 35% by weight, and the low melting point polylactic acid fiber is preferably 5 to 25% by weight. In particular, the blending ratio of the wool 11 is most preferably 60% by weight in order to ensure sufficient heat insulation, humidity control, air permeability, and the like as the heat insulating material 1.

羊毛11の配合割合が80重量%を上回ると、その分、高融点型ポリ乳酸繊維12の配合割合が過度に少なくなり、ボード状断熱材1の剛性が低下し、へたり現象が起き易くなって施工性が不良となる。逆に、羊毛11の配合割合が50重量%を下回ると、ボード状断熱材1の調湿性、断熱性、通気性及び吸音性が不足する。   When the blending ratio of the wool 11 exceeds 80% by weight, the blending ratio of the high melting point type polylactic acid fiber 12 is excessively decreased, the rigidity of the board-shaped heat insulating material 1 is lowered, and the sag phenomenon is likely to occur. The workability becomes poor. On the other hand, when the blending ratio of the wool 11 is less than 50% by weight, the moisture conditioning property, heat insulating property, air permeability and sound absorbing property of the board-like heat insulating material 1 are insufficient.

高融点型ポリ乳酸繊維12の配合割合が35重量%を上回ると、ボード状断熱材1の剛性が高くなり過ぎ、施工の際の切断作業が困難となる。逆に、高融点型ポリ乳酸繊維12の配合割合が15重量%を下回ると、ボード状断熱材1の剛性が低くなり過ぎ、ボード状断熱材1を立てたときに、へたり現象の起きる傾向が大きくなる。   If the blending ratio of the high melting point polylactic acid fiber 12 exceeds 35% by weight, the rigidity of the board-like heat insulating material 1 becomes too high, and the cutting work at the time of construction becomes difficult. On the contrary, if the blending ratio of the high melting point polylactic acid fiber 12 is less than 15% by weight, the rigidity of the board-shaped heat insulating material 1 becomes too low, and a tendency to sag when the board-shaped heat insulating material 1 is erected. Becomes larger.

低融点型ポリ乳酸繊維13の配合割合が25重量%を上回ると、羊毛11と高融点型ポリ乳酸繊維12との融着点が増え過ぎて、ボード状断熱材1が不織布の積層方向において収縮し、ボード状断熱材1の厚みが目標とする厚みよりも小さくなってしまう。逆に、低融点型ポリ乳酸繊維13の配合割合が5重量%を下回ると、羊毛11と高融点型ポリ乳酸繊維12との融着点が減り過ぎて、ボード状断熱材1に外からの物理的力が繰り返し加わることにより、融着した羊毛11及び高融点型ポリ乳酸繊維12同士がほぐれ易くなり、ボード状断熱材1の形状が保持されなくなってしまう。   When the blending ratio of the low melting point polylactic acid fiber 13 exceeds 25% by weight, the fusing point between the wool 11 and the high melting point type polylactic acid fiber 12 increases so that the board-like heat insulating material 1 contracts in the lamination direction of the nonwoven fabric. And the thickness of the board-shaped heat insulating material 1 will become smaller than the target thickness. On the contrary, when the blending ratio of the low melting point polylactic acid fiber 13 is less than 5% by weight, the fusing point between the wool 11 and the high melting point type polylactic acid fiber 12 is excessively reduced, and the board-like heat insulating material 1 is exposed from the outside. When the physical force is repeatedly applied, the fused wool 11 and the high melting point polylactic acid fibers 12 are easily loosened, and the shape of the board-like heat insulating material 1 is not maintained.

次に、図3を参照して、本実施形態に係る環境適応型ボード状断熱材1の製造工程を説明する。まず、符号(ア)で示すように、開繊した羊毛11、高融点型ポリ乳酸繊維12、及び低融点型ポリ乳酸繊維13をそれぞれ必要量だけ計量する。次いで、符号(イ)で示すように、それら3種類の繊維11,12,13を縦型ホッパに投入してよく混綿する。次いで、符号(ウ)で示すように、例えば乾式カード法でウエブ化して不織布を作製する。次いで、符号(エ)で示すように、例えばクロスレイヤによって必要とする厚みの不織布積層体を作製する。次いで、符号(オ)で示すように、作製した不織布積層体をコンベアに載置する。この熱融着処理前の不織布積層体の厚みは、例えば120mmである。次いで、符号(カ)で示すように、不織布積層体をオーブンに通し、例えば遠赤外線を用いて135℃の温度で熱融着処理を施す。そして、符号(キ)で示すように、オーブンを通過後、熱融着処理が施された不織布積層体をローラにかけて、最終的に目標とする厚みに整える。この熱融着処理後の不織布積層体の厚みは、例えば45〜60mmである。   Next, with reference to FIG. 3, the manufacturing process of the environment adaptive board-shaped heat insulating material 1 which concerns on this embodiment is demonstrated. First, as indicated by reference numeral (a), the opened wool 11, the high melting point polylactic acid fiber 12, and the low melting point polylactic acid fiber 13 are weighed by a necessary amount. Next, as indicated by reference symbol (a), these three types of fibers 11, 12, and 13 are put into a vertical hopper and mixed well. Next, as indicated by reference numeral (c), for example, a web is formed by a dry card method to produce a nonwoven fabric. Next, as indicated by reference numeral (d), a nonwoven fabric laminate having a thickness required by, for example, a cross layer is produced. Subsequently, as shown by a code | symbol (e), the produced nonwoven fabric laminated body is mounted in a conveyor. The thickness of the nonwoven fabric laminate before the heat sealing treatment is, for example, 120 mm. Next, as indicated by reference numeral (f), the nonwoven fabric laminate is passed through an oven and subjected to heat fusion treatment at a temperature of 135 ° C. using, for example, far infrared rays. And as shown with a code | symbol (ki), after passing oven, the nonwoven fabric laminated body to which the heat-fusion process was performed is applied to a roller, and it finally adjusts to the target thickness. The thickness of the nonwoven fabric laminate after the heat sealing treatment is, for example, 45 to 60 mm.

太さが0.018〜0.023mm、長さが5〜10cmのメリノ種の羊毛と、太さが0.010〜0.030mm、長さが3〜7cmの高融点型ポリ乳酸繊維(融点:150〜178℃)と、太さが0.010〜0.030mm、長さが3〜7cmの低融点型ポリ乳酸繊維(融点:100〜120℃)とを用いて、これらを開繊し、図4に示す配合割合(重量%)で混綿し、乾式カード法でウエブ化して不織布とし、これをクロスレイヤによって120mmの厚みに積層したのち、遠赤外線により135℃の温度で熱融着処理を施すことにより、羊毛と高融点型ポリ乳酸繊維との混綿物同士が低融点型ポリ乳酸繊維で部分的に熱融着した本発明に係る環境適応型ボード状断熱材(長さ910mm、幅260mm、厚み60mm)を作製した(実施例1〜6)。また、比較例1〜3として、低融点型ポリ乳酸繊維を用いないで羊毛及び高融点型ポリ乳酸繊維のみで前記に準じてボード状断熱材を作製した。得られた各ボード状断熱材について、断熱性、調湿性、通気性、へたり抵抗性、融着性及び切断性の各性能試験を行った。結果を図4に併せて示す。   Merino wool with a thickness of 0.018 to 0.023 mm and a length of 5 to 10 cm; and a high melting point polylactic acid fiber with a thickness of 0.010 to 0.030 mm and a length of 3 to 7 cm (melting point : 150 to 178 ° C.) and low melting point polylactic acid fibers (melting point: 100 to 120 ° C.) having a thickness of 0.010 to 0.030 mm and a length of 3 to 7 cm. 4, blended at the blending ratio (% by weight) shown in FIG. 4 and formed into a nonwoven fabric by web-drying using the dry card method, and this was laminated to a thickness of 120 mm by a cross layer, and then heat-sealed at a temperature of 135 ° C. with far infrared rays The environment-adapted board-like heat insulating material according to the present invention (length: 910 mm, width), in which a blend of wool and high-melting-type polylactic acid fibers is partially heat-sealed with low-melting-type polylactic acid fibers 260 mm, thickness 60 mm) Examples 1-6). Further, as Comparative Examples 1 to 3, board-like heat insulating materials were produced according to the above with only wool and high-melting-point polylactic acid fibers without using low-melting-point polylactic acid fibers. About each obtained board-shaped heat insulating material, each performance test of heat insulation, humidity control, air permeability, sag resistance, meltability, and a cutting property was done. The results are also shown in FIG.

その場合に、断熱性は、JIS A 1412(熱絶縁体の熱伝導率及び熱抵抗の測定方法)に従って熱伝導率(W/m・K)を測定した。評価基準は、熱伝導率が0.030〜0.045W/m・Kのものを「○」(優れる)、0.046〜0.090W/m・Kのものを「△」(やや劣る)、>0.090W/m・Kのものを「×」(劣る)とした。   In that case, heat insulation measured thermal conductivity (W / m * K) according to JIS A1412 (The measuring method of the thermal conductivity and thermal resistance of a thermal insulator). Evaluation criteria are “◯” (excellent) for thermal conductivity of 0.030 to 0.045 W / m · K, and “△” (slightly inferior) for 0.046 to 0.090 W / m · K. ,> 0.090 W / m · K was designated as “x” (inferior).

また、調湿性は、建材試験センター規格JSTM H6302(調湿建材の吸放湿性試験方法)に従って吸湿(%)及び放湿(%)を測定した。評価基準は、吸湿が6.0%≦、放湿が4.5%≦のものを「○」(優れる)、吸湿が1.0〜5.9%、放湿が0.5〜4.4%のものを「△」(やや劣る)、吸湿が<1.0%、放湿が<0.5%のものを「×」(劣る)とした。   Moreover, humidity control measured moisture absorption (%) and moisture release (%) according to building material test center standard JSTM H6302 (humidity-adjusting building material moisture absorption / release test method). The evaluation criteria are “◯” (excellent) when moisture absorption is 6.0% ≦ and moisture release is 4.5% ≦, moisture absorption is 1.0 to 5.9%, and moisture release is 0.5 to 4. 4% of the samples were evaluated as “Δ” (slightly inferior), moisture absorption was <1.0%, and moisture release was <0.5% as “x” (inferior).

また、通気性(簡易試験)は、ボード状断熱材の一方の面に、内径1cm、長さ10cmのパイプの一方の開口を当接させた状態で、他方の開口から息を吹き入れて、ボード状断熱材の他方の面から息が漏れてくるかどうかを確認した。評価基準は、息が漏れてくるものを「○」(優れる)、息がわずかに漏れてくるものを「△」(やや劣る)、息が漏れてこないものを「×」(劣る)とした。   In addition, air permeability (simple test) is a state where one opening of a pipe having an inner diameter of 1 cm and a length of 10 cm is brought into contact with one surface of the board-like heat insulating material, and a breath is blown from the other opening, It was confirmed whether breath leaked from the other side of the board-like insulation. The evaluation criteria are “○” (excellent) for breathing, “△” (slightly inferior) for breathing slightly, and “X” (inferior) for breathing out. .

また、へたり抵抗性(簡易試験)は、910mm×260mm×60mmのボード状断熱材を長手方向が垂直になるように立て、時間の経過に伴うボードのへたり現象を観察した。評価基準は、へたり現象が無いものを「○」(優れる)、わずかにへたり現象が有るものを「△」(やや劣る)、顕著にへたり現象が有るものを「×」(劣る)とした。   In addition, with respect to sag resistance (simple test), a board-like heat insulating material having a size of 910 mm × 260 mm × 60 mm was set up so that the longitudinal direction was vertical, and the sag phenomenon of the board over time was observed. Evaluation criteria are “○” (excellent) for those with no sagging phenomenon, “△” (slightly inferior) for those with slight sagging phenomenon, and “×” (inferior) for those with noticeable sagging phenomenon. It was.

また、融着性(簡易試験)は、ボード状断熱材を長手方向及び幅方向に両手で引っ張り、繊維同士の融着による固着の程度ないしボードの変形の程度を観察した。評価基準は、ボードの変形が無いものを「○」(優れる)、ボードがわずかに変形するものを「△」(やや劣る)、ボードが著しく変形して伸びるものを「×」(劣る)とした。   Further, for the fusing property (simple test), the board-like heat insulating material was pulled with both hands in the longitudinal direction and the width direction, and the degree of fixation by fusing fibers or the degree of deformation of the board was observed. The evaluation criteria are “○” (excellent) when the board is not deformed, “△” (slightly inferior) when the board is slightly deformed, and “X” (inferior) when the board is significantly deformed and elongated. did.

そして、切断性(簡易試験)は、ボード状断熱材を刃先の長いハサミで容易に切断することができるかどうかを確認した。評価基準は、容易に切断できるものを「○」(優れる)、若干の抵抗あるが切断可能なものを「△」(やや劣る)、切断困難なものを「×」(劣る)とした。   And the cutting property (simple test) confirmed whether a board-shaped heat insulating material could be easily cut | disconnected with the scissors with a long blade edge | tip. The evaluation criteria were “◯” (excellent) for those that can be easily cut, “Δ” (slightly inferior) for those that have some resistance but can be cut, and “x” (poor) for those that are difficult to cut.

図4から明らかなように、羊毛及び高低融点型ポリ乳酸繊維のマトリックス繊維同士を熱融着するための低融点繊維として低融点型ポリ乳酸繊維を用いた実施例1〜6は、いずれも、ボード状断熱材に要求される性能である断熱性、調湿性、通気性、及びへたり抵抗性に優れると共に、断熱材の形状を保持するための融着性や、施工の際の作業が容易となる切断性の点においても良好な結果であった。   As is clear from FIG. 4, all of Examples 1 to 6 using the low melting point polylactic acid fiber as the low melting point fiber for thermally fusing the wool and the matrix fiber of the high and low melting point polylactic acid fiber, Excellent heat insulation, humidity control, air permeability, and sag resistance, which are required for board-like heat insulation materials, as well as fusion properties to maintain the shape of the heat insulation materials and easy work during construction It was also a favorable result in terms of cutting ability.

一方、低融点型ポリ乳酸繊維を用いなかった比較例1〜3は、いずれも、融着性に劣っていた。また、低融点型ポリ乳酸繊維が含まれない分、剛性の大きい高融点型ポリ乳酸繊維の配合割合が過度に大きくなった比較例1,2においては、切断性の点においても不良な結果であった。   On the other hand, Comparative Examples 1 to 3 in which the low melting point type polylactic acid fiber was not used were all inferior in fusibility. In addition, in Comparative Examples 1 and 2, in which the blending ratio of the high-melting-point polylactic acid fiber having a large rigidity is excessively large because the low-melting-point polylactic acid fiber is not included, the cutting performance is poor. there were.

以上、具体例を挙げて詳しく説明したように、本発明は、調湿性に優れ、その結果、防湿シートを併せて施工せずに済み、形状の付与及び維持のための接着剤が不要で、その結果、揮発性化学物質の放出を心配する必要がなく、かつ、へたり現象や圧密沈下が少なく、通気性も良好な環境適応型ボード状断熱材を提供することが可能な技術であるから、戸建住宅やマンション等の住宅の壁、天井、床下等に充填して使用するボード状断熱材の技術分野において広範な産業上の利用可能性が期待される。   As described above in detail with specific examples, the present invention is excellent in humidity control, and as a result, it is not necessary to apply a moisture-proof sheet together, and an adhesive for imparting and maintaining the shape is unnecessary, As a result, there is no need to worry about the release of volatile chemical substances, and it is a technology that can provide an environment-adaptive board-like heat insulating material that has less sag and compaction settlement and good air permeability. In the technical field of board-like heat insulating materials used by filling walls, ceilings, and floors of houses such as detached houses and condominiums, a wide range of industrial applicability is expected.

本発明の最良の実施の形態に係る環境適応型ボード状断熱材の斜視図である。It is a perspective view of the environment-adaptive board-shaped heat insulating material which concerns on the best embodiment of this invention. 本発明に係る環境適応型ボード状断熱材と従来のボード状断熱材との主な性能を比較して示す一覧表である。It is a table | surface which compares and shows the main performance of the environmental adaptation type board-shaped heat insulating material which concerns on this invention, and the conventional board-shaped heat insulating material. 本発明の最良の実施の形態に係る環境適応型ボード状断熱材の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the environment adaptation type board-shaped heat insulating material which concerns on best embodiment of this invention. 本発明に係る環境適応型ボード状断熱材の実施例及び比較例の配合割合及び性能試験結果を示す一覧表である。It is a table | surface which shows the mixture ratio and the performance test result of the Example and comparative example of an environmental adaptation type board-shaped heat insulating material which concern on this invention.

符号の説明Explanation of symbols

1 環境適応型ボード状断熱材
11 羊毛
12 高融点型ポリ乳酸繊維
13 低融点型ポリ乳酸繊維
DESCRIPTION OF SYMBOLS 1 Environment-adaptive board-shaped heat insulating material 11 Wool 12 High melting point type polylactic acid fiber 13 Low melting point type polylactic acid fiber

Claims (3)

羊毛と、高融点型ポリ乳酸繊維と、低融点型ポリ乳酸繊維とを含む不織布積層体が、高融点型ポリ乳酸繊維の融点より低く、低融点型ポリ乳酸繊維の融点より高い温度で熱融着処理されてなることを特徴とする環境適応型ボード状断熱材。   Non-woven fabric laminate comprising wool, high melting point polylactic acid fiber, and low melting point polylactic acid fiber is heat-melted at a temperature lower than the melting point of high melting point polylactic acid fiber and higher than the melting point of low melting point polylactic acid fiber. An environmentally-adapted board-like heat insulating material, characterized by being subjected to a wearing process. 羊毛と、融点が150℃以上の高融点型ポリ乳酸繊維と、融点が120℃以下の低融点型ポリ乳酸繊維とを含む不織布積層体が、130〜140℃の温度で熱融着処理されてなることを特徴とする環境適応型ボード状断熱材。   A non-woven fabric laminate comprising wool, a high melting point polylactic acid fiber having a melting point of 150 ° C. or higher, and a low melting point polylactic acid fiber having a melting point of 120 ° C. or lower is heat-sealed at a temperature of 130 to 140 ° C. An environmentally adaptable board-like heat insulating material. 前記請求項1又は2に記載の環境適応型ボード状断熱材であって、
羊毛は50〜80重量%、高融点型ポリ乳酸繊維は15〜35重量%、低融点型ポリ乳酸繊維は5〜25重量%含まれていることを特徴とする環境適応型ボード状断熱材。
The environment-adaptive board-like heat insulating material according to claim 1 or 2,
An environment-adaptive board-like heat insulating material comprising 50 to 80% by weight of wool, 15 to 35% by weight of high melting point polylactic acid fiber, and 5 to 25% by weight of low melting point polylactic acid fiber.
JP2007151249A 2007-06-07 2007-06-07 Environment adaptive board-like heat insulator Pending JP2008303597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151249A JP2008303597A (en) 2007-06-07 2007-06-07 Environment adaptive board-like heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151249A JP2008303597A (en) 2007-06-07 2007-06-07 Environment adaptive board-like heat insulator

Publications (1)

Publication Number Publication Date
JP2008303597A true JP2008303597A (en) 2008-12-18

Family

ID=40232562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151249A Pending JP2008303597A (en) 2007-06-07 2007-06-07 Environment adaptive board-like heat insulator

Country Status (1)

Country Link
JP (1) JP2008303597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287155A (en) * 2008-06-02 2009-12-10 Nagao Shoji Kk Wool mat and method for producing the same
JP2014094543A (en) * 2012-11-12 2014-05-22 Cosmo Project:Kk Interior finishing panel
JP2014214476A (en) * 2013-04-25 2014-11-17 株式会社コスモプロジェクト Tatami

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287155A (en) * 2008-06-02 2009-12-10 Nagao Shoji Kk Wool mat and method for producing the same
JP4739372B2 (en) * 2008-06-02 2011-08-03 長尾商事株式会社 Wool mat and manufacturing method thereof
JP2014094543A (en) * 2012-11-12 2014-05-22 Cosmo Project:Kk Interior finishing panel
JP2014214476A (en) * 2013-04-25 2014-11-17 株式会社コスモプロジェクト Tatami

Similar Documents

Publication Publication Date Title
Abu-Jdayil et al. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview
Kumar et al. Comparative analysis of building insulation material properties and performance
CN103223746B (en) Environment-friendly polylactic acid/polycaprolactone composite blocking board
KR101756739B1 (en) Reinforced hybrid insulating material and production method thereof
JP2008303597A (en) Environment adaptive board-like heat insulator
KR100530015B1 (en) Panel composition for building materials, manufacturing method thereof and its usage
Raja et al. A Review of Sustainable Bio‐Based Insulation Materials for Energy‐Efficient Buildings
KR20160124605A (en) Complex insulator for construction and construction method the same
JP5119015B2 (en) Insulation and insulation structure
CN201350711Y (en) Compound flexible fireproofing coiled material
KR20210098564A (en) Phenol foam and sandwich type panel using the same
JP4826135B2 (en) Wood resin foam molding
KR100877198B1 (en) Forming sheet and method of light weight absorbing and excluding of sounds for damping using cork
JP2007210224A (en) Fiber-based board
JP2010241667A (en) Inorganic lightweight insulating board material
Alajmi Study on sisal fibres as insulator in building materials
KR20170121448A (en) Manufacturing method of fire retardant loess sheet and fire door bonded its loess sheet
KR20100027451A (en) Flameretardant panel using rice hulls and preparation thereof
KR101916036B1 (en) Furniture Materials Including Polyester Resin Foam
JPH0571623B2 (en)
JP3771874B2 (en) Building wall structure
JPH0985081A (en) Dewing suppressing method and dewing suppressing material
CN214364662U (en) Waterproof home decoration reinforced composite floor
JPH02151637A (en) Thermoplastic resin composition for structural material for fixing brick
KR102320372B1 (en) The adhesive film for building insulator