JP2008303549A - Underlayer buffer material for coating waterproofing construction, and coating waterproofing construction method - Google Patents

Underlayer buffer material for coating waterproofing construction, and coating waterproofing construction method Download PDF

Info

Publication number
JP2008303549A
JP2008303549A JP2007149522A JP2007149522A JP2008303549A JP 2008303549 A JP2008303549 A JP 2008303549A JP 2007149522 A JP2007149522 A JP 2007149522A JP 2007149522 A JP2007149522 A JP 2007149522A JP 2008303549 A JP2008303549 A JP 2008303549A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fabric layer
layer
synthetic resin
cushioning material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007149522A
Other languages
Japanese (ja)
Other versions
JP4039464B1 (en
Inventor
Toshiya Yamamoto
俊也 山本
Shigeru Kuriyama
茂 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007149522A priority Critical patent/JP4039464B1/en
Priority to PCT/JP2008/050098 priority patent/WO2008149564A1/en
Application granted granted Critical
Publication of JP4039464B1 publication Critical patent/JP4039464B1/en
Publication of JP2008303549A publication Critical patent/JP2008303549A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D7/00Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underlayer buffer material for coating waterproofing construction, which can prevent wrinkles from being formed in a waterproof-agent coating surface, and a coating waterproofing construction method. <P>SOLUTION: This underlayer buffer material 10 is equipped with a three-layer structure laminate in which a synthetic resin film layer B12, a thermocompression-bonded nonwoven fabric layer A11 and a nonwoven fabric layer C13 are integrated together in such a manner that the synthetic resin film B12 is sandwiched between the nonwoven fabric layer A11 and the nonwoven fabric layer C13. The nonwoven fabric layer C13 is confounded with a mass per unit area of 100 g/m<SP>2</SP>or more. In the nonwoven fabric layer A11, a mass per unit area [A] is in the range of >20 g/m<SP>2</SP>and ≤100 g/m<SP>2</SP>, and a ratio of embossed area is 5% or more. In the synthetic resin film layer B, a thickness [B] is in the range of ≥10 μm and <50 μm. Additionally, the mass per unit area [A] and the thickness [B] satisfy the inequality (1): [A]/[B]>2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、塗膜防水工事において用いる塗膜防水施工用下張り緩衝材、及びこれを用いた塗膜防水施工法に関するものである。   TECHNICAL FIELD The present invention relates to an undercoat cushioning material for waterproofing construction of a coating film used in waterproofing construction of a coating film, and a coating film waterproofing construction method using the same.

建築防水工事におけるメンブレン防水工事として、塗膜防水工事、アスファルト防水工事、シート防水工事が現在広く実施されている。   As membrane waterproofing work in architectural waterproofing work, coating film waterproofing work, asphalt waterproofing work, and sheet waterproofing work are currently widely implemented.

このうちの塗膜防水工事は、コンクリート等の下地面にプライマー及び接着剤(或いは接着剤のみ)を塗布し、下張り緩衝材を貼り付け、この上からポリウレタン等の防水剤を塗布することにより塗膜防水層を形成するというものである。   The coating waterproofing work is applied by applying a primer and adhesive (or only adhesive) to the ground surface of concrete, pasting an underlayer cushioning material, and applying a waterproofing agent such as polyurethane on top of this. A waterproof membrane is formed.

この塗膜防水工事に用いる下張り緩衝材としては、合成樹脂フィルム層〔II〕(中間層)を長繊維不織布層〔I〕(上層)と不織布層〔III〕(下層)で挟んで一体化した三層構造積層体が提案されている(例えば特許文献1)。この三層構造積層体は、中間層である合成樹脂フィルム層〔II〕が上下層の不織布層〔I〕,〔III〕内に一部浸透することにより強固に一体化されたものである。合成樹脂フィルム層〔II〕は遮水層として機能する。上記不織布層〔III〕は通気層として機能し、下地(例えばコンクリート)から発生する水蒸気等を水平方向に逃がすことで部分的な膨れを防止する。上記長繊維不織布層〔I〕は、この上に塗布する防水剤を一部浸透させることにより防水剤の層を強固に固定すると共に、この防水剤層を補強する機能を有する。   The underlay cushioning material used in this coating waterproofing work was integrated by sandwiching the synthetic resin film layer [II] (intermediate layer) between the long fiber nonwoven fabric layer [I] (upper layer) and the nonwoven fabric layer [III] (lower layer). A three-layer structure laminate has been proposed (for example, Patent Document 1). In this three-layer structure laminate, the synthetic resin film layer [II], which is an intermediate layer, is firmly integrated by partially penetrating into the upper and lower nonwoven fabric layers [I] and [III]. The synthetic resin film layer [II] functions as a water shielding layer. The non-woven fabric layer [III] functions as an air-permeable layer and prevents partial swelling by allowing water vapor generated from the base (for example, concrete) to escape in the horizontal direction. The long fiber nonwoven fabric layer [I] functions to reinforce the waterproofing agent layer while firmly fixing the waterproofing agent layer by partially infiltrating the waterproofing agent applied thereon.

斯様な下張り緩衝材では、塗膜防水工事の際、防水剤の厳密な粘度調整が不要であり、出来上がった防水層についても膨れ現象(防水層が部分的に下地材から剥離して膨れる現象)を防止できるという効果がある。
特許第2605893号公報
With such an underlayer cushioning material, it is not necessary to strictly adjust the viscosity of the waterproofing agent at the time of waterproofing the coating film, and the finished waterproof layer also swells (a phenomenon in which the waterproof layer partially swells from the base material and swells) ) Can be prevented.
Japanese Patent No. 2605893

上述の様に特許文献1の下張り緩衝材を用いることにより、良好な塗膜防水層を施工できるのであるが、しばしば防水剤塗装面に皺が発生するという不具合が散見された。   As described above, by using the underlayer cushioning material of Patent Document 1, it is possible to construct a good waterproof coating layer. However, there is a problem that wrinkles often occur on the waterproof coating surface.

そこで本発明においては、皺の発生を防止し得る塗膜防水施工用下張り緩衝材、並びに塗膜防水施工法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an undercoat cushioning material for waterproofing coating film and a method for waterproofing coating film that can prevent wrinkles.

上記皺の発生原因について本発明者らは検討したところ、次のような点が原因であることが分かった。   The present inventors examined the cause of the occurrence of the above-mentioned defects, and found that the following points were the cause.

つまり、塗膜防水工事では接着剤を塗布した上に下張り緩衝材を貼るが、この際の正しい施工方法は、接着剤塗布後に接着剤中の溶剤が或る程度揮発するのを待ち、その後接着剤に残るタックによって貼り付けるという方法である。しかし、しばしば接着剤中の溶剤が充分に揮発しないうちに下張り緩衝材を貼る操作が行われることがある。特に冬季は低温であるために溶剤が蒸発し難く、蒸発が不十分なままになりがちである。加えて冬季は低温のため接着剤の粘度が高くなる傾向にあるので、作業のし易さから接着剤に溶剤を加えて粘度を下げて塗布する場合があり、この場合は溶剤を通常より多く蒸発させる必要があるところ、充分な蒸発を行わないまま下張り緩衝材を貼ることがある。   In other words, in the waterproof coating construction, the adhesive is applied and the underlayer cushioning material is applied, but the correct construction method is to wait for the solvent in the adhesive to evaporate to some extent after applying the adhesive, and then bond It is a method of sticking with the tack remaining on the agent. However, often, an operation of applying an underlayer cushioning material may be performed before the solvent in the adhesive is sufficiently evaporated. Especially in winter, the solvent is difficult to evaporate due to the low temperature, and the evaporation tends to remain insufficient. In addition, since the viscosity of the adhesive tends to increase due to the low temperature in winter, it may be applied at a lower viscosity by adding a solvent to the adhesive for ease of work. Where it is necessary to evaporate, an underlay cushioning material may be applied without sufficient evaporation.

この様に接着剤中の溶剤を充分に蒸発させないまま下張り緩衝材を貼ると、上記三層構造積層体中の中間層である合成樹脂フィルム層〔II〕が接着剤中の溶剤(有機溶媒)を吸収して膨潤し、しかも均一に膨潤することはまずなく、この為に皺が発生したと推察された。   In this way, when the underlayer cushioning material is pasted without sufficiently evaporating the solvent in the adhesive, the synthetic resin film layer [II], which is the intermediate layer in the three-layer structure laminate, becomes the solvent (organic solvent) in the adhesive. It was presumed that wrinkles were generated due to the fact that it swelled by absorbing water and swelled uniformly.

本発明者らは斯様な原因を踏まえて解決策を検討し、この解決策として、中間層である合成樹脂フィルム層の膨潤力と、上層である不織布層による上記膨潤力に耐える力とを勘案し、両層を適切に規定することにより、上記膨潤力を不織布層により抑え込んで皺発生の防止を図るという下記の如く発明を見出した。   The present inventors examined a solution based on such a cause, and as this solution, the swelling force of the synthetic resin film layer as the intermediate layer and the ability to withstand the swelling force by the nonwoven fabric layer as the upper layer In view of the above, the present inventors have found the invention as described below in which by appropriately defining both layers, the swelling force is suppressed by the nonwoven fabric layer to prevent wrinkling.

斯様な本発明に係る塗膜防水施工用下張り緩衝材は、合成樹脂フィルム層Bが熱圧着タイプ不織布層Aと不織布層Cに挟まれて一体となった三層構造積層体を備えた下張り緩衝材であって、前記不織布層Cは、目付が100g/m2以上で、ニードルパンチまたは流体交絡法により交絡されたものであり、前記熱圧着タイプ不織布層Aは、目付が20g/m2超,100g/m2以下であり、前記合成樹脂フィルム層Bは、厚みが10μm以上,50μm未満であり、下式(1)を満足することを特徴とする。
[A]/[B]>2 …(1)
[A]:前記熱圧着タイプ不織布層Aの目付(単位:g/m2
[B]:前記合成樹脂フィルム層Bの厚み(単位:μm)
Such an underlayer cushioning material for waterproofing construction of a coating film according to the present invention includes an underlay provided with a three-layer structure laminate in which a synthetic resin film layer B is sandwiched between a thermocompression bonding type nonwoven fabric layer A and a nonwoven fabric layer C. It is a buffer material, and the nonwoven fabric layer C has a basis weight of 100 g / m 2 or more and is entangled by needle punching or fluid entanglement. The thermocompression bonding type nonwoven fabric layer A has a basis weight of 20 g / m 2. ultra is a 100 g / m 2 or less, the synthetic resin film layer B has a thickness of 10μm or more and less than 50 [mu] m, and satisfies the following formula (1).
[A] / [B]> 2 (1)
[A]: basis weight of the thermocompression bonding type nonwoven fabric layer A (unit: g / m 2 )
[B]: Thickness (unit: μm) of the synthetic resin film layer B

また本発明に係る塗膜防水施工法は、下地面に接着剤を塗布した後、前記塗膜防水施工用下張り緩衝材を、その熱圧着タイプ不織布層A側を表側にして、上記接着剤塗布面に配置し、この配置された前記下張り緩衝材上に防水剤を塗布することを特徴とする。   Moreover, the coating film waterproofing construction method according to the present invention comprises applying the adhesive to the base surface, and then applying the adhesive to the undercoat cushioning material for waterproofing the coating, with the thermocompression bonding type nonwoven fabric layer A side as the front side. It arrange | positions on a surface and a waterproofing agent is apply | coated on the said underlay cushioning material arrange | positioned.

上記の如く本発明の下張り緩衝材は、熱圧着タイプ不織布層Aと不織布層Cで合成樹脂フィルム層Bを挟んで一体とした三層構造積層体を備えたものであり、このうち上記不織布層Aは熱圧着タイプの不織布であるので、繊維同士の拘束力が高く水平方向の強度が比較的高い。そして上記式(1)を満足するように合成樹脂フィルム層Bに対して熱圧着タイプ不織布層Aを充分に厚くすることで、合成樹脂フィルム層Bがたとえ膨潤しても、熱圧着タイプ不織布層Aがこの膨潤力に耐えて皺の発生を防止し得る。   As described above, the underlayer cushioning material of the present invention comprises a three-layer structure laminate in which a synthetic resin film layer B is sandwiched between a thermocompression bonding type nonwoven fabric layer A and a nonwoven fabric layer C, and of these, the nonwoven fabric layer Since A is a thermocompression bonding type nonwoven fabric, the binding force between the fibers is high and the strength in the horizontal direction is relatively high. And even if the synthetic resin film layer B swells by sufficiently thickening the thermocompression bonding type nonwoven fabric layer A with respect to the synthetic resin film layer B so as to satisfy the above formula (1), the thermocompression bonding type nonwoven fabric layer A can withstand this swelling force and prevent generation of wrinkles.

上記熱圧着タイプ不織布層Aはエンボス面積率が5%以上であることが好ましい。因みにエンボス面積率が5%以上である点は、不織布層Aが熱圧着したものであることを意味し、エンボス面積率5%未満の場合は強度が低く、合成樹脂フィルム層Bの膨潤による皺発生を防止できない懸念がある。より高いエンボス面積率の熱圧着タイプ不織布である方が、水平方向の強度が高くなって皺防止効果が高くなることから好ましい。具体的にはエンボス面積率7%以上が好ましく、より好ましくは10%以上である。   The thermocompression bonding type nonwoven fabric layer A preferably has an embossed area ratio of 5% or more. Incidentally, the point that the embossed area ratio is 5% or more means that the nonwoven fabric layer A is thermocompression-bonded. If the embossed area ratio is less than 5%, the strength is low, and the swelling due to swelling of the synthetic resin film layer B There is concern that it cannot be prevented. A thermocompression-bonding type nonwoven fabric having a higher embossed area ratio is preferable because the horizontal strength increases and the wrinkle prevention effect increases. Specifically, the embossed area ratio is preferably 7% or more, more preferably 10% or more.

尚、層Aとして不織布ではなく合成樹脂シートを用いれば、水平方向の強度が高く上記膨潤力に充分耐えることができる。しかし層Aが不織布であれば、この上に塗布する防水剤(例えばポリウレタン)が不織布層Aに一部浸透して両者が強固に固定され、また合成樹脂フィルム層Bとも不織布層Aのアンカー効果(層Bが不織布層Aに一部食い込むようになる)によって強固に固定されることから、不織布を採用したのである。   In addition, if a synthetic resin sheet is used as the layer A instead of a non-woven fabric, the strength in the horizontal direction is high and it can sufficiently withstand the swelling force. However, if the layer A is a non-woven fabric, a waterproofing agent (for example, polyurethane) applied on the layer A partially penetrates the non-woven fabric layer A to firmly fix both, and the synthetic resin film layer B and the anchor effect of the non-woven fabric layer A Since the layer B is firmly fixed by (part of the layer B comes into the nonwoven fabric layer A), the nonwoven fabric is adopted.

ところで、単純に不織布層Aを分厚くするだけでも皺は寄り難くはなるが、分厚いものの場合は、この上に塗布するポリウレタン等の防水剤が不織布層Aに多く吸収されることになり、防水剤の使用量が多くなってコスト高を招くため好ましくない。よって上記の様に熱圧着タイプ不織布層Aの目付を100g/m2以下とする。より好ましくは目付80g/m2以下である。 By the way, even if the nonwoven fabric layer A is simply thickened, the wrinkles are difficult to move. However, in the case of thick materials, the nonwoven fabric layer A absorbs a lot of waterproofing agent such as polyurethane applied on the nonwoven fabric layer A. This is not preferable because the amount of use increases and the cost increases. Therefore, the basis weight of the thermocompression bonding type nonwoven fabric layer A is set to 100 g / m 2 or less as described above. More preferably, the basis weight is 80 g / m 2 or less.

合成樹脂フィルム層Bの厚みは上記の如く50μm未満である。合成樹脂フィルム層Bが厚すぎると、接着剤の溶剤による膨潤力が非常に高くなり、この為に上記熱圧着タイプ不織布層Aではこの膨潤力に抗しきれなくなる懸念があり、また上記熱圧着タイプ不織布層Aの目付の上限と上記式(1)を満足させる観点から、合成樹脂フィルム層Bの厚みを50μm未満とする。より好ましくは40μm未満である。   The thickness of the synthetic resin film layer B is less than 50 μm as described above. If the synthetic resin film layer B is too thick, the swelling force due to the solvent of the adhesive becomes very high. For this reason, the thermocompression bonding type nonwoven fabric layer A may not be able to resist the swelling force. From the viewpoint of satisfying the upper limit of the basis weight of the type nonwoven fabric layer A and the above formula (1), the thickness of the synthetic resin film layer B is set to less than 50 μm. More preferably, it is less than 40 μm.

一方、合成樹脂フィルム層Bの厚みが薄すぎると、ピンホールを生じる懸念がある。合成樹脂フィルム層Bの機能として、熱圧着タイプ不織布層A上に塗布する防水剤(例えばウレタン)が不織布層Cに浸透するのを防止することが挙げられるが、ピンホールを生じると、防水剤が不織布層Cに至り、不織布層Cの通気性を損なう虞がある。このため合成樹脂フィルム層Bの厚みとしては10μm以上とする。好ましくは20μm以上、より好ましくは25μm以上、より一層好ましくは30μm以上である。   On the other hand, if the thickness of the synthetic resin film layer B is too thin, there is a concern that pinholes are generated. A function of the synthetic resin film layer B is to prevent a waterproofing agent (for example, urethane) applied on the thermocompression bonding type nonwoven fabric layer A from penetrating into the nonwoven fabric layer C. May reach the nonwoven fabric layer C and impair the air permeability of the nonwoven fabric layer C. For this reason, the thickness of the synthetic resin film layer B is set to 10 μm or more. Preferably it is 20 micrometers or more, More preferably, it is 25 micrometers or more, More preferably, it is 30 micrometers or more.

なお合成樹脂フィルム層Bの厚みの測定方法は、次の通りである。即ち、まず下張り緩衝材の任意部位20箇所から試験片をサンプリングする。次いでこの試験片を、切断面が垂直となるようにカットし、このカット面が観察できるように蒸着して、走査型電子顕微鏡により任意の倍率で撮影する。この撮影された写真において、熱圧着タイプ不織布層Aと不織布層Cの間に存在するフィルム部分(合成樹脂フィルム層B)についてノギスで厚みを測定し、上記撮影にあたっての写真倍率を換算してフィルム厚みを求める。得られた20箇所のフィルム厚み(上記20箇所の試験片におけるそれぞれのフィルム厚み)を平均し、合成樹脂フィルム層Bの厚みとする。なおノギスで測定するにあたっては、上下層の不織布(熱圧着タイプ不織布層A,不織布層C)に入り込んでいるフィルム部分を端として測定する。また上記カットする際に断面部の形状が変化する懸念がある場合には、この形状変化を抑止するため、急速冷凍装置を使用して下張り緩衝材を冷凍した後、カットする。因みに合成樹脂フィルム層Bは、その製造過程において熱圧着タイプ不織布層Aと不織布層Cにそれぞれ食い込むようにして形成されることから、合成樹脂フィルム層Bの形状としては表裏両面に凹凸を有するものとなる。従って上記の如く厚み測定方法を採用し、この値で本発明を規定したものである。   In addition, the measuring method of the thickness of the synthetic resin film layer B is as follows. That is, first, a test piece is sampled from 20 arbitrary portions of the underlayer cushioning material. Next, the test piece is cut so that the cut surface is vertical, vapor-deposited so that the cut surface can be observed, and photographed with a scanning electron microscope at an arbitrary magnification. In this photograph taken, the film portion (synthetic resin film layer B) existing between the thermocompression bonding type nonwoven fabric layer A and the nonwoven fabric layer C is measured with a caliper, and the film is obtained by converting the photographic magnification at the time of photographing. Find the thickness. The obtained 20 film thicknesses (respective film thicknesses in the 20 test pieces) are averaged to obtain the thickness of the synthetic resin film layer B. In measuring with a caliper, the film portions entering the upper and lower nonwoven fabrics (thermocompression-type nonwoven fabric layer A and nonwoven fabric layer C) are measured as ends. Further, when there is a concern that the shape of the cross section changes during the cutting, in order to suppress the shape change, the underlay cushioning material is frozen using a quick freezing device and then cut. Incidentally, since the synthetic resin film layer B is formed so as to bite into the thermocompression bonding type non-woven fabric layer A and the non-woven fabric layer C in the production process, the synthetic resin film layer B has irregularities on both sides. It becomes. Therefore, the thickness measurement method is adopted as described above, and the present invention is defined by this value.

上記の如く合成樹脂フィルム層Bの厚みの下限との関係で、上記式(1)を満足させる観点から、熱圧着タイプ不織布層Aの目付は20g/m2超とする。この様に上記式(1)を満足させたものであれば、合成樹脂フィルム層Bの膨潤力に熱圧着タイプ不織布層Aが耐えることができ、皺発生を防止することが可能となる。 From the viewpoint of satisfying the above formula (1) in relation to the lower limit of the thickness of the synthetic resin film layer B as described above, the basis weight of the thermocompression bonding type nonwoven fabric layer A is set to exceed 20 g / m 2 . As long as the above formula (1) is satisfied in this way, the thermocompression bonding type nonwoven fabric layer A can withstand the swelling force of the synthetic resin film layer B, and wrinkle generation can be prevented.

熱圧着タイプ不織布層Aと合成樹脂フィルム層Bの関係を規定した式(1)について、より好ましくは[A]/[B]が3.0以上である。合成樹脂フィルム層Bに対して熱圧着タイプ不織布層Aが厚いほど皺防止効果が高いからである。   More preferably, [A] / [B] is 3.0 or more for the formula (1) that defines the relationship between the thermocompression bonding type nonwoven fabric layer A and the synthetic resin film layer B. This is because the thicker the thermocompression bonding type nonwoven fabric layer A with respect to the synthetic resin film layer B, the higher the wrinkle prevention effect.

不織布層Cは、上述の様にニードルパンチまたは流体交絡法(例えばウォーターパンチ加工)により交絡されたものである。斯様な不織布層Cであれば、水平方向の通気性が良好で、下地から発生する水蒸気等を良好に逃がすことができる。また通気性を良好にする観点から不織布層Cの目付は100g/m2以上であることを要する。目付の小さいものでは厚みが薄くなりすぎ、通気性に乏しくなるからである。より好ましくは目付160g/m2以上である。なおニードルパンチまたは流体交絡法により交絡された不織布層を製造するにあたって、紡糸直後に繊維がバラバラにならないようにするため弱くエンボス加工(以下、プレエンボス加工と称することがある)することがあるが、その後のニードルパンチや流体交絡によって、上記プレエンボス加工による熱接着点は殆ど外れ、水平方向の通気性を阻害することは殆どない。 The nonwoven fabric layer C is entangled by needle punching or fluid entanglement method (for example, water punching) as described above. With such a non-woven fabric layer C, the air permeability in the horizontal direction is good, and water vapor generated from the base can be released well. Moreover, the fabric weight of the nonwoven fabric layer C needs to be 100 g / m < 2 > or more from a viewpoint of making air permeability favorable. This is because a material with a small basis weight is too thin and air permeability is poor. More preferably, the basis weight is 160 g / m 2 or more. In manufacturing a nonwoven fabric layer entangled by needle punching or fluid entanglement method, it may be weakly embossed (hereinafter sometimes referred to as pre-embossing) to prevent the fibers from falling apart immediately after spinning. Then, by the subsequent needle punch or fluid entanglement, the thermal bonding point by the pre-embossing is almost removed, and the horizontal air permeability is hardly hindered.

ところで、仮に下層の不織布層Cによって合成樹脂フィルム層Bの膨潤力を抑え込む様にする場合を想定すると、上記の如くニードルパンチまたは流体交絡法により交絡された不織布Cでは膨潤力を抑えるには強度不足である。そこで不織布層Cについて強度を高くするべく熱圧着タイプにする等の対策を講じると、水平方向の通気性が低下してしまい、本来の機能(水平方向の通気により、下地から発生する水蒸気等を逃がす機能)を損なう結果となる。この為、合成樹脂フィルム層Bの膨潤力を抑え込む作用を不織布層Cに担わせずに、上層の熱圧着タイプ不織布層Aにより上記膨潤力に耐えるようにしたのである。   Assuming that the swelling force of the synthetic resin film layer B is suppressed by the lower nonwoven fabric layer C, the nonwoven fabric C entangled by the needle punch or fluid entanglement method as described above is strong enough to suppress the swelling force. There is a shortage. Therefore, if measures such as making a non-woven fabric layer C to be thermocompression-bonded to increase the strength, the horizontal breathability is reduced, and the original function (water vapor generated from the ground by horizontal ventilation, etc.) This results in a loss of the function of escaping. For this reason, the nonwoven fabric layer C is not subjected to the action of suppressing the swelling force of the synthetic resin film layer B, but the upper thermocompression bonding type nonwoven fabric layer A can withstand the swelling force.

斯様に本発明は熱圧着タイプ不織布層A、合成樹脂フィルム層B、不織布層Cを種々の観点からバランスさせ、本来の機能(層Bの防水機能、層Cの通気機能、層Aのアンカー機能等)を発揮させた上で、皺防止を実現したものである。   Thus, the present invention balances the thermocompression-bonding type nonwoven fabric layer A, the synthetic resin film layer B, and the nonwoven fabric layer C from various viewpoints, and realizes the original functions (waterproof function of layer B, air permeability function of layer C, anchor of layer A). Function, etc.), and prevention of wrinkles.

更に本発明においては合成樹脂フィルム層Bの膨潤力に耐える観点から、前記熱圧着タイプ不織布層Aが長繊維不織布からなるものであることが好ましい。短繊維不織布に比べて長繊維不織布の方が張りがあって水平方向の強度に優れ(連続繊維であるので水平方向の動きに対して繊維間の拘束力が高い為)、皺発生に対する抵抗力が高いからである。   Furthermore, in the present invention, from the viewpoint of withstanding the swelling force of the synthetic resin film layer B, the thermocompression bonding type nonwoven fabric layer A is preferably made of a long fiber nonwoven fabric. Compared to short fiber nonwoven fabrics, long fiber nonwoven fabrics are more tensioned and have better horizontal strength (because they are continuous fibers, and have a higher binding force between fibers against horizontal movement), and resistance to wrinkle generation Because it is expensive.

本発明に係る塗膜防水施工用下張り緩衝材としては、貫通孔が分散形成されたものであっても、形成されていないものであっても良いが、貫通孔が分散形成されたものにおいては、その総開口率が表面積に対して40%以下であることが好ましい。下張り緩衝材に貫通孔を設けることにより、防水剤(例えばウレタン)を下地に直接接合させることができ、接合強度の点から好ましい。しかし下張り緩衝材の総開口率が高いということは、熱圧着タイプ不織布層Aの総開口率が高いことでもあるので、水平方向の強度が低下する。これゆえ合成樹脂フィルム層Bの膨潤力に耐える力が低下し、皺防止の観点から好ましくないことから、上記の如く総開口率40%以下が好ましいのである。なお総開口率が高いということは、通気層である不織布層Cの占める面積率も低くなるということであり、即ち通気部面積が減少するので、この観点からも総開口率が高すぎることは好ましくない。   The undercoat cushioning material for waterproof coating construction according to the present invention may be formed with through holes dispersed or may not be formed. The total aperture ratio is preferably 40% or less with respect to the surface area. By providing a through hole in the underlayer cushioning material, a waterproofing agent (for example, urethane) can be directly bonded to the base, which is preferable from the viewpoint of bonding strength. However, the fact that the total opening ratio of the underlayer cushioning material is high also means that the total opening ratio of the thermocompression bonding type nonwoven fabric layer A is high, so that the strength in the horizontal direction is lowered. For this reason, the ability to withstand the swelling force of the synthetic resin film layer B is reduced, which is not preferable from the viewpoint of wrinkle prevention. Therefore, the total aperture ratio is 40% or less as described above. In addition, that the total opening ratio is high means that the area ratio occupied by the nonwoven fabric layer C, which is a ventilation layer, is also low, that is, the area of the ventilation portion is reduced. From this viewpoint, the total opening ratio is too high. It is not preferable.

本発明に係る塗膜防水施工用下張り緩衝材並びに塗膜防水施工法によれば、たとえ接着剤中の溶剤の蒸発を充分に行わずに施工した場合であっても、防水剤塗装面に皺を殆ど生じない。   According to the underlayer cushioning material for coating film waterproofing construction and the coating film waterproofing construction method according to the present invention, even if the construction is performed without sufficiently evaporating the solvent in the adhesive, the waterproof coating surface is protected. Hardly occurs.

図1は本発明の実施形態1に係る塗膜防水施工用下張り緩衝材をコンクリート(下地)面に施工した様子を表す断面図である。   FIG. 1 is a cross-sectional view showing a state in which an undercoat cushioning material for waterproofing coating construction according to Embodiment 1 of the present invention is applied to a concrete (base) surface.

実施形態1の下張り緩衝材10は、熱圧着タイプ不織布層A11と不織布層C13により合成樹脂フィルム層B12を挟んで一体とした三層構造積層体からなる。   The underlay cushioning material 10 of Embodiment 1 is formed of a three-layer structure laminate in which a synthetic resin film layer B12 is sandwiched between a thermocompression bonding type nonwoven fabric layer A11 and a nonwoven fabric layer C13.

まず三層構造積層体とした下張り緩衝材10を得る方法について述べる。   First, a method for obtaining the underlayer cushioning material 10 as a three-layer structure laminate will be described.

この方法としては、押し出しラミ法(エクストルージョンラミネーション法)やドライラミネーション法等のラミネート法、或いはコーティング法により積層一体化する方法が挙げられる。   Examples of this method include a lamination method such as an extrusion lamination method (extrusion lamination method) and a dry lamination method, or a method of laminating and integrating by a coating method.

具体的には例えば、予め熱圧着タイプ不織布層A11と不織布層C13を作製し、これら熱圧着タイプ不織布層A11と不織布層C13の間に、溶融状態ないし半溶融状態の合成樹脂フィルム層B12の原料を押出ながらラミネートする方法(押し出しラミ法によるサンドラミ法)が挙げられる。殊にこの方法によれば、生産性に優れる上、合成樹脂フィルム層B12の一部が熱圧着タイプ不織布層A11、不織布層C13のそれぞれ一部分に侵入する様にして固化するので、合成樹脂フィルム層B12と熱圧着タイプ不織布層A11、合成樹脂フィルム層B12と不織布層C13が強固に固定される。   Specifically, for example, a thermocompression bonding type non-woven fabric layer A11 and a non-woven fabric layer C13 are prepared in advance, and a raw material for the synthetic resin film layer B12 in a molten or semi-molten state between the thermocompression bonding type non-woven fabric layer A11 and the non-woven fabric layer C13. And a method of laminating while extruding (sand rami method by extrusion lamination method). In particular, according to this method, the synthetic resin film layer B12 is solidified so that it is excellent in productivity and a part of the synthetic resin film layer B12 penetrates into each part of the thermocompression bonding type nonwoven fabric layer A11 and the nonwoven fabric layer C13. B12 and the thermocompression bonding type nonwoven fabric layer A11, the synthetic resin film layer B12 and the nonwoven fabric layer C13 are firmly fixed.

次に下張り緩衝材10における合成樹脂フィルム層B12について説明する。合成樹脂フィルム層B12の素材としては、ポリエステル系フィルム、ポリアミド系フィルム、ポリプロピレン系フィルム、ポリエチレン系フィルムなどのポリオレフィン系フィルムや、これらの共重合体のフィルム等が挙げられる。その他、エチレンビニルアルコール共重合体樹脂(以下、EVOHと言うことがある)、エチレン、酢酸ビニル重合体(以下、EVAと言うことがある)などの汎用の合成樹脂フィルムの多くを使用することができる。   Next, the synthetic resin film layer B12 in the underlay cushioning material 10 will be described. Examples of the material of the synthetic resin film layer B12 include polyolefin films such as polyester films, polyamide films, polypropylene films, and polyethylene films, and films of these copolymers. In addition, many general-purpose synthetic resin films such as ethylene vinyl alcohol copolymer resin (hereinafter sometimes referred to as EVOH), ethylene, and vinyl acetate polymer (hereinafter sometimes referred to as EVA) may be used. it can.

尤も、合成樹脂フィルム層B12の素材の選択にあたっては、下張り緩衝材10上に塗布する防水剤並びにその溶剤との相互作用(耐溶解性や接着性など)を考慮する必要がある。加えて三層構造積層体とする際の加工性、並びに施工時の取扱性を考慮すると、適度な剛性や強度を有することが望ましい。防水剤としては一般にウレタン系樹脂やポリエステル系樹脂が使用され、上記相互作用の観点、及び上記剛性や強度の観点から、ポリオレフィン系フィルムが好ましい。   However, in selecting a material for the synthetic resin film layer B12, it is necessary to consider the waterproofing agent applied on the underlayer cushioning material 10 and its interaction with the solvent (dissolution resistance, adhesion, etc.). In addition, it is desirable to have an appropriate rigidity and strength in consideration of the workability at the time of forming the three-layer structure laminate and the handleability during construction. As the waterproofing agent, a urethane-based resin or a polyester-based resin is generally used, and a polyolefin-based film is preferable from the viewpoints of the interaction and the rigidity and strength.

また合成樹脂フィルム層Bとして、アルミニウム等の導電性金属を蒸着したフィルム層を用いたり、アルミ箔を複合したフィルム層としても良く、これにより断熱性を向上させることができる。この場合の上記蒸着層の厚みとしては、50オングストローム以上が好ましく、より好ましくは100オングストローム以上である。またこの場合は、静電容量などを測定することで、合成樹脂フィルム層Bのピンホールの存在等を検知することも可能である。   Further, as the synthetic resin film layer B, a film layer in which a conductive metal such as aluminum is deposited may be used, or a film layer in which an aluminum foil is combined may be used, thereby improving heat insulation. In this case, the thickness of the vapor deposition layer is preferably 50 angstroms or more, and more preferably 100 angstroms or more. In this case, it is also possible to detect the presence of pinholes in the synthetic resin film layer B by measuring the capacitance.

合成樹脂フィルム層Bの厚みは10μm以上(好ましくは20μm以上)、50μm未満(好ましくは40μm未満)である。尚上述の様に合成樹脂フィルム層Bは熱圧着タイプ不織布層Aと不織布層Cにそれぞれ食い込んだ形状となることから、表裏両面に凹凸が形成された状態となる。従ってここで言う厚みとは、上述の厚みの測定法に従って測定した厚みを言う。   The thickness of the synthetic resin film layer B is 10 μm or more (preferably 20 μm or more) and less than 50 μm (preferably less than 40 μm). In addition, since the synthetic resin film layer B becomes the shape which digged into the thermocompression bonding type nonwoven fabric layer A and the nonwoven fabric layer C as mentioned above, it will be in the state by which the unevenness | corrugation was formed in both front and back. Therefore, the thickness said here means the thickness measured according to the above-mentioned thickness measuring method.

次に熱圧着タイプ不織布層A11について説明する。熱圧着タイプ不織布層A11の素材としては、ポリエステル系繊維、ポリアミド系繊維、ポリプロピレン系繊維が挙げられ、これら熱可塑性繊維にガラス系繊維を含有させたものであっても良い。またトウ開繊によるポリエステルスパンボンドやポリビニルアルコールスパンボンドを好ましく用いることができる。熱接着性を強化する目的で多成分系の複合繊維を用いても良く、例えばポリエチレンテレフタレート(以下、PETと言うことがある)を芯としてポリエチレン(以下、PEと言うことがある)を鞘とした芯鞘構造の複合繊維や、PETを芯として低融点ポリエステルを鞘とした芯鞘構造の複合繊維(以下、CO−PETと言うことがある)、或いはポリプロピレン(以下、PPと言うことがある)を芯としてポリエチレンを鞘とした芯鞘構造の複合繊維等が挙げられる。これらのうちでより好ましいものはポリエステル系スパンボンドである。   Next, the thermocompression bonding type nonwoven fabric layer A11 will be described. Examples of the material of the thermocompression bonding nonwoven fabric layer A11 include polyester fibers, polyamide fibers, and polypropylene fibers, and these thermoplastic fibers may contain glass fibers. Polyester spunbond and polyvinyl alcohol spunbond by tow opening can be preferably used. Multicomponent composite fibers may be used for the purpose of enhancing thermal adhesiveness. For example, polyethylene terephthalate (hereinafter sometimes referred to as PET) is used as a core, and polyethylene (hereinafter sometimes referred to as PE) is used as a sheath. The core-sheath composite fiber, the core-sheath composite fiber (hereinafter sometimes referred to as CO-PET) having PET as the core and the low melting point polyester as the sheath, or polypropylene (hereinafter, sometimes referred to as PP). ) As a core and a core-sheath composite fiber having a polyethylene sheath as the core. Of these, polyester spunbond is more preferred.

熱圧着タイプ不織布層A11の繊維は短繊維、長繊維のいずれであっても良いが、長繊維の方が不織布としたときの強度として高いものが得られるので、より好ましい。   The fibers of the thermocompression bonding type nonwoven fabric layer A11 may be either short fibers or long fibers, but the long fibers are more preferable because they can provide a higher strength when used as a nonwoven fabric.

熱圧着タイプ不織布層A11のエンボス面積率は5%以上である。エンボス面積率が100%のものであっても良く、この場合も不織布であることから、その表面には凹凸があるので、合成樹脂フィルム層Bが熱圧着タイプ不織布層Aに一部食い込むようにして両層が強固に固定され得る。また防水剤(例えばウレタン)を熱圧着タイプ不織布層A11上に塗布する場合においても、防水剤が熱圧着タイプ不織布層Aに一部食い込むようになって強固に固定されることとなる。   The embossed area ratio of the thermocompression bonding type nonwoven fabric layer A11 is 5% or more. The embossed area ratio may be 100%. In this case, since the surface is uneven, the synthetic resin film layer B partially bites into the thermocompression type nonwoven fabric layer A because the surface is uneven. Thus, both layers can be firmly fixed. Even when a waterproofing agent (for example, urethane) is applied onto the thermocompression bonding type nonwoven fabric layer A11, the waterproofing agent bites into the thermocompression bonding type nonwoven fabric layer A and is firmly fixed.

因みに本発明の熱圧着タイプ不織布層Aは、たとえエンボス面積率が100%であっても紙のようなフィルム状になるものではなく、あくまでも不織布としての熱圧着タイプのものを指し、不織布としてのしなやかさや、繊維が多数配されていることによる凹凸を備えたものである。そして熱圧着タイプとは、熱圧着により繊維同士の接点で融着が生じて強度が向上したものである。   Incidentally, the thermocompression bonding type non-woven fabric layer A of the present invention does not become a film like paper even if the embossed area ratio is 100%, and refers to a thermocompression bonding type as a non-woven fabric to the last, It has suppleness and unevenness due to a large number of fibers. The thermocompression bonding type is one in which fusion occurs at the contact point between fibers by thermocompression bonding and the strength is improved.

熱圧着タイプ不織布層A11の目付は20g/m2超、100g/m2以下である。熱圧着タイプ不織布層A11の厚みとしては特に限定されるものではないが、目付の上限が100g/m2であって熱圧着タイプであることから、差程分厚くなることはなく、1.5mm以下程度である。 The basis weight of the thermocompression bonding type nonwoven fabric layer A11 is more than 20 g / m 2 and 100 g / m 2 or less. Although it does not specifically limit as thickness of thermocompression bonding type nonwoven fabric layer A11, Since the upper limit of a fabric weight is 100 g / m < 2 > and it is a thermocompression bonding type, it does not become so thick as much and is 1.5 mm or less. Degree.

次に不織布層C13について説明する。不織布層C13の素材としては、ガラス系短繊維、ポリエステル系繊維、ポリアミド系繊維、ポリプロピレン系繊維、トウ開繊によるポリエステルスパンボンドやポリビニルアルコールスパンボンドが好ましい素材として挙げられる。殊に、下地がコンクリートの場合においては耐アルカリ性に優れたものとするのが好ましく、この点を考慮するとアクリル系繊維製不織布が好ましい。   Next, the nonwoven fabric layer C13 will be described. Examples of the material for the nonwoven fabric layer C13 include glass-based short fibers, polyester-based fibers, polyamide-based fibers, polypropylene-based fibers, polyester spunbond by tow opening, and polyvinyl alcohol spunbond. In particular, when the base is concrete, it is preferable to have excellent alkali resistance, and in view of this point, an acrylic fiber nonwoven fabric is preferable.

不織布層C13は、ニードルパンチまたは流体交絡法により交絡されたものであって、目付が100g/m2以上であり、これにより良好な通気性が実現され得る。通気性をより良好にする観点から、より好ましくは目付160g/m2以上である。一方、不織布層C13の目付の上限は300g/m2とするのが好ましい。目付が高すぎると、下張り緩衝材10の質量が重くなって作業性が低下するからである。より好ましくは250g/m2以下である。 The nonwoven fabric layer C13 is entangled by needle punching or fluid entanglement method, and has a basis weight of 100 g / m 2 or more, whereby good air permeability can be realized. From the viewpoint of improving air permeability, the weight per unit area is more preferably 160 g / m 2 or more. On the other hand, the upper limit of the basis weight of the nonwoven fabric layer C13 is preferably 300 g / m 2 . This is because if the basis weight is too high, the mass of the underlayer cushioning material 10 becomes heavy and the workability decreases. More preferably, it is 250 g / m 2 or less.

不織布層C13の繊維としては長繊維、短繊維のいずれであっても良いが、強度の観点から長繊維であることが好ましい。   The fibers of the nonwoven fabric layer C13 may be either long fibers or short fibers, but are preferably long fibers from the viewpoint of strength.

不織布層C13は、JASS8での評価法〔JASS(1986) 参考試験1.メンブレン防水層の性能評価試験方法「8.下地との間の通気抵抗試験」(第340〜342頁)〕により求められる下地面との間の通気量が、10mmAq.圧力空気時に170cc以上の流出量であることが好ましい。170cc以下の場合は通気性が乏しいために、防水面の膨れや浮き上がりを生じる懸念があるからである。   The nonwoven fabric layer C13 is an evaluation method in JASS8 [JASS (1986) Reference Test 1. The air permeability between the base surface determined by the performance evaluation test method “8. Ventilation resistance test with the base” (pages 340 to 342)] of 10 mmAq. The outflow amount is preferably 170 cc or more when pressurized air. This is because if it is 170 cc or less, the air permeability is poor, which may cause the waterproof surface to bulge or rise.

以上の如くの合成樹脂フィルム層B12、熱圧着タイプ不織布層A11、不織布層C13を用い、上記押し出しラミ法等により三層構造積層体を得て下張り緩衝材10とする。この際、合成樹脂フィルム層B12と熱圧着タイプ不織布層A11については、式(1)を満足させるようにしてそれぞれの層を設定する。
[A]/[B]>2 …(1)
[A]:前記熱圧着タイプ不織布層Aの目付(単位:g/m2
[B]:前記合成樹脂フィルム層Bの厚み(単位:μm)
Using the synthetic resin film layer B12, the thermocompression bonding type nonwoven fabric layer A11, and the nonwoven fabric layer C13 as described above, a three-layer structure laminate is obtained by the extrusion laminating method or the like, and is used as the underlayer cushioning material 10. Under the present circumstances, about synthetic resin film layer B12 and thermocompression bonding type nonwoven fabric layer A11, each layer is set so that Formula (1) may be satisfied.
[A] / [B]> 2 (1)
[A]: basis weight of the thermocompression bonding type nonwoven fabric layer A (unit: g / m 2 )
[B]: Thickness (unit: μm) of the synthetic resin film layer B

更に、得られた下張り緩衝材10に貫通孔を分散形成しても良い。この際、総開口率が表面積に対して40%以下となるようにする。   Further, through holes may be dispersedly formed in the obtained underlay cushioning material 10. At this time, the total aperture ratio is set to 40% or less with respect to the surface area.

次に下張り緩衝材10を用いた施工方法について述べる(図1)。   Next, a construction method using the underlayer cushioning material 10 will be described (FIG. 1).

施工にあたっては、まずコンクリート17等の下地面にプライマー15を塗布し(尚、下地の素材によってはプライマー15を省略しても良い)、続いて接着剤14を塗布する。次いで下張り緩衝材10を、その熱圧着タイプ不織布層A11側を表側にして、即ち不織布層C13側を接着剤14に接着させるようにして、接着剤14塗布面に配置する。その後、この下張り緩衝材10の上から(即ち熱圧着タイプ不織布層A11の上から)ポリウレタン等の防水剤16を塗布する。防水剤16が硬化し、施工が完了する。   In the construction, first, the primer 15 is applied to the lower ground of the concrete 17 or the like (the primer 15 may be omitted depending on the material of the base), and then the adhesive 14 is applied. Next, the underlay cushioning material 10 is arranged on the adhesive 14 application surface so that the thermocompression bonding type nonwoven fabric layer A11 side is the front side, that is, the nonwoven fabric layer C13 side is adhered to the adhesive 14. Thereafter, a waterproofing agent 16 such as polyurethane is applied from above the underlay cushioning material 10 (that is, from above the thermocompression bonding type nonwoven fabric layer A11). The waterproofing agent 16 is cured and the construction is completed.

上記下張り緩衝材10を用いた場合においては、接着剤14の溶剤が充分に蒸発しないうちに下張り緩衝材10を接着した場合であっても、接着剤14の溶剤による合成樹脂フィルム層B12の膨潤によって皺が生じるのを熱圧着タイプ不織布層A11が食い止め、出来上がりの防水剤16層の上に皺が表れない。   In the case of using the underlay cushioning material 10, the swelling of the synthetic resin film layer B <b> 12 by the solvent of the adhesive 14 even if the underlay cushioning material 10 is adhered before the solvent of the adhesive 14 is sufficiently evaporated. The thermocompression-bonding type non-woven fabric layer A11 prevents wrinkles from occurring, and wrinkles do not appear on the finished waterproofing agent 16 layers.

なお上記実施形態においては熱圧着タイプ不織布層A11と合成樹脂フィルム層B12と不織布層C13の三層構造積層体からなる下張り緩衝材10を示したが、この三層構造積層体を含む四層以上の下張り緩衝材としても良い。   In addition, in the said embodiment, although the underlay cushioning material 10 which consists of a three-layer structure laminated body of thermocompression bonding type nonwoven fabric layer A11, synthetic resin film layer B12, and nonwoven fabric layer C13 was shown, it is four or more layers containing this three-layer structure laminated body It is also possible to use a cushioning material for the underlay.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to experimental examples.However, the present invention is not limited by the following examples as a matter of course, and is implemented with appropriate modifications within a range that can meet the purpose described above and below. Of course, any of these is also included in the technical scope of the present invention.

《評価方法》
まず下記実験例における各種評価方法について述べる。なお以下、サンプル方向に関して機械方向(不織布製造時の製造流れ方向)をMD方向、機械方向と直交する方向をCD方向と称する。
"Evaluation methods"
First, various evaluation methods in the following experimental examples will be described. Hereinafter, with respect to the sample direction, the machine direction (manufacturing flow direction at the time of manufacturing the nonwoven fabric) is referred to as MD direction, and the direction orthogonal to the machine direction is referred to as CD direction.

<目付(単位面積当りの質量)>
JIS−L1906に従って求める。具体的にはMD方向に20cm、CD方向に25cm角の試験片を、CD方向に5箇所採取して、それぞれの質量を測定する。これらの平均値を算出した後、1m3当たりの質量に換算して目付(g/m2)とする。
<Weight per unit (mass per unit area)>
Obtained according to JIS-L1906. Specifically, five test pieces of 20 cm square in the MD direction and 25 cm square in the CD direction are sampled in the CD direction, and the respective masses are measured. After calculating these average values, the mass per 1 m 3 is converted to the mass per unit area (g / m 2 ).

<厚み>
JIS−L1906に従って求める。具体的にはCD方向の試験片全幅1m当たり10箇所において、加圧条件を1.96kPa(20gf/cm3)として測定し、これらの平均値を算出して厚みとする。
<Thickness>
Obtained according to JIS-L1906. Specifically, the pressure condition is measured at 1.96 kPa (20 gf / cm 3 ) at 10 points per 1 m of the full width of the test piece in the CD direction, and the average value of these is calculated to obtain the thickness.

<強力>
5cm×20cmの短冊状にタテ及びヨコ方向別にサンプルを打ち抜き、このサンプルについてJIS L1906 5.3.1に従ってそれぞれ測定する。なお該測定においては、テンシロン引張試験機を用い、破断時にかかる張力をタテ、ヨコ方向N=5とする。
<Strong>
Samples are punched into 5 cm × 20 cm strips in the vertical and horizontal directions, and the samples are respectively measured according to JIS L1906 5.3.1. In this measurement, a Tensilon tensile tester is used, and the tension applied at the time of breaking is set to be vertical and horizontal direction N = 5.

<脱気通気性>
JASS8(1986) 参考試験1.メンブレン防水層の性能評価試験方法「8.下地との間の通気抵抗試験」(第340〜342頁)に従って測定する。
<Deaeration breathability>
JASS8 (1986) Reference test It is measured according to the performance evaluation test method “8. Ventilation resistance test between the waterproof layer” (pages 340 to 342).

<遮水能>
「屋根防水システムの性能評価に関する一般基準」(訳、東京工業大学工業材料研究所小池研究室、工文社)5.1.4耐水圧試験(第8〜9頁)におけるDIN−16935による試験方法に従って測定する。
<Water impermeability>
According to the test method according to DIN-16935 in "General Standards for Performance Evaluation of Roof Waterproof Systems" (translation, Koike Laboratory, Institute of Materials Research, Tokyo Institute of Technology, Kobunsha) 5.1.4 Water Pressure Resistance Test (Pages 8-9) taking measurement.

<皺試験>
コンクリート下地面に接着剤(クロロプレン系接着剤)を0.4kg/m2となるように塗布し、直ちに下張り緩衝材を熱圧着タイプ不織布層A側を表側にして貼り付け、この上にウレタン系防水剤(下記化1)を1kg/m2となるように塗布し、更にもう一度同じウレタン系防水剤を1kg/m2となるように重ね塗りする(ウレタン防水剤は合計2kg/m2となる)。
<Acupuncture test>
Apply an adhesive (chloroprene-based adhesive) to the concrete base so that the amount is 0.4 kg / m 2, and immediately apply an underlayer cushioning material with the thermocompression-bonding type non-woven fabric layer A on the front side. Apply waterproofing agent (Chemical Formula 1 below) to 1 kg / m 2, and then apply the same urethane waterproofing agent again to 1 kg / m 2 (the total of urethane waterproofing agent is 2 kg / m 2). ).

Figure 2008303549
Figure 2008303549

このウレタン系防水剤が硬化した後、施工面を目視にて観察し、皺の有無を判定する。   After the urethane waterproofing agent is cured, the construction surface is visually observed to determine the presence or absence of wrinkles.

《実験例の下張り緩衝材の製造方法》
次に各実験例の下張り緩衝材の製造方法について述べる。
《Method for producing underlay cushioning material in experimental example》
Next, a method for producing the underlayer cushioning material of each experimental example will be described.

<実験No.1〜6,8〜12>
固有粘度0.68のPETを用い、紡糸温度285℃にて、孔径0.35mmノズルにより単孔吐出量2.5g/分、引取速度4800m/分の条件で紡糸し、スパンボンド不織布を得た。次いでこのスパンボンド不織布について、ドット間隔5mm、エンボス面積率11%、線圧50kN/m、240℃で、エンボス加工を行い、熱圧着タイプ不織布層A(熱圧着タイプのスパンボンド不織布)を得た。なお各熱圧着タイプ不織布層Aの目付は表1の通りである。
<Experiment Nos. 1-6, 8-12>
Spinning was performed using PET with an intrinsic viscosity of 0.68 at a spinning temperature of 285 ° C., with a nozzle diameter of 0.35 mm and a single hole discharge rate of 2.5 g / min and a take-up speed of 4800 m / min. . Next, this spunbonded nonwoven fabric was embossed at a dot interval of 5 mm, an embossed area ratio of 11%, a linear pressure of 50 kN / m, and 240 ° C. to obtain a thermocompression bonding type nonwoven fabric layer A (thermocompression bonding type spunbonded nonwoven fabric). . The basis weight of each thermocompression bonding type nonwoven fabric layer A is as shown in Table 1.

他方、上記と同様の条件のスパンボンド法にて、4.4dtex(4デニール)のPET製フィラメントからなるウェッブを得、このウェッブをオルガン社製FPD1−40Sを用いてニードル深さ13mm、密度80N/cmでニードリングして、表1に示す目付の不織布層C(ニードルパンチタイプのスパンボンド不織布)を得た。   On the other hand, a web composed of 4.4 dtex (4 denier) PET filament was obtained by the spunbond method under the same conditions as described above, and this web was obtained by using an FPD1-40S made by Organ Co., with a needle depth of 13 mm and a density of 80 N. Needleing was performed at / cm to obtain a nonwoven fabric layer C (needle punch type spunbond nonwoven fabric) having a basis weight shown in Table 1.

次いで、Tダイフィルム押出し機を用い、上記熱圧着タイプ不織布層Aと上記不織布層Cの間に半溶融状態のPE(メルトインデックス:7)(実験No.1〜5,8〜12)或いはPBT(実験No.6)を挟む様にしてラミネート加工し、表1に示す厚さの合成樹脂フィルム層B(上記PE或いはPBT(ポリブチレンテレフタレート)の層)が不織布層Aと上記不織布層Cに挟まれ一体化された三層構造積層体を得た。なお実験No.1,2,4〜6,8〜10においては、この三層構造積層体が下張り緩衝材となる。   Next, using a T-die film extruder, a semi-molten PE (melt index: 7) (Experiment Nos. 1 to 5, 8 to 12) or PBT between the thermocompression-bonding type nonwoven fabric layer A and the nonwoven fabric layer C is used. (Experiment No. 6) is laminated so that the synthetic resin film layer B (the layer of PE or PBT (polybutylene terephthalate)) having the thickness shown in Table 1 is formed on the nonwoven fabric layer A and the nonwoven fabric layer C. A three-layer structure laminate sandwiched and integrated was obtained. In Experiment Nos. 1, 2, 4 to 6, 8 to 10, this three-layer structure laminate is an underlayer cushioning material.

実験No.3,11,12については、更に有孔加工機を用いて開け加工を施して、丸形の孔(直径6mm)を縦横4cm間隔で開け、有孔タイプの下張り緩衝材とした。   For Experiment Nos. 3, 11, and 12, further, a perforated machine was used to make a round hole (diameter 6 mm) at intervals of 4 cm in length and breadth to obtain a perforated type underlay cushioning material.

<実験No.7>
2.2dtex(2デニール)でカット長56mmの2成分芯鞘繊維(CO−PET繊維)と、2.2dtex(2デニール)でカット長56mmのPET繊維とを、混綿比50/50で混綿し、このステープルファイバを定法通りカード及びクロスラッパーを用いてウェッブに形成した。次いでこのウェッブに対してドット5mm間隔、エンボス面積率11%、140℃、線圧50kN/mで熱エンボス加工を行って目付70g/m2の熱圧着タイプの不織布層A(サーマルボンド不織布)を得た。
<Experiment No. 7>
A 2-component core-sheath fiber (CO-PET fiber) with a cut length of 56 mm at 2.2 dtex (2 denier) and a PET fiber with a cut length of 56 mm at 2.2 dtex (2 denier) are blended at a blending ratio of 50/50. The staple fiber was formed into a web using a card and a cross wrapper as usual. Next, thermal embossing is performed on this web at a dot spacing of 5 mm, an embossed area ratio of 11%, 140 ° C., and a linear pressure of 50 kN / m to form a thermocompression bonding type nonwoven fabric layer A (thermal bond nonwoven fabric) having a basis weight of 70 g / m 2. Obtained.

他方、4.4dtex(4デニール)のカット長56mmアクリル繊維と、4.4dtex(4デニール)のカット長56mmPET繊維とを、混綿比50/50で混綿し、このステープルファイバを定法通りカード及びクロスラッパーを用いてウェッブを形成した。オルガン社FPD1−40Sを用いて、ニードル深さ13mm、密度80N/cmで、上記ウェッブをニードリングして目付160g/m2の不織布層C(短繊維ニードルパンチ不織布)を得た。 On the other hand, a 4.4 dtex (4 denier) cut length 56 mm acrylic fiber and a 4.4 dtex (4 denier) cut length 56 mm PET fiber were blended at a blend ratio of 50/50, and the staple fiber was carded and clothed as usual. A web was formed using a wrapper. The web was needled at a needle depth of 13 mm and a density of 80 N / cm using Organ Corp. FPD1-40S to obtain a nonwoven fabric layer C (short fiber needle punched nonwoven fabric) having a basis weight of 160 g / m 2 .

次にTダイフィルム押出し機を用い、上記熱圧着タイプ不織布層Aと不織布層Cの間に半溶融状態のPE(メルトインデックス:7)(合成樹脂フィルムB層となる)を挟む様にしてラミネート加工し、厚さ30μmの合成樹脂フィルムB層が不織布層Aと上記不織布層Cに挟まれ一体化された三層構造積層体を得、下張り緩衝材とした。   Next, using a T-die film extruder, lamination is performed so that a semi-molten PE (melt index: 7) (which becomes the synthetic resin film B layer) is sandwiched between the thermocompression-bonding type nonwoven fabric layer A and the nonwoven fabric layer C. The three-layer structure laminated body which processed and integrated the synthetic resin film B layer with a thickness of 30 micrometers between the nonwoven fabric layer A and the said nonwoven fabric layer C was obtained, and it was set as the underlay cushioning material.

Figure 2008303549
Figure 2008303549

Figure 2008303549
Figure 2008303549

《防水施工方法》
コンクリート(下地)面に接着剤(クロロプレン系接着剤:ノガワケミカル(株)製、商品名DC644G)を0.4kg/m2となるように塗布した後、上記各実験例の下張り緩衝材を、熱圧着タイプ不織布層Aが表側、不織布層Cが接着面側になるように貼り付けた。次いで、この上から汎用の平場用ウレタン系防水剤を1kg/m2となるように塗布し、硬化後、更に同じく平場用ウレタン系防水剤を1kg/m2で重ね塗りした(合計2kg/m2となる)。重ね塗りした防水剤が硬化した後、紫外線吸収剤などを配合したトップコート用ウレタン防水剤を0.3kg/m2となるように塗布した。斯様にして防水層を形成した。
《Waterproofing method》
After applying an adhesive (chloroprene-based adhesive: Nogawa Chemical Co., Ltd., trade name: DC644G) to 0.4 kg / m 2 on the concrete (base) surface, Affixing was performed so that the thermocompression bonding type nonwoven fabric layer A was on the front side and the nonwoven fabric layer C was on the adhesion side. Next, a general-purpose urethane waterproofing agent for flat field was applied from above to 1 kg / m 2, and after curing, the urethane waterproofing agent for flat field was applied again at 1 kg / m 2 (total 2 kg / m 2). 2 ). After the overcoated waterproofing agent was cured, a urethane waterproofing agent for topcoat containing an ultraviolet absorber or the like was applied at 0.3 kg / m 2 . A waterproof layer was thus formed.

上記の如く施工した防水層に関し、実験No.1〜7,11においては防水層表面に皺等が発生していなかった。尚このうちの実験No.7は、下張り緩衝材を接着剤塗布面上に貼付した後の状態において、小さな皺が所々見られたが、ウレタン防水剤を施工後の表面においては、皺は見えなくなっていた。また実験No.1〜7について一ヶ月間後に調査したところ、防水層に膨れや浮き上がりもなかった。更にその後1年間調査を実施したところ、異常がなく良好な状態が保たれていた。実験No.11については、3年後に調査したところ防水層に若干の浮き上がりが生じていた。下張り緩衝材における不織布層Cの通気性がやや劣るものであった為であると考えられる。   Regarding the waterproof layer constructed as described above, no wrinkles or the like occurred on the surface of the waterproof layer in Experiment Nos. 1 to 7 and 11. In experiment No. 7 of these, small wrinkles were seen in some cases after the underlayer cushioning material was applied to the adhesive-coated surface, but wrinkles were visible on the surface after the urethane waterproofing agent was applied. It was gone. Further, when the experiment No. 1 to 7 was investigated after one month, the waterproof layer did not swell or float. Furthermore, when a survey was conducted for one year thereafter, there was no abnormality and a good condition was maintained. When experiment No. 11 was investigated three years later, a slight lifting occurred in the waterproof layer. This is probably because the air permeability of the nonwoven fabric layer C in the underlay cushioning material was slightly inferior.

一方実験No.8〜10,12は、ウレタン系防水剤を施工した後の表面において皺が発生していた。   On the other hand, in Experiment Nos. 8 to 10 and 12, wrinkles occurred on the surface after the urethane waterproofing agent was applied.

本発明の実施形態1に係る塗膜防水施工用下張り緩衝材をコンクリート(下地)面に施工した様子を表す断面図である。It is sectional drawing showing a mode that the underlay cushioning material for coating-film waterproofing construction concerning Embodiment 1 of this invention was constructed | assembled on the concrete (base | substrate) surface.

符号の説明Explanation of symbols

10 下張り緩衝材
11 熱圧着タイプ不織布層A
12 合成樹脂フィルム層B
13 不織布層C
14 接着剤
15 プライマー
16 防水剤
17 コンクリート
10 Underlay cushion material 11 Thermocompression bonding type nonwoven fabric layer A
12 Synthetic resin film layer B
13 Nonwoven fabric layer C
14 Adhesive 15 Primer 16 Waterproofing agent 17 Concrete

Claims (4)

合成樹脂フィルム層Bが熱圧着タイプ不織布層Aと不織布層Cに挟まれて一体となった三層構造積層体を備えた下張り緩衝材であって、
前記不織布層Cは、目付が100g/m2以上で、ニードルパンチまたは流体交絡法により交絡されたものであり、
前記熱圧着タイプ不織布層Aは、目付が20g/m2超,100g/m2以下であり、
前記合成樹脂フィルム層Bは、厚みが10μm以上,50μm未満であり、
下式(1)を満足することを特徴とする塗膜防水施工用下張り緩衝材。
[A]/[B]>2 …(1)
[A]:前記熱圧着タイプ不織布層Aの目付(単位:g/m2
[B]:前記合成樹脂フィルム層Bの厚み(単位:μm)
An underlay cushioning material comprising a three-layer structure laminate in which a synthetic resin film layer B is sandwiched between a thermocompression bonding type nonwoven fabric layer A and a nonwoven fabric layer C,
The nonwoven fabric layer C has a basis weight of 100 g / m 2 or more and is entangled by a needle punch or fluid entanglement method,
The thermocompression bonding type nonwoven fabric layer A has a basis weight of more than 20 g / m 2 and 100 g / m 2 or less,
The synthetic resin film layer B has a thickness of 10 μm or more and less than 50 μm,
An underlayer cushioning material for waterproofing coating film, characterized by satisfying the following formula (1).
[A] / [B]> 2 (1)
[A]: basis weight of the thermocompression bonding type nonwoven fabric layer A (unit: g / m 2 )
[B]: Thickness (unit: μm) of the synthetic resin film layer B
前記熱圧着タイプ不織布層Aが長繊維不織布からなる請求項1に記載の塗膜防水施工用下張り緩衝材。   The underlayer cushioning material for waterproofing a coating film according to claim 1, wherein the thermocompression bonding type nonwoven fabric layer A is made of a long-fiber nonwoven fabric. 前記塗膜防水施工用下張り緩衝材には貫通孔が分散形成され、その総開口率が表面積に対して40%以下である請求項1または2に記載の塗膜防水施工用下張り緩衝材。   The undercoat cushioning material for waterproofing coating film according to claim 1 or 2, wherein through-holes are dispersedly formed in the undercoat cushioning material for waterproofing coating film, and the total opening ratio is 40% or less with respect to the surface area. 下地面に接着剤を塗布した後、
請求項1〜3のいずれか1項に記載の塗膜防水施工用下張り緩衝材を、その熱圧着タイプ不織布層A側を表側にして、上記接着剤塗布面に配置し、
この配置された前記下張り緩衝材上に防水剤を塗布することを特徴とする塗膜防水施工法。
After applying adhesive on the ground,
The underlay cushioning material for waterproofing construction of a coating film according to any one of claims 1 to 3, with the thermocompression bonding type nonwoven fabric layer A side as a front side, disposed on the adhesive application surface,
A method of waterproofing a coating film, wherein a waterproofing agent is applied on the placed cushioning material.
JP2007149522A 2007-06-05 2007-06-05 Underlying cushioning material for waterproof coating construction and waterproof coating construction method Active JP4039464B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007149522A JP4039464B1 (en) 2007-06-05 2007-06-05 Underlying cushioning material for waterproof coating construction and waterproof coating construction method
PCT/JP2008/050098 WO2008149564A1 (en) 2007-06-05 2008-01-09 Cushioning underlayer material for liquid-applied membrane waterproofing and method for liquid-applied membrane waterproofing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149522A JP4039464B1 (en) 2007-06-05 2007-06-05 Underlying cushioning material for waterproof coating construction and waterproof coating construction method

Publications (2)

Publication Number Publication Date
JP4039464B1 JP4039464B1 (en) 2008-01-30
JP2008303549A true JP2008303549A (en) 2008-12-18

Family

ID=39078316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149522A Active JP4039464B1 (en) 2007-06-05 2007-06-05 Underlying cushioning material for waterproof coating construction and waterproof coating construction method

Country Status (2)

Country Link
JP (1) JP4039464B1 (en)
WO (1) WO2008149564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026150A (en) * 2010-07-22 2012-02-09 Toyobo Co Ltd Coating film waterproof sheet
KR101902714B1 (en) * 2017-12-12 2018-10-10 주식회사 홈디 Construction Method Of Wallpaper Using Lining Paper
US20200399904A1 (en) * 2019-06-24 2020-12-24 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113464B2 (en) * 2012-11-16 2017-04-12 アイカ工業株式会社 Waterproof finishing structure, waterproof finishing method, and breathable sheet body used for the same
JP2015036494A (en) * 2013-08-13 2015-02-23 ガムスター株式会社 Self-adhesive underlying roofing waterproof material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605893B2 (en) * 1989-11-17 1997-04-30 東洋紡績株式会社 Underlay cushioning material for paint film waterproofing work and waterproofing method using it
JP3464844B2 (en) * 1995-04-05 2003-11-10 日本バイリーン株式会社 Composite waterproof sheet for coating film waterproofing and method of using the same
JP2002146976A (en) * 2000-08-30 2002-05-22 Hodogaya Chem Co Ltd Waterproofing execution method
JP2002174008A (en) * 2000-12-07 2002-06-21 Asahi Glass Co Ltd Waterproofing construction method
JP3990340B2 (en) * 2003-11-07 2007-10-10 有限会社エムテー工業 Composite degassing tarpaulin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026150A (en) * 2010-07-22 2012-02-09 Toyobo Co Ltd Coating film waterproof sheet
KR101902714B1 (en) * 2017-12-12 2018-10-10 주식회사 홈디 Construction Method Of Wallpaper Using Lining Paper
US20200399904A1 (en) * 2019-06-24 2020-12-24 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core
US11518137B2 (en) * 2019-06-24 2022-12-06 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core

Also Published As

Publication number Publication date
WO2008149564A1 (en) 2008-12-11
JP4039464B1 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US8091310B2 (en) Sheet-like building and construction materials with high wet slip resistance and high water penetration resistance, and methods of making same
US7393799B2 (en) Breathable, waterproofing, tear-resistant fabric
US9029277B2 (en) Breathable laminate and method of making same
JP4039464B1 (en) Underlying cushioning material for waterproof coating construction and waterproof coating construction method
JP5680869B2 (en) Sheet material for building materials
EP1225265A1 (en) Vapor-permeable and water-resistant sheet and method of manufacturing the same
JP2012026150A (en) Coating film waterproof sheet
JP2006057444A (en) Moisture permeable composite sheet for concrete waterproof treatment
JP2010189865A (en) Joint tape for waterproof substrate, and coating waterproof structure
ES2899912T3 (en) Fire retardant composite substrates for bituminous membranes
JP2015102593A (en) Sound absorption material
JP4799097B2 (en) Medical adhesive tape substrate and method for producing the same
JP2006299717A (en) Sheet for waterproofing work and waterproofing work method
TW201941928A (en) Laminated non-woven fabric
JP2010090601A (en) Ventilating buffer sheet for waterproof construction, and waterproof construction roof concrete structure
JP2010514962A (en) Architectural wrap for use in exterior wall assemblies with wet-applied facades
JP4381452B2 (en) Aeration cushion sheet for waterproofing coating film and coating waterproofing method
JP2002120313A (en) Waterproof reinforcing material, and film coating waterproof construction method using the same
JP6867019B2 (en) Manufacturing method of air permeable tarpaulin
KR20110035276A (en) Composite nonwoven fabric with porous film for frotecting automotive surface and preparation method thereof
JPH03158555A (en) Lining buffer for film waterproofing work and method therewith
US20030082969A1 (en) Breathable barrier extruded laminate
JP2008188202A (en) Waterproof and gas permeable carpet
JP3408728B2 (en) Roof underlay waterproofing sheet
JP4132186B2 (en) Skin material for concrete formwork and concrete formwork

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4039464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350