JP2008300689A - Electrolytic solution for driving electrolytic capacitor - Google Patents
Electrolytic solution for driving electrolytic capacitor Download PDFInfo
- Publication number
- JP2008300689A JP2008300689A JP2007146050A JP2007146050A JP2008300689A JP 2008300689 A JP2008300689 A JP 2008300689A JP 2007146050 A JP2007146050 A JP 2007146050A JP 2007146050 A JP2007146050 A JP 2007146050A JP 2008300689 A JP2008300689 A JP 2008300689A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic solution
- electrolytic
- undecanoic
- lactone
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)の改良に関するものであり、特に耐電圧を改善した駆動用電解液に関するものである。 The present invention relates to an improvement of an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and particularly relates to a driving electrolytic solution having improved withstand voltage.
従来、中高圧用アルミニウム電解コンデンサの電解液には、エチレングリコール等を主溶媒とし、高級二塩基酸またはそのアンモニウム塩とホウ酸またはそのアンモニウム塩を溶解し、電解液の耐電圧を上昇させるためマンニトール、ソルビトール等の多価アルコールを添加した電解液が用いられている(例えば、特許文献1〜3参照)。
しかしながら、マンニトール、ソルビトール等の多価アルコールは、添加量に対する耐電圧の向上が緩慢であり、また多価アルコールを多量に添加すると、高級二塩基酸およびホウ酸とエステル化反応をするため、比抵抗が著しく上昇するという問題がある。 However, polyhydric alcohols such as mannitol and sorbitol have a slow improvement in withstand voltage with respect to the amount added, and when a large amount of polyhydric alcohol is added, it undergoes an esterification reaction with higher dibasic acid and boric acid. There is a problem that the resistance increases remarkably.
以上の問題点に鑑みて、本発明の課題は、比抵抗が低く、かつ、耐電圧の高い駆動用電解液を提供することにある。 In view of the above problems, an object of the present invention is to provide a driving electrolyte having a low specific resistance and a high withstand voltage.
本願発明者は、上記課題を解決するために種々検討を行った結果、多価アルコールと比較してウンデカノイックγ−ラクトンが電極箔への吸着性が高いという新たな知見を得、本発明は、かかる知見に基づいて、その特性を駆動用電解液に適用することにより、課題の解決を図ったものである。 As a result of various studies to solve the above problems, the inventor of the present application has obtained a new finding that undecanoic γ-lactone has a high adsorptivity to an electrode foil as compared with a polyhydric alcohol. Based on this knowledge, the problem is solved by applying the characteristics to the driving electrolyte.
すなわち、本発明に係る電解液では、エチレングリコールを主成分とする溶媒に、少なくとも、高級二塩基酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるウンデカノイックγ−ラクトンとを配合したことを特徴とする。 That is, in the electrolytic solution according to the present invention, at least a higher dibasic acid or a salt thereof, boric acid or an ammonium salt thereof, and an undecanoic γ-lactone represented by the following chemical formula: It is characterized by blending.
本発明において、前記ウンデカノイックγ−ラクトンの配合量が、電解液全体に対して0.5〜2.0wt%であることが好ましい。 In this invention, it is preferable that the compounding quantity of the said undecanoic gamma-lactone is 0.5-2.0 wt% with respect to the whole electrolyte solution.
本発明において、高級二塩基酸としては、アゼライン酸、セバシン酸、安息香酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を挙げることができる。 In the present invention, examples of the higher dibasic acid include azelaic acid, sebacic acid, benzoic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid, and the like. be able to.
高級二塩基酸の塩としては、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の四級アンモニウム塩等を挙げることができる。 As salts of higher dibasic acids, primary amine salts such as methylamine, ethylamine, t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine, diethylamine, trimethylamine, diethylmethylamine, ethyldimethylamine, triethylamine, etc. And quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium, and tetraethylammonium.
エチレングリコールに混合する副溶媒としては、プロピレングリコール等のグリコール類、γ−ブチロラクトン、N−メチル−2−ピロリドン等のラクトン類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、イソブチレンカーボネート等の炭酸類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のオキシド類、エーテル類、ケトン類、エステル類、スルホラン、スルホラン誘導体、水等を例示することができる。これらの溶媒は一種類だけでなく、二種類以上を混合して使用することもできる。 As a co-solvent mixed with ethylene glycol, glycols such as propylene glycol, lactones such as γ-butyrolactone and N-methyl-2-pyrrolidone, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, Amides such as N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoricamide, ethylene carbonate, propylene carbonate, isobutylene carbonate, etc. Examples thereof include carbonic acids, nitriles such as acetonitrile, oxides such as dimethyl sulfoxide, ethers, ketones, esters, sulfolane, sulfolane derivatives, water and the like. These solvents can be used not only in one kind but also in a mixture of two or more kinds.
さらに、上記の電解液には、漏れ電流の低減、耐電圧向上、ガス吸収等の目的で種々の添加剤を加えることができる。添加剤の例として、リン酸化合物、ホウ酸化合物、多価アルコール類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコールのランダム共重合体およびブロック共重合体に代表される高分子化合物、ニトロ化合物等が挙げられる。 Furthermore, various additives can be added to the above electrolyte for the purpose of reducing leakage current, improving withstand voltage, and absorbing gas. Examples of additives include phosphoric acid compounds, boric acid compounds, polyhydric alcohols, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyoxyethylene polyoxypropylene glycol random copolymers and block copolymers Examples include molecular compounds and nitro compounds.
本発明では、エチレングリコールを主成分とする溶媒に、高級二塩基酸、ホウ酸またはそれらの塩を配合した電解液にウンデカノイックγ−ラクトンを添加したため、比抵抗が低く、かつ、耐電圧の高い電解液を実現することができる。 In the present invention, undecanoic γ-lactone is added to an electrolytic solution in which a higher dibasic acid, boric acid or a salt thereof is blended in a solvent containing ethylene glycol as a main component, so that the specific resistance is low and the withstand voltage is high. An electrolytic solution can be realized.
また、エチレングリコールを主成分とする溶媒に、高級二塩基酸またはその塩と、ホウ酸またはそのアンモニウム塩を溶質とし、ウンデカノイックγ−ラクトンを添加することで、ウンデカノイックγ−ラクトンと、高級二塩基酸、ホウ酸とのエステル化反応による生成物は、電解液中のイオンの移動を妨げず、電解液の比抵抗上昇を抑制しながら耐電圧を向上させることができる。
さらに、ウンデカノイックγ−ラクトンは、電極箔に対する高い吸着性を有するため、電極箔上にて効率良く高級二塩基酸、ホウ酸とのエステル化反応を行うことができ、少量の添加で耐電圧を向上させることができる。
In addition, undecanoic γ-lactone and higher dibasic can be obtained by adding undecanoic γ-lactone in a solvent containing ethylene glycol as a main component, with higher dibasic acid or salt thereof and boric acid or ammonium salt thereof as solutes. A product resulting from an esterification reaction with an acid or boric acid does not hinder the movement of ions in the electrolytic solution, and can improve the withstand voltage while suppressing an increase in the specific resistance of the electrolytic solution.
Furthermore, since undecanoic γ-lactone has a high adsorptivity to electrode foil, it can efficiently carry out esterification reaction with higher dibasic acid and boric acid on the electrode foil. Can be improved.
以下、本発明の実施例を具体的に説明する。表1および表2に示す組成で電解液を調合し、30℃における比抵抗と85℃における火花発生電圧(電解液の耐電圧)を測定した。その結果を表1および表2に示す。 Examples of the present invention will be specifically described below. Electrolytic solutions were prepared with the compositions shown in Tables 1 and 2, and the specific resistance at 30 ° C. and the spark generation voltage at 85 ° C. (withstand voltage of the electrolytic solution) were measured. The results are shown in Tables 1 and 2.
表1および表2より、マンニトールを添加した従来例と比較して、本発明である実施例1〜17は、比抵抗上昇を抑制しながら、耐電圧の向上が図られていることが分かる。
ただし、ウンデカノイックγ−ラクトンの添加量が0.5wt%未満では、耐電圧の向上が確認できず(実施例1)、また、添加量2.0wt%を超えると比抵抗上昇が著しく、低比抵抗の用途に不向きとなる(実施例5)。
以上のことより、ウンデカノイックγ−ラクトンの添加量は、0.5〜2.0wt%の範囲が好ましいと言える。
From Table 1 and Table 2, it can be seen that, in comparison with the conventional example to which mannitol was added, Examples 1 to 17 according to the present invention have improved withstand voltage while suppressing an increase in specific resistance.
However, if the amount of undecanoic γ-lactone added is less than 0.5 wt%, the improvement of the withstand voltage cannot be confirmed (Example 1), and if the amount added exceeds 2.0 wt%, the specific resistance increases remarkably. It becomes unsuitable for the use of resistance (Example 5).
From the above, it can be said that the amount of undecanoic γ-lactone added is preferably in the range of 0.5 to 2.0 wt%.
なお、本発明の効果は、実施例に限定されるものではなく、先に記載した各種化合物を単独または複数溶解した電解液や、その他添加剤を加えた電解液、副溶媒を混合した電解液に用いても実施例と同等の効果があった。 The effects of the present invention are not limited to the examples, but an electrolytic solution in which the above-mentioned various compounds are dissolved alone or in plural, an electrolytic solution in which other additives are added, and an electrolytic solution in which a sub-solvent is mixed Even when used in the above, the same effect as in the example was obtained.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007146050A JP2008300689A (en) | 2007-05-31 | 2007-05-31 | Electrolytic solution for driving electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007146050A JP2008300689A (en) | 2007-05-31 | 2007-05-31 | Electrolytic solution for driving electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008300689A true JP2008300689A (en) | 2008-12-11 |
Family
ID=40173891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007146050A Pending JP2008300689A (en) | 2007-05-31 | 2007-05-31 | Electrolytic solution for driving electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008300689A (en) |
-
2007
- 2007-05-31 JP JP2007146050A patent/JP2008300689A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4637685B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4641455B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP2008300689A (en) | Electrolytic solution for driving electrolytic capacitor | |
JP4307093B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4589148B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4441400B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4541230B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2007134649A (en) | Electrolyte for driving electrolytic capacitor | |
JP3963775B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4641458B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP2005064421A (en) | Electrolyte for driving electrolytic capacitor | |
JP3976587B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4555152B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4441392B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4404761B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4523834B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4570983B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4090907B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4555164B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2007081135A (en) | Electrolyte for driving electrolytic capacitor | |
JP4555158B2 (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor | |
JP2006156708A (en) | Electrolytic solution for driving aluminum electrolytic capacitor | |
JP4637701B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP2006339202A (en) | Driving electrolyte of electrolytic capacitor | |
JP2009054691A (en) | Electrolytic solution for driving electrolytic capacitor |