JP2008299994A - Optical recording medium device - Google Patents

Optical recording medium device Download PDF

Info

Publication number
JP2008299994A
JP2008299994A JP2007146995A JP2007146995A JP2008299994A JP 2008299994 A JP2008299994 A JP 2008299994A JP 2007146995 A JP2007146995 A JP 2007146995A JP 2007146995 A JP2007146995 A JP 2007146995A JP 2008299994 A JP2008299994 A JP 2008299994A
Authority
JP
Japan
Prior art keywords
circuit
recording medium
optical recording
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007146995A
Other languages
Japanese (ja)
Inventor
Hideji Eguchi
秀治 江口
Haruhiko Omura
治彦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2007146995A priority Critical patent/JP2008299994A/en
Publication of JP2008299994A publication Critical patent/JP2008299994A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical recording medium device capable of preventing an increase in noise, a deterioration in a recording layer and erroneous elimination of data because information can be optimally reproduced in accordance with the classification of a changed medium D even though the number of layers and the reproducing speed of the optical recording medium D are changed. <P>SOLUTION: The optical recording medium device is provided with a laser driving circuit 26 for forming driving current Id obtained by superimposing high frequency current Irf on basic current Ib, a discrimination circuit 38 for discriminating the number of layers of a medium D on the basis of an output of a main detector 16, a control circuit 24 for outputting a control signal so as to change the current Ib in accordance with the number of layers and the reproducing speed of the medium D on the basis of an output that detects a portion of the laser beam and an output of the discrimination circuit, and a control part 40 for controlling a high frequency oscillator so as to change the amplitude of the current Irf in accordance with the number of layers of the medium D on the basis of the output of the discrimination circuit 38. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、単層ディスク及び2層ディスク等のように記録層の数(層数)が異なる光記録媒体に対してレーザ光を照射して情報の読み出しを行う光記録媒体装置に関する。   The present invention relates to an optical recording medium device that reads information by irradiating an optical recording medium having a different number of recording layers (number of layers) such as a single-layer disc and a dual-layer disc.

一般的に、大きな記憶容量を有する記録媒体として、DVD(Digital Versatile Disc)やBD(Blu−ray Disc)のような光ディスク(以下「光記録媒体」と記す)が知られており、これらの光記録媒体にあっては、その記憶容量を増大するために記録層を、一層のみならず、2層以上の複数層設けるようにした光記録媒体が提案されている。   In general, optical discs (hereinafter referred to as “optical recording media”) such as DVD (Digital Versatile Disc) and BD (Blu-ray Disc) are known as recording media having a large storage capacity. In order to increase the storage capacity of the recording medium, there has been proposed an optical recording medium in which not only one recording layer but also two or more recording layers are provided.

これに対応して、上記光記録媒体に対して情報を記録又は再生する光記録媒体再生装置にあっては、単層の記録層の光記録媒体に対しても、複数の記録層を有する光記録媒体に対しても各記録層に対して半導体レーザ素子からレーザ光を、光学系を介して照射し、記録層に記録された情報を再生する光記録媒体再生装置が提案されている。   Correspondingly, in an optical recording medium reproducing apparatus for recording or reproducing information with respect to the optical recording medium, an optical recording medium having a plurality of recording layers is also used for an optical recording medium having a single recording layer. An optical recording medium reproducing apparatus that reproduces information recorded on a recording layer by irradiating a recording medium with laser light from a semiconductor laser element via an optical system to each recording layer has been proposed.

しかしながら、実際には、半導体レーザ素子が光記録媒体に照射したレーザ光の一部が、光記録媒体の記録層で反射され、半導体レーザ素子に戻ると、この戻り光が半導体レーザ素子のパワー変動を引き起こすノイズとなり、再生した映像や音声信号に影響を及ぼす、という問題がある。なお、半導体レーザ素子のパワー変動は温度変動によっても生じてしまう。   However, in reality, when a part of the laser light irradiated to the optical recording medium by the semiconductor laser element is reflected by the recording layer of the optical recording medium and returns to the semiconductor laser element, the return light is changed in power of the semiconductor laser element. There is a problem that the reproduced video and audio signals are affected. The power fluctuation of the semiconductor laser element is also caused by temperature fluctuation.

そこで、上述したようなノイズを低減するために最も簡便で効果的な方法として半導体レーザ素子の基本電流に高周波電流を重畳する高周波重畳法が使用されている(例えば、特許文献1、2参照)。   Therefore, a high-frequency superposition method for superposing a high-frequency current on the basic current of the semiconductor laser element is used as the most simple and effective method for reducing the noise as described above (see, for example, Patent Documents 1 and 2). .

一方、複数種類の光記録媒体に応じてスナバー回路の定数を変更する方法が公開されている(例えば特許文献3参照)。
特開昭62−119743号公報 特開昭62−287445号公報 特開2005−346868号公報
On the other hand, a method for changing the constant of the snubber circuit according to a plurality of types of optical recording media has been disclosed (for example, see Patent Document 3).
JP-A-62-1119743 Japanese Patent Laid-Open No. 62-287445 JP-A-2005-346868

しかし、上述の特許文献1、2記載の従来技術では、半導体レーザ素子の基本電流に高周波電流を重畳してノイズの抑圧が図られるものの、重畳する高周波電流の振幅(レベル)を一定のままであるので、光記録媒体の層数が変わった場合には、高周波電流が重畳された駆動電流の波形、及びピ−クレベルが変化するため、高周波電流の重畳の効果が低下してノイズが増大したり、逆に、高周波電流の重畳レベルが大き過ぎてピークレベルが高くなり、記録層の劣化やデータの誤消去を起こしたりする、という問題があった。   However, in the conventional techniques described in Patent Documents 1 and 2 described above, noise is suppressed by superimposing a high-frequency current on the basic current of the semiconductor laser element, but the amplitude (level) of the superposed high-frequency current remains constant. Therefore, when the number of layers of the optical recording medium is changed, the waveform and peak level of the drive current on which the high-frequency current is superimposed change, so that the effect of superposition of the high-frequency current is reduced and noise is increased. On the contrary, there is a problem that the superposition level of the high-frequency current is too large and the peak level becomes high, which causes deterioration of the recording layer and erroneous erasure of data.

また、上述の特許文献3記載の従来技術では、スナバー回路の時定数を変更することにより高周波電流の重畳レベルを変化させるので、スナバー回路で消費する電流が増加して、不要輻射が増大するという問題があった。   Further, in the conventional technique described in Patent Document 3 described above, since the superposition level of the high frequency current is changed by changing the time constant of the snubber circuit, the current consumed by the snubber circuit is increased and unnecessary radiation is increased. There was a problem.

本発明は、かかる問題に鑑みなされたもので、光記録媒体の層数が変わった場合(即ち、単層の光記録媒体から複数層の光記録媒体へ、又、複数層の光記録媒体から単層の光記録媒体へと、光記録媒体の種別が変更された場合)でも、これによるノイズが増大するのを防止できると共に、光記録媒体の再生速度が低速(例えば、BD1倍速あるいはBD2倍速)又は高速(BD4倍速)に変わった場合でも、ノイズが増大するのを防止でき、記録層の劣化やデータの誤消去を防止することができる光記録媒体装置を提供することを目的とする。   The present invention has been made in view of such a problem. When the number of layers of the optical recording medium is changed (that is, from a single-layer optical recording medium to a multi-layer optical recording medium, or from a multi-layer optical recording medium). Even when the type of the optical recording medium is changed to a single-layer optical recording medium, it is possible to prevent an increase in noise caused by this, and the reproduction speed of the optical recording medium is low (for example, BD 1 × or BD 2 ×). ) Or high speed (BD 4 × speed), an object of the present invention is to provide an optical recording medium device that can prevent an increase in noise and prevent deterioration of a recording layer and erroneous erasure of data.

上記課題を解決するため、本発明は、下記(1)〜(3)の構成を有する光記録媒体装置を提供する。   In order to solve the above problems, the present invention provides an optical recording medium device having the following configurations (1) to (3).

(1)図1、図7に示すように、(直列接続した抵抗RsとコンデンサCsとで構成される)スナバー回路(図7)を用いてリンギングやオーバーシュートを抑制したレーザ駆動電流Idを半導体レーザ素子LDに供給し、前記半導体レーザ素子LDから出射するレーザ光を単層(1層)、又は複数層(2層)の記録層Dr(図1に示すのは単層の記録層Dr)を有する光記録媒体D上に照射して情報を読み出すための構成を有する光記録媒体装置A(図1)であって、
前記スナバー回路及び前記半導体レーザ素子LDを備えており、対物レンズ10を介して記録又は再生用レーザ光を出射するレーザ光出射回路(半導体レーザ素子及びスナバー回路)2と、
前記レーザ光出射回路2から出射するレーザ光を前記光記録媒体D上に照射することにより得た反射光を検出し、受光レベルに応じた主検出信号を出力する主光検出器16と、
前記主光検出器16から出力する主検出信号に基づいて、前記光記録媒体Dの記録層の層数を少なくとも(記録層の層数及び低速・高速の再生速度を)判別した判別信号を出力する層数判別回路38と、
前記レーザ光出射回路2から出射するレーザ光の一部を検出して副検出信号を出力する副光検出器18と、
前記層数判別回路38から出力する判別信号と前記副光検出器18から出力する副検出信号とに基づいて、前記半導体レーザ素子LDから出射する光の出力パワーが一定となるように前記レーザ光出射回路2の入力側へ駆動制御信号Saを出力する駆動制御信号出力回路(駆動制御回路)24と、
高周波発振器28を備えており、前記駆動制御信号出力回路24から出力する駆動制御信号Saに基づいて前記半導体レーザ素子LDを駆動するための基本電流Ibを形成し、形成した基本電流Ibに前記高周波発振器28から出力する高周波電流Irfを重畳して得たレーザ駆動電流Idを前記レーザ光出射回路2へ出力するレーザ駆動回路26と、
前記層数判別回路38から出力する判別信号に基づいて、前記高周波発振器28の出力電流振幅を変更するための制御信号を前記高周波発振器28へ出力する高周波発振器制御回路(高周波発振器制御部)40とを有しており、
前記層数判別回路38は、
前記光記録媒体Dを単層の光記録媒体と判別したときは、前記スナバー回路を作動しかつ前記高周波発振器28の出力電流を小振とするための判別信号を前記レーザ光出射回路2及び前記高周波発振器制御回路40へそれぞれ出力し、
また、前記光記録媒体Dを複数層でかつ低速再生の光記録媒体と判別したときには、前記スナバー回路を不作動としかつ前記高周波発振器28の出力電流を小振とするための判別信号を前記レーザ光出射回路2及び前記高周波発振器制御回路40へそれぞれ出力し、
さらに、前記光記録媒体Dを複数層でかつ前記低速再生よりも高速再生の光記録媒体と判別したときには、前記スナバー回路を不作動としかつ前記高周波発振器28の出力電流を(前記小振と比較して)大振とするための判別信号を前記レーザ光出射回路2及び高周波発振器制御回路40へそれぞれ出力することを特徴とする光記録媒体装置。
(1) As shown in FIG. 1 and FIG. 7, a laser drive current Id in which ringing and overshoot are suppressed using a snubber circuit (configured by a resistor Rs and a capacitor Cs connected in series) (FIG. 7) is a semiconductor. The laser light supplied to the laser element LD and emitted from the semiconductor laser element LD is a single layer (one layer) or a plurality of layers (two layers) of the recording layer Dr (shown in FIG. 1 is a single recording layer Dr). An optical recording medium device A (FIG. 1) having a configuration for reading information by irradiating on an optical recording medium D having
A laser light emitting circuit (semiconductor laser element and snubber circuit) 2 that includes the snubber circuit and the semiconductor laser element LD, and emits recording or reproducing laser light through the objective lens 10;
A main light detector 16 for detecting reflected light obtained by irradiating the optical recording medium D with laser light emitted from the laser light emitting circuit 2 and outputting a main detection signal according to the light reception level;
Based on a main detection signal output from the main light detector 16, a discrimination signal for determining at least the number of recording layers of the optical recording medium D (the number of recording layers and the low-speed / high-speed playback speed) is output. The number of layers discriminating circuit 38,
A secondary light detector 18 for detecting a part of the laser light emitted from the laser light emitting circuit 2 and outputting a secondary detection signal;
Based on the discrimination signal output from the layer number discrimination circuit 38 and the sub-detection signal output from the sub-photodetector 18, the laser beam is set so that the output power of the light emitted from the semiconductor laser element LD is constant. A drive control signal output circuit (drive control circuit) 24 for outputting a drive control signal Sa to the input side of the emission circuit 2;
A high-frequency oscillator 28 is provided, and a basic current Ib for driving the semiconductor laser element LD is formed based on a drive control signal Sa output from the drive control signal output circuit 24, and the high-frequency oscillator 28 is added to the formed basic current Ib. A laser drive circuit 26 for outputting a laser drive current Id obtained by superimposing the high-frequency current Irf output from the oscillator 28 to the laser beam emitting circuit 2;
A high-frequency oscillator control circuit (high-frequency oscillator control unit) 40 that outputs a control signal for changing the output current amplitude of the high-frequency oscillator 28 to the high-frequency oscillator 28 based on a determination signal output from the number-of-layers determination circuit 38; Have
The layer number discriminating circuit 38
When the optical recording medium D is determined as a single-layer optical recording medium, a determination signal for operating the snubber circuit and reducing the output current of the high-frequency oscillator 28 is sent to the laser light emitting circuit 2 and the Each output to the high frequency oscillator control circuit 40,
When the optical recording medium D is discriminated as an optical recording medium having a plurality of layers and being reproduced at a low speed, a discrimination signal for deactivating the snubber circuit and reducing the output current of the high-frequency oscillator 28 is sent to the laser. Output to the light emitting circuit 2 and the high-frequency oscillator control circuit 40, respectively.
Further, when the optical recording medium D is determined to be an optical recording medium having a plurality of layers and reproducing at a higher speed than the low-speed reproducing, the snubber circuit is deactivated and the output current of the high-frequency oscillator 28 is compared with the small oscillation. An optical recording medium device characterized in that a discrimination signal for large oscillation is output to the laser beam emitting circuit 2 and the high-frequency oscillator control circuit 40, respectively.

(2)図1に示すように、前記高周波発振器制御回路40は、
前記層数判別回路38から出力する判別信号に基づいてオン・オフするスイッチング手段(スイッチングトランジスタTr)と、
前記スイッチング手段Trのオン・オフにより抵抗値が変わり、前記高周波発振器28から出力される前記高周波電流Irfの振幅が前記光記録媒体Dの層数に応じ変化するよう制御する(抵抗Rf,Ra1,Ra2から構成された)高周波電流振幅切換手段とを有することを特徴とする請求項1記載の光記録媒体装置。
(2) As shown in FIG. 1, the high-frequency oscillator control circuit 40 includes:
Switching means (switching transistor Tr) that is turned on / off based on a discrimination signal output from the layer number discrimination circuit 38;
The resistance value is changed by turning on / off the switching means Tr, and the amplitude of the high-frequency current Irf output from the high-frequency oscillator 28 is controlled to change according to the number of layers of the optical recording medium D (resistances Rf, Ra1, 2. The optical recording medium device according to claim 1, further comprising high-frequency current amplitude switching means (consisting of Ra2).

(3)図7に示すように、前記レーザ光出射回路2は、
前記スナバー回路を制御する(スイッチングトランジスタTr1,Tr2から構成された)スナバー回路制御部を備えており、
前記スナバー回路制御部は、前記層数判別回路38から出力する判別信号(スナバーON/OFF信号)に基づいてオン・オフするスイッチング手段(スイッチングトランジスタ)Tr2,Tr3と、
前記スイッチング手段Tr2,Tr3のオン・オフにより、抵抗RsとコンデンサCsで構成される前記スナバー回路が前記半導体レーザ素子LDと並列に接続され、前記高周波発振器28から出力されて前記半導体レーザ素子LDに流れる前記高周波電流Irfの振幅が変化するよう制御する(抵抗RsとコンデンサCsから構成された)高周波電流振幅切換手段とを有することを特徴とする請求項1記載の光記録媒体装置。
(3) As shown in FIG.
A snubber circuit control unit (consisting of switching transistors Tr1 and Tr2) for controlling the snubber circuit;
The snubber circuit control unit includes switching means (switching transistors) Tr2 and Tr3 that are turned on / off based on a determination signal (snubber ON / OFF signal) output from the layer number determination circuit 38;
When the switching means Tr2 and Tr3 are turned on / off, the snubber circuit composed of a resistor Rs and a capacitor Cs is connected in parallel with the semiconductor laser element LD, and is output from the high-frequency oscillator 28 to the semiconductor laser element LD. 2. The optical recording medium device according to claim 1, further comprising high frequency current amplitude switching means (configured by a resistor Rs and a capacitor Cs) for controlling the amplitude of the flowing high frequency current Irf to change.

本発明に係る光記録媒体装置によれば、基本電流に高周波発振器からの高周波電流を重畳して駆動電流として半導体レーザ素子に出力する際、副光検出器からの出力と層数判別回路の出力とに基づいて基本電流が光記録媒体の層数に応じ変化するように制御する(複数層(2層)・高速再生対応の光記録媒体であると判別したときのみ、前記基本電流に前記高周波電流を重畳する旨の制御を行う)と共に、層数判別回路の出力に基づいて高周波電流の振幅が光記録媒体の層数及び再生速度に応じ変化するように制御する(単層の光記録媒体であると判別したときにはスナバー回路を半導体レーザ素子に並列接続状態とし、複数層の光記録媒体であると判別したときにはスナバー回路を半導体レーザ素子に並列接続状態としない旨の制御を行う)ようにしたので、情報の読み出し時のノイズが増大するのを防止できる共に、記録層の劣化やデータの誤消去を防止することができる。   According to the optical recording medium device of the present invention, when the high-frequency current from the high-frequency oscillator is superimposed on the basic current and output as the drive current to the semiconductor laser element, the output from the sub-light detector and the output of the layer number discrimination circuit Based on the above, the basic current is controlled to change according to the number of layers of the optical recording medium (only when it is determined that the optical recording medium is compatible with multiple layers (two layers) and high-speed reproduction). And control so that the amplitude of the high-frequency current changes according to the number of layers of the optical recording medium and the reproducing speed based on the output of the layer number discrimination circuit (single layer optical recording medium) When it is determined that the snubber circuit is in parallel connection with the semiconductor laser element, control is performed so that the snubber circuit is not in parallel connection with the semiconductor laser element when it is determined that the optical recording medium is a multi-layer optical recording medium. Since the way, both possible to prevent the noise at the time of reading of information is increased, it is possible to prevent erroneous erasure of deterioration and the data of the recording layer.

また、スナバー回路を半導体レーザ素子に並列接続状態とする制御を行うことにより、高周波発振器からの最小高周波電流よりもさらにノイズを低減することが可能であり、これによって対応できる光記録媒体の種類を拡大できる。   In addition, by controlling the snubber circuit in parallel connection with the semiconductor laser element, it is possible to further reduce noise than the minimum high-frequency current from the high-frequency oscillator. Can be expanded.

以下に、本発明に係る光記録媒体装置の一実施の形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of an optical recording medium device according to the present invention will be described in detail with reference to the accompanying drawings.

図1は,本発明に係る光記録媒体装置の一実施の形態を示す再生系ブロック構成図である。   FIG. 1 is a block diagram of a reproducing system showing an embodiment of an optical recording medium device according to the present invention.

図1に示す光記録媒体装置Aにおいて、DはDVDやブルーレーディスク(以下「BD」と記す)等の光記録媒体、2は半導体レーザ素子及びスナバー回路、3,4はコリメータレンズ、6はビームスプリッタであり、このビームスプリッタ6はレーザ光Lに対して半透明なハーフミラーとプリズムとを組み合わせた光学部品である。   In the optical recording medium apparatus A shown in FIG. 1, D is an optical recording medium such as a DVD or a Blu-ray disc (hereinafter referred to as “BD”), 2 is a semiconductor laser element and a snubber circuit, 3 and 4 are collimator lenses, and 6 is a beam. The beam splitter 6 is an optical component that combines a semi-transparent half mirror and a prism with respect to the laser light L.

また、8は1/4波長板、10は対物レンズ、12,14は集光レンズ、16は主光検出器、18は副光検出器、20,22はアンプ、24は駆動制御回路(APC;Automatic Power Control)、26はレーザ駆動回路、28は高周波発振器、30は偏光ビームスプリッタ、32はコリメータレンズ4を移動させる駆動モータ、34は回折格子、36は信号再生系である。この信号再生系36には主光検出器16からの出力に基づいて再生信号を形成する再生信号処理回路やトラッキングエラー信号を形成するサーボ制御回路等(いずれも図示せず)が含まれている。また38は光記録媒体の層数を、例えば単層、あるいは2層を判別する層数判別回路、40は高周波発振器制御部である。   8 is a quarter wave plate, 10 is an objective lens, 12 and 14 are condensing lenses, 16 is a main light detector, 18 is a secondary light detector, 20 and 22 are amplifiers, and 24 is a drive control circuit (APC). Automatic Power Control), 26 is a laser drive circuit, 28 is a high-frequency oscillator, 30 is a polarization beam splitter, 32 is a drive motor for moving the collimator lens 4, 34 is a diffraction grating, and 36 is a signal reproduction system. The signal reproduction system 36 includes a reproduction signal processing circuit that forms a reproduction signal based on an output from the main light detector 16, a servo control circuit that forms a tracking error signal, and the like (none of which are shown). . Reference numeral 38 denotes a layer number discriminating circuit for discriminating the number of layers of the optical recording medium, for example, a single layer or two layers, and 40 denotes a high frequency oscillator control unit.

本実施の形態においては、高周波発振器制御部40は、高周波発振器28が発生する高周波電流の周波数を決定する抵抗Rfと、この高周波電流の振幅(レベル)を決定する振幅設定用の抵抗手段50とを有している。この抵抗手段50の抵抗値と高周波発振器28が発生する高周波電流の振幅とは概ね反比例の関係となるように設定されている。従って、抵抗値が大きくなれば高周波電流の振幅は小さくなり(小振)、逆に抵抗値が小さくなれば高周波電流の振幅は大きくなる(大振)。   In the present embodiment, the high-frequency oscillator control unit 40 includes a resistor Rf that determines the frequency of the high-frequency current generated by the high-frequency oscillator 28, and an amplitude setting resistor unit 50 that determines the amplitude (level) of the high-frequency current. have. The resistance value of the resistance means 50 and the amplitude of the high-frequency current generated by the high-frequency oscillator 28 are set so as to have an inversely proportional relationship. Therefore, as the resistance value increases, the amplitude of the high-frequency current decreases (small swing). Conversely, when the resistance value decreases, the amplitude of the high-frequency current increases (large swing).

ここで、抵抗手段50は、第1の抵抗Ra1と、第2の抵抗Ra2の並列接続回路よりなり、更に第2の抵抗Ra2にはオン・オフ制御されるスイッチング素子である例えば、スイッチングトランジスタTrが直列に接続されている。   Here, the resistance means 50 includes a parallel connection circuit of a first resistor Ra1 and a second resistor Ra2, and the second resistor Ra2 is a switching element that is on / off controlled. For example, the switching transistor Tr Are connected in series.

そして、本実施の形態の場合、スイッチングトランジスタTrは、層数判別回路38からの信号によりオン・オフ制御される。後述するように、例えば2層の光記録媒体Dに記録された情報を高速再生(例えば「BD4倍速」再生)する場合にはオン制御され、また単層の光記録媒体Dに記録された情報を再生する場合及び2層の光記録媒体Dに記録された情報を低速再生(例えば「BD1倍速」あるいは「BD2倍速」再生)する場合にはオフ制御される。   In the case of the present embodiment, the switching transistor Tr is on / off controlled by a signal from the layer number discrimination circuit 38. As will be described later, for example, when information recorded on the two-layer optical recording medium D is reproduced at high speed (for example, “BD 4 × speed reproduction”), the information recorded on the single-layer optical recording medium D is controlled. And when information recorded on the two-layer optical recording medium D is reproduced at a low speed (for example, “BD 1 × speed” or “BD 2 × speed” playback).

そして、半導体レーザ素子及びスナバー回路2を構成する半導体レーザ素子LDからのレーザ光Lの光路途中に設けられた各部材により光学系42が構成され、また、対物レンズ10を主体とする部分が光ピックアップ44となる。   The optical system 42 is constituted by each member provided in the optical path of the laser light L from the semiconductor laser element LD that constitutes the semiconductor laser element and the snubber circuit 2, and the part mainly composed of the objective lens 10 is the light. The pickup 44 becomes.

図7はスナバー回路の回路例を示す図である。   FIG. 7 is a diagram illustrating a circuit example of the snubber circuit.

図7に示すように、抵抗RsとコンデンサCsとの直列接続で構成される回路をスナバー回路と呼ぶ。スナバー回路は回路配線及び半導体レーザLDの寄生インダクタンスにより発生する記録時のレーザ駆動電流波形のリンギングやオーバーシュートを抑制する回路として知られている。   As shown in FIG. 7, a circuit configured by connecting a resistor Rs and a capacitor Cs in series is called a snubber circuit. The snubber circuit is known as a circuit that suppresses ringing and overshoot of a laser drive current waveform during recording, which is generated by circuit wiring and the parasitic inductance of the semiconductor laser LD.

スイッチング素子である例えば、スイッチングトランジスタTr2,Tr3は、層数判別回路38からのスナバーON/OFF信号によりオン・オフ制御される。例えば単層の光記録媒体Dに記録された情報を再生する場合にはオン制御され、2層の光記録媒体Dに記録された情報を再生する場合にはオフ制御される。スイッチングトランジスタTr2,Tr3がオン制御されると、スナバー回路は半導体レーザ素子LDと並列に接続される。スナバー回路には高周波成分の電流が流れるので、高周波発振器28から駆動される電流が一定の場合、半導体レーザ素子及びスナバー回路2に流れる高周波電流はスナバー回路で吸収される分だけ減衰することになる。   For example, the switching transistors Tr <b> 2 and Tr <b> 3 that are switching elements are ON / OFF controlled by a snubber ON / OFF signal from the layer number discrimination circuit 38. For example, when information recorded on the single-layer optical recording medium D is reproduced, the control is turned on. When information recorded on the two-layer optical recording medium D is reproduced, the control is turned off. When the switching transistors Tr2 and Tr3 are turned on, the snubber circuit is connected in parallel with the semiconductor laser element LD. Since a high-frequency component current flows through the snubber circuit, when the current driven from the high-frequency oscillator 28 is constant, the high-frequency current flowing through the semiconductor laser element and the snubber circuit 2 is attenuated by the amount absorbed by the snubber circuit. .

次に、上記した本発明装置の再生系ブロック構成の動作を説明する。   Next, the operation of the reproduction system block configuration of the above-described apparatus of the present invention will be described.

半導体レーザ素子及びスナバー回路2から出力されたレーザ光Lは、発散光を平行光にするコリメータレンズ3及び光ビームを3つに分割する回折格子34を介して偏光ビームスプリッタ30に入射し、この貼り合わせ面で所定の偏光が対物レンズ10に向けて反射される。この反射光は、コリメータレンズ4、ビームスプリッタ6、直線偏光を円偏光に変換する1/4波長板8及び対物レンズ10を通って光記録媒体Dの記録層Dr表面に集光される。ここで、光記録媒体Dが2層光記録媒体の場合には、その記録層(光記録媒体表面から見て奥の記録層(2層目記録層))までの基板厚の差により対物レンズ10において球面収差が発生するので、駆動モータ32を駆動してコリメータレンズ4の位置を移動することによって球面収差を補正する。   The laser light L output from the semiconductor laser element and the snubber circuit 2 is incident on the polarization beam splitter 30 through the collimator lens 3 that converts the divergent light into parallel light and the diffraction grating 34 that splits the light beam into three. Predetermined polarized light is reflected toward the objective lens 10 on the bonding surface. The reflected light is condensed on the surface of the recording layer Dr of the optical recording medium D through the collimator lens 4, the beam splitter 6, the quarter wavelength plate 8 that converts linearly polarized light into circularly polarized light, and the objective lens 10. Here, in the case where the optical recording medium D is a two-layer optical recording medium, the objective lens is determined by the difference in the substrate thickness to the recording layer (the recording layer (second recording layer) at the back as viewed from the optical recording medium surface). Since spherical aberration occurs at 10, the spherical aberration is corrected by moving the position of the collimator lens 4 by driving the drive motor 32.

そして、光記録媒体Dに照射されたレーザ光は、光記録媒体D上で反射され、この反射光は、対物レンズ10を介して1/4波長板8に入射される。1/4波長板8に入射した反射光は、偏波面が照射時のp波に直交する直線偏光のs波に変換されて、偏光ビームスプリッタ30に入射される。偏光ビームスプリッタ30に入射した直線偏光は、s波であるので透過して、集光レンズ14に入射され、ここで集光されて主光検出器16で受光される。主光検出器16で受光された光は、その受光レベルに応じたレベルの電気信号に変換され、アンプ20を介して再生信号処理回路やサーボ制御回路を有する信号再生系36に供給され、信号再生系36において、記録情報信号の検出、及びフォーカスエラー信号及びトラッキングエラー信号の検出等に使用される。   The laser light applied to the optical recording medium D is reflected on the optical recording medium D, and this reflected light is incident on the quarter-wave plate 8 through the objective lens 10. The reflected light incident on the quarter wavelength plate 8 is converted into linearly polarized s wave whose polarization plane is orthogonal to the p wave at the time of irradiation, and is incident on the polarization beam splitter 30. The linearly polarized light that has entered the polarization beam splitter 30 is an s wave, so it is transmitted and incident on the condensing lens 14, where it is condensed and received by the main light detector 16. The light received by the main light detector 16 is converted into an electric signal having a level corresponding to the received light level, and is supplied to a signal reproduction system 36 having a reproduction signal processing circuit and a servo control circuit via an amplifier 20. In the reproduction system 36, it is used for detection of a recording information signal and detection of a focus error signal and a tracking error signal.

そして、対物レンズ10は、図示しないアクチェータで保持され、アクチュエータ内の図示しないフォーカスコイル、トラッキングコイルに上記フォーカスエラー信号及びトラッキングエラー信号をそれぞれ流すことにより、対物レンズ10をフォーカシング方向及びトラッキング方向に駆動して光記録媒体Dのトラックを追従するようになっている。   The objective lens 10 is held by an actuator (not shown), and the objective lens 10 is driven in the focusing direction and the tracking direction by flowing the focus error signal and the tracking error signal through a focus coil and a tracking coil (not shown) in the actuator, respectively. Thus, it follows the track of the optical recording medium D.

また、アンプ20を介した主光検出器16からの出力に基づいて層数判別回路38は、光記録媒体Dの種類、例えば記録層を何層有しているかを判別し、この結果を高周波発振器制御部40および駆動制御回路24へ出力する。尚、この判別処理は、光記録媒体Dの再生に先立って行われる。   Further, based on the output from the main light detector 16 via the amplifier 20, the number-of-layers discrimination circuit 38 discriminates the type of the optical recording medium D, for example, how many recording layers it has, and uses this result as a high frequency signal. Output to the oscillator control unit 40 and the drive control circuit 24. This discrimination process is performed prior to reproduction of the optical recording medium D.

そして、高周波発振器制御部40は、後述するように、光記録媒体Dの記録層の数に応じてレーザ駆動回路26の高周波発振器28を制御する。   The high frequency oscillator control unit 40 controls the high frequency oscillator 28 of the laser drive circuit 26 according to the number of recording layers of the optical recording medium D, as will be described later.

具体的には次の通りである。即ち、層数判別回路38は、光記録媒体Dを単層の光記録媒体と判別したときは、スナバー回路を作動しかつ高周波発振器28の出力電流を小振とするための判別信号を、半導体レーザ素子及びスナバー回路2、高周波発振器制御部40へそれぞれ出力する。   Specifically, it is as follows. That is, when the optical disc recording medium D is discriminated as a single-layer optical recording medium, the layer number discriminating circuit 38 generates a discriminating signal for operating the snubber circuit and making the output current of the high-frequency oscillator 28 small. Output to the laser element and snubber circuit 2 and the high-frequency oscillator controller 40, respectively.

また、層数判別回路38は、光記録媒体Dを複数層でかつ低速再生の光記録媒体と判別したときには、スナバー回路を不作動としかつ高周波発振器28の出力電流を小振とするための判別信号を、半導体レーザ素子及びスナバー回路2、高周波発振器制御部40へそれぞれ出力する。   Further, when the optical recording medium D is determined to be a multi-layer and low-speed reproducing optical recording medium, the number-of-layers determination circuit 38 determines that the snubber circuit is disabled and the output current of the high-frequency oscillator 28 is reduced. The signals are output to the semiconductor laser element and snubber circuit 2 and the high-frequency oscillator control unit 40, respectively.

さらに、層数判別回路38は、光記録媒体Dを複数層でかつ低速再生よりも高速再生の光記録媒体と判別したときには、スナバー回路を不作動としかつ高周波発振器28の出力電流を(前記小振と比較して)大振とするための判別信号を、、半導体レーザ素子及びスナバー回路2、高周波発振器制御部40へそれぞれ出力する。   Further, when the layer number discriminating circuit 38 discriminates the optical recording medium D as an optical recording medium having a plurality of layers and reproducing at a speed higher than that at a low speed, the snubber circuit is deactivated and the output current of the high-frequency oscillator 28 is set to A discrimination signal for making a large oscillation (compared with oscillation) is output to the semiconductor laser element and snubber circuit 2 and the high-frequency oscillator control unit 40, respectively.

ところで、対物レンズ10に向かうレーザ光Lの一部は、ビームスプリッタ6で取り出され、この取り出されたレーザ光は、集光レンズ12を介して副光検出器18で検出される。副光検出器18で検出された検出信号は、アンプ22で増幅されて、駆動制御回路24へ入力される。   By the way, a part of the laser beam L directed to the objective lens 10 is extracted by the beam splitter 6, and the extracted laser beam is detected by the auxiliary light detector 18 through the condenser lens 12. The detection signal detected by the auxiliary light detector 18 is amplified by the amplifier 22 and input to the drive control circuit 24.

駆動制御回路24では、後述するように副光検出器18で検出されアンプ22で増幅された検出信号と、層数判別回路38からの光記録媒体Dの記録層の数を示す信号とに応じて、レーザ駆動回路26の増幅器26aから出力される基本電流を制御する。   In the drive control circuit 24, the detection signal detected by the sub-light detector 18 and amplified by the amplifier 22 as described later, and the signal indicating the number of recording layers of the optical recording medium D from the layer number discrimination circuit 38 are used. Thus, the basic current output from the amplifier 26a of the laser drive circuit 26 is controlled.

詳しくは、駆動制御回路24では、副光検出器18で検出されアンプ22で増幅された検出信号に基づいて、半導体レーザ素子及びスナバー回路2からの出力パワーが一定になるように、レーザ駆動回路26に対して駆動制御信号Saを出力する。このレーザ駆動回路26は、駆動制御信号Saに基づいて増幅器26aによりレーザ素子駆動用の基本電流Ibを形成し、この基本電流Ibに高周波発振器28で発生した高周波電流Irfを重畳することによって駆動電流Idを形成し、この駆動電流Idによって半導体レーザ素子及びスナバー回路2を駆動している。その際、本実施の形態の駆動制御回路24は、層数判別回路38からの光記録媒体Dの記録層の数を示す信号に応じて、レーザ駆動回路26の増幅器26aから出力される基本電流Ibを制御する。   Specifically, in the drive control circuit 24, the laser drive circuit is configured so that the output power from the semiconductor laser element and the snubber circuit 2 is constant based on the detection signal detected by the sub-light detector 18 and amplified by the amplifier 22. The drive control signal Sa is output to 26. The laser drive circuit 26 forms a basic current Ib for driving the laser element by an amplifier 26a based on the drive control signal Sa, and superimposes the high-frequency current Irf generated by the high-frequency oscillator 28 on the basic current Ib, thereby driving the drive current. Id is formed, and the semiconductor laser element and the snubber circuit 2 are driven by this drive current Id. At this time, the drive control circuit 24 of the present embodiment responds to the signal indicating the number of recording layers of the optical recording medium D from the layer number discrimination circuit 38, and the basic current output from the amplifier 26a of the laser drive circuit 26. Ib is controlled.

ここで、高周波発振器28を有するレーザ駆動回路26で形成される高周波電流や駆動電流について、図2、図3を参照して具体的に説明する。   Here, a high-frequency current and a drive current formed by the laser drive circuit 26 having the high-frequency oscillator 28 will be specifically described with reference to FIGS.

図2は、記録再生型2層高速対応の光記録媒体Dに対する高周波電流とレーザ発光波形との関係を示す図である。即ち、図2は、半導体レーザ素子及びスナバー回路2に供給するレーザ光射出時の駆動電流Idと光記録媒体Dの記録層Dr表面における照射レーザパワー特性(以下「ディスク面レーザパワー特性」と記す)との関係、駆動電流Idを形成する基本電流Ibと高周波電流Irfとレーザ発光波形との関係を、それぞれ示している。   FIG. 2 is a diagram showing the relationship between the high-frequency current and the laser emission waveform for the recording / reproducing type two-layer high-speed optical recording medium D. That is, FIG. 2 shows the drive current Id at the time of laser light emission supplied to the semiconductor laser element and the snubber circuit 2 and the irradiation laser power characteristic on the surface of the recording layer Dr of the optical recording medium D (hereinafter referred to as “disk surface laser power characteristic”). ), And the relationship between the basic current Ib and the high-frequency current Irf forming the drive current Id and the laser emission waveform.

図3は、記録再生型単層高速又は記録再生型2層低速対応の光記録媒体Dに対する高周波電流とレーザ発光波形との関係を示す図である。即ち、図3は、半導体レーザ素子及びスナバー回路2に供給するレーザ光射出時の駆動電流Idとディスク面レーザパワー特性との関係、駆動電流Idを形成する基本電流Ibと高周波電流Irfとレーザ発光波形との関係を、それぞれ示している。   FIG. 3 is a diagram showing the relationship between the high-frequency current and the laser emission waveform for the optical recording medium D that supports recording / reproducing single-layer high-speed or recording / reproducing double-layer low speed. That is, FIG. 3 shows the relationship between the drive current Id at the time of emitting the laser beam supplied to the semiconductor laser element and the snubber circuit 2 and the disk surface laser power characteristics, the basic current Ib that forms the drive current Id, the high-frequency current Irf, and the laser emission. The relationship with the waveform is shown respectively.

図2及び図3に示すように、駆動電流Idは、直流電流である基本電流Ibに高周波電流Irfを重畳することにより形成される。即ち、基本電流Ibが高周波電流Irfの中心レベルとなる。尚、ここでは高周波電流Irfの周波数として、例えば約400MHzが用いられている。そして、半導体レーザ素子LDは、閾値電流Ith以上でレーザ光を出力し、その時のレーザ発光波形は、図2及び図3に示すように、半波整流波形に似た波形となる。   As shown in FIGS. 2 and 3, the drive current Id is formed by superimposing the high-frequency current Irf on the basic current Ib which is a direct current. That is, the basic current Ib becomes the center level of the high-frequency current Irf. Here, for example, about 400 MHz is used as the frequency of the high-frequency current Irf. The semiconductor laser element LD outputs laser light at a threshold current Ith or more, and the laser emission waveform at that time is a waveform similar to a half-wave rectification waveform as shown in FIGS.

半導体レーザ素子及びスナバー回路2のレーザ出力パワー駆動制御に関して説明すると、図1において、副光検出器18で受光された光は、その平均受光量に応じたレベルの電気信号に変換され、駆動制御回路24を介して駆動制御信号Saとなってレーザ駆動回路26に帰還される。その際、上述したように、駆動制御回路24は、光記録媒体Dの記録層Drの数に応じてレーザ駆動回路26の増幅器26aから出力される基本電流Ibを制御する。   The laser output power drive control of the semiconductor laser element and the snubber circuit 2 will be described. In FIG. 1, the light received by the sub-light detector 18 is converted into an electric signal having a level corresponding to the average amount of received light, and drive control is performed. A drive control signal Sa is fed back to the laser drive circuit 26 via the circuit 24. At this time, as described above, the drive control circuit 24 controls the basic current Ib output from the amplifier 26a of the laser drive circuit 26 according to the number of recording layers Dr of the optical recording medium D.

レーザ駆動回路26では、駆動制御回路24からの駆動制御信号Saに基づいて基本電流Ibが形成されることにより出力パワーが調整される。これにより、半導体レーザ素子及びスナバー回路2から射出されるレーザ光の出力パワーは、光記録媒体Dの記録層Drの数に応じて安定化された状態になる。   The laser drive circuit 26 adjusts the output power by forming the basic current Ib based on the drive control signal Sa from the drive control circuit 24. As a result, the output power of the laser light emitted from the semiconductor laser element and the snubber circuit 2 is stabilized according to the number of recording layers Dr of the optical recording medium D.

そして、本実施の形態では、前述したように半導体レーザ素子及びスナバー回路2へ一部のレーザ光が戻ることによるレーザノイズの発生を抑制するために、基本電流Ibに高周波電流Irfを重畳して実際の駆動電流Idを形成する。   In the present embodiment, as described above, the high-frequency current Irf is superimposed on the basic current Ib in order to suppress the generation of laser noise caused by a part of the laser light returning to the semiconductor laser element and the snubber circuit 2. An actual drive current Id is formed.

ここで、重畳される高周波電流Irfの周波数とレベル(振幅)とは、高周波発振器制御部40に設けられた、例えば抵抗Rfと振幅設定用の抵抗手段50との値で設定されることになる。即ち、抵抗Rfは高周波電流Irfの周波数を決定し、抵抗Ra1,Ra2からなる抵抗手段50がレベルを決定する。そして、半導体レーザ素子LDは、図2に示すように、閾値電流Ith以下ではほとんど発光しない。よって、図2に示すように、電流−光出力(ディスク面レーザパワー)の特性は、閾値電流Ithからほぼ線形に保持され、図示しない定格電流でその線形性は失われる。   Here, the frequency and level (amplitude) of the superimposed high-frequency current Irf are set by the values of, for example, the resistor Rf and the amplitude setting resistor means 50 provided in the high-frequency oscillator control unit 40. . That is, the resistor Rf determines the frequency of the high-frequency current Irf, and the resistance means 50 including the resistors Ra1 and Ra2 determines the level. As shown in FIG. 2, the semiconductor laser element LD hardly emits light below the threshold current Ith. Therefore, as shown in FIG. 2, the characteristics of current-optical output (disk surface laser power) are maintained almost linear from the threshold current Ith, and the linearity is lost at a rated current (not shown).

半導体レーザ素子LDは、基本電流Ibに高周波電流Irfを重畳することにより形成された駆動電流Idで駆動、即ち、基本電流Ibの電流値を中心に正負に振動する高周波電流Irfで駆動され、閾値電流Ithを超える電流に対して半導体レーザ素子LDは発光し、閾値電流Ith以下の電流に対して半導体レーザ素子LDは消灯するので、結果的に図2に示すような半波整流波形のレーザ発光波形が形成される。尚、Prは光記録媒体D面(記録層Dr表面)へのレーザパワーの平均値である。   The semiconductor laser element LD is driven by the drive current Id formed by superimposing the high-frequency current Irf on the basic current Ib, that is, driven by the high-frequency current Irf that vibrates positively and negatively around the current value of the basic current Ib. The semiconductor laser element LD emits light when the current exceeds the current Ith, and the semiconductor laser element LD turns off when the current is less than or equal to the threshold current Ith. As a result, laser emission with a half-wave rectified waveform as shown in FIG. A waveform is formed. In addition, Pr is an average value of the laser power to the optical recording medium D surface (recording layer Dr surface).

図2に示す例では、基本電流Ibに重畳する高周波電流Irfのピーク・ツウ・ピークパワーを52mAとし、記録再生型2層高速対応の光記録媒体Dの再生パワーとして、ディスク面レーザパワーの平均値Prを0.8mWとしている。高周波電流重畳成分のディスク面ピークパワーは2.6mWであり、記録層が2層の場合は、ピ−クパワーが高過ぎることは無いので、光記録媒体Dにおける記録層の劣化やデータの誤消去は起こらないし、ピ−クパワーが低過ぎることも無いので、高周波電流の重畳の効果が低下して、ノイズが増大することもない。   In the example shown in FIG. 2, the peak-to-peak power of the high-frequency current Irf superimposed on the basic current Ib is set to 52 mA, and the reproduction power of the optical recording medium D corresponding to the recording / reproducing type two-layer high speed is the average of the disk surface laser power. The value Pr is set to 0.8 mW. The disk surface peak power of the high-frequency current superimposing component is 2.6 mW, and when the recording layer is two layers, the peak power is not too high. Therefore, the recording layer in the optical recording medium D is deteriorated or data is erased erroneously. Does not occur, and the peak power is not too low, so that the effect of superposition of the high-frequency current is reduced and noise is not increased.

これに対し、記録層が2層低速又は単層高速対応の光記録媒体Dの場合は、図3に示すように、光記録媒体Dの再生パワーとして、ディスク面レーザパワーの平均値Prは0.5mWに設定されるため、基本電流Ibは駆動制御回路24により制御されて、2層高速の場合よりも低下するが、抵抗手段50の値が固定値とすると、重畳すべき約400MHzの高周波電流Irfの振幅は、2層高速対応の光記録媒体Dの場合(図2)と同一である。   On the other hand, when the recording layer is an optical recording medium D that supports two-layer low speed or single-layer high speed, the average value Pr of the disk surface laser power is 0 as the reproduction power of the optical recording medium D, as shown in FIG. Since the basic current Ib is controlled by the drive control circuit 24 and is lower than that in the case of the two-layer high speed, if the value of the resistance means 50 is a fixed value, the high frequency of about 400 MHz to be superimposed is set. The amplitude of the current Irf is the same as in the case of the optical recording medium D corresponding to the two-layer high speed (FIG. 2).

こうして半導体レーザ素子LDは、基本電流Ibに高周波電流Irfが重畳された駆動電流Idによって駆動され、駆動電流Idが閾値電流Ithを超える場合に発光し、閾値電流Ith以下の場合に消灯するので、図3に示すレーザ発光波形が形成される。   Thus, the semiconductor laser element LD is driven by the drive current Id in which the high-frequency current Irf is superimposed on the basic current Ib, emits light when the drive current Id exceeds the threshold current Ith, and turns off when it is less than or equal to the threshold current Ith. The laser emission waveform shown in FIG. 3 is formed.

図3に示す光記録媒体Dのように、記録層が単層高速又は2層低速光記録媒体の場合、その基本電流Ibが図2に示す2層高速の光記録媒体に印加する基本電流Ibより低いのに、同一振幅の高周波電流Irfが重畳されているので、図3に示す高周波重畳パルス幅W2は、図2に示した高周波重畳パルス幅W1に比べて狭くなり、高周波重畳成分の平均パワーPrに対する高周波重畳成分のピークパワー比が高くなる。   When the recording layer is a single-layer high-speed or double-layer low-speed optical recording medium like the optical recording medium D shown in FIG. 3, the basic current Ib applied to the double-layer high-speed optical recording medium shown in FIG. Since the high-frequency current Irf having the same amplitude is superimposed even though it is lower, the high-frequency superimposed pulse width W2 shown in FIG. 3 is narrower than the high-frequency superimposed pulse width W1 shown in FIG. The peak power ratio of the high frequency superimposed component to the power Pr is increased.

つまり、図2に示す2層高速の光記録媒体の場合、平均パワーPrが0.8mWで、高周波重畳成分=高周波電流Irfのディスク面ピークパワーが2.6mWで、高周波重畳成分の平均パワーPrに対するピークパワーの比が3.25であるのに対し、図3に示す単層高速又は2層低速光記録媒体の場合、高周波重畳成分の平均パワーPrが0.5mWで、高周波重畳成分のディスク面ピークパワーは2.1mWで、周波重畳成分の平均パワーPrに対するピークパワーの比が4.2となり、この結果、図3に示す光記録媒体の場合の方が図2に示す光記録媒体と比較して、高周波重畳成分の平均パワーPrに対するピークパワーの比が高くなる。   That is, in the case of the two-layer high-speed optical recording medium shown in FIG. 2, the average power Pr is 0.8 mW, the high-frequency superimposed component = the disk surface peak power of the high-frequency current Irf is 2.6 mW, and the average power Pr of the high-frequency superimposed component. In the case of the single-layer high-speed or double-layer low-speed optical recording medium shown in FIG. 3, the average power Pr of the high-frequency superimposed component is 0.5 mW, and the high-frequency superimposed component disk The surface peak power is 2.1 mW, and the ratio of the peak power to the average power Pr of the frequency superimposed component is 4.2. As a result, the optical recording medium shown in FIG. 3 is the same as the optical recording medium shown in FIG. In comparison, the ratio of the peak power to the average power Pr of the high frequency superimposed component is increased.

ここで、2層高速光記録媒体に比べて、単層高速又は2層低速の光記録媒体は、記録感度が約1.6倍近く良いので、ディスク面ピークパワーが2.1mWであることは、単層高速の光記録媒体にとってディスク面ピ−クパワーが高過ぎることになり、この場合、記録層の劣化やデータの誤消去が発生する場合があるので好ましくない。   Here, compared with a two-layer high-speed optical recording medium, a single-layer high-speed or two-layer low-speed optical recording medium has a recording sensitivity close to about 1.6 times, so that the disk surface peak power is 2.1 mW. The disk surface peak power is too high for a single-layer high-speed optical recording medium. In this case, the recording layer may be deteriorated or data may be erroneously erased, which is not preferable.

そこで、本実施の形態では、光記録媒体Dが単層高速の光記録媒体の場合、基本電流Ibに重畳する高周波電流Irfの振幅を、図4に示すように、図3のときよりも低く制御する。   Therefore, in this embodiment, when the optical recording medium D is a single-layer high-speed optical recording medium, the amplitude of the high-frequency current Irf superimposed on the basic current Ib is lower than that in FIG. 3, as shown in FIG. Control.

図4は、記録再生型単層高速の光記録媒体Dに対する高周波電流とレーザ発光波形との関係を示す図である。即ち、図4は、半導体レーザ素子及びスナバー回路2に供給するレーザ光射出時の駆動電流Idとディスク面レーザパワー特性との関係、駆動電流Idを形成する時の基本電流Ibと高周波電流Irfとレーザ発光波形との関係を、それぞれ示している。   FIG. 4 is a diagram showing the relationship between the high-frequency current and the laser emission waveform for the recording / reproducing single-layer high-speed optical recording medium D. That is, FIG. 4 shows the relationship between the drive current Id when the laser beam is supplied to the semiconductor laser element and the snubber circuit 2 and the disk surface laser power characteristics, the basic current Ib and the high-frequency current Irf when the drive current Id is formed. The relationship with the laser emission waveform is shown respectively.

前述したように、駆動電流Idは直流電流である基本電流Ibに高周波電流Irfを重畳することにより形成され、基本電流Ibが高周波電流Irfの中心レベルとなる。ここでは高周波電流Irfの周波数として、例えば、約400MHzが用いられている。そして、半導体レーザ素子LDは閾値電流Ith以上でレーザ光を出力するので、レーザ発光波形は、半波整流波形に似た波形となる。   As described above, the drive current Id is formed by superimposing the high-frequency current Irf on the basic current Ib that is a direct current, and the basic current Ib becomes the center level of the high-frequency current Irf. Here, for example, about 400 MHz is used as the frequency of the high-frequency current Irf. Since the semiconductor laser element LD outputs laser light at a threshold current Ith or higher, the laser emission waveform is a waveform similar to a half-wave rectification waveform.

ここで、半導体レーザ素子及びスナバー回路2のこの駆動制御について、説明する。   Here, the drive control of the semiconductor laser element and the snubber circuit 2 will be described.

図1において、副光検出器18で受光された光は、その平均受光量に応じたレベルの電気信号に変換され、駆動制御回路24を介して駆動制御信号Saとなってレーザ駆動回路26に帰還される。このレーザ駆動回路26では、この駆動制御信号Saに基づいて基本電流Ibが形成されることにより出力パワーが調整される。これにより、半導体レーザ素子及びスナバー回路2から射出されるレーザ光の出力パワーは安定化された状態になる。そして、前述したように、半導体レーザ素子及びスナバー回路2へ一部のレーザ光が戻ることになるレーザノイズを抑制するために、上記基本電流Ibに高周波電流Irfを重畳して実際の駆動電流Idを形成する。   In FIG. 1, the light received by the auxiliary light detector 18 is converted into an electric signal having a level corresponding to the average amount of received light, and becomes a drive control signal Sa via the drive control circuit 24 to the laser drive circuit 26. Returned. In the laser drive circuit 26, the output power is adjusted by forming the basic current Ib based on the drive control signal Sa. As a result, the output power of the laser light emitted from the semiconductor laser element and the snubber circuit 2 is stabilized. As described above, in order to suppress the laser noise that causes a part of the laser light to return to the semiconductor laser element and the snubber circuit 2, the high-frequency current Irf is superimposed on the basic current Ib, and the actual drive current Id. Form.

基本電流Ibに重畳される高周波電流Irfの周波数とレベルは、前述したように高周波発振器制御部40に設けられた抵抗Rfと振幅設定用の抵抗手段50との値で設定されることになる。即ち、抵抗Rfは高周波電流Irfの周波数を決定し、抵抗手段50がレベルを決定する。   The frequency and level of the high-frequency current Irf superimposed on the basic current Ib are set by the values of the resistor Rf provided in the high-frequency oscillator control unit 40 and the amplitude setting resistor means 50 as described above. That is, the resistance Rf determines the frequency of the high-frequency current Irf, and the resistance means 50 determines the level.

次に、振幅設定用の抵抗手段50の作用を含めて説明する。高周波電流Irfのレベルは、レーザ駆動回路26に接続される抵抗手段50、すなわち第1の抵抗Ra1と第2の抵抗Ra2、及びトランジスタスイッチTrで決定される。   Next, the operation of the resistance means 50 for setting amplitude will be described. The level of the high-frequency current Irf is determined by the resistance means 50 connected to the laser driving circuit 26, that is, the first resistance Ra1 and the second resistance Ra2, and the transistor switch Tr.

そして、記録再生型2層高速の光記録媒体Dを再生する際は、層数判別回路38からの指令によりトランジスタTrがオンとなって、第1の抵抗Ra1と第2の抵抗Ra2の並列接続の抵抗値で高周波電流Irfのレベルが決定される。この第1の抵抗Ra1と第2の抵抗Ra2の並列接続の抵抗値と高周波電流Irfの振幅とは、概ね反比例の関係にあり、この場合、第1の抵抗Ra1と第2の抵抗Ra2を並列に接続することにより、第1の抵抗Ra1のみの場合に比べ、並列抵抗値は減少するので、高周波電流Irfの振幅は大きくなることになる。この時のレーザ発光波形は、前述の図2のように形成される。   Then, when reproducing the recording / reproducing type two-layer high-speed optical recording medium D, the transistor Tr is turned on by a command from the layer number discrimination circuit 38, and the first resistor Ra1 and the second resistor Ra2 are connected in parallel. The level of the high-frequency current Irf is determined by the resistance value. The resistance value of the parallel connection of the first resistor Ra1 and the second resistor Ra2 and the amplitude of the high-frequency current Irf are approximately inversely proportional. In this case, the first resistor Ra1 and the second resistor Ra2 are connected in parallel. By connecting to, the parallel resistance value is reduced as compared with the case of only the first resistor Ra1, so that the amplitude of the high-frequency current Irf is increased. The laser emission waveform at this time is formed as shown in FIG.

一方、単層高速又は2層低速の光記録媒体Dを再生する場合には、層数判別回路38からの指令によってトランジスタTrはオフとなって、第2の抵抗Ra2は開放状態となる。そのため、高周波電流Irfの振幅は、第1の抵抗Ra1のみで決定されることになる。   On the other hand, when reproducing the single-layer high-speed or double-layer low-speed optical recording medium D, the transistor Tr is turned off by a command from the layer number discrimination circuit 38, and the second resistor Ra2 is opened. Therefore, the amplitude of the high-frequency current Irf is determined only by the first resistor Ra1.

従って、単層高速又は2層低速光記録媒体Dを再生する場合は、第1の抵抗Ra1と第2の抵抗Ra2が並列接続されていた時と比べれば、抵抗手段50の抵抗値は増加する。その結果、抵抗値と高周波電流Irfの振幅とは、概ね反比例の関係にあることから、抵抗手段50の抵抗値は増加するので、高周波電流Irfの振幅は小さくなることになる。このため、本実施の形態では、単層の光記録媒体Dを再生する場合、レーザ発光波形は、図4に示すように形成されることになる。   Therefore, when reproducing the single-layer high-speed or double-layer low-speed optical recording medium D, the resistance value of the resistance means 50 is increased as compared with the case where the first resistor Ra1 and the second resistor Ra2 are connected in parallel. . As a result, since the resistance value and the amplitude of the high-frequency current Irf are approximately inversely proportional, the resistance value of the resistance means 50 increases, so the amplitude of the high-frequency current Irf decreases. Therefore, in this embodiment, when reproducing the single-layer optical recording medium D, the laser emission waveform is formed as shown in FIG.

つまり、単層の光記録媒体Dを再生する場合、ディスク面レーザパワーの平均値Prが目標の0.5mWになるように、駆動制御回路24は、層数判別回路38からの光記録媒体Dの層数の指示(単層)と、副光検出器18にて検出したレーザパワーの一部とに基づいて、基本電流Ibが約32mAとなるように制御する。   That is, when reproducing the single-layer optical recording medium D, the drive control circuit 24 receives the optical recording medium D from the layer number discrimination circuit 38 so that the average value Pr of the disk surface laser power becomes the target 0.5 mW. Based on an indication of the number of layers (single layer) and a part of the laser power detected by the sub-light detector 18, the basic current Ib is controlled to be about 32 mA.

そして、本実施の形態の高周波発振器制御部40では、図4に示すように、約32mAの直流電流の基本電流Ibを中心に、交流正弦波の高周波電流Irfがピークツウピーク電流が約32mAで駆動されるように高周波発振器28を制御する。そして、駆動電流対ディスク面レーザパワーの特性に従って、閾値電流Ith、この場合は約35mAを超える電流について半導体レーザ素子LDは発光する。   In the high frequency oscillator control unit 40 of the present embodiment, as shown in FIG. 4, the high frequency current Irf of the AC sine wave has a peak-to-peak current of about 32 mA around the basic current Ib of about 32 mA DC current. The high frequency oscillator 28 is controlled so as to be driven. The semiconductor laser element LD emits light for a current exceeding the threshold current Ith, in this case about 35 mA, according to the characteristics of drive current versus disk surface laser power.

その結果、図4に示す場合、高周波重畳成分のディスク面ピークパワーは、約1.6mW、平均パワーPrが0.5mWになり、高周波重畳パルス幅W2の方が平均パワーPrに対するピークパワー比が3.25となり、図2に示す場合と同じになる。   As a result, in the case shown in FIG. 4, the disk surface peak power of the high frequency superimposed component is about 1.6 mW and the average power Pr is 0.5 mW, and the high frequency superimposed pulse width W2 has a peak power ratio with respect to the average power Pr. 3.25, which is the same as shown in FIG.

このように、本実施の形態では、高周波電流Irfの振幅を読み取るべき光記録媒体Dの層(単層又は2層)に応じて適正に切り替えているので、単層の光記録媒体Dを再生する場合、図4に示すように、高周波重畳パルス幅W3は、図2に示す2層光記録媒体再生時の高周波重畳パルス幅W1と同様になる。そして、高周波重畳成分のディスク面ピークパワーは、約1.6mWであり、図2に示す2層光記録媒体再生時のディスク面ピークパワーの約2.6mWの1.6分の1となるので、記録層が単層光記録媒体を再生する場合にも、ピ−クパワーが高過ぎることはなくなり、記録層の劣化やデータの誤消去も起こらなくなる。   As described above, in the present embodiment, since the amplitude of the high-frequency current Irf is appropriately switched according to the layer (single layer or two layers) of the optical recording medium D to be read, the single-layer optical recording medium D is reproduced. In this case, as shown in FIG. 4, the high frequency superimposed pulse width W3 is the same as the high frequency superimposed pulse width W1 at the time of reproducing the two-layer optical recording medium shown in FIG. The disk surface peak power of the high-frequency superimposed component is about 1.6 mW, which is 1 / 1.6 of about 2.6 mW of the disk surface peak power when the two-layer optical recording medium shown in FIG. Even when the recording layer reproduces a single-layer optical recording medium, the peak power is not too high, and the recording layer is not deteriorated and the data is not erased erroneously.

換言すれば、光記録媒体Dの層数に応じて基本電流Ibに重畳する高周波電流の振幅Irfを変更しなければ、単層高速の光記録媒体を再生する場合、図3に示すように、高周波電流Irfの振幅が大きいために、ディスク面レーザパワーのピーク値が2.1mWにもなって記録層の劣化やデータの誤消去が発生する。   In other words, unless the amplitude Irf of the high frequency current superimposed on the basic current Ib is changed according to the number of layers of the optical recording medium D, when reproducing a single-layer high-speed optical recording medium, as shown in FIG. Since the amplitude of the high-frequency current Irf is large, the peak value of the disk surface laser power is as high as 2.1 mW, which causes deterioration of the recording layer and erroneous data erasure.

これに対し、本実施の形態の場合には、図4に示すように、光記録媒体Dの層数及び速度に応じて基本電流Ibに重畳する高周波電流Irfの振幅(レベル)を変え、特に、2層低速光記録媒体の場合、記録感度が2層高速光記録媒体の場合の1.6倍という点から、ディスク面レーザパワーの平均値Prが2層高速の場合の0.8mWの約半分の0.5mWになるように高周波電流Irfの振幅(レベル)を小さく切り替えているので、ディスク面レーザパワーピーク値を1.6mWまで低下させることができ、記録層の劣化やデータの誤消去の発生を防止することができる。   On the other hand, in the case of the present embodiment, as shown in FIG. 4, the amplitude (level) of the high-frequency current Irf superimposed on the basic current Ib is changed according to the number of layers and the speed of the optical recording medium D. In the case of a two-layer low-speed optical recording medium, the recording sensitivity is 1.6 times that of a two-layer high-speed optical recording medium, so that the average value Pr of the disk surface laser power is about 0.8 mW when the two-layer high-speed optical recording medium is used. Since the amplitude (level) of the high-frequency current Irf is changed so as to be half of 0.5 mW, the disk surface laser power peak value can be lowered to 1.6 mW, and the recording layer is deteriorated and data is erroneously erased. Can be prevented.

次に、単層低速光記録媒体の場合は、図5に示すように、レーザ駆動回路26は、高周波重畳電流のディスク面レーザパワーピーク値を0.8mW,平均パワーPrは0.25mWに設定するために、高周波重畳電流振幅を小さくする必要が有る。レーザ駆動回路26の高周波重畳電流振幅特性は、図8に示すように、最小レベルに限界が有り必要なレベルまで振幅が下がらない場合が考えられる。   Next, in the case of a single-layer low-speed optical recording medium, as shown in FIG. 5, the laser drive circuit 26 sets the disk surface laser power peak value of the high frequency superimposed current to 0.8 mW and the average power Pr to 0.25 mW. Therefore, it is necessary to reduce the high frequency superimposed current amplitude. The high frequency superimposed current amplitude characteristic of the laser drive circuit 26 may be a case where the minimum level has a limit and the amplitude does not decrease to a required level as shown in FIG.

そこで、本実施の形態の場合には、再生時であってもスナバー回路をオン動作させ、スナバー回路には高周波成分の電流を流すことで、半導体レーザLDに流れる高周波電流Irfはスナバー回路で吸収される分だけ減衰することになる。従って、レーザ駆動回路26で可能な最小レベルの高周波重畳電流振幅以下にすることが可能となる。この条件では、高周波重畳電流は小さいレベルなので不要輻射も問題にならない。   Therefore, in the case of the present embodiment, the snubber circuit is turned on even during reproduction, and a high-frequency component current is passed through the snubber circuit, so that the high-frequency current Irf flowing through the semiconductor laser LD is absorbed by the snubber circuit. It will be attenuated by the amount. Therefore, it is possible to make the amplitude less than the minimum level of the high-frequency superimposed current amplitude possible with the laser drive circuit 26. Under this condition, the high-frequency superimposed current is at a low level, so unnecessary radiation is not a problem.

図6は、本実施の形態により単層と2層の光記録媒体Dの情報を再生した時の各電力や電流の値を示す図である。ディスク面レーザパワーの平均値Pr(mW)、半導体レーザ素子2の出力パワー(mW)、及び高周波電流のピークツウピーク電流(mA)は、単層低速光記録媒体の場合は、それぞれ0.25mW、2.2mW及び16mAであり、2層低速あるいは単層高速光記録媒体の場合は、それぞれ0.5mW、4.4mW及び32mWとなる。更に、2層高速光記録媒体の場合は、それぞれ0.8mW、7.0mW及び52mWとなる。   FIG. 6 is a diagram showing values of electric power and current when information of the single-layer and double-layer optical recording media D is reproduced according to the present embodiment. The average value Pr (mW) of the disk surface laser power, the output power (mW) of the semiconductor laser element 2, and the peak-to-peak current (mA) of the high-frequency current are each 0.25 mW in the case of a single-layer low-speed optical recording medium. 2.2 mW and 16 mA, which are 0.5 mW, 4.4 mW, and 32 mW in the case of a two-layer low-speed or single-layer high-speed optical recording medium, respectively. Further, in the case of a two-layer high-speed optical recording medium, the values are 0.8 mW, 7.0 mW, and 52 mW, respectively.

このように、本発明の光記録媒体装置によれば、光記録媒体の層数及び速度に応じて半導体レーザ素子及びスナバー回路の出力であるディスク面レーザパワー、すなわち再生平均光量(直流)を変化させると共に、光記録媒体の層数及び速度が変化しても高周波重畳電流の平均パワーに対する高周波重畳成分のピークパワー比がほぼ一定になるように光記録媒体の層数及び速度に応じて高周波重畳電流の振幅(パワー)を最適値に設定するようにしたので、再生すべき光記録媒体Dの層数が変わった場合でも、高周波電流の重畳の効果が低下してノイズが増大したり、逆に、高周波電流の重畳レベルが大き過ぎてピークレベルが高くなり、記録層の劣化やデータの誤消去が発生することを防止することができる。   As described above, according to the optical recording medium device of the present invention, the disk surface laser power, that is, the reproduction average light quantity (DC), which is the output of the semiconductor laser element and the snubber circuit, is changed according to the number of layers and the speed of the optical recording medium. In addition, even if the number of layers and the speed of the optical recording medium change, the high-frequency superimposition according to the number of layers and the speed of the optical recording medium is such that the peak power ratio of the high-frequency superimposed component to the average power of the high-frequency superimposed current is substantially constant. Since the amplitude (power) of the current is set to an optimum value, even when the number of layers of the optical recording medium D to be reproduced changes, the effect of superposition of the high-frequency current is reduced and noise is increased or vice versa. In addition, it is possible to prevent the superposition level of the high-frequency current from being too large and the peak level to be high, thereby deteriorating the recording layer and erroneous data erasure.

尚、本実施の形態において用いた数値例は、単に一例を示したに過ぎず、これらに限定されないのは勿論である。   It should be noted that the numerical examples used in this embodiment are merely examples, and of course are not limited thereto.

また、ここでは高周波電流Irfの振幅を変化させるために、抵抗群を用いたが、これに限定されず、振幅を変化させることができるならばどのような手段を用いてもよく、例えばコンデンサ等を用いるようにしてもよい。   Here, the resistor group is used to change the amplitude of the high-frequency current Irf. However, the present invention is not limited to this, and any means may be used as long as the amplitude can be changed, such as a capacitor. May be used.

さらに、ここでは光記録媒体として記録層が単層の光記録媒体と2層の光記録媒体を例にとって説明したが、記録層を3層以上設けた光記録媒体にも対応できるのは勿論である。   Further, here, an optical recording medium having a single recording layer and an optical recording medium having two layers have been described as an example of an optical recording medium. However, an optical recording medium having three or more recording layers can also be used. is there.

本発明装置の実施の形態を示す主要ブロック図である。It is a main block diagram which shows embodiment of this invention apparatus. 2層高速再生光記録媒体を最適再生するためのレーザ光駆動電流Idを示す図である。It is a figure which shows the laser beam drive current Id for optimal reproduction | regeneration of a two-layer high-speed reproduction | regeneration optical recording medium. 単層高速再生又は2層低速再生光記録媒体を最適再生するためのレーザ光駆動電流Idを示す図である。It is a figure which shows the laser beam drive electric current Id for optimal reproduction | regeneration of a single layer high speed reproduction or a two layer low speed reproduction optical recording medium. 単層高速再生又は2層低速再生光記録媒体を最適再生するためのレーザ光駆動電流Idを示す図である。It is a figure which shows the laser beam drive electric current Id for optimal reproduction | regeneration of a single layer high speed reproduction or a two layer low speed reproduction optical recording medium. 単層低速再生光記録媒体を最適再生するためのレーザ光駆動電流Idを示す図である。It is a figure which shows the laser beam drive electric current Id for optimal reproduction | regeneration of a single layer low-speed reproduction | regeneration optical recording medium. 本発明装置により最適再生可能な各種の光記録媒体を説明するための図である。It is a figure for demonstrating the various optical recording media which can be optimally reproduced by this invention apparatus. スナバー回路の回路例を示す図である。It is a figure which shows the circuit example of a snubber circuit. レーザ駆動回路の高周波重畳電流振幅特性を示す図である。It is a figure which shows the high frequency superimposed current amplitude characteristic of a laser drive circuit.

符号の説明Explanation of symbols

2…半導体レーザ素子及びスナバー回路(レーザ光出射回路)
10…対物レンズ
16…主光検出器
18…副光検出器
24…駆動制御回路(駆動制御信号出力回路)
26…レーザ駆動回路
28…高周波発振器
30…偏光ビームスプリッタ
36…信号再生系
38…層数判別回路
40…高周波発振器制御部(高周波発振器制御回路)
42…光学系
50…振幅制御用の抵抗手段
A…光記録媒体装置
Cs…コンデンサ
D…光記録媒体
Dr…記録層
Ib…基本電流
Id…駆動電流、レーザ駆動電流
Irf…高周波電流
L…レーザ光
LD…半導体レーザ素子
Ra1…第1の抵抗
Ra2…第2の抵抗
Rf,Rs…抵抗
Sa…駆動制御信号
Tr,Tr1,Tr2…スイッチングトランジスタ(スイッチング手段)
2. Semiconductor laser element and snubber circuit (laser light emission circuit)
DESCRIPTION OF SYMBOLS 10 ... Objective lens 16 ... Main light detector 18 ... Sub-light detector 24 ... Drive control circuit (drive control signal output circuit)
26 ... Laser drive circuit 28 ... High frequency oscillator 30 ... Polarizing beam splitter 36 ... Signal reproduction system 38 ... Number of layers discriminating circuit 40 ... High frequency oscillator control unit (high frequency oscillator control circuit)
42 ... Optical system 50 ... Resistance means A for amplitude control ... Optical recording medium device Cs ... Capacitor D ... Optical recording medium Dr ... Recording layer Ib ... Basic current Id ... Driving current, laser driving current Irf ... High frequency current L ... Laser light LD ... Semiconductor laser element Ra1 ... First resistor Ra2 ... Second resistor Rf, Rs ... Resistor Sa ... Drive control signals Tr, Tr1, Tr2 ... Switching transistors (switching means)

Claims (3)

スナバー回路を用いてリンギングやオーバーシュートを抑制したレーザ駆動電流を半導体レーザ素子に供給し、前記半導体レーザ素子から出射するレーザ光を単層又は複数層の記録層を有する光記録媒体上に照射して情報を読み出すための構成を有する光記録媒体装置であって、
前記スナバー回路及び前記半導体レーザ素子を備えており、対物レンズを介してレーザ光を出射するレーザ光出射回路と、
前記レーザ光出射回路から出射するレーザ光を前記光記録媒体上に照射することにより得た反射光を検出し、受光レベルに応じた主検出信号を出力する主光検出器と、
前記主光検出器から出力する主検出信号に基づいて、前記光記録媒体の記録層の層数を少なくとも判別した判別信号を出力する層数判別回路と、
前記レーザ光出射回路から出射するレーザ光の一部を検出して副検出信号を出力する副光検出器と、
前記層数判別回路から出力する判別信号と前記副光検出器から出力する副検出信号とに基づいて、前記半導体レーザ素子から出射するレーザ光の出力パワーが一定となるように前記レーザ光出射回路の入力側へ駆動制御信号を出力する駆動制御回路と、
高周波発振器を備えており、前記駆動制御回路から出力する駆動制御信号に基づいて前記半導体レーザ素子を駆動するための基本電流を形成し、形成した基本電流に前記高周波発振器から出力する高周波電流を重畳して得たレーザ駆動電流を前記レーザ光出射回路へ出力するレーザ駆動回路と、
前記層数判別回路から出力する判別信号に基づいて、前記高周波発振器の出力電流振幅を変更するための制御信号を前記高周波発振器へ出力する高周波発振器制御回路とを有しており、
前記層数判別回路は、
前記光記録媒体を単層の光記録媒体と判別したときは、前記スナバー回路を作動しかつ前記高周波発振器の出力電流を小振とするための判別信号を前記レーザ光出射回路及び前記高周波発振器制御回路へそれぞれ出力し、
また、前記光記録媒体を複数層でかつ低速再生の光記録媒体と判別したときには、前記スナバー回路を不作動としかつ前記高周波発振器の出力電流を小振とするための判別信号を前記レーザ光出射回路及び前記高周波発振器制御回路へそれぞれ出力し、
さらに、前記光記録媒体を複数層でかつ前記低速再生よりも高速再生の光記録媒体と判別したときには、前記スナバー回路を不作動としかつ前記高周波発振器の出力電流を大振とするための判別信号を前記レーザ光出射回路及び高周波発振器制御回路へそれぞれ出力することを特徴とする光記録媒体装置。
A laser drive current that suppresses ringing and overshoot using a snubber circuit is supplied to the semiconductor laser element, and laser light emitted from the semiconductor laser element is irradiated onto an optical recording medium having a single layer or a plurality of recording layers. An optical recording medium device having a configuration for reading out information,
A laser beam emitting circuit comprising the snubber circuit and the semiconductor laser element, and emitting a laser beam via an objective lens;
A main light detector that detects reflected light obtained by irradiating the optical recording medium with laser light emitted from the laser light emitting circuit and outputs a main detection signal according to a light reception level;
Based on a main detection signal output from the main light detector, a layer number discrimination circuit that outputs a discrimination signal that at least discriminates the number of recording layers of the optical recording medium;
A sub-light detector that detects a part of the laser light emitted from the laser light emitting circuit and outputs a sub-detection signal;
The laser light emission circuit so that the output power of the laser light emitted from the semiconductor laser element is constant based on the determination signal output from the layer number determination circuit and the sub detection signal output from the sub light detector. A drive control circuit for outputting a drive control signal to the input side of
A high-frequency oscillator is provided, and a basic current for driving the semiconductor laser element is formed based on a drive control signal output from the drive control circuit, and a high-frequency current output from the high-frequency oscillator is superimposed on the formed basic current A laser drive circuit for outputting the laser drive current obtained in this way to the laser beam emission circuit;
A high-frequency oscillator control circuit that outputs a control signal for changing the output current amplitude of the high-frequency oscillator to the high-frequency oscillator based on a determination signal output from the number-of-layers determination circuit;
The layer number discrimination circuit
When the optical recording medium is determined as a single-layer optical recording medium, a determination signal for operating the snubber circuit and reducing the output current of the high-frequency oscillator is controlled by the laser light emission circuit and the high-frequency oscillator control. Output to each circuit,
Further, when the optical recording medium is discriminated as a multi-layer and low-speed reproducing optical recording medium, a discrimination signal for deactivating the snubber circuit and reducing the output current of the high-frequency oscillator is emitted from the laser beam. Output to the circuit and the high-frequency oscillator control circuit,
Further, when the optical recording medium is determined to be an optical recording medium having a plurality of layers and reproducing at a higher speed than the low-speed reproducing, a determination signal for deactivating the snubber circuit and increasing the output current of the high-frequency oscillator Is output to the laser beam emitting circuit and the high frequency oscillator control circuit, respectively.
前記高周波発振器制御回路は、
前記層数判別回路から出力する判別信号に基づいてオン・オフするスイッチング手段と、
前記スイッチング手段のオン・オフにより抵抗値が変わり、前記高周波発振器から出力される前記高周波電流の振幅が前記光記録媒体の層数に応じて変化するよう制御する高周波電流振幅切換手段とを有することを特徴とする請求項1記載の光記録媒体装置。
The high frequency oscillator control circuit includes:
Switching means for turning on and off based on a discrimination signal output from the layer number discrimination circuit;
High-frequency current amplitude switching means for controlling the resistance value to be changed by turning on and off the switching means and controlling the amplitude of the high-frequency current output from the high-frequency oscillator to change according to the number of layers of the optical recording medium. The optical recording medium device according to claim 1.
前記レーザ光出射回路は、
前記スナバー回路を制御するスナバー回路制御部を備えており、
前記スナバー回路制御部は、前記層数判別回路から出力する判別信号に基づいてオン・オフするスイッチング手段と、
前記スイッチング手段のオン・オフにより、抵抗とコンデンサで構成される前記スナバー回路が前記半導体レーザ素子と並列に接続され、前記高周波発振器から出力されて前記半導体レーザ素子に流れる前記高周波電流の振幅が変化するよう制御する高周波電流振幅切換手段とを有することを特徴とする請求項1記載の光記録媒体装置。
The laser beam emitting circuit is
A snubber circuit control unit for controlling the snubber circuit;
The snubber circuit control unit includes switching means for turning on / off based on a determination signal output from the layer number determination circuit;
By turning on and off the switching means, the snubber circuit composed of a resistor and a capacitor is connected in parallel with the semiconductor laser element, and the amplitude of the high-frequency current output from the high-frequency oscillator and flowing to the semiconductor laser element changes. 2. The optical recording medium device according to claim 1, further comprising a high-frequency current amplitude switching means for controlling the high-frequency current amplitude.
JP2007146995A 2007-06-01 2007-06-01 Optical recording medium device Pending JP2008299994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146995A JP2008299994A (en) 2007-06-01 2007-06-01 Optical recording medium device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146995A JP2008299994A (en) 2007-06-01 2007-06-01 Optical recording medium device

Publications (1)

Publication Number Publication Date
JP2008299994A true JP2008299994A (en) 2008-12-11

Family

ID=40173350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146995A Pending JP2008299994A (en) 2007-06-01 2007-06-01 Optical recording medium device

Country Status (1)

Country Link
JP (1) JP2008299994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070811A1 (en) * 2008-12-17 2010-06-24 パナソニック株式会社 Optical disc recording medium, optical disc device, and integrated circuit used in optical disc device
JP2010211900A (en) * 2009-03-12 2010-09-24 Hitachi Media Electoronics Co Ltd Optical disk device and optical disk playback method
JP2013080556A (en) * 2012-11-30 2013-05-02 Hitachi Media Electoronics Co Ltd Optical disk device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070811A1 (en) * 2008-12-17 2010-06-24 パナソニック株式会社 Optical disc recording medium, optical disc device, and integrated circuit used in optical disc device
JP2010211900A (en) * 2009-03-12 2010-09-24 Hitachi Media Electoronics Co Ltd Optical disk device and optical disk playback method
JP2013080556A (en) * 2012-11-30 2013-05-02 Hitachi Media Electoronics Co Ltd Optical disk device

Similar Documents

Publication Publication Date Title
WO2010038311A1 (en) Optical disk drive device and additional recording method
JP2005108281A (en) Optical disk drive
US7924689B2 (en) Optical disk apparatus
JP4527657B2 (en) Information playback device
JP2003257072A (en) Optical disk drive
US7969844B2 (en) Optical disc device
JP2008299994A (en) Optical recording medium device
US20010030915A1 (en) Optical disc apparatus
JP2008112490A (en) Optical recording medium reproducing device and optical pickup device
US7920450B2 (en) Discrimination method for optical disc types and optical disc apparatus
JP4370519B2 (en) Optical information reproducing apparatus and optical information reproducing method
US20050013221A1 (en) Optical disk apparatus and optical disk processing method
JP4499688B2 (en) Optical information processing equipment
JP4549419B2 (en) Optical disk apparatus, optical head control method, and optical head control apparatus
US20100085860A1 (en) Optical head device, and optical information recording/reproducing device and optical information recording/reproducing method using the same
JP4359189B2 (en) Optical pickup device
JP4661741B2 (en) Optical pickup device and focus control method
JPWO2008108138A1 (en) Optical head device, optical information recording / reproducing apparatus, and optical information recording / reproducing method
JP2008071445A (en) Optical recording/reproducing device and optical pickup
JP4434018B2 (en) Optical disk device
JP5153569B2 (en) Optical disk device
JP4670606B2 (en) Optical pickup device
US8243568B2 (en) Optical disc apparatus
JP2008059619A (en) Optical pickup device
JP2011023095A (en) Optical disk device