JP2008298609A - Device for estimating vehicular state - Google Patents
Device for estimating vehicular state Download PDFInfo
- Publication number
- JP2008298609A JP2008298609A JP2007145466A JP2007145466A JP2008298609A JP 2008298609 A JP2008298609 A JP 2008298609A JP 2007145466 A JP2007145466 A JP 2007145466A JP 2007145466 A JP2007145466 A JP 2007145466A JP 2008298609 A JP2008298609 A JP 2008298609A
- Authority
- JP
- Japan
- Prior art keywords
- vibration model
- relative distance
- actual
- vehicle state
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 24
- 239000000725 suspension Substances 0.000 claims abstract description 10
- 238000006073 displacement reaction Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
Images
Landscapes
- Vehicle Body Suspensions (AREA)
Abstract
Description
本発明は、車両の振動モデルにばね下部分およびばね上部分の実相対距離(ダンパーのストローク)を適用することで、ばね上加速度を含む種々の車両状態量を算出可能な車両状態推定装置に関する。 The present invention relates to a vehicle state estimation device that can calculate various vehicle state quantities including sprung acceleration by applying actual relative distances (damper strokes) of an unsprung part and an unsprung part to a vibration model of a vehicle. .
ばね下部分、ばね上部分、ダンパー、タイヤおよび懸架ばねから構成される振動モデルに、センサで検出したばね上部分の加速度および推定したばね下部分の加速度の偏差を適用することで、ばね下部分およびばね上部分の相対速度を推定するものが、下記特許文献1により公知である。
ところで上記従来のものは、路面の変位(凹凸)を外乱として扱っているため、振動モデルは車両の振動状態を正確に示しておらず、路面変位を含む種々の車両状態量を精度良く算出することが難しいという問題があった。 By the way, since the above-mentioned conventional method treats the displacement (unevenness) of the road surface as a disturbance, the vibration model does not accurately indicate the vibration state of the vehicle, and accurately calculates various vehicle state quantities including the road surface displacement. There was a problem that it was difficult.
下記特許文献2に於いては、入力変位算出手段が、実車の実状態変数と振動モデルによる推定状態変数の偏差を最小化するような基準に基づき路面変位を推定し、振動モデルからの推定ばね下加速度が、実車の実ばね下加速度と合致するように、入力変位算出手段をチューニングすることにより、種々の車両状態量を算出し得るようにしている。これによれば、路面入力を的確に考慮していることから、比較的精度良く種々の車両状態量を算出することができる。
しかしながら、上記先行特許或いは先行出願に於いては、振動モデルが、車両の各車輪毎に設定されているため、車両の旋回時、スラローム走行時のように車体に横加速度が加わる場合には、車両状態量を精度良く算出することが困難である。 However, in the prior patent or the prior application, since the vibration model is set for each wheel of the vehicle, when lateral acceleration is applied to the vehicle body during turning of the vehicle or during slalom running, It is difficult to accurately calculate the vehicle state quantity.
また、懸架装置に於ける摩擦抵抗や、ダンパーの特性変化(環境の変化等の外的な要因で引き起こされるものや、制御上の必要により意図的に引き起こされるものを含む)も、車両の挙動を把握する上で必ずしも無視できない影響を及ぼす。 In addition, frictional resistance in suspension systems and changes in damper characteristics (including those caused by external factors such as environmental changes and those intentionally caused by control requirements) can also affect vehicle behavior. It is not always negligible in grasping.
このような従来技術の問題点及び発明者の知見に基づき、本発明の主な目的は、振動モデルを用いた車両状態量の算出を精度良く行い得るようにすることにある。 Based on such problems of the prior art and the inventor's knowledge, a main object of the present invention is to be able to accurately calculate a vehicle state quantity using a vibration model.
上記目的を達成するために、請求項1に記載された発明によれば、実車のばね下質量及びばね上質量間の実相対距離を検出する実相対距離検出手段と、前記実車をモデル化したときのばね下質量、ばね上質量、ダンパー、タイヤ及び懸架ばねを含む振動モデルを記憶する振動モデル記憶手段と、前記振動モデルに於けるばね下質量及びばね上質量間の相対距離を推定する相対距離推定手段と、前記振動モデルにより推定した推定相対距離と前記実相対距離検出手段で検出した実相対距離との間の偏差を算出する偏差算出手段と、前記偏差算出手段により算出した偏差に基づいて前記振動モデルに入力する入力値を算出する入力値算出手段と、前記入力値算出手段により算出した前記入力値を前記振動モデルに適用して車両状態量を算出する車両状態量算出手段とを有し、前記振動モデルが、横加速度、ロール剛性及びロール慣性を考慮したものからなることを特徴とする車両状態推定装置が提案される。 In order to achieve the above object, according to the first aspect of the present invention, the actual relative distance detecting means for detecting the actual relative distance between the unsprung mass and the sprung mass of the actual vehicle and the actual vehicle are modeled. Vibration model storage means for storing a vibration model including an unsprung mass, a sprung mass, a damper, a tire, and a suspension spring, and a relative for estimating a relative distance between the unsprung mass and the sprung mass in the vibration model. Based on the distance estimation means, a deviation calculation means for calculating a deviation between the estimated relative distance estimated by the vibration model and the actual relative distance detected by the actual relative distance detection means, and the deviation calculated by the deviation calculation means Input value calculation means for calculating an input value to be input to the vibration model, and a vehicle for calculating a vehicle state quantity by applying the input value calculated by the input value calculation means to the vibration model. And a state quantity calculating means, wherein the vibration model, the lateral acceleration, the vehicle state estimating apparatus characterized by consisting of those considering roll stiffness and the roll inertia is proposed.
また、前記振動モデルを、横加速度、ロール剛性及びロール慣性を考慮したものとする代わりに、或いはそれに加えて、前記入力値算出手段が、前記車両状態量算出手段により与えられる推定ばね上速度と、前記実車に於いて実測された実ばね上速度とが可及的に一致するようにチューニングされるようにすると良い。 Further, instead of or in addition to the vibration model taking into account lateral acceleration, roll rigidity and roll inertia, the input value calculating means includes an estimated sprung speed given by the vehicle state quantity calculating means and The tuning may be performed so that the actual sprung speed measured in the actual vehicle matches as much as possible.
このように、本発明によれば、ばね下部分及びばね上部分間の推定相対距離と実相対距離との間の偏差に基づいて算出した入力値を振動モデルに入力して車両状態量を算出し、更に車体の横加速度、ロール剛性及びロール慣性を考慮するため、例えばスタビライザが車両状態に及ぼす影響を的確に把握し、様々な条件下に於ける車両状態量を精度良く算出することができる。このとき、入力値算出手段は、前記車両状態量算出手段により与えられる推定ばね上速度と、前記実車に於いて実測された実ばね上速度とが可及的に一致するようにチューニングすると良い。 Thus, according to the present invention, the vehicle state quantity is calculated by inputting the input value calculated based on the deviation between the estimated relative distance between the unsprung portion and the unsprung portion and the actual relative distance to the vibration model. In addition, since the lateral acceleration, roll rigidity, and roll inertia of the vehicle body are taken into account, for example, the influence of the stabilizer on the vehicle state can be accurately grasped, and the vehicle state amount under various conditions can be accurately calculated. . At this time, the input value calculating means may be tuned so that the estimated sprung speed given by the vehicle state quantity calculating means and the actual sprung speed actually measured in the actual vehicle coincide as much as possible.
振動モデルを更に高精度にするためには、ダンパーの温度依存特性を考慮したり、ダンパーが電流により可変な特性を有するものからなる場合には、ダンパーの電流依存特性を考慮すると良い。また、懸架装置等に於ける可動部分の摩擦特性を考慮することも、振動モデルを更に高精度にする上で有用である。 In order to make the vibration model more accurate, it is preferable to consider the temperature dependence characteristics of the damper, or when the damper has a characteristic that can be changed by the current, consider the current dependence characteristics of the damper. In addition, it is useful to consider the frictional characteristics of the movable part in a suspension device or the like in order to further improve the accuracy of the vibration model.
以下、本発明の実施の形態を添付の図面に基づいて説明する。図1は、1対の前輪及び1対の後輪を有する実車を加振するための設備を示すもので、本実施例の場合、2組の加振機を用いて、それぞれロール角の影響を考慮し得るように、前輪及び後輪をそれぞれ独立に加振し得るようにしている。以下の記載に於いては、車両を、それぞれ左右2輪を有する前部及び後部を表す2つのモデルとし、それらを重ね合わせることにより、車両全体の挙動を評価するようにしている。しかしながら、所望に応じて、ピッチ角の影響を考慮して車両全体の挙動を評価するようにすることもできる。その場合には、対応した振動モデルを設定する必要がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows equipment for exciting a real vehicle having a pair of front wheels and a pair of rear wheels. In this embodiment, two sets of vibrators are used to influence the roll angle. So that the front wheel and the rear wheel can be vibrated independently. In the following description, the vehicle is assumed to be two models representing a front portion and a rear portion each having two left and right wheels, and the behavior of the entire vehicle is evaluated by superimposing them. However, if desired, the behavior of the entire vehicle can be evaluated in consideration of the influence of the pitch angle. In that case, it is necessary to set a corresponding vibration model.
この実車をモデル化したものが図1の右側に示されており、左右のタイヤが、それぞれ質量m1(ばね下質量)及びばね定数k1を有する。車体は、質量(ばね上質量)m2及びロール方向についての慣性2次モーメント(ロール慣性)Iを有し、ばね定数k2の懸架ばね及び減衰係数cのダンパーを有する懸架装置を介して左右輪上に支持されている。また、左右の車輪は、ばね定数k3を有するスタビライザSにより互いに連結されている。左右のタイヤの変位はx1、x2、車体の変位は、車体の中心軸線(重心)から左右にW/2離隔した点に於ける変位x3、x4によりそれぞれ表される。従って、車体のロール角θは、θ=(x4−x3)/Wにより表される。 A model of this actual vehicle is shown on the right side of FIG. 1, and the left and right tires have a mass m 1 (unsprung mass) and a spring constant k 1 , respectively. The vehicle body has a mass (sprung mass) m 2 and a secondary moment of inertia (roll inertia) I in the roll direction, and a left and right via a suspension device having a suspension spring with a spring constant k 2 and a damper with a damping coefficient c. Supported on a ring. Further, the left and right wheels are connected to each other by a stabilizer S having a spring constant k 3. The displacements of the left and right tires are represented by x 1 and x 2 , and the displacement of the vehicle body is represented by displacements x 3 and x 4 at points separated by W / 2 from the center axis (center of gravity) of the vehicle body to the left and right. Accordingly, the roll angle θ of the vehicle body is represented by θ = (x 4 −x 3 ) / W.
図2及び図3は本発明の実施の形態を示すもので、図2は車両状態推定装置の運用時の作用説明用ブロック図、図3は車両状態推定装置のオブザーバゲインの設定(チューニング)時の作用説明用ブロック図である。図2に示すように、本実施の形態の車両状態推定装置は、振動モデル記憶手段M1と、実相対距離検出手段M2と、偏差算出手段M3と、入力変位算出手段M4と、車両状態量算出手段M5とを備える。 FIGS. 2 and 3 show an embodiment of the present invention. FIG. 2 is a block diagram for explaining the operation of the vehicle state estimation apparatus. FIG. 3 is a setting (tuning) of the observer gain of the vehicle state estimation apparatus. FIG. As shown in FIG. 2, the vehicle state estimation apparatus according to the present embodiment includes a vibration model storage unit M1, an actual relative distance detection unit M2, a deviation calculation unit M3, an input displacement calculation unit M4, and a vehicle state quantity calculation. Means M5.
振動モデル記憶手段M1は、図1に示されるような設備により実車のパラメータを同定することによりモデル化して得られた振動モデルを予め記憶する。実相対距離検出手段M2は、左右各輪について、ばね下部分およびばね上部分の実際の相対距離である実相対距離L1 *、L2 *を検出するもので、具体的にはダンパーの伸縮ストロークを検出するストロークセンサで構成される。 The vibration model storage means M1 stores in advance a vibration model obtained by modeling by identifying parameters of an actual vehicle using equipment as shown in FIG. The actual relative distance detection means M2 detects actual relative distances L 1 * and L 2 * which are actual relative distances of the unsprung part and the unsprung part for each of the left and right wheels. It consists of a stroke sensor that detects the stroke.
偏差算出手段M3は、振動モデル記憶手段M1に記憶された振動モデルに基づいて車両状態量算出手段M5が算出(推定)したばね下部分およびばね上部分の相対距離である推定相対距離L1=(x3−x1)、L2=(x4−x2)と、前記実相対距離検出手段M2で検出した実相対距離L1 *、L2 *との偏差δ1=L1 *−L1、δ2=L2 *−L2を算出する。 The deviation calculating means M3 is an estimated relative distance L 1 = the relative distance between the unsprung part and the unsprung part calculated (estimated) by the vehicle state quantity calculating means M5 based on the vibration model stored in the vibration model storage means M1. Deviation δ 1 = L 1 * − between (x 3 −x 1 ), L 2 = (x 4 −x 2 ) and the actual relative distances L 1 * and L 2 * detected by the actual relative distance detection means M2. L 1 , δ 2 = L 2 * −L 2 is calculated.
入力変位演算手段M4は、前記偏差算出手段M3で算出した偏差δ1、δ2を基に所定の方程式をパラメータが安定性を示すように極配置法によりゲインを設定する。この設定したゲインにより振動モデルで算出したばね下変位x1、x2及びその速度dx1/dt、dx2/dt、ばね下変位x3、x4及びその速度dx3/dt、dx4/dt、ロール角θ及びその速度dθ/dtを夫々補正し、車両モデルに演算パラメータ(入力値)として入力し、車両状態量算出手段で再びモデルストロークLを算出する。入力変位演算手段M4で使用されるゲインは、図3に示すように、実車に実際のばね上速度を検出するばね上速度センサ(図示しない)を仮に設けておき、振動モデルにより推定した推定ばね上速度と、ばね上速度センサにより検出した実ばね上速度とを比較器M7により比較し、ゲインによって変化する推定ばね上速度が実ばね上速度に一致するように設定(チューニング)される。このようにしてゲインの設定が完了すると、前記振動モデルは実車のばね下変位x1、x2、ばね上変位x3、x4及びロール角θを正確にシミュレートすることが保証されるため.ばね上速度センサは不要になって取り外される。 The input displacement calculation means M4 sets the gain by the pole placement method so that the parameters show stability based on the deviations δ 1 and δ 2 calculated by the deviation calculation means M3. The unsprung displacements x 1 and x 2 and their speeds dx 1 / dt and dx 2 / dt and the unsprung displacements x 3 and x 4 and their speeds dx 3 / dt and dx 4 / The dt, the roll angle θ, and the speed dθ / dt are corrected, input to the vehicle model as calculation parameters (input values), and the model stroke L is calculated again by the vehicle state quantity calculation means. As shown in FIG. 3, the gain used in the input displacement calculation means M4 is an estimated spring estimated by a vibration model provided with a sprung speed sensor (not shown) for detecting the actual sprung speed on the actual vehicle. The upper speed and the actual sprung speed detected by the sprung speed sensor are compared by the comparator M7, and the estimated sprung speed that changes depending on the gain is set (tuned) so as to match the actual sprung speed. When the gain setting is thus completed, the vibration model is guaranteed to accurately simulate the unsprung displacements x 1 and x 2 , the sprung displacements x 3 and x 4 and the roll angle θ of the actual vehicle. . The sprung speed sensor is no longer needed and is removed.
振動モデルは、所望に応じて様々な非線形要素を考慮したものとして、更に高精度に車両状態量を算出し得るようにすることができる。そのような手法の1つとして、車両状態量算出手段M5を、ダンパーの温度依存特性を考慮し或いは、ダンパーが電流により可変な特性を有するものからなるような場合には、ダンパーの電流依存特性を考慮したものとするためのダンパー特性補正手段M8や、懸架装置、その他の可動部分の摩擦特性を考慮したものとするための摩擦抵抗補正手段M9や、横加速度Gを検出する横加速度センサM6と入力変位算出手段M4で設定したゲインとにより車輪位置での荷重変動量を考慮したものとするための荷重変化量補正手段M10を含むものとすることができる。特に、そのような特性を仮想的な外力として扱えば、演算過程を簡略化することができる。 The vibration model can consider various nonlinear elements as desired, and can calculate the vehicle state quantity with higher accuracy. As one of such methods, if the vehicle state quantity calculation means M5 takes into account the temperature-dependent characteristics of the damper, or if the damper has a characteristic that is variable depending on the current, the current-dependent characteristics of the damper Damper characteristic correcting means M8 for taking into account the friction characteristics, Friction resistance correcting means M9 for taking into account the friction characteristics of the suspension and other movable parts, and a lateral acceleration sensor M6 for detecting the lateral acceleration G And a gain set by the input displacement calculation means M4, the load change amount correction means M10 for taking into account the load fluctuation amount at the wheel position can be included. In particular, if such a characteristic is treated as a virtual external force, the calculation process can be simplified.
図2に戻り、入力変位算出手段M4が算出したゲインにより補正されたばね下変位x1、x2、及びその速度dx1/dt、dx2/dt、ばね下変位x3、x4及びその速度dx3/dt、dx4/dt、ロール角θ及びその速度dθ/dt(入力値)を入力として振動モデルが加振されると、車両状態量算出手段M5は振動モデルの振動状態を算出する。 Returning to FIG. 2, the unsprung displacements x 1 and x 2 corrected by the gain calculated by the input displacement calculating means M4 and their speeds dx 1 / dt and dx 2 / dt, the unsprung displacements x 3 and x 4 and their speeds. When the vibration model is vibrated with dx 3 / dt, dx 4 / dt, the roll angle θ and the speed dθ / dt (input value) as inputs, the vehicle state quantity calculation means M5 calculates the vibration state of the vibration model. .
前記車両状態量には、x1、x2そのものであるばね下変位、dx1/dt、dx2/dtに相当するばね下速度、d2x1/dt2、d2x2/dt2に相当するばね下加速度、x3、x4そのものであるばね上変位、dx3/dt、dx4/dtに相当するばね上速度、d2x3/dt2、d2x4/dt2に相当するばね上加速度、d(x3−x1)/dt、d(x4−x2)/dtに相当するダンパーのストローク速度等が含まれる。
The vehicle state quantities include x 1 and x 2 itself, unsprung displacement, dx 1 / dt, and unsprung speed corresponding to dx 2 / dt, d 2 x 1 / dt 2 , d 2 x 2 / dt 2. unsprung acceleration, x 3 corresponding to, x 4 itself in which the spring displacement, dx 3 / dt, dx 4 / sprung velocity corresponding to dt, d 2 x 3 / dt 2, d 2 x 4 /
以上のように、振動モデルにより推定した推定ばね上速度と、ばね上速度センサM6で検出した実ばね上速度とが一致するように振動モデルのゲインを設定するとともに、このゲインに基づいて算出した車体状態量を用いて振動モデルを加振するので、振動モデルと実車との一致度の信頼性を高めて車両状態量を精度良く算出することができる。本実施例では、入力変位算出手段のチューニングは、実ばね上速度を実測して行ったが、ばね上加速度、ばね下加速度、ばね下加速度を含むその他の車両状態量を実測して行うこともできる。 As described above, the gain of the vibration model is set so that the estimated sprung speed estimated by the vibration model matches the actual sprung speed detected by the sprung speed sensor M6, and the calculation is performed based on this gain. Since the vibration model is vibrated using the vehicle body state quantity, the reliability of the degree of coincidence between the vibration model and the actual vehicle can be improved and the vehicle state quantity can be calculated with high accuracy. In this embodiment, the input displacement calculation means is tuned by actually measuring the actual sprung speed, but may also be measured by measuring other vehicle state quantities including sprung acceleration, unsprung acceleration, and unsprung acceleration. it can.
ばね上加速度d2x3/dt2、d2x4/dt2を算出することができるので、特別のばね上加速度センサを必要とせずに、ばね上加速度d2x3/dt2、d2x4/dt2を用いたスカイフツク制御を行うことができる。また、ダンパー特性、可動部分の摩擦特性、車輪位置の荷重変動量を考慮した車両モデルで車両状態量を演算するため、より正確に車両状態をシミュレートできる。 Since the sprung accelerations d 2 x 3 / dt 2 and d 2 x 4 / dt 2 can be calculated, a sprung acceleration d 2 x 3 / dt 2 , d is not required without a special sprung acceleration sensor. Sky hook control using 2 × 4 / dt 2 can be performed. Further, since the vehicle state quantity is calculated by a vehicle model that takes into account the damper characteristic, the friction characteristic of the movable part, and the load fluctuation amount of the wheel position, the vehicle state can be simulated more accurately.
以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。例えば、車両状態量算出手段M5で算出する車両状態量は、路面変位、ばね下変位、ばね下速度、ばね下加速度、ばね上変位、ばね上速度、ばね上加速度およびストローク速度に限定されるものではない。 The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention. For example, the vehicle state quantity calculated by the vehicle state quantity calculating means M5 is limited to road surface displacement, unsprung displacement, unsprung speed, unsprung acceleration, sprung displacement, sprung speed, sprung acceleration, and stroke speed. is not.
M1 振動モデル記憶手段
M2 実相対距離検出手段
M3 偏差算出手段
M4 入力変位算出手段
M5 車両状態員算出手段
M6 ばね上速度センサ
M7 比較器
M8 ダンパー特性補正手段
M9 摩擦抵抗補正手段
M10 荷重変化量補正手段
M1 Vibration model storage means M2 Actual relative distance detection means M3 Deviation calculation means M4 Input displacement calculation means M5 Vehicle state member calculation means M6 Sprung speed sensor M7 Comparator M8 Damper characteristic correction means M9 Friction resistance correction means M10 Load change amount correction means
Claims (7)
前記実車をモデル化したときのばね下質量、ばね上質量、ダンパー、タイヤ及び懸架ばねを含む振動モデルを記憶する振動モデル記憶手段と、
前記振動モデルに於けるばね下質量及びばね上質量間の相対距離を推定する相対距離推定手段と、
前記振動モデルにより推定した推定相対距離と前記実相対距離検出手段で検出した実相対距離との間の偏差を算出する偏差算出手段と、
前記偏差算出手段により算出した偏差に基づいて前記振動モデルに入力する入力値を算出する入力値算出手段と、
前記入力値算出手段により算出した前記入力値を前記振動モデルに適用して車両状態量を算出する車両状態量算出手段とを有し、
前記振動モデルが、横加速度、ロール剛性及びロール慣性を考慮したものからなることを特徴とする車両状態推定装置。 An actual relative distance detecting means for detecting an actual relative distance between the unsprung mass and the unsprung mass of the actual vehicle;
Vibration model storage means for storing a vibration model including unsprung mass, sprung mass, damper, tire and suspension spring when the actual vehicle is modeled;
A relative distance estimating means for estimating a relative distance between an unsprung mass and an unsprung mass in the vibration model;
Deviation calculating means for calculating a deviation between the estimated relative distance estimated by the vibration model and the actual relative distance detected by the actual relative distance detecting means;
Input value calculating means for calculating an input value to be input to the vibration model based on the deviation calculated by the deviation calculating means;
Vehicle state quantity calculating means for calculating a vehicle state quantity by applying the input value calculated by the input value calculating means to the vibration model;
The vehicle state estimation device according to claim 1, wherein the vibration model is formed by taking into account lateral acceleration, roll rigidity, and roll inertia.
前記実車をモデル化したときのばね下質量、ばね上質量、ダンパー、タイヤ及び懸架ばねを含む振動モデルを記憶する振動モデル記憶手段と、
前記振動モデルに於けるばね下質量及びばね上質量間の相対距離を推定する相対距離推定手段と、
前記振動モデルにより推定した推定相対距離と前記実相対距離検出手段で検出した実相対距離との間の偏差を算出する偏差算出手段と、
前記偏差算出手段により算出した偏差に基づいて前記振動モデルに入力する入力値を算出する入力値算出手段と、
前記入力値算出手段により算出した前記入力値を前記振動モデルに適用して車両状態量を算出する車両状態量算出手段とを有し、
前記入力値算出手段が、前記車両状態量算出手段により与えられる推定ばね上速度と、前記実車に於いて実測された実ばね上速度とが可及的に一致するようにチューニングされることを特徴とする車両状態推定装置。 An actual relative distance detecting means for detecting an actual relative distance between the unsprung mass and the unsprung mass of the actual vehicle;
Vibration model storage means for storing a vibration model including unsprung mass, sprung mass, damper, tire and suspension spring when the actual vehicle is modeled;
A relative distance estimating means for estimating a relative distance between an unsprung mass and an unsprung mass in the vibration model;
Deviation calculating means for calculating a deviation between the estimated relative distance estimated by the vibration model and the actual relative distance detected by the actual relative distance detecting means;
Input value calculating means for calculating an input value to be input to the vibration model based on the deviation calculated by the deviation calculating means;
Vehicle state quantity calculating means for calculating a vehicle state quantity by applying the input value calculated by the input value calculating means to the vibration model;
The input value calculating means is tuned so that the estimated sprung speed given by the vehicle state quantity calculating means and the actual sprung speed actually measured in the actual vehicle coincide as much as possible. A vehicle state estimation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145466A JP4861897B2 (en) | 2007-05-31 | 2007-05-31 | Vehicle state estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145466A JP4861897B2 (en) | 2007-05-31 | 2007-05-31 | Vehicle state estimation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008298609A true JP2008298609A (en) | 2008-12-11 |
JP4861897B2 JP4861897B2 (en) | 2012-01-25 |
Family
ID=40172255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007145466A Expired - Fee Related JP4861897B2 (en) | 2007-05-31 | 2007-05-31 | Vehicle state estimation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4861897B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013115009A1 (en) * | 2012-01-31 | 2013-08-08 | 日産自動車株式会社 | Control device for vehicle and control method for vehicle |
WO2013172282A1 (en) * | 2012-05-14 | 2013-11-21 | 日産自動車株式会社 | Vehicle control device and vehicle control method |
JP2018058463A (en) * | 2016-10-04 | 2018-04-12 | アイシン精機株式会社 | Attenuation force control device |
JP2022065808A (en) * | 2020-10-16 | 2022-04-28 | トヨタ自動車株式会社 | Device and method for estimating suspension stroke related values |
CN115356095A (en) * | 2022-08-16 | 2022-11-18 | 广西电网有限责任公司电力科学研究院 | Breaker opening and closing spring state performance evaluation method based on motion equation variance |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141642A (en) * | 1988-09-13 | 1990-05-31 | Initial Investments Nv | Wheel suspension tester for vehicle |
JPH09309316A (en) * | 1996-05-22 | 1997-12-02 | Toyota Central Res & Dev Lab Inc | Sprung and unsprung relative speed computing device of vehicle |
JP2000289424A (en) * | 1999-04-06 | 2000-10-17 | Toyota Motor Corp | Motion state quantity estimating device for vehicle |
JP2001287528A (en) * | 2000-04-10 | 2001-10-16 | Toyota Motor Corp | Vehicular sprung speed assuming device |
JP2001337716A (en) * | 2000-05-26 | 2001-12-07 | Isuzu Motors Ltd | Attribute identification method and its system |
JP2001349808A (en) * | 2000-06-09 | 2001-12-21 | Mazda Motor Corp | Construction method for vehicle model, apparatus provided with the model constructed by the method and recording medium with the model recorded thereon |
JP2002002530A (en) * | 2000-06-23 | 2002-01-09 | Hino Motors Ltd | State observation device |
JP2002122223A (en) * | 2000-08-11 | 2002-04-26 | Honda Motor Co Ltd | Development supporting device for controller of automatic transmission for vehicle |
JP2004053452A (en) * | 2002-07-22 | 2004-02-19 | Saginomiya Seisakusho Inc | Load test system and load testing method |
JP2006273225A (en) * | 2005-03-30 | 2006-10-12 | Honda Motor Co Ltd | Controlling device for adjustable damping force damper |
JP2006301705A (en) * | 2005-04-15 | 2006-11-02 | Mazda Motor Corp | Simulation device |
JP2006302186A (en) * | 2005-04-25 | 2006-11-02 | Japan Science & Technology Agency | Simulation model creation method, program and recording medium recorded with the program |
JP4199273B2 (en) * | 2006-08-29 | 2008-12-17 | 本田技研工業株式会社 | Vehicle state estimation device |
-
2007
- 2007-05-31 JP JP2007145466A patent/JP4861897B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141642A (en) * | 1988-09-13 | 1990-05-31 | Initial Investments Nv | Wheel suspension tester for vehicle |
JPH09309316A (en) * | 1996-05-22 | 1997-12-02 | Toyota Central Res & Dev Lab Inc | Sprung and unsprung relative speed computing device of vehicle |
JP2000289424A (en) * | 1999-04-06 | 2000-10-17 | Toyota Motor Corp | Motion state quantity estimating device for vehicle |
JP2001287528A (en) * | 2000-04-10 | 2001-10-16 | Toyota Motor Corp | Vehicular sprung speed assuming device |
JP2001337716A (en) * | 2000-05-26 | 2001-12-07 | Isuzu Motors Ltd | Attribute identification method and its system |
JP2001349808A (en) * | 2000-06-09 | 2001-12-21 | Mazda Motor Corp | Construction method for vehicle model, apparatus provided with the model constructed by the method and recording medium with the model recorded thereon |
JP2002002530A (en) * | 2000-06-23 | 2002-01-09 | Hino Motors Ltd | State observation device |
JP2002122223A (en) * | 2000-08-11 | 2002-04-26 | Honda Motor Co Ltd | Development supporting device for controller of automatic transmission for vehicle |
JP2004053452A (en) * | 2002-07-22 | 2004-02-19 | Saginomiya Seisakusho Inc | Load test system and load testing method |
JP2006273225A (en) * | 2005-03-30 | 2006-10-12 | Honda Motor Co Ltd | Controlling device for adjustable damping force damper |
JP2006301705A (en) * | 2005-04-15 | 2006-11-02 | Mazda Motor Corp | Simulation device |
JP2006302186A (en) * | 2005-04-25 | 2006-11-02 | Japan Science & Technology Agency | Simulation model creation method, program and recording medium recorded with the program |
JP4199273B2 (en) * | 2006-08-29 | 2008-12-17 | 本田技研工業株式会社 | Vehicle state estimation device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013115009A1 (en) * | 2012-01-31 | 2013-08-08 | 日産自動車株式会社 | Control device for vehicle and control method for vehicle |
WO2013172282A1 (en) * | 2012-05-14 | 2013-11-21 | 日産自動車株式会社 | Vehicle control device and vehicle control method |
US9156328B2 (en) | 2012-05-14 | 2015-10-13 | Nissan Motor Co., Ltd. | Vehicle control device and vehicle control method |
JP2018058463A (en) * | 2016-10-04 | 2018-04-12 | アイシン精機株式会社 | Attenuation force control device |
WO2018066478A1 (en) * | 2016-10-04 | 2018-04-12 | アイシン精機株式会社 | Damping force control device |
JP2022065808A (en) * | 2020-10-16 | 2022-04-28 | トヨタ自動車株式会社 | Device and method for estimating suspension stroke related values |
JP7327345B2 (en) | 2020-10-16 | 2023-08-16 | トヨタ自動車株式会社 | SUSPENSION STROKE RELATED VALUE ESTIMATING APPARATUS AND METHOD |
CN115356095A (en) * | 2022-08-16 | 2022-11-18 | 广西电网有限责任公司电力科学研究院 | Breaker opening and closing spring state performance evaluation method based on motion equation variance |
CN115356095B (en) * | 2022-08-16 | 2024-09-24 | 广西电网有限责任公司电力科学研究院 | Method for evaluating state performance of opening and closing spring of circuit breaker based on variance of motion equation |
Also Published As
Publication number | Publication date |
---|---|
JP4861897B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4199273B2 (en) | Vehicle state estimation device | |
Zhao et al. | Design of a nonlinear observer for vehicle velocity estimation and experiments | |
EP3617647B1 (en) | Road surface profile estimating device, road surface profile estimating system, road surface profile estimating method, and road surface profile estimating program | |
US9616900B2 (en) | Integrated bank and roll estimation using a three-axis inertial-measuring device | |
JP7028649B2 (en) | Vehicle, vehicle motion state estimation device and vehicle motion state estimation method | |
JP4861897B2 (en) | Vehicle state estimation device | |
JP5652053B2 (en) | Vehicle vibration estimation device and vehicle system vibration control device using the same | |
JP6628702B2 (en) | Vehicle state quantity estimation device | |
CN103279675A (en) | Method for estimating tire-road adhesion coefficients and tire slip angles | |
KR101626163B1 (en) | Electronic stability control method | |
JP2012046040A (en) | Device for estimating vehicle body vibration, and control device for suppressing vehicle body vibration using the same | |
JP2012126293A (en) | Steering controlling system of vehicle | |
JP4105492B2 (en) | Load test system and load test method | |
CN112622876B (en) | Vehicle centroid position determination method, device, equipment and storage medium | |
JP2019018773A (en) | Control system for suspension | |
KR101315777B1 (en) | Method for compensating offset of steering sensor in electronic stability control system | |
US10759248B2 (en) | Traveling control system for vehicle | |
JP5091047B2 (en) | Vehicle attitude angle estimation device and sensor drift estimation device | |
JP2009229412A (en) | System for gravity center height estimation and vehicle behavior controller equipped with the same | |
Park et al. | Design of robust observers for active roll control | |
Zhao et al. | Sliding mode observer for vehicle velocity estimation with road grade and bank angles adaptation | |
KR102297499B1 (en) | Fixed time slip control method for anti-lock braking systems of electric vehicles based on extended state observer, recording medium and device for performing the method | |
JP2002116080A (en) | Apparatus for estimating and computing vehicle mass | |
JP2021142969A (en) | Sensor error correction device | |
JP2013159246A (en) | Device and program for estimating vehicle position and posture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111011 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4861897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |