JP2008298603A - Atomic absorption spectrometry and atomic absorption spectrophotometer - Google Patents
Atomic absorption spectrometry and atomic absorption spectrophotometer Download PDFInfo
- Publication number
- JP2008298603A JP2008298603A JP2007145389A JP2007145389A JP2008298603A JP 2008298603 A JP2008298603 A JP 2008298603A JP 2007145389 A JP2007145389 A JP 2007145389A JP 2007145389 A JP2007145389 A JP 2007145389A JP 2008298603 A JP2008298603 A JP 2008298603A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- measurement
- light
- absorbance
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、原子吸光分析法及び原子吸光光度計に関し、特に液体である測定試料の測定前段階において、乾燥加熱段階では水分を蒸発させ、次に灰化加熱段階では有機物等を燃焼させ灰化後、原子化加熱段階で原子化させ、その原子蒸気を吸光分析することにより金属元素の分析を行う原子吸光分析法及び原子吸光光度計に関する。 The present invention relates to an atomic absorption analysis method and an atomic absorption spectrophotometer, and in particular, in a pre-measurement stage of a measurement sample that is a liquid, water is evaporated in a dry heating stage, and then in an ashing heating stage, organic substances are combusted and ashed. The present invention relates to an atomic absorption analysis method and an atomic absorption spectrophotometer in which a metal element is analyzed by performing atomization in an atomization heating stage and performing an absorption analysis of the atomic vapor.
電気加熱炉分析原子吸光光度計は、黒鉛管に液体の測定試料を数μL〜数十μL注入し、前記測定試料の水分を蒸発させる乾燥段階、有機物等を燃焼させ灰化する灰化段階を経て、最終的に測定試料が原子化する温度まで加熱し分析を行う。乾燥温度と時間、灰化温度と時間、原子化温度と時間は分析者が経験から試料注入量、試料成分、分析元素に応じて決定し、加熱温度プログラムとして制御部に入力して分析を行う。 Electric furnace analysis atomic absorption spectrophotometer injects several μL to several tens of μL of a liquid measurement sample into a graphite tube, and evaporates the moisture in the measurement sample, and burns and ashes organic substances. Then, analysis is performed by heating to a temperature at which the measurement sample is finally atomized. The drying temperature and time, ashing temperature and time, atomization temperature and time are determined by the analyst according to the sample injection amount, sample component, and analysis element based on experience, and input to the controller as a heating temperature program for analysis. .
また、測定後、測定データの再現性および分析感度を確認し、分析者の判断で温度と時間の変更を行い再度分析する。以上のことを繰り返し、目標とする再現性、分析感度を得ている。 In addition, after measurement, the reproducibility and analysis sensitivity of the measurement data are confirmed, and the temperature and time are changed at the discretion of the analyst, and analysis is performed again. By repeating the above, the target reproducibility and analytical sensitivity are obtained.
しかし、従来技術のように、分析者の経験と測定データの確認作業の繰り返しを必要とするのでは、経験者以外は分析ができないのと、良い再現性と分析感度を得るまで分析を繰り返す時間が必要であった。 However, as with the prior art, it is necessary to repeat the analysis work of the analyst and the measurement data, so that only non-experienced persons can perform the analysis, and the time to repeat the analysis until good reproducibility and analytical sensitivity are obtained. Was necessary.
また、注入試料量が20μLの場合、乾燥は80℃〜140℃位で加熱時間は通常30〜50秒位に設定するが、厳密には試料が乾燥するまでの時間はもう少し短くて良い。また試料量を多くした場合は時間を増やす必要がある。しかし、試料が乾燥前に灰化段階に進むと蒸発前の水分が吐沸し、黒鉛管内で飛び散るために測定の再現性および吸収感度が低下する問題が有るため、加熱時間を一般的に余裕を持った長い時間に設定している。灰化の場合は測定元素により変わり400℃〜1000℃位で加熱時間は通常20秒〜40秒位に設定するが、厳密には試料中の有機物等が燃焼するまでの時間はもう少し短くて良い、また試料量を多くした場合は時間を長くする必要がある。 When the amount of the injected sample is 20 μL, the drying is set at about 80 ° C. to 140 ° C. and the heating time is usually set at about 30 to 50 seconds, but strictly speaking, the time until the sample is dried may be a little shorter. Moreover, when the sample amount is increased, it is necessary to increase the time. However, if the sample proceeds to the ashing stage before drying, the moisture before evaporation evaporates and scatters in the graphite tube, causing the problem of reduced measurement reproducibility and absorption sensitivity. Set for a long time with. In the case of ashing, it varies depending on the element to be measured, and the heating time is usually set to about 20 to 40 seconds at about 400 ° C to 1000 ° C. In addition, when the sample amount is increased, it is necessary to lengthen the time.
しかし、試料が完全に灰化されていない状態で原子化段階に進むと原子化時に発生するバックグラウンド(煙)の量が多くなり分析の精度が低下する問題が有るため、加熱時間を一般的に余裕を持った長い時間に設定している。 However, if the sample is not completely incinerated and the process proceeds to the atomization stage, there is a problem that the amount of background (smoke) generated during atomization increases and the accuracy of the analysis decreases. It is set to a long time with a margin.
以上のことにより、乾燥段階および灰化段階の加熱温度プログラムの設定は分析者の経験と時間を変えながら何度か測定を繰り返す必要があり、分析者の経験値のレベルによって、測定精度の良し悪しが左右されたり、乾燥時間または灰化時間の見極めを測定結果である測定再現性または吸収感度を見て間接的な判断をしたり、1回の測定で2〜4分所要する測定を何度も繰り返す必要が有った。 Based on the above, it is necessary to repeat the measurement several times while changing the experience and time of the analyst to set the heating temperature program in the drying stage and the ashing stage, and the measurement accuracy is good depending on the level of the experience value of the analyst. Defects are affected, the determination of drying time or ashing time is made indirectly by looking at the measurement reproducibility or absorption sensitivity, and what measurement takes 2 to 4 minutes per measurement I had to repeat it again.
本発明の目的は、分析者の経験に頼ることなく乾燥段階および灰化段階の最適な加熱時間を求め、かつ、測定を何度も繰り返さずに、最低限の測定回数で最適な測定精度を得られる加熱温度プログラムを求めることが可能な原子吸光光度計を実現することである。 The object of the present invention is to obtain the optimum heating time in the drying and ashing stages without depending on the experience of the analyst, and to achieve the optimum measurement accuracy with the minimum number of measurements without repeating the measurement many times. It is to realize an atomic absorption photometer capable of obtaining the obtained heating temperature program.
本発明は、測定試料を加熱し原子化を行う加熱ステップと、原子化した試料に対して測定光を照射する発光ステップと、前記加熱ステップを通過した測定光を任意の波長毎に分光する分光ステップと、分光ステップにより分光された光を検出する検出ステップと、検出ステップにより出力された信号から吸光度を算出する演算ステップと、前記加熱ステップの加熱温度および時間を指示入力する入力ステップと、吸光度判定値を記憶する記憶ステップとを備え、更に前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた吸光度の値と前記記憶された吸光度判定値との比較判定を行うステップと、比較判定処理の結果から原子化させて測定する前段階の測定試料加熱時間を求めるステップを有する前段階処理を備えることを特徴とする原子吸光分析法を提供するものである。 The present invention includes a heating step for heating and atomizing a measurement sample, a light emission step for irradiating measurement light to the atomized sample, and spectroscopy for spectroscopically analyzing the measurement light that has passed through the heating step for each arbitrary wavelength. A detection step for detecting light separated by the spectroscopic step, a calculation step for calculating the absorbance from the signal output by the detection step, an input step for instructing and inputting the heating temperature and time of the heating step, and the absorbance A storage step for storing a determination value, and further comparing and determining the absorbance value obtained in an arbitrary period during heating before the measurement sample is atomized and measured, and the stored absorbance determination value A pre-stage process including a step of performing and a step of obtaining a measurement sample heating time of the pre-stage to be atomized and measured from the result of the comparison determination process There is provided an atomic absorption spectrometry, wherein.
また、本発明は、測定試料を加熱し原子化を行う加熱手段と、原子化した試料に対して測定光を照射する発光手段と、前記加熱手段を通過した測定光を任意の波長毎に分光する分光手段と、該分光手段により分光された光を検出する検出手段と、該検出手段により出力された信号から吸光度を算出する演算手段と、前記黒鉛管の加熱温度および時間を指示入力する入力手段と、前記各手段の制御を行う制御手段を備え、前記制御手段は、吸光度判定値を記憶する記憶手段と、前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた吸光度の値と前記記憶手段の吸光度判定値との比較判定を行う比較・判定手段と、比較判定処理の結果から原子化させて測定する前段階の測定試料加熱時間を求める時間計算手段とを有することを特徴とする原子吸光光度計を提供するものである。 Further, the present invention provides a heating means for heating and atomizing a measurement sample, a light emitting means for irradiating measurement light to the atomized sample, and measuring light passing through the heating means for each wavelength. Spectroscopic means, detecting means for detecting the light split by the spectroscopic means, computing means for calculating the absorbance from the signal output by the detecting means, and input for instructing the heating temperature and time of the graphite tube And a control means for controlling each of the means, and the control means is obtained in an arbitrary period during heating in the previous stage of measuring the measurement sample by atomizing the measurement sample, and storing the absorbance determination value. A comparison / determination unit that compares and determines the absorbance value obtained and the absorbance determination value of the storage unit; and a time calculation unit that calculates a measurement sample heating time in a previous stage for measurement by atomization from the result of the comparison determination process; Have There is provided an atomic absorption spectrophotometer according to claim.
本発明によれば、分析者の経験に頼ることなく試料の乾燥段階および灰化段階の最適な加熱時間を求め、かつ、測定を何度も繰り返さずに、最低限の測定回数で最適な測定精度が得られる加熱温度プログラムを求めることが可能な原子吸光光度計を実現することができる。 According to the present invention, the optimum heating time for the drying and ashing stages of the sample is obtained without depending on the experience of the analyst, and the optimum measurement is performed with the minimum number of measurements without repeating the measurement over and over. It is possible to realize an atomic absorption photometer capable of obtaining a heating temperature program capable of obtaining accuracy.
本発明における実施形態を例示すれば以下のとおりである。 Examples of the embodiment of the present invention are as follows.
前記原子吸光分析法において、前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた吸光度の値と予め設定された第1の判定値と比較し、前記吸光度の値が上がったことを検出する第1のステップ、前記検出後に前記加熱中の任意期間に得られた吸光度の値と予め設定された第2の判定値と比較し、前記吸光度の値が下がったことを検出する第2のステップ、及び加熱した累計時間の記録を行う第3のステップとを有することを特徴とする原子吸光分析法が提供される。測定試料の加熱は、黒鉛管中で行われるのが一般的であり、本発明の実施形態でも同様である。 In the atomic absorption analysis method, the absorbance value obtained in an arbitrary period during heating before the measurement sample is atomized and measured is compared with a preset first determination value, and the absorbance value is determined. A first step for detecting that the absorbance has increased; the absorbance value obtained during an arbitrary period during the heating after the detection is compared with a preset second determination value, and the absorbance value has decreased There is provided an atomic absorption analysis method characterized by having a second step of detecting the temperature and a third step of recording the accumulated accumulated time. The measurement sample is generally heated in the graphite tube, and the same applies to the embodiment of the present invention.
また、測定試料を加熱し原子化を行う加熱ステップと、原子化した試料に対して測定光を照射する発光ステップと、前記加熱手段を通過した測定光を任意の波長毎に分光する分光ステップと、分光手段により分光された光を磁場に平行な偏向成分の光と前記磁場に垂直な成分の光とに分離し、それぞれの光を検出する検出ステップと、検出ステップにより出力された磁場に平行な偏向成分の信号と垂直な成分の信号から各々の吸光度を算出する演算ステップと、加熱温度および時間を指示入力する入力ステップとを備えた原子吸光分析法であって、更に前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた磁場に垂直な成分の吸光度値と予め設定された第1の判定値と比較し、前記吸光度の値が上がったことを検出する第1のステップと、前記検出後に前記加熱中の任意期間に得られた磁場に垂直な成分の吸光度値と予め設定された第2の判定値と比較し、前記吸光度の値が下がったことを検出する第2のステップと、加熱した累計時間の記録を行う第3のステップとを有することを特徴とする原子吸光分析法が提供される。 A heating step for heating and atomizing the measurement sample; a light emission step for irradiating the atomized sample with measurement light; and a spectroscopic step for splitting the measurement light that has passed through the heating means for each arbitrary wavelength. , Separating the light dispersed by the spectroscopic means into light having a deflection component parallel to the magnetic field and light having a component perpendicular to the magnetic field, and detecting each light, and parallel to the magnetic field output by the detection step An atomic absorption analysis method comprising: a calculation step for calculating each absorbance from a signal of a vertical deflection component and a signal of a vertical component; and an input step for indicating and inputting a heating temperature and time. The absorbance value of the component perpendicular to the magnetic field obtained during an arbitrary period during the heating before the measurement is compared with the first determination value set in advance to detect that the absorbance value has increased. 1 and comparing the absorbance value of the component perpendicular to the magnetic field obtained in the arbitrary period during the heating after the detection with a preset second determination value, and detecting that the absorbance value has decreased There is provided an atomic absorption analysis method characterized in that the method has a second step and a third step of recording the accumulated accumulated time.
上記方法において、前記第1ステップ〜第3ステップを乾燥段階のみ行う第1のケース、灰化段階のみ行う第2のケース、及び乾燥段階および灰化段階の両方に行う第3のケースのいずれかを選択するステップを有することができる。更に、上記方法において、前記第2のステップで吸光度の値の下がりが確認された時から予め設定された時間後に加熱を終了して、次の加熱段階、または測定を行う原子化段階に進むことができる。更に、前記方法において、乾燥段階及び灰化段階を複数段階に設定することができる。 In the above method, any one of a first case in which the first to third steps are performed only in the drying stage, a second case in which only the ashing stage is performed, and a third case in which both the drying stage and the ashing stage are performed. Can be included. Further, in the above method, the heating is terminated after a preset time from when the decrease in the absorbance value is confirmed in the second step, and the process proceeds to the next heating stage or the atomization stage for performing the measurement. Can do. Further, in the method, the drying stage and the ashing stage can be set to a plurality of stages.
また、測定光に加えて、バックグラウンド検出用の重水素放電管を備えた原子吸光光度計を用いて原子吸光分析を行う方法であって、前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた前記重水素放電管の吸光度の値と前記記憶手段の吸光度判定値との比較判定を行うステップと、比較判定処理の結果から原子化させて測定する前段階の測定試料加熱時間を求めるステップとを有することができる。 Further, it is a method for performing atomic absorption analysis using an atomic absorption photometer equipped with a deuterium discharge tube for background detection in addition to measurement light, wherein the measurement sample is atomized and measured before the measurement. A step of comparing and determining the absorbance value of the deuterium discharge tube obtained during an arbitrary period during heating and the absorbance determination value of the storage means; Determining a measurement sample heating time.
本発明は、測定試料を加熱し原子化を行う黒鉛管を有する加熱手段と、原子化した試料に対して測定光を照射する発光手段と、前記加熱手段を通過した測定光を任意の波長毎に分光する分光手段と、当該分光手段により分光された光を検出する検出手段と、該検出手段により出力された信号から吸光度を算出する演算手段と、前記黒鉛管の加熱温度および時間を指示入力する入力手段と、前記各手段の制御を行う制御手段を備え、前記制御手段は、前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた吸光度の値と予め設定された第1の判定値と比較し、前記吸光度の値が上がったことを検出する第1の手段と、前記検出後に前記加熱中の任意期間に得られた吸光度の値と予め設定された第2の判定値と比較し、前記吸光度の値が下がったことを検出する第2の手段と、加熱した累計時間の記録を行う第3の手段とを有する原子吸光光度計を提供する。 The present invention comprises a heating means having a graphite tube for heating and atomizing a measurement sample, a light emitting means for irradiating measurement light to the atomized sample, and measurement light having passed through the heating means for any wavelength. Spectroscopic means for spectrally separating the light, detection means for detecting the light dispersed by the spectral means, calculation means for calculating the absorbance from the signal output by the detection means, and the heating temperature and time of the graphite tube are input as instructions And a control means for controlling each of the means, the control means presetting the absorbance value obtained in an arbitrary period during heating before the measurement sample is atomized and measured. A first means for detecting an increase in the absorbance value compared to the first determination value, and an absorbance value obtained in an arbitrary period during the heating after the detection and a preset first value. Compared with the judgment value of 2, Second means for detecting that the value of the degree drops, provides an atomic absorption spectrophotometer and a third means for recording heated cumulative time.
また、測定試料を加熱し原子化を行う直流磁場内に配置された黒鉛管を有する加熱手段と、当該原子化した試料に対して測定光を照射する発光手段と、前記加熱手段を通過した測定光を任意の波長毎に分光する分光手段と、当該分光手段により分光された光を前記磁場に平行な偏向成分の光と前記磁場に垂直な成分の光とに分離し、それぞれの光を検出する検出手段度と、当該検出手段により出力された磁場に平行な偏向成分の信号と垂直な成分の信号から各々の吸光度を算出する演算手段と、前記黒鉛管の加熱温度および時間を指示入力する入力手段と、前記各手段の制御を行う制御手段を備え、前記制御手段は、前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた磁場に垂直な成分の吸光度値と予め設定された第1の判定値と比較し、前記吸光度の値が上がったことを検出する第1の手段と、前記検出後に前記加熱中の任意期間に得られた磁場に垂直な成分の吸光度値と予め設定された第2の判定値と比較し、前記吸光度の値が下がったことを検出する第2の手段、加熱した累計時間の記録を行う第3の手段とを有することを特徴とする原子吸光光度計を提供する。 Also, a heating means having a graphite tube arranged in a DC magnetic field for heating and atomizing the measurement sample, a light emitting means for irradiating the atomized sample with measurement light, and measurement passing through the heating means Spectroscopic means for splitting light at an arbitrary wavelength, and separating the light split by the spectral means into light having a deflection component parallel to the magnetic field and light having a component perpendicular to the magnetic field, and detecting each light Detecting means, calculating means for calculating each absorbance from a signal of a component perpendicular to the deflection component signal parallel to the magnetic field output by the detecting means, and the heating temperature and time of the graphite tube are instructed. Input means and control means for controlling each of the means, and the control means is an absorbance of a component perpendicular to a magnetic field obtained in an arbitrary period during heating before the measurement sample is atomized and measured. Value and preset number A first means for detecting an increase in the absorbance value, and an absorbance value of a component perpendicular to the magnetic field obtained in an arbitrary period during the heating after the detection. An atomic absorption photometer comprising: a second means for detecting that the absorbance value has decreased as compared with a second determination value; and a third means for recording the accumulated accumulated time. provide.
前記装置において、前記第1の手段ないし第3の手段を乾燥段階のみ行う第1のケース、灰化段階のみ行う第2のケース、及び乾燥段階および灰化段階の両方に行う第3のケースのいずれかを選択する手段を有することができる。また、前記第2の手段で吸光度の値の下がりが確認された時から予め設定された時間後にその段階の加熱を終了して、次の加熱段階、または測定を行う原子化段階に進むことができる。 In the apparatus, a first case in which the first to third means are performed only in the drying stage, a second case in which only the ashing stage is performed, and a third case in which both the drying stage and the ashing stage are performed. There can be means for selecting either. Further, the heating at that stage is terminated after a preset time from when the decrease in the absorbance value is confirmed by the second means, and the process proceeds to the next heating stage or the atomization stage where the measurement is performed. it can.
さらに、前記装置において、乾燥段階及び灰化段階を複数段階に設定できる。前記測定光に加えて、バックグラウンド検出用の重水素放電管を備え、前記測定試料を原子化させて測定する前段階の加熱中の任意期間に得られた前記重水素放電管の吸光度の値と前記記憶手段の吸光度判定値との比較判定を行う手段と、比較判定処理の結果から原子化させて測定する前段階の測定試料加熱時間を求める手段とを有することができる。 Further, in the apparatus, the drying stage and the ashing stage can be set to a plurality of stages. In addition to the measurement light, a deuterium discharge tube for background detection is provided, and the absorbance value of the deuterium discharge tube obtained during an arbitrary period during heating before the measurement sample is atomized and measured. And means for comparing and determining the absorbance determination value of the storage means, and means for obtaining the measurement sample heating time in the previous stage of measurement by atomization from the result of the comparison determination process.
上記判定に使用する吸光度値は以下の理由から、バックグラウンドにより変動した吸光度値を判定に使用する。乾燥段階では液体である測定試料の水分が蒸発する時に発生する水蒸気等のバックグラウンドにより測定光が遮られ吸光度が低下する。灰化段階では乾燥された測定試料の有機物等が燃焼される時に発生する煙等のバックグラウンドにより測定光が遮られ吸光度が低下する。 As the absorbance value used for the above determination, the absorbance value varied depending on the background is used for the determination for the following reason. In the drying stage, the measurement light is blocked by the background of water vapor or the like generated when the moisture of the liquid measurement sample evaporates, and the absorbance is lowered. In the ashing stage, the measurement light is blocked by the background of smoke or the like generated when the organic matter or the like of the dried measurement sample is burned, and the absorbance decreases.
この現象に注目して、測定試料を原子化させて測定する前段階の加熱である乾燥段階および灰化段階のバックグラウンドによる吸光度変動を監視・検出することにより、乾燥および灰化の状態を判断する。 Paying attention to this phenomenon, the state of drying and ashing can be judged by monitoring and detecting the change in absorbance due to the background of the drying and ashing stages, which is the heating before the measurement sample is atomized. To do.
乾燥段階および灰化段階の最適な加熱時間を求めるという目的を、乾燥および灰化段階中の吸光度を記録してバックグラウンドの状態を判定することにより、最低限の測定回数で求めることを実現した。 The objective of finding the optimal heating time for the drying and ashing stages was to obtain the minimum number of measurements by recording the absorbance during the drying and ashing stages and judging the background state. .
以下本発明の実施形態を実施例及び図面により説明する。 Embodiments of the present invention will be described below with reference to examples and drawings.
図1は、本発明における第1の実施形態である原子吸光光度計の概略構成図である。図1において、測定光4は光源3から、黒鉛管2内に注入されている測定対象である試料17に照射される。加熱制御部14は操作部12で予め入力・設定された加熱温度プログラムに従い電気加熱炉1の加熱制御を行い、黒鉛管2は電気加熱炉1により通電加熱され、試料17が乾燥段階、灰化段階を経て原子化される。
FIG. 1 is a schematic configuration diagram of an atomic absorption photometer according to a first embodiment of the present invention. In FIG. 1, measurement light 4 is irradiated from a light source 3 onto a
試料17を加熱する際、電気加熱炉1の直流磁気回路5により試料17に磁場が加えられることにより、磁場に平行な偏光成分の光(サンプル光と呼ぶ)は原子化された金属元素と水蒸気、煙等のバックグラウンド18に吸収され、一方、磁場に垂直な偏光成分の光(レファレンス光と呼ぶ)は原子化された金属元素により僅かに吸収されるのと水蒸気、煙等のバックグラウンド18に吸収される。このため、加熱中の試料17から発生する水蒸気、煙等のバックグラウンド18の検出は、垂直偏光成分光(レファレンス光と呼ぶ)16の吸収の変動を監視して判定する。
When the
試料17を通過した測定光4は、分光器6に導かれる。そして、この分光器6では測定光4が分光され、測定対象となる特定の測定波長の光のみが分光器6から出射される。
The measurement light 4 that has passed through the
出射された測定光44は、偏光プリズム7により、磁場に平行な偏光成分の光15と、垂直な偏光成分の光16とに、分離角度4゜で各々分離される。
The emitted
互いに分離された平行偏光成分光(サンプル光と呼ぶ)15は、検知器〔光電子増倍管(第1の検知器)〕8に導かれ、一方、垂直偏光成分光(レファレンス光と呼ぶ)16は検知器(光電子増倍管(第2の検知器))9に導かれる。 Parallel polarized component light (referred to as sample light) 15 separated from each other is guided to a detector [photomultiplier tube (first detector)] 8, while vertical polarized component light (referred to as reference light) 16. Is guided to a detector (photomultiplier tube (second detector)) 9.
検知器8、検知器9では、光の強度を電気信号に変換してA/D変換器10に出力し、A/D変換器10は電気信号をデジタル信号として中央処理装置11に出力し、中央処理装置11ではデジタル信号から吸光度を算出して記憶する記憶装置50を有し、と共に操作部12に出力、また表示部13に表示する。
The
中央処理装置11は、連続的に前記吸光度を監視することにより、測定試料を原子化させて測定する前段階の加熱中において、垂直偏光成分光(レファレンス光と呼ぶ)16の吸光度値と予め設定された第1の判定値(バックグラウンド検出開始吸光度値)と比較し、前記吸光度の値が上がりバックグラウンドを検出開始する第1のステップ、前記検出後に前記加熱中の任意期間に得られた垂直偏光成分光(レファレンス光と呼ぶ)16の吸光度値と予め設定された第2の判定値(バックグラウンド検出終了吸光度値)と比較し、前記吸光度の値が下がりバックグラウンドを検出終了する第2のステップ、加熱した累計時間の記録を行う第3のステップとを実行する。図2に測定試料の乾燥段階から灰化段階、原子化に至るまでの吸光度変化をリアルタイムで表示している表示部13の一例を示す。
The central processing unit 11 continuously monitors the absorbance, and sets the absorbance value of the vertically polarized component light (referred to as reference light) 16 in advance during the heating before the measurement sample is atomized and measured. The first determination value (background detection start absorbance value) is compared with the first determination value, the absorbance value is increased and the background is detected, and the vertical obtained after the detection at any time during the heating Compare the absorbance value of the polarization component light (referred to as reference light) 16 with a preset second determination value (absorbance value at the end of background detection), and the second value at which the absorbance value falls and the detection of the background ends. Step 3 and a third step of recording the accumulated cumulative time are executed. FIG. 2 shows an example of the
従って、本発明においては、中央処理装置11がバックグラウンドによる吸光度変化を連続的に監視して、図3に示すような判定処理を行う。尚、図3に示す判定処理には複数の判定値が用いられるが、各判定値は分析者が予め設定しておくものである。表1に、判定値の初期設定値と判定設定範囲の一例を示す。表において、absは吸光度(absorbance)である。 Therefore, in the present invention, the central processing unit 11 continuously monitors the change in absorbance due to the background and performs the determination process as shown in FIG. Note that a plurality of determination values are used in the determination process shown in FIG. 3, but each determination value is set in advance by an analyst. Table 1 shows an example of initial setting values and determination setting ranges of determination values. In the table, abs is the absorbance.
次に、黒鉛管2に試料17を注入して、加熱温度プログラムを開始する。加熱温度プログラムは、試料の水分を蒸発させる乾燥段階から始まる。
Next, the
乾燥段階の加熱開始後、バックグラウンド検出開始の判定を行うために、レファレンス吸光度値を算出する。レファレンス吸光度値は、検知器9によって検出された現在の光の強度と加熱前の光の強度により算出した吸光度値である。そして、算出したレファレンス吸光度値を前記表1に示す「検出開始判定吸光度値C」と比較する。レファレンス吸光度値がC未満であれば、まだバックグラウンドの検出は行われていないと判断してタイムアウト判定処理に進み、乾燥段階の乾燥加熱累計時間を表1に示す「加熱時間A」と比較する。 After the start of heating in the drying stage, a reference absorbance value is calculated in order to determine whether to start background detection. The reference absorbance value is an absorbance value calculated from the current light intensity detected by the detector 9 and the light intensity before heating. Then, the calculated reference absorbance value is compared with the “detection start determination absorbance value C” shown in Table 1. If the reference absorbance value is less than C, it is determined that the background has not been detected yet, and the process proceeds to the time-out determination process, and the cumulative drying time in the drying stage is compared with “heating time A” shown in Table 1. .
乾燥加熱累計時間がA未満であれば、1,000ms待機し、再度バックグラウンド検出開始の判定処理を行う。また、レファレンス吸光度値≧Cの場合は、次の乾燥段階バックグラウンド検出終了の判定に進む。また、乾燥加熱累計時間≧Aの場合は、乾燥段階を終了して灰化段階に進む。尚、検出判定値Cの値の設定を変更することによって、検出感度を自由に調整することができる。 If the dry heating cumulative time is less than A, it waits for 1,000 ms, and the background detection start determination process is performed again. When the reference absorbance value ≧ C, the process proceeds to the determination of the end of the next drying stage background detection. Moreover, when the dry heating cumulative time ≧ A, the drying stage is finished and the ashing stage is advanced. Note that the detection sensitivity can be freely adjusted by changing the setting of the detection determination value C.
乾燥段階バックグラウンド検出終了の判定においては、レファレンス吸光度値を「検出終了判定吸光度値D」と比較する。レファレンス吸光度値がD以上であれば、まだバックグラウンドが発生していると判断してタイムアウト判定処理に進み、乾燥段階の乾燥加熱累計時間を「加熱時間A」と比較する。乾燥加熱累計時間がA未満であれば、1,000ms待機し、再度バックグラウンド検出終了の判定処理を行う。 In the determination of the end of the drying stage background detection, the reference absorbance value is compared with the “detection end determination absorbance value D”. If the reference absorbance value is greater than or equal to D, it is determined that the background is still occurring, and the process proceeds to the time-out determination process, and the drying heating cumulative time in the drying stage is compared with the “heating time A”. If the dry heating cumulative time is less than A, the process waits for 1,000 ms, and performs the background detection end determination process again.
また、レファレンス吸光度値<Dの場合は、5,000ms経過後、乾燥段階を終了して次の灰化段階に進む。また、乾燥加熱累計時間≧Aの場合は、乾燥段階を終了して灰化段階に進む。この実行と同期して、乾燥段階の累計時間を記録する。尚、検出判定値Dの値の設定を変更することによって、検出終了感度を自由に調整することができる。5,000ms経過後に次に進むのは、測定毎の乾燥完了のバラツキを考慮して時間を加算する。 When the reference absorbance value <D, after 5,000 ms has elapsed, the drying stage is terminated and the process proceeds to the next ashing stage. Moreover, when the dry heating cumulative time ≧ A, the drying stage is finished and the ashing stage is advanced. In synchronization with this execution, the accumulated time of the drying stage is recorded. The detection end sensitivity can be freely adjusted by changing the setting of the detection determination value D. The next step after 5,000 ms elapses is to add time in consideration of the variation in drying completion for each measurement.
次に試料の有機物等を燃焼させる灰化段階の加熱開始後、バックグラウンド検出開始の判定を行うために、レファレンス吸光度値を「検出開始判定吸光度値E」と比較する。レファレンス吸光度値がE未満であれば、まだバックグラウンドの検出は行われていないと判断してタイムアウト判定処理に進み、灰化段階の灰化加熱累計時間を「加熱時間B」と比較する。灰化加熱累計時間がB未満であれば、1,000ms待機し、再度バックグラウンド検出開始の判定処理を行う。 Next, the reference absorbance value is compared with the “detection start determination absorbance value E” in order to determine whether background detection starts after the start of heating in the ashing stage in which the organic matter or the like of the sample is combusted. If the reference absorbance value is less than E, it is determined that the background has not been detected yet, and the process proceeds to the time-out determination process, and the ashing heating cumulative time in the ashing stage is compared with the “heating time B”. If the accumulated ashing time is less than B, the process waits for 1,000 ms, and the background detection start determination process is performed again.
また、レファレンス吸光度値≧Eの場合は、次の灰化段階バックグラウンド検出終了の判定に進む。また、灰化加熱累計時間≧Bの場合は、灰化段階を終了して原子化段階に進む。尚、検出判定値Eの値の設定を変更することによって、検出感度を自由に調整することができる。 If the reference absorbance value ≧ E, the process proceeds to the next ashing stage background detection end determination. Moreover, when the ashing heating cumulative time ≧ B, the ashing stage is terminated and the atomization stage is advanced. Note that the detection sensitivity can be freely adjusted by changing the setting of the detection determination value E.
灰化段階バックグラウンド検出終了の判定においては、レファレンス吸光度値を「検出終了判定吸光度値F」と比較する。レファレンス吸光度値がF以上であれば、まだバックグラウンドが発生していると判断してタイムアウト判定処理に進み、灰化段階の灰化加熱累計時間を「加熱時間B」と比較する。灰化加熱累計時間がB未満であれば、1,000ms待機し、再度バックグラウンド検出終了の判定処理を行う。 In the determination of the end of the ashing stage background detection, the reference absorbance value is compared with the “detection end determination absorbance value F”. If the reference absorbance value is F or more, it is determined that the background is still occurring, and the process proceeds to the time-out determination process, and the accumulated ashing heating time in the ashing stage is compared with the “heating time B”. If the accumulated ashing time is less than B, the process waits for 1,000 ms, and the background detection end determination process is performed again.
また、レファレンス吸光度値<Fの場合は、5,000ms経過後、灰化段階を終了して次の原子化段階に進む。また、灰化加熱累計時間≧Bの場合は、灰化段階を終了して原子化段階に進む。この実行と同期して、灰化段階の累計時間を記録する。尚、検出判定値Fの値の設定を変更することによって、検出終了感度を自由に調整することができる。5,000ms経過後に次に進むのは、測定毎の灰化完了のバラツキを考慮して時間を加算しているからである。 When the reference absorbance value <F, after the lapse of 5,000 ms, the ashing stage is finished and the process proceeds to the next atomization stage. Moreover, when the ashing heating cumulative time ≧ B, the ashing stage is terminated and the atomization stage is advanced. In synchronization with this execution, the accumulated time of the ashing stage is recorded. Note that the detection end sensitivity can be freely adjusted by changing the setting of the detection determination value F. The reason why the process proceeds to the next after the lapse of 5,000 ms is that the time is added in consideration of variations in ashing completion for each measurement.
次に、原子化段階においては、加熱時間(測定時間)G間の吸光度の取り込む測定を実行する。測定後、乾燥段階、灰化段階の各加熱の累計時間を分析条件の乾燥段階加熱時間A、灰化段階加熱時間Bに反映する。 Next, in the atomization stage, the measurement of taking in the absorbance during the heating time (measurement time) G is performed. After the measurement, the accumulated time of each heating in the drying stage and the ashing stage is reflected in the drying stage heating time A and the ashing stage heating time B of the analysis conditions.
以上のように、本発明の第1の実施形態によれば、測定試料を原子化させて測定する前段階の加熱である乾燥段階および灰化段階のバックグラウンドによる吸光度変動を検出することにより、乾燥段階では水蒸気の発生始まりと水蒸気の発生終了時間が記録可能となる。 As described above, according to the first embodiment of the present invention, by detecting the change in absorbance due to the background of the drying stage and the ashing stage, which is heating before the measurement sample is atomized and measured, In the drying stage, the start of water vapor generation and the end time of water vapor generation can be recorded.
また、灰化段階では有機物等の燃焼による煙の発生始まりと煙の発生終了時間が記録可能となる。この記録された時間を加熱温度プログラムに反映することで、乾燥および灰化が十分に行える最適かつ最短時間の加熱時間で測定が可能となる。したがって、分析者の経験に依ることなく、最低限の測定回数で最適な測定精度が得ることができる。 In addition, at the ashing stage, it is possible to record the start time of smoke generation and the end time of smoke generation due to combustion of organic matter or the like. By reflecting this recorded time in the heating temperature program, it is possible to perform measurement with the optimum and shortest heating time that allows sufficient drying and ashing. Therefore, the optimum measurement accuracy can be obtained with the minimum number of measurements without depending on the experience of the analyst.
1…電気加熱炉、2…黒鉛管、3…光源、4…測定光、5…直流磁気回路、6…分光器、7…偏光プリズム、8…検知器(光電子増倍管)、9…検知器(光電子増倍管)、10…A/D変換器、11…中央処理装置、12…操作部、13…表示部、14…加熱制御部、15…平行偏光成分光(サンプル光と呼ぶ)、16…垂直偏光成分光(レファレンス光と呼ぶ)、17…試料、18…バックグラウンド(水蒸気、煙)、44…測定光、50…記憶装置。 DESCRIPTION OF SYMBOLS 1 ... Electric heating furnace, 2 ... Graphite tube, 3 ... Light source, 4 ... Measuring light, 5 ... DC magnetic circuit, 6 ... Spectroscope, 7 ... Polarizing prism, 8 ... Detector (photomultiplier tube), 9 ... Detection (Photomultiplier tube), 10 ... A / D converter, 11 ... central processing unit, 12 ... operation unit, 13 ... display unit, 14 ... heating control unit, 15 ... parallel polarized component light (referred to as sample light) 16 ... Vertically polarized component light (referred to as reference light), 17 ... Sample, 18 ... Background (water vapor, smoke), 44 ... Measuring light, 50 ... Storage device.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145389A JP4898561B2 (en) | 2007-05-31 | 2007-05-31 | Atomic absorption spectrometry and atomic absorption photometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145389A JP4898561B2 (en) | 2007-05-31 | 2007-05-31 | Atomic absorption spectrometry and atomic absorption photometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008298603A true JP2008298603A (en) | 2008-12-11 |
JP4898561B2 JP4898561B2 (en) | 2012-03-14 |
Family
ID=40172250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007145389A Active JP4898561B2 (en) | 2007-05-31 | 2007-05-31 | Atomic absorption spectrometry and atomic absorption photometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4898561B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102706822A (en) * | 2012-06-21 | 2012-10-03 | 苏州国环环境检测有限公司 | Method for measuring calcium in kelp by adopting flame atomic absorption spectrometry |
WO2013190980A1 (en) * | 2012-06-19 | 2013-12-27 | 株式会社 日立ハイテクノロジーズ | Method of atomic absorption analysis and atomic absorption photometer |
CN104390921A (en) * | 2014-12-01 | 2015-03-04 | 河海大学 | Method for online measurement of concentration based on absorption photometry |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6348442A (en) * | 1986-08-19 | 1988-03-01 | Shimadzu Corp | Atomic absorption spectrophotometer |
JPH04355347A (en) * | 1991-05-31 | 1992-12-09 | Shimadzu Corp | Atomic absorption spectrophotometer |
JPH05312720A (en) * | 1992-05-11 | 1993-11-22 | Seiko Instr Inc | Atomic absorption spectrophotometer |
JPH0658871A (en) * | 1992-08-05 | 1994-03-04 | Hitachi Ltd | Atomic absorption/emission analyzer |
JPH0694606A (en) * | 1992-09-16 | 1994-04-08 | Hitachi Ltd | Atomic absorption photometer |
JPH0694607A (en) * | 1992-09-11 | 1994-04-08 | Shimadzu Corp | Flameless atomic absorption spectro photometer |
JPH11211657A (en) * | 1998-01-30 | 1999-08-06 | Hitachi Ltd | Atomic absorption photometer |
JP2000346799A (en) * | 1999-06-03 | 2000-12-15 | Hitachi Ltd | Frame atom light absorption photometer and its control method |
JP2001083082A (en) * | 1999-09-17 | 2001-03-30 | Hitachi Ltd | Atomic absorption measurement method |
JP2005308681A (en) * | 2004-04-26 | 2005-11-04 | Hitachi Naka Instruments Co Ltd | Atomic absorption spectro-photometer |
-
2007
- 2007-05-31 JP JP2007145389A patent/JP4898561B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6348442A (en) * | 1986-08-19 | 1988-03-01 | Shimadzu Corp | Atomic absorption spectrophotometer |
JPH04355347A (en) * | 1991-05-31 | 1992-12-09 | Shimadzu Corp | Atomic absorption spectrophotometer |
JPH05312720A (en) * | 1992-05-11 | 1993-11-22 | Seiko Instr Inc | Atomic absorption spectrophotometer |
JPH0658871A (en) * | 1992-08-05 | 1994-03-04 | Hitachi Ltd | Atomic absorption/emission analyzer |
JPH0694607A (en) * | 1992-09-11 | 1994-04-08 | Shimadzu Corp | Flameless atomic absorption spectro photometer |
JPH0694606A (en) * | 1992-09-16 | 1994-04-08 | Hitachi Ltd | Atomic absorption photometer |
JPH11211657A (en) * | 1998-01-30 | 1999-08-06 | Hitachi Ltd | Atomic absorption photometer |
JP2000346799A (en) * | 1999-06-03 | 2000-12-15 | Hitachi Ltd | Frame atom light absorption photometer and its control method |
JP2001083082A (en) * | 1999-09-17 | 2001-03-30 | Hitachi Ltd | Atomic absorption measurement method |
JP2005308681A (en) * | 2004-04-26 | 2005-11-04 | Hitachi Naka Instruments Co Ltd | Atomic absorption spectro-photometer |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190980A1 (en) * | 2012-06-19 | 2013-12-27 | 株式会社 日立ハイテクノロジーズ | Method of atomic absorption analysis and atomic absorption photometer |
JP2014002037A (en) * | 2012-06-19 | 2014-01-09 | Hitachi High-Technologies Corp | Atomic absorption analysis method and atomic absorption photometer |
CN104395733A (en) * | 2012-06-19 | 2015-03-04 | 株式会社日立高新技术 | Method of atomic absorption analysis and atomic absorption photometer |
CN102706822A (en) * | 2012-06-21 | 2012-10-03 | 苏州国环环境检测有限公司 | Method for measuring calcium in kelp by adopting flame atomic absorption spectrometry |
CN104390921A (en) * | 2014-12-01 | 2015-03-04 | 河海大学 | Method for online measurement of concentration based on absorption photometry |
Also Published As
Publication number | Publication date |
---|---|
JP4898561B2 (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014030475A1 (en) | Spectrophotometer | |
JP4898561B2 (en) | Atomic absorption spectrometry and atomic absorption photometer | |
JP6167920B2 (en) | Spectrophotometer | |
CN107991285B (en) | Test object security detection method and test object security detection device | |
JP5907817B2 (en) | Atomic absorption spectrometry and atomic absorption photometer | |
JP7026117B2 (en) | Atomic absorption spectrophotometer and atomic absorption measurement method | |
JP4754888B2 (en) | Emission spectroscopy analysis method and emission spectroscopy analyzer | |
US20140190243A1 (en) | Fluorescence spectrophotometer | |
JPH04138343A (en) | Fluorescence spectrophotometer | |
US20170322147A1 (en) | Atomic absorption photometer and atomic absorption measurement method | |
US5434665A (en) | Atomic absorption analyzing apparatus with adjustable carrier gas flow rate | |
WO2015005074A1 (en) | Gas-component measurement apparatus | |
JP2001153799A (en) | Method and apparatus for quantitative analysis | |
JP4192386B2 (en) | Furnace atomic absorption spectrophotometer | |
JP2010008238A (en) | Spectrophotometer and spectroscopic analysis method | |
JP6314872B2 (en) | Method for determining the number of fluorescent components contained and a spectrofluorometer using the method for determining the number of fluorescent components contained | |
JP2007333501A (en) | Emission spectrophotometer | |
Cabon et al. | Influence of experimental parameters in electrothermal atomic absorption spectrometry on a priori calculated instrumental detection limits | |
JP5949613B2 (en) | Spectrophotometer | |
JP7537622B2 (en) | Raman spectroscopic analysis method and Raman microspectroscopic device | |
JP7445634B2 (en) | Diagnostic test methods for spectrometers | |
JPH11211657A (en) | Atomic absorption photometer | |
JP2014006212A (en) | Photodiode array detector | |
JP2000346799A (en) | Frame atom light absorption photometer and its control method | |
JPH05312720A (en) | Atomic absorption spectrophotometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4898561 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |