JP2008298394A - Cryogenic refrigeration system - Google Patents

Cryogenic refrigeration system Download PDF

Info

Publication number
JP2008298394A
JP2008298394A JP2007146843A JP2007146843A JP2008298394A JP 2008298394 A JP2008298394 A JP 2008298394A JP 2007146843 A JP2007146843 A JP 2007146843A JP 2007146843 A JP2007146843 A JP 2007146843A JP 2008298394 A JP2008298394 A JP 2008298394A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration system
cryogenic refrigeration
cooled
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007146843A
Other languages
Japanese (ja)
Inventor
Hisashi Horiuchi
久 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2007146843A priority Critical patent/JP2008298394A/en
Publication of JP2008298394A publication Critical patent/JP2008298394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryogenic refrigeration system for supplying a refrigerant of stable temperature to a body to be cooled. <P>SOLUTION: In this cryogenic refrigeration system, a refrigerator 15, a first heat exchanger 9 and a second heat exchanger 10 are provided inside a cryostat container 6, and a low-temperature probe 2 is cooled by circulation of a refrigerant. The cryogenic refrigeration system is provided with heat equalizers 18a, 18b arranged between the heat exchangers 9, 10 and the low-temperature probe 2 as the body to be cooled and disposed in the middle of a plurality of low-temperature insulated transfer pipes 8 for circulating the refrigerant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、極低温冷凍機により冷却された冷媒を循環させることにより、被冷却体を冷却する極低温冷凍システムに適用する。   The present invention is applied to a cryogenic refrigeration system that cools an object to be cooled by circulating a refrigerant cooled by a cryogenic refrigerator.

極低温冷凍システムは、核磁気共鳴装置の低温プローブを被冷却体の対象とする場合がある。ピストンやディスプレーサの往復運動等により振動源となる冷凍機を低温プローブから離れたところに配置でき、振動を伝えにくい構造とした極低温冷凍システムは、極低温及び低振動を必要とする低温プローブにとっては適したシステムである(特許文献1等参照)。   In a cryogenic refrigeration system, a cryogenic probe of a nuclear magnetic resonance apparatus may be a target of an object to be cooled. A cryogenic refrigeration system with a structure that is difficult to transmit vibration can be placed away from the cryogenic probe by reciprocating the piston and displacer, etc., for cryogenic probes that require cryogenic temperature and low vibration. Is a suitable system (see Patent Document 1, etc.).

低温プローブの冷却は、冷媒が冷却装置内で熱交換器及び冷凍機に熱的に接続された冷却段を通過することにより低温となり、低温となった冷媒が低温断熱された移送管を介して低温プローブ内へと循環することにより行なわれている。従来、冷却装置と低温プローブを接続する移送管は、単なる管が使用されていた。冷却装置から送り込まれる冷媒は供給用の移送管を通って直接低温プローブの流路へと流れ込み、低温プローブを通過後、回収用移送管を通って冷却装置に回収されて再度冷却されていた。   The cryogenic probe is cooled by passing through a cooling stage in which the refrigerant is thermally connected to the heat exchanger and the refrigerator in the cooling device. This is done by circulating into the cold probe. Conventionally, a simple pipe is used as a transfer pipe for connecting a cooling device and a cryogenic probe. The refrigerant sent from the cooling device directly flows into the flow path of the low-temperature probe through the supply transfer pipe, and after passing through the low-temperature probe, is recovered by the cooling device through the recovery transfer pipe and cooled again.

図6に、従来の冷却装置101と低温プローブ102を組み合わせた極低温冷凍システムの構成例を示し、以下に冷媒の循環流路及び構成品の役割について説明する。   FIG. 6 shows a configuration example of a cryogenic refrigeration system in which a conventional cooling device 101 and a low-temperature probe 102 are combined, and the role of refrigerant circulation channels and components will be described below.

低温プローブ102内には、1系統目の流路103と2系統目の流路104が設けられている。真空ポンプ105はクライオスタット容器106内、フレキシブルチューブ107内、低温プローブ102の1系統目の流路103、2系統目の流路104の周囲を排気する。そして、移送管108、第1熱交換器109、第2熱交換器110、第1冷却段111、第2冷却段112等を真空断熱させている。   In the low temperature probe 102, a first channel 103 and a second channel 104 are provided. The vacuum pump 105 evacuates the cryostat container 106, the flexible tube 107, and the periphery of the first system flow path 103 and the second system flow path 104 of the low temperature probe 102. The transfer pipe 108, the first heat exchanger 109, the second heat exchanger 110, the first cooling stage 111, the second cooling stage 112, and the like are insulated by vacuum.

断熱材113は冷却装置101と低温プローブ102を接続する移送管108に巻き付けて、真空断熱と併用して外部との熱接触を低減させている。シールド板114は、第1冷却段111と熱的に接触した円筒形となっており、第1冷却段111、第2冷却段112、第2熱交換器110を覆った状態で冷却されているため、クライオスタット容器106の外部からの輻射熱を遮る役目を果たしている。   The heat insulating material 113 is wound around the transfer pipe 108 that connects the cooling device 101 and the low temperature probe 102 and is used in combination with vacuum heat insulation to reduce thermal contact with the outside. The shield plate 114 has a cylindrical shape in thermal contact with the first cooling stage 111, and is cooled in a state of covering the first cooling stage 111, the second cooling stage 112, and the second heat exchanger 110. Therefore, it plays a role of blocking radiant heat from the outside of the cryostat container 106.

冷凍機115は、温度が異なる第1冷却段111と第2冷却段112を備え、冷媒を冷却する構造となっている。この場合は、第2冷却段112のほうが、第1冷却段111よりも低温となっている。圧縮機116は冷凍機115と低温プローブ102へ冷媒を供給する役割を果たす。第1熱交換器109及び第2熱交換器110は、2重管構造となっており、内側の管内を流れる冷媒と、内側と外側の管の間を流れる冷媒は互いに向かい合う流れ(向流)となって熱交換を行なう。流量制御弁17により移送管を流れる冷媒の流量を調整する。   The refrigerator 115 includes a first cooling stage 111 and a second cooling stage 112 having different temperatures, and has a structure for cooling the refrigerant. In this case, the second cooling stage 112 is cooler than the first cooling stage 111. The compressor 116 serves to supply refrigerant to the refrigerator 115 and the low temperature probe 102. The first heat exchanger 109 and the second heat exchanger 110 have a double pipe structure, and the refrigerant flowing in the inner pipe and the refrigerant flowing between the inner and outer pipes face each other (counterflow). Heat exchange. The flow rate of the refrigerant flowing through the transfer pipe is adjusted by the flow rate control valve 17.

次に冷媒の流路について説明する。圧縮機116から供給された冷媒は、冷凍機115と、クライオスタット容器106の内部へ向かう2方向に分岐される。冷凍機115に入った冷媒は冷凍機115の内部で熱を汲み上げて第1冷却段111及び第2冷却段112を冷却し、再び圧縮機116の内部へと戻る。一方、移送管に供給された冷媒は第1熱交換器109に入り、圧縮機116へ戻る冷媒と熱交換を行ない、1系統目の低温プローブ流路103に供給される。ここで、1系統目の低温プローブ流路103に供給される冷媒の温度は約60Kである。1系統目の低温プローブ流路103を通過した冷媒は、第1冷却段111によって冷却された後、第2熱交換器110にて、第2冷却段112によって冷却された冷媒と熱交換を行ない、2系統目の低温プローブ流路104に供給される。2系統目の低温プローブ流路104に供給される冷媒の温度は約12〜15Kである。2系統目の低温プローブ流路104を通過した冷媒は第2冷却段112にて冷却され、第2熱交換器110にて、第1冷却段111によって冷却された冷媒と熱交換を行なう。その後、第1熱交換器109にて、1系統目の低温プローブ流路103へ向かう冷媒と熱交換を行ない、圧縮機116へ回収される。
特開2005−106633号公報
Next, the refrigerant flow path will be described. The refrigerant supplied from the compressor 116 is branched in two directions toward the inside of the refrigerator 115 and the cryostat container 106. The refrigerant that has entered the refrigerator 115 draws heat inside the refrigerator 115 to cool the first cooling stage 111 and the second cooling stage 112, and returns to the inside of the compressor 116 again. On the other hand, the refrigerant supplied to the transfer pipe enters the first heat exchanger 109, exchanges heat with the refrigerant returning to the compressor 116, and is supplied to the first system low-temperature probe channel 103. Here, the temperature of the refrigerant supplied to the first system low-temperature probe channel 103 is about 60K. The refrigerant that has passed through the low-temperature probe flow path 103 of the first system is cooled by the first cooling stage 111 and then exchanges heat with the refrigerant cooled by the second cooling stage 112 in the second heat exchanger 110. It is supplied to the low temperature probe flow path 104 of the second system. The temperature of the refrigerant supplied to the second low-temperature probe channel 104 is about 12 to 15K. The refrigerant that has passed through the second low-temperature probe flow path 104 is cooled by the second cooling stage 112, and the second heat exchanger 110 performs heat exchange with the refrigerant cooled by the first cooling stage 111. Thereafter, the first heat exchanger 109 performs heat exchange with the refrigerant directed to the first-system low-temperature probe flow path 103, and is collected by the compressor 116.
JP 2005-106633 A

しかしながら、冷凍機にギフォード・マクマホン冷凍機、スターリング冷凍機、またはソルベイ冷凍機等の冷凍機を使用した場合、冷凍機内で周期的な温度の振れが発生し、冷媒を伝って温度の振れが低温プローブへと伝わり検出感度が振れてしまう。   However, when a refrigerator such as a Gifford McMahon refrigerator, a Stirling refrigerator, or a Solvay refrigerator is used as a refrigerator, periodic temperature fluctuations occur in the refrigerator, and the temperature fluctuation is low due to the refrigerant. Detection sensitivity is shaken and transmitted to the probe.

そこで本発明は、温度が安定した冷媒を被冷却体に供給する極低温冷凍システムを提供することを目的とする。   Then, an object of this invention is to provide the cryogenic refrigeration system which supplies the to-be-cooled body with the refrigerant | coolant whose temperature was stabilized.

上記目的を達成するため本発明の極低温冷凍システムは、クライオスタット容器の内部に、冷凍機及び前記冷凍機と熱的に接続された熱交換器を備え、前記熱交換器にて冷媒を冷却し、前記冷媒の循環により被冷却体を冷却する極低温冷凍システムである。本発明の極低温冷凍システムは、熱交換器と前記被冷却体との間に配置される、冷媒を循環させる低温断熱された複数の移送管の途中の少なくとも一ヶ所に均熱器を備えたことを特徴とする。   In order to achieve the above object, the cryogenic refrigeration system of the present invention includes a refrigerator and a heat exchanger thermally connected to the refrigerator inside the cryostat container, and the refrigerant is cooled by the heat exchanger. A cryogenic refrigeration system that cools an object to be cooled by circulation of the refrigerant. The cryogenic refrigeration system of the present invention includes a heat equalizer in at least one place in the middle of a plurality of low-temperature-insulated transfer pipes that circulate a refrigerant, which is disposed between a heat exchanger and the object to be cooled. It is characterized by that.

本発明によれば、熱交換器と被冷却体との間に配置される移送管に均熱器を備えることにより、温度が安定した冷媒を被冷却体に供給できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerant | coolant with which temperature was stabilized can be supplied to a to-be-cooled body by providing a heat equalizer in the transfer pipe arrange | positioned between a heat exchanger and a to-be-cooled body.

図1に本発明の極低温冷凍システムの構成例を示す。該極低温冷凍システムは核磁気共鳴装置の低温プローブを被冷却体とした場合の実施例である。   FIG. 1 shows a configuration example of the cryogenic refrigeration system of the present invention. The cryogenic refrigeration system is an embodiment in which a cryogenic probe of a nuclear magnetic resonance apparatus is used as an object to be cooled.

被冷却体である低温プローブ2内には、1系統目の流路3と2系統目の流路4が設けられている。真空ポンプ5はクライオスタット容器6内、フレキシブルチューブ7内、低温プローブ2の1系統目の流路3、2系統目の流路4の周囲を排気して、複数の移送管8、第1熱交換器9、第2熱交換器10、第1冷却段11、第2冷却段12等を真空断熱させている。   In the low-temperature probe 2 that is the object to be cooled, a first channel 3 and a second channel 4 are provided. The vacuum pump 5 evacuates the cryostat container 6, the flexible tube 7, the first flow path 3 of the cryogenic probe 2, and the periphery of the second flow path 4 to form a plurality of transfer pipes 8 and a first heat exchange. The apparatus 9, the second heat exchanger 10, the first cooling stage 11, the second cooling stage 12, etc. are vacuum insulated.

熱交換器9と1系統目の低温プローブ流路3との途中に均熱器18aが組み込まれ、熱交換器10と2系統目の低温プローブ流路4との途中には均熱器18bを組み込まれている。なお、均熱器18a、18bはいずれか一方少なくとも一ヶ所に設けるものであってもよい。   A soaking device 18a is incorporated in the middle of the heat exchanger 9 and the first system low temperature probe channel 3, and a soaking device 18b is installed in the middle of the heat exchanger 10 and the second system low temperature probe channel 4. It has been incorporated. The soaking devices 18a and 18b may be provided in at least one of either one.

断熱材13は冷却装置1と低温プローブ2を接続する移送管8に巻き付けて、真空断熱と併用して外部との熱接触を低減させている。   The heat insulating material 13 is wound around the transfer pipe 8 that connects the cooling device 1 and the low temperature probe 2, and is used in combination with vacuum heat insulation to reduce thermal contact with the outside.

シールド板14は、第1冷却段11と熱的に接触した円筒形となっており、第1冷却段11、第2冷却段12、第2熱交換器10を覆った状態で冷却されているため、クライオスタット容器6の外部からの輻射熱を遮る役目を果たしている。   The shield plate 14 has a cylindrical shape in thermal contact with the first cooling stage 11 and is cooled in a state of covering the first cooling stage 11, the second cooling stage 12, and the second heat exchanger 10. Therefore, it plays the role of blocking radiant heat from the outside of the cryostat container 6.

冷凍機15は、温度が異なる第1冷却段11と第2冷却段12を備え、冷媒を冷却する構造となっている。この場合は、第2冷却段12のほうが、第1冷却段11よりも低温となっている。冷凍機15としてはギフォード・マクマホン冷凍機、スターリング冷凍機、またはソルベイ冷凍機等が適用可能である。   The refrigerator 15 includes a first cooling stage 11 and a second cooling stage 12 having different temperatures, and has a structure for cooling the refrigerant. In this case, the second cooling stage 12 has a lower temperature than the first cooling stage 11. As the refrigerator 15, a Gifford McMahon refrigerator, a Stirling refrigerator, a Solvay refrigerator, or the like is applicable.

圧縮機16は冷凍機15と低温プローブ2へ冷媒を供給する役割を果たす。   The compressor 16 serves to supply refrigerant to the refrigerator 15 and the low temperature probe 2.

第1熱交換器9及び第2熱交換器10は、2重管構造となっており、内側の管内を流れる冷媒と、内側と外側の管の間を流れる冷媒は互いに向かい合う流れ(向流)となって熱交換を行なう。流量制御弁17により移送管を流れる冷媒の流量を調整する。   The first heat exchanger 9 and the second heat exchanger 10 have a double pipe structure, and the refrigerant flowing in the inner pipe and the refrigerant flowing between the inner and outer pipes face each other (counterflow). Heat exchange. The flow rate of the refrigerant flowing through the transfer pipe is adjusted by the flow rate control valve 17.

ここで、均熱器18a、18bの構造の詳細について図2ないし図6を用いて説明する。   Here, the details of the structure of the heat equalizers 18a and 18b will be described with reference to FIGS.

図2は、均熱器18aの側面図である。なお、均熱器18bは均熱器18aと同じ構造であるため、ここでは均熱器18aを例に説明することとする。   FIG. 2 is a side view of the heat equalizer 18a. In addition, since the soaking device 18b has the same structure as the soaking device 18a, here, the soaking device 18a will be described as an example.

均熱器18aは管を1巻以上螺旋状に捲回させ隣接した管と熱的に接触させた構造を有する。   The soaking device 18a has a structure in which one or more tubes are spirally wound and brought into thermal contact with an adjacent tube.

均熱器18aは、図3に示す冷媒の温度変化周期の1/2周期分が、螺旋状の管のほぼ1巻分に相当するように構成するのが好ましい。このような構成とすることで図4に示すように、高温の冷媒が流れる管の部分と低温の冷媒が流れる管の部分とが熱的に接触することとなり、熱交換の効率が高くなる。   The soaking device 18a is preferably configured so that one half of the temperature change period of the refrigerant shown in FIG. 3 corresponds to almost one turn of the spiral tube. With such a configuration, as shown in FIG. 4, the portion of the pipe through which the high-temperature refrigerant flows and the portion of the pipe through which the low-temperature refrigerant flow are in thermal contact, and the efficiency of heat exchange increases.

また、均熱器18aは、図5に示すように、螺旋状の管を、低温において比熱の大きい金属製、例えば鉛製の伝熱体19aで覆うとともに伝熱体19aと螺旋状の管の隙間をインジウムシート20等の熱伝導の良い物質で埋める構造としてもよい。このような構造とすることで、より一層熱交換の効率が良くなり冷媒の温度の振れを小さくすることができ、温度が安定した冷媒を供給できる。   Further, as shown in FIG. 5, the heat equalizer 18a covers the spiral tube with a metal heat conductor 19a having a large specific heat at a low temperature, for example, a lead heat conductor 19a, and includes a heat transfer body 19a and a spiral tube. A structure in which the gap is filled with a material having good thermal conductivity such as the indium sheet 20 may be used. With such a structure, the efficiency of heat exchange is further improved, the temperature fluctuation of the refrigerant can be reduced, and a refrigerant with a stable temperature can be supplied.

また、これとは逆に図6に示すように、鉛製の伝熱体19bを螺旋状の管の螺旋内にて保持する構造にし、伝熱体19bと螺旋状の管の隙間をインジウムシート20等にて埋めるものとしてもよい。   On the contrary, as shown in FIG. 6, the lead heat transfer body 19b is held in the spiral of the spiral tube, and the gap between the heat transfer body 19b and the spiral tube is made of an indium sheet. It may be filled with 20 or the like.

再び図1を参照して、本発明の極低温冷凍システムにおける冷媒の流れについて説明する。   With reference to FIG. 1 again, the flow of the refrigerant in the cryogenic refrigeration system of the present invention will be described.

圧縮機16から供給された冷媒は、第1熱交換器9を通り、均熱器18aを通過することで安定した温度となった後、移送管8を通り、1系統目の低温プローブ流路3へ供給される。   The refrigerant supplied from the compressor 16 passes through the first heat exchanger 9, passes through the heat equalizer 18 a, reaches a stable temperature, passes through the transfer pipe 8, and passes through the first system low-temperature probe flow path. 3 is supplied.

1系統目の低温プローブ流路3を通った冷媒は、冷却装置1に戻り、第1冷却段11及び第2熱交換器10を通った後、均熱器18bにて安定した温度となり、移送管8を通り、2系統目の低温プローブ流路4へ供給される。   The refrigerant that has passed through the low-temperature probe flow path 3 of the first system returns to the cooling device 1, passes through the first cooling stage 11 and the second heat exchanger 10, reaches a stable temperature in the soaking device 18 b, and is transferred It passes through the pipe 8 and is supplied to the low temperature probe flow path 4 of the second system.

2系統目の低温プローブ流路4を通った冷媒は、冷却装置1に戻り、第2冷却段12、第2熱交換器10及び第1熱交換器9を通って圧縮機16に回収される。   The refrigerant that has passed through the second low-temperature probe flow path 4 returns to the cooling device 1, and is recovered by the compressor 16 through the second cooling stage 12, the second heat exchanger 10, and the first heat exchanger 9. .

以上のように、本発明の極低温冷凍システムは、均熱器18a、18bを通過した際に冷媒の温度の振れを小さくすることができ、温度が安定した冷媒を低温プローブ2に供給できる。   As described above, the cryogenic refrigeration system of the present invention can reduce the fluctuation of the temperature of the refrigerant when it passes through the heat equalizers 18 a and 18 b, and can supply the low-temperature probe 2 with a stable temperature.

本発明の極低温冷凍システムの構成例を示す図である。It is a figure which shows the structural example of the cryogenic refrigeration system of this invention. 本発明の均熱器の側面図である。It is a side view of the heat equalizer of this invention. 冷媒の温度変化周期を模式的に示すグラフである。It is a graph which shows typically the temperature change period of a refrigerant. 均熱器の温度分布を模式的に示す側面図である。It is a side view which shows typically the temperature distribution of a heat equalizer. 本発明の均熱器の他の例の側面図である。It is a side view of the other example of the heat equalizer of this invention. 本発明の均熱器のさらに他の例の側面図である。It is a side view of the further another example of the heat equalizer of this invention. 従来の極低温冷凍システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the conventional cryogenic refrigeration system.

符号の説明Explanation of symbols

2 低温プローブ
6 クライオスタット容器
8 移送管
9 第1熱交換器
10 第2熱交換器
15 冷凍機
16 圧縮機
18a、18b 均熱器
2 cryogenic probe 6 cryostat container 8 transfer pipe 9 first heat exchanger 10 second heat exchanger 15 refrigerator 16 compressor 18a, 18b soaking device

Claims (6)

クライオスタット容器の内部に、冷凍機及び前記冷凍機と熱的に接続された熱交換器を備え、前記熱交換器にて冷媒を冷却し、前記冷媒の循環により被冷却体を冷却する極低温冷凍システムにおいて、
前記熱交換器と前記被冷却体との間に配置される、冷媒を循環させる低温断熱された複数の移送管の途中の少なくとも一ヶ所に均熱器を備えたことを特徴とする極低温冷凍システム。
A cryogenic refrigeration system comprising a refrigerator and a heat exchanger thermally connected to the refrigerator inside the cryostat container, wherein the refrigerant is cooled by the heat exchanger, and the object to be cooled is cooled by circulation of the refrigerant. In the system,
A cryogenic refrigeration comprising a soaking device at least in the middle of a plurality of low-temperature insulated transfer pipes arranged between the heat exchanger and the object to be cooled and circulating the refrigerant. system.
前記均熱器は、前記冷媒の流路となる管を1巻以上螺旋状に巻いた構造で、かつ、隣接した前記螺旋状の管どうしを熱的に接触させた構造である請求項1に記載の極低温冷凍システム。   2. The soaking device has a structure in which one or more turns of a pipe serving as a flow path for the refrigerant is spirally wound, and the adjacent spiral pipes are in thermal contact with each other. The cryogenic refrigeration system described. 前記均熱器は、前記冷媒の温度変化周期の1/2周期分が、前記螺旋状の管の1巻分に相当するよう構成されている請求項2に記載の極低温冷凍システム。   3. The cryogenic refrigeration system according to claim 2, wherein the heat equalizer is configured such that a half period of a temperature change period of the refrigerant corresponds to one turn of the spiral tube. 前記均熱器は、熱的に接続させた金属製の伝熱体で覆れている請求項2または3に記載の極低温冷凍システム。   The cryogenic refrigeration system according to claim 2 or 3, wherein the soaking device is covered with a thermally connected metal heat transfer body. 前記均熱器は、熱的に接続させた金属製の伝熱体を螺旋内にて保持している請求項2または3に記載の極低温冷凍システム。   The cryogenic refrigeration system according to claim 2 or 3, wherein the heat equalizer holds a thermally connected metal heat transfer body in a spiral. 前記金属製の伝熱体は、鉛製である請求項4または5に記載の極低温冷凍システム。   The cryogenic refrigeration system according to claim 4 or 5, wherein the metal heat transfer body is made of lead.
JP2007146843A 2007-06-01 2007-06-01 Cryogenic refrigeration system Pending JP2008298394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146843A JP2008298394A (en) 2007-06-01 2007-06-01 Cryogenic refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146843A JP2008298394A (en) 2007-06-01 2007-06-01 Cryogenic refrigeration system

Publications (1)

Publication Number Publication Date
JP2008298394A true JP2008298394A (en) 2008-12-11

Family

ID=40172067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146843A Pending JP2008298394A (en) 2007-06-01 2007-06-01 Cryogenic refrigeration system

Country Status (1)

Country Link
JP (1) JP2008298394A (en)

Similar Documents

Publication Publication Date Title
US6812601B2 (en) Superconductor rotor cooling system
JP4417247B2 (en) MRI system with superconducting magnet and refrigeration unit
JP2007064984A (en) Nmr apparatus with probe head and cryogenic container cooled together, and its operation method
JP6458031B2 (en) Superconducting magnet system having a thermally efficient ride-through system and method for cooling a superconducting magnet system
US20150354865A1 (en) Mri cool down apparatus
JP6378039B2 (en) Superconducting magnet, MRI equipment, NMR equipment
CN103890601A (en) Superconductive electromagnet apparatus and cooling apparatus and method thereof
JP2015012193A (en) Superconducting magnet device
CN100430672C (en) Pulse tube refrigerator
RU2014117016A (en) HIGH-EFFICIENCY HEAT EXCHANGER FOR MAGNET-FREE CRYOGEN FOR MAGNETIC RESONANCE TOMOGRAPHY (MRI)
JP2006201018A (en) Low-temperature probe, and nuclear magnetic resonance analyzer using same
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
JPH08222429A (en) Device for cooling to extremely low temperature
JP4763656B2 (en) Cryogenic containment cooling system and operation method thereof
JP5243154B2 (en) Current leads for superconducting equipment
CN213242118U (en) Low-temperature cooling device and cooling system of dry superconducting magnet
CN114520086A (en) Low-temperature cooling device and cooling system of dry superconducting magnet and operation method of cooling system
CN106683821A (en) Cold head container used for nitrogen cooling
JP2008298394A (en) Cryogenic refrigeration system
US20130263606A1 (en) Current lead device
JP4472572B2 (en) Cryogenic cooling device for cooling superconducting power storage device
JP2014059022A (en) Heat insulation support spacer in vacuum heat insulation low temperature equipment
JP2005201604A (en) Low temperature cooling system, and heat storage device
Uhlig Cryogen-free dilution refrigerator with separate 1K cooling circuit.
JP2006234356A (en) Low temperature retaining device and its maintenance method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090220