JP2008298380A - Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system - Google Patents

Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system Download PDF

Info

Publication number
JP2008298380A
JP2008298380A JP2007145988A JP2007145988A JP2008298380A JP 2008298380 A JP2008298380 A JP 2008298380A JP 2007145988 A JP2007145988 A JP 2007145988A JP 2007145988 A JP2007145988 A JP 2007145988A JP 2008298380 A JP2008298380 A JP 2008298380A
Authority
JP
Japan
Prior art keywords
air
heat storage
conditioning system
air conditioner
underfloor chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007145988A
Other languages
Japanese (ja)
Inventor
Hisashi Fujita
尚志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007145988A priority Critical patent/JP2008298380A/en
Publication of JP2008298380A publication Critical patent/JP2008298380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method of a building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system, capable of suppressing conduction of cold heat to indoor air when the cold heat is stored in a building frame by introducing cold air to an underfloor chamber. <P>SOLUTION: In this operation method of an air-conditioning system 10, cooling air cooled to the temperature lower than room temperature is introduced from an air conditioner 20 to the underfloor chamber 80 formed between a floor panel 70 and a slab 90 to store cold heat in the slab 90, and the cold heat stored in the slab 90 is used to cool the interior 30. Air quantity of the cooling air introduced to the underfloor chamber 80 by the air conditioner 20 during thermal storage in the slab 90 is set smaller than design maximum air quantity of the air conditioner 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、室内の冷房に躯体蓄熱を利用する躯体蓄熱空調システムの運転方法及びその躯体蓄熱空調システムに係り、蓄熱終了時に室温が下がり過ぎないようにする技術に関する。   The present invention relates to an operation method of a housing heat storage air conditioning system that uses housing heat storage for indoor cooling and to the housing heat storage air conditioning system, and relates to a technique for preventing the room temperature from excessively decreasing at the end of heat storage.

近年、電力の負荷平準化の要請が高まっている。この要請に答える有効な対策の一つとして、建物の躯体である床スラブ等に夜間電力を利用して冷熱を蓄え、日中にその冷熱を冷房に利用する躯体蓄熱が注目されており、従来より、例えば特許文献1に開示されるような躯体蓄熱技術が提案されている。   In recent years, there has been an increasing demand for power load leveling. As one of the effective measures to respond to this request, building heat storage that uses night electricity to store cold energy in floor slabs, etc., which are building frames, and uses the cold energy for cooling during the day has attracted attention. For example, a frame heat storage technique as disclosed in Patent Document 1 has been proposed.

特許文献1には、床吹出し空調において、夜間に床スラブと床パネルとの間の床下チャンバに冷却した空気を導入してその冷熱を床スラブに蓄熱させておき、日中の空調負荷のピーク時までは床スラブの温度よりも低い温度の空気を空調に用いることにより床スラブからの放熱を抑え、その後空調負荷がピークになった時に空調空気の温度を床スラブの温度以上に変更して、床スラブに蓄熱された冷熱を放熱させて室内の空調を行うことにより、空調機の消費電力の上限を抑えることが可能な空調機の運転方法が開示されている。
特許3748494号公報
In Patent Document 1, in floor blowing air conditioning, air cooled in a floor chamber between a floor slab and a floor panel is introduced at night to store the cold heat in the floor slab, and the peak of the air conditioning load during the daytime. Until then, use air at a temperature lower than the floor slab temperature for air conditioning to reduce heat dissipation from the floor slab, and then change the temperature of the air conditioned air above the floor slab temperature when the air conditioning load peaks. A method of operating an air conditioner that can suppress the upper limit of power consumption of the air conditioner by dissipating the cold heat stored in the floor slab and performing indoor air conditioning is disclosed.
Japanese Patent No. 3748494

ところで、特許文献1に開示される空調機の運転方法では、夜間に床下チャンバに冷風を導入して床スラブに冷熱を蓄熱する際に、冷熱が床スラブのみならず床パネルにも伝導する。このため、床パネルに伝導した冷熱により室内空気が冷却され、蓄熱終了時における室内空気の温度が居住環境としての適正な温度よりも冷え過ぎてしまうことがある。   By the way, in the operating method of the air conditioner disclosed in Patent Document 1, when cold air is introduced into the underfloor chamber at night and the cold heat is stored in the floor slab, the cold heat is conducted not only to the floor slab but also to the floor panel. For this reason, the indoor air is cooled by the cold heat conducted to the floor panel, and the temperature of the indoor air at the end of the heat storage may be too cold than an appropriate temperature as a living environment.

本発明は、上記の点に鑑みてなされたものであり、床下チャンバに冷却した空気を導入して建物の躯体に冷熱を蓄熱させるにあたり、その冷熱が室内空気へ伝導することを抑制可能な躯体蓄熱空調システムの運転方法及びその躯体蓄熱空調システムを提供することを目的とする。   The present invention has been made in view of the above points, and a housing capable of suppressing the conduction of cold heat to indoor air when air cooled in the underfloor chamber is introduced to store cold heat in the building housing. It aims at providing the operating method of a thermal storage air conditioning system, and its frame thermal storage air conditioning system.

上記の目的を達成するため、本発明は、床パネルと床スラブとの間に形成された床下チャンバに、空調機から室温よりも低い温度に冷却された冷却空気を導入することにより冷熱を床スラブに蓄熱し、室内を冷房する際に前記床スラブに蓄熱した冷熱を利用する躯体蓄熱空調システムの運転方法であって、
前記床スラブへの蓄熱時に前記空調機により前記床下チャンバに導入される前記冷却空気の風量を、前記空調機の設計最大風量よりも小さく設定することを特徴とする(第1の発明)。
In order to achieve the above-described object, the present invention reduces the temperature by introducing cooling air cooled to a temperature lower than room temperature from an air conditioner into an underfloor chamber formed between a floor panel and a floor slab. It is an operation method of a housing heat storage air conditioning system that uses the cold energy stored in the floor slab when storing heat in the slab and cooling the room,
The air volume of the cooling air introduced into the underfloor chamber by the air conditioner when storing heat in the floor slab is set to be smaller than the designed maximum air volume of the air conditioner (first invention).

本発明者が行った実験によると、床下チャンバに冷却空気を導入した場合に、床下チャンバ内に導入された冷却空気が導入口から遠ざかり、風速が低下するにつれて、床下チャンバ内の上層よりも下層の方の風速が相対的に速くなるという測定結果が得られている。したがって、空調機から床下チャンバに導入される冷却空気の風量を小さく設定すれば、床下チャンバ内を流通する風速が減速し、下層の方の風速が相対的に速くなる。   According to an experiment conducted by the present inventor, when cooling air is introduced into the underfloor chamber, the cooling air introduced into the underfloor chamber moves away from the inlet, and as the wind speed decreases, the lower layer is lower than the upper layer in the underfloor chamber. The measurement result that the wind speed of is relatively faster is obtained. Therefore, if the air volume of the cooling air introduced from the air conditioner into the underfloor chamber is set small, the wind speed flowing through the underfloor chamber is reduced, and the lower wind speed is relatively high.

すなわち、本発明の躯体蓄熱空調システムの運転方法によれば、空調機の風量を設計最大風量よりも小さく設定することにより、床下チャンバ内に流通する冷却空気の速度は上層よりも下層の方が相対的に速くなり、効果的に床スラブに冷却空気の冷熱を蓄熱できるとともに、床パネルへの冷熱の伝導量も小さくなることにより、蓄熱運転終了時における室内空気の冷え過ぎを緩和できる。なお、設計最大風量とは、空調対象の室内の最大冷房負荷を処理するために必要な風量を示す。   That is, according to the operation method of the housing heat storage air conditioning system of the present invention, by setting the air volume of the air conditioner smaller than the design maximum air volume, the speed of the cooling air flowing in the underfloor chamber is lower in the lower layer than in the upper layer. It becomes relatively fast and can effectively store the cold heat of the cooling air in the floor slab, and the conduction amount of the cold heat to the floor panel is also reduced, so that the indoor air can be prevented from being too cold at the end of the heat storage operation. The design maximum air volume indicates an air volume necessary for processing the maximum cooling load in the air-conditioned room.

第2の発明は、第1の発明において、前記蓄熱時に前記空調機により前記床下チャンバに導入される前記冷却空気の風量を、前記蓄熱を行う所定時間内に、前記床スラブに所定熱量を蓄熱させることができる程度に調節することを特徴とする。   According to a second invention, in the first invention, the air volume of the cooling air introduced into the underfloor chamber by the air conditioner during the heat storage is stored in the floor slab within a predetermined time during which the heat is stored. It is characterized by adjusting to such an extent that it can be made to occur.

第3の発明は、第1又は2の発明において、前記蓄熱運転は、夜間電力適用時になされることを特徴とする。
本発明の躯体蓄熱空調システムの運転方法によれば、夜間電力適用時に躯体蓄熱を行い、日中にその熱を取り出して冷房に利用することにより、日中における空調熱源機及び空調機の消費電力を低減することができ、電力の負荷平準化に寄与できる。
According to a third aspect, in the first or second aspect, the heat storage operation is performed when nighttime power is applied.
According to the operation method of the housing heat storage air conditioning system of the present invention, the housing heat storage is performed at the time of nighttime power application, and the heat is taken out during the day and used for cooling. Can be reduced, and can contribute to load leveling of power.

第4の発明は、第1〜3の何れかの発明において、前記空調機として、インバータ制御方式のファンを具備する空調機を用いることを特徴とする。
本発明の躯体蓄熱空調システムの運転方法によれば、風量を小さくするにともなって、日中も含めた1日積算の空調機の電力消費量も低減できる。
According to a fourth invention, in any one of the first to third inventions, an air conditioner including an inverter control fan is used as the air conditioner.
According to the operation method of the frame heat storage air conditioning system of the present invention, as the air volume is reduced, the power consumption of the air conditioner integrated per day including the daytime can also be reduced.

第5の発明は、床パネルと床スラブとの間に形成された床下チャンバに、空調機から室温よりも低い温度に冷却された冷却空気を導入することにより冷熱を床スラブに蓄熱する蓄熱運転を行う機能を有し、室内を冷房する際に前記蓄熱運転により前記床スラブに蓄熱させた冷熱を利用する躯体蓄熱空調システムであって、
前記蓄熱運転時に前記空調機により前記床下チャンバに導入される前記冷却空気の風量が、前記空調機の設計最大風量よりも小さく設定されたことを特徴とする。
A fifth aspect of the invention is a heat storage operation for storing cold heat in a floor slab by introducing cooling air cooled to a temperature lower than room temperature from an air conditioner into an underfloor chamber formed between the floor panel and the floor slab. It is a housing heat storage air conditioning system that uses the cold heat stored in the floor slab by the heat storage operation when the room is cooled,
The air volume of the cooling air introduced into the underfloor chamber by the air conditioner during the heat storage operation is set to be smaller than the designed maximum air volume of the air conditioner.

本発明によれば、床下チャンバに冷風を導入して建物の躯体に冷熱を蓄熱させるにあたり、その冷熱が室内空気へ伝導することを抑制可能な躯体蓄熱空調システムの運転方法及びその躯体蓄熱空調システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, when cold air is introduced into the underfloor chamber and the cold energy is stored in the building frame, the operation method of the frame heat storage air conditioning system and the frame heat storage air conditioning system capable of suppressing the conduction of the cold heat to the indoor air. Can provide.

以下、本発明の好ましい一実施形態について図面に基づき詳細に説明する。
図1は、本実施形態に係る躯体蓄熱を実施するための床吹出し空調システム10の概要図である。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram of a floor blowing air-conditioning system 10 for carrying out frame heat storage according to the present embodiment.

図1には、本実施形態に係る躯体蓄熱を実施するための構造に空調機20を設置した室内30が示されている。室内30は、建物のコンクリート躯体であるスラブ40及び90によって囲まれている。   FIG. 1 shows a room 30 in which an air conditioner 20 is installed in a structure for carrying out frame heat storage according to the present embodiment. The room 30 is surrounded by slabs 40 and 90 which are concrete frames of the building.

下側のスラブ90の上方には、床パネル70が設けられており、床パネル70とスラブ90との間に床下チャンバ80が形成されている。床パネル70には、床下チャンバ80の空気を室内30へ吹出すための複数の床吹出口72が設けられている。   A floor panel 70 is provided above the lower slab 90, and an underfloor chamber 80 is formed between the floor panel 70 and the slab 90. The floor panel 70 is provided with a plurality of floor outlets 72 for blowing air from the underfloor chamber 80 into the room 30.

上側のスラブ40には、その下方に天井パネル60が設けられており、天井パネル60とスラブ40との間に天井裏チャンバ50が形成されている。天井パネル60には、室内30の空気を天井裏チャンバ50へ吸込むための複数の吸込口62が設けられている。   A ceiling panel 60 is provided below the upper slab 40, and a ceiling back chamber 50 is formed between the ceiling panel 60 and the slab 40. The ceiling panel 60 is provided with a plurality of suction ports 62 for sucking the air in the room 30 into the ceiling back chamber 50.

空調機20は、インバータ制御方式のファン22及び熱交換器24を備え、空調した空気を給気ダクト26を通じて導入口28から床下チャンバ80に導入するようになっている。   The air conditioner 20 includes an inverter-controlled fan 22 and a heat exchanger 24, and introduces conditioned air from the inlet 28 into the underfloor chamber 80 through the air supply duct 26.

床下チャンバ80と天井裏チャンバ50には、吸込ダクト100、110が夫々連通しており、これら吸込ダクト100、110を通じて天井裏チャンバ50、床下チャンバ80から吸込まれた空気は還気ダクト120により集合されて、空調機20に還流するようになっている。   Suction ducts 100 and 110 communicate with the underfloor chamber 80 and the underfloor chamber 50, and air sucked from the underfloor chamber 50 and the underfloor chamber 80 through the suction ducts 100 and 110 is collected by the return air duct 120. Thus, the air is returned to the air conditioner 20.

各吸込ダクト100、110には、切替ダンパ102、112が設けられており、夜間における躯体蓄熱時又は日中の空調運転時に応じて、吸込ダクト100、110内を流通する空気の流路を開閉できるようになっている。   Each of the suction ducts 100, 110 is provided with a switching damper 102, 112, which opens and closes the flow path of the air flowing through the suction ducts 100, 110 in accordance with nighttime housing heat storage or daytime air conditioning operation. It can be done.

次に、これら設備による夜間及び日中における空調制御について説明する。なお、本空調制御において室内30の適正な温度は26℃とし、空調機20の給気可能な最大風量は20m/(h・m)(床面積当たり風量)とする。 Next, air conditioning control at night and during the day using these facilities will be described. In this air conditioning control, the appropriate temperature in the room 30 is 26 ° C., and the maximum air volume that can be supplied by the air conditioner 20 is 20 m 3 / (h · m 2 ) (the air volume per floor area).

夜間時に建物の躯体であるスラブ90に蓄熱を行う場合には、吸込ダクト100の切替ダンパ102を閉鎖し、吸込ダクト110の切替ダンパ112を開放し、空調機20から床下チャンバ80に冷却した空気を導入する。   When heat is stored in the building slab 90 at night, the switching damper 102 of the suction duct 100 is closed, the switching damper 112 of the suction duct 110 is opened, and the air cooled from the air conditioner 20 to the underfloor chamber 80 is cooled. Is introduced.

これにより冷却した空気は、空調機20から床下チャンバ80、吸込ダクト110、及び還気ダクト120内を通って空調機20に戻るように循環し、かかる冷却空気の循環によりスラブ90に冷熱が蓄熱される。なお、蓄熱は夜間電力適用時になされることが好ましい。   The air thus cooled circulates from the air conditioner 20 so as to return to the air conditioner 20 through the underfloor chamber 80, the suction duct 110, and the return air duct 120, and cold air is stored in the slab 90 by the circulation of the cooling air. Is done. In addition, it is preferable to make heat storage at the time of nighttime electric power application.

ここで空調機20により給気される空気の温度は、蓄熱開始時の室温(例えば、26℃)よりも低い温度(例えば、16℃)に設定し、その風量は、空調対象の室内30に供給するために必要な風量よりも小さい風量(例えば、空調機の設計最大風量20m/(h・m)の30%の風量である6m/(h・m))に設定する。 Here, the temperature of the air supplied by the air conditioner 20 is set to a temperature (for example, 16 ° C.) lower than the room temperature (for example, 26 ° C.) at the start of heat storage, and the air volume is set in the room 30 to be air-conditioned. The air volume is set to be smaller than the air volume necessary for supply (for example, 6 m 3 / (h · m 2 ), which is 30% of the design maximum air volume 20 m 3 / (h · m 2 ) of the air conditioner).

図2は、床下チャンバ内に冷風又は温風を導入したときの、導入口からの距離が異なる2つの測定位置の風速を測定した実験結果を示すグラフである。本実験では、床下チャンバの高さを150mmに設定した実物大の二重床模型を作製して通風し、導入口からの距離が1600mmの位置Abと、5200mmの位置Adの床下チャンバ内における上層から下層までの風速を測定した。なお、詳細な測定方法及び測定条件については文献1(藤田他、「床吹出し空調システムに関する研究 その3 床下チャンバ―まわりの熱移動のモデル化」、日本建築学会計画系論文集 第537号、2000年11月、pp.63〜70)を参照。   FIG. 2 is a graph showing experimental results obtained by measuring wind speeds at two measurement positions at different distances from the inlet when cold air or hot air is introduced into the underfloor chamber. In this experiment, a full-size double floor model in which the height of the underfloor chamber was set to 150 mm was produced and ventilated, and the upper layer in the underfloor chamber at a position Ab of 1600 mm from the inlet and a position Ad of 5200 mm. The wind speed from the bottom to the lower layer was measured. For detailed measurement methods and measurement conditions, refer to Reference 1 (Fujita et al., “Study on floor air-conditioning system, Part 3: Modeling of heat transfer around the underfloor chamber”, Architectural Institute of Japan Proceedings No. 537, 2000. November, pp. 63-70).

図2に示すように、本グラフの横軸は風速、縦軸はスラブ90の上面からの距離を示し、導入時の床下チャンバ80内の温度と導入される空気の温度との組み合わせを12通り実験した結果をプロットしている(冷風は実線、温風は破線で示す)。   As shown in FIG. 2, the horizontal axis of this graph indicates the wind speed, the vertical axis indicates the distance from the upper surface of the slab 90, and 12 combinations of the temperature in the underfloor chamber 80 at the time of introduction and the temperature of the introduced air are shown. The experimental results are plotted (cold air is indicated by a solid line and hot air is indicated by a broken line).

同図のグラフの分布をみると、導入口から近くに位置する測定位置Abでは、床下チャンバ内の上層から下層までの分布が冷風給気時と温風給気時とで、ほぼ同じ分布を示す。一方、導入口から遠くに位置する測定位置Adでは、冷風と温風とによってその風速の分布に違いが現れ、冷風給気時には上層より下層の方が、温風給気時には下層より上層の方が、風速は大きくなる。   Looking at the distribution of the graph in the figure, at the measurement position Ab located close to the introduction port, the distribution from the upper layer to the lower layer in the underfloor chamber is almost the same distribution during cold air supply and hot air supply. Show. On the other hand, at the measurement position Ad located far from the inlet, there is a difference in the wind speed distribution between the cold air and the hot air, and the lower layer is higher than the lower layer when supplying cold air, and the upper layer is lower than the lower layer when supplying hot air. However, the wind speed increases.

このように、冷風給気時には、導入口から遠ざかり、風速が減速するにつれて、床下チャンバ80内の上層よりも下層の方の風速が相対的に速くなる。したがって、空調機20から床下チャンバ80に導入される冷却空気の風量を小さく設定することにより、床下チャンバ80内を流通する風速が減速し、下層の方の風速が相対的に速くなる。   As described above, when the cold air is supplied, the wind speed in the lower layer is relatively higher than that in the upper layer in the underfloor chamber 80 as the wind speed is reduced from the introduction port. Therefore, by setting the air volume of the cooling air introduced from the air conditioner 20 into the underfloor chamber 80 to be small, the wind speed flowing through the underfloor chamber 80 is reduced, and the wind speed in the lower layer is relatively increased.

一方、日中の室内冷房を行う場合には、吸込ダクト100の切替ダンパ102を開放し、吸込ダクト110の切替ダンパ112を閉鎖し、床パネル70の床吹出口72を開放した状態で、空調機20から床下チャンバ80に冷却空気を導入する。ここで給気される冷却空気の温度は、蓄熱開始時に給気される空気よりも高い温度(例えば、19℃)に設定し、室内温度が適正な温度(26℃)になるように風量を制御する。   On the other hand, when performing daytime indoor cooling, the switching damper 102 of the suction duct 100 is opened, the switching damper 112 of the suction duct 110 is closed, and the floor outlet 72 of the floor panel 70 is opened. Cooling air is introduced into the underfloor chamber 80 from the machine 20. The temperature of the cooling air supplied here is set to a temperature (for example, 19 ° C.) higher than the air supplied at the start of heat storage, and the air volume is adjusted so that the room temperature becomes an appropriate temperature (26 ° C.). Control.

このようにすることで、床下チャンバ80に導入された冷却空気が、スラブ90に蓄熱された冷熱により冷却されて、床吹出口72から室内30に空調空気として吹出す。そして、室内30に吹出された空気は、吸込口62、天井裏チャンバ50、吸込ダクト100、及び還気ダクト120を通じて空調機20に戻ることになる。   By doing in this way, the cooling air introduced into the underfloor chamber 80 is cooled by the cold stored in the slab 90 and blown out from the floor outlet 72 into the room 30 as conditioned air. Then, the air blown into the room 30 returns to the air conditioner 20 through the suction port 62, the ceiling back chamber 50, the suction duct 100, and the return air duct 120.

以上説明した本実施形態によれば、蓄熱時に床下チャンバ80に導入される空気の風量を、空調機20が給気可能な最大風量よりも小さく設定することにより、床下チャンバ80内に流通する冷却空気の速度が上層よりも下層の方が相対的に速くなり、効果的にスラブ90に冷却空気の冷熱を蓄熱できるとともに、床パネル70への冷熱の伝導量も小さくなることにより、蓄熱運転終了時における室内空気の冷え過ぎを緩和できる。   According to the present embodiment described above, the cooling air flowing into the underfloor chamber 80 is set by setting the air volume of the air introduced into the underfloor chamber 80 during heat storage smaller than the maximum air volume that can be supplied by the air conditioner 20. The air velocity is relatively lower in the lower layer than in the upper layer, and the cold heat of the cooling air can be effectively stored in the slab 90, and the amount of cold conduction to the floor panel 70 is also reduced, thereby completing the heat storage operation. It can alleviate overcooling of indoor air at the time.

また、本実施形態によれば、夜間電力適用時に躯体蓄熱を行い、日中にその熱を取り出して冷房に利用することにより、日中における空調機20の消費電力を低減することができ、電力の負荷平準化に寄与できる。   In addition, according to the present embodiment, the body heat storage is performed at the time of nighttime power application, and the power consumption of the air conditioner 20 during the daytime can be reduced by taking out the heat during the daytime and using it for cooling. Can contribute to leveling the load.

また、本実施形態によれば、空調機20にインバータ制御方式のファン22を具備するものを用いることにより、風量を小さくするにともなって、日中も含めた1日積算の空調機20の電力消費量も低減できる。   In addition, according to the present embodiment, by using the air conditioner 20 having the inverter control type fan 22, the power of the air conditioner 20 integrated throughout the day including the daytime is reduced as the air volume is reduced. Consumption can also be reduced.

次に、本実施形態による効果を検討するためのシミュレーションを実施したので、その結果について説明する。
図3は、本実施形態に係る空調システム10の運転方法による効果を検討するためのシミュレーションモデルである。
Next, since the simulation for examining the effect by this embodiment was implemented, the result is demonstrated.
FIG. 3 is a simulation model for examining the effect of the operation method of the air conditioning system 10 according to the present embodiment.

図3に示すように、シミュレーションモデルは、室内30、床パネル70、床下チャンバ80、スラブ90、及び天井裏チャンバ50をモデル化したものである。本シミュレーションでは、このモデルを用いて床下チャンバ80周辺の鉛直方向の熱移動を計算した。   As shown in FIG. 3, the simulation model models the room 30, the floor panel 70, the underfloor chamber 80, the slab 90, and the ceiling back chamber 50. In this simulation, the heat transfer in the vertical direction around the underfloor chamber 80 was calculated using this model.

具体的には、上記各層の中央位置の温度(図3中のTr、Tp、Tv、Tc、Tb)及び各層間の境界位置の温度(同図中のTpt、Tp0、Tct、Tc0)を代表温度とし、各時刻におけるこれら各代表温度を計算した。図4に、図3のシミュレーションモデルに用いた符号及びその物性値の詳細を示す。   Specifically, the temperature at the center position of each layer (Tr, Tp, Tv, Tc, Tb in FIG. 3) and the temperature at the boundary position between the layers (Tpt, Tp0, Tct, Tc0 in the figure) are representative. These representative temperatures at each time were calculated as temperatures. FIG. 4 shows the details of the codes used in the simulation model of FIG. 3 and their physical property values.

なお、本シミュレーションでは、各層の中央位置の温度(図3中のTr、Tp、Tv、Tc、Tb)を、各層の水平方向の温度分布を平均したものとして計算している。また、スラブ90内については、スラブ90をさらに鉛直方向に3層に分割してその層毎の熱移動の考慮し、これら3層の各中央位置の温度(Tc1〜Tc3)を計算している。   In this simulation, the temperature at the center position of each layer (Tr, Tp, Tv, Tc, Tb in FIG. 3) is calculated by averaging the temperature distribution in the horizontal direction of each layer. Further, for the inside of the slab 90, the slab 90 is further divided into three layers in the vertical direction, the heat transfer for each layer is taken into consideration, and the temperatures (Tc1 to Tc3) at the respective central positions of these three layers are calculated. .

また、床下チャンバ80における、空調機20から給気される空気の温度と、床パネル70及びスラブ90との熱交換量を算出するための空気の温度と、床吹出口72から室内30に吹出す空気の温度との3つを、図5に示すような水平方向の1次元的な流れとして算出し、実際の流れ性状における熱伝達量と適合させるために補正係数を対流熱伝達率に乗じている。なお、詳細な計算方法及び条件については、前述の文献1を参照。図6は、シミュレーションに用いた風速と対流熱伝達率との関係を示すグラフである。図6に示すように、熱流の上向きと下向きとで異なる値を与えている。   Further, the temperature of the air supplied from the air conditioner 20 in the underfloor chamber 80, the temperature of the air for calculating the heat exchange amount with the floor panel 70 and the slab 90, and the air blown from the floor outlet 72 into the room 30. The temperature of the air to be discharged is calculated as a one-dimensional flow in the horizontal direction as shown in FIG. 5, and the convective heat transfer coefficient is multiplied by a correction coefficient to match the heat transfer amount in the actual flow property. ing. For detailed calculation methods and conditions, see the above-mentioned document 1. FIG. 6 is a graph showing the relationship between wind speed and convective heat transfer coefficient used in the simulation. As shown in FIG. 6, different values are given for upward and downward heat flow.

また、本シミュレーションでは、インバータ制御方式のファンを具備する空調機を空調に用いたことを想定した場合に、所定期間におけるファンの電力消費量を計算できるようになっている。   Further, in this simulation, when it is assumed that an air conditioner equipped with an inverter control type fan is used for air conditioning, the power consumption of the fan in a predetermined period can be calculated.

以上のようなシミュレーションモデルを用いて、次のような3つのケースについてシミュレーションを行った。   Using the simulation model as described above, the following three cases were simulated.

先ず、比較例1として、従来から実施される床吹出し空調に躯体蓄熱を想定し、空調機から床下チャンバ80に、16℃の空気を、最大である20m/(h・m)の風量で、夜間における午前3時から午前8時までの5時間給気した場合を基準設定とした。また、比較例2として、比較例1の温度を3℃上昇させた19℃の空気を給気した場合を設定した。これに対して、本実施形態の運転方法を想定した実施例として、比較例1の風量を30%に低減した6m/(h・m)に設定し、温度は比較例1と同じ16℃とした。 First, as Comparative Example 1, it is assumed that heat storage is performed in a floor blowing air-conditioning system that has been conventionally performed, and air of 16 ° C. is supplied from the air conditioner to the under-floor chamber 80 with a maximum air volume of 20 m 3 / (h · m 2 ). Therefore, the standard setting was the case of supplying air for 5 hours from 3 am to 8 am at night. Moreover, the case where the air of 19 degreeC which raised the temperature of the comparative example 1 3 degreeC was supplied as the comparative example 2 was set. On the other hand, as an example assuming the operation method of the present embodiment, the air volume of Comparative Example 1 is set to 6 m 3 / (h · m 2 ), which is reduced to 30%, and the temperature is the same as that of Comparative Example 16 16 C.

なお、比較例1にてシミュレーションを行った場合に、スラブ90に蓄熱される熱量(567kJ/m)と同程度の躯体蓄熱量となるように、比較例2及び実施例の躯体蓄熱の運転時間を夫々設定した。具体的には、比較例2では7.8時間(午前0時12分〜午前8時、その時の躯体蓄熱量は568kJ/m)、実施例では11.4時間(午後8時36分〜午前8時、その時の躯体蓄熱量は565kJ/m)に設定した。 In addition, when simulation is performed in Comparative Example 1, the operation of the housing heat storage in Comparative Example 2 and the example is performed so that the housing heat storage amount is approximately the same as the amount of heat stored in the slab 90 (567 kJ / m 2 ). Each time was set. Specifically, in Comparative Example 2, 7.8 hours (0:12 am to 8:00 am, the amount of heat stored in the enclosure at that time is 568 kJ / m 2 ), and in the examples, 11.4 hours (from 8:36 pm At 8:00 am, the heat storage amount of the housing at that time was set to 565 kJ / m 2 ).

一方、日中(午前8時〜午後8時)における室内30の冷房を行うための空調は、比較例1〜2及び実施例で同様の制御とし、空調機から床下チャンバ80に導入される空気の温度を19℃に固定し、室温が26℃(Trset)を維持するように、空調機から導入される風量を次式(1)で調節した。ただし、床下チャンバ80に導入される風量V(n)は、最小6m/(h・m)〜最大(Vmax)20m/(h・m)の範囲とし、係数η=5とした。
(n)=V(n−1)+η・Δt・Vmax・{Trset−(2・Tr(n−1)−Tr(n−2))}
・・・ (1)
シミュレーションでは、計算刻み幅Δtを0.2[h]として、午前0時から翌日の午前0時までの24時間について、午前0時と翌日の午前0時との温度が一致するまで繰り返し計算し、周期定常状態になった時の結果を記録した。
On the other hand, the air conditioning for cooling the room 30 during the daytime (8:00 am to 8:00 pm) is the same control as in Comparative Examples 1 and 2 and the air introduced into the underfloor chamber 80 from the air conditioner. Was fixed at 19 ° C., and the air volume introduced from the air conditioner was adjusted by the following equation (1) so that the room temperature was maintained at 26 ° C. (T rset ). However, the air volume V (n) introduced into the underfloor chamber 80 is in the range of a minimum of 6 m 3 / (h · m 2 ) to a maximum (V max ) of 20 m 3 / (h · m 2 ), and a coefficient η = 5 did.
V (n) = V (n -1) + η · Δt · V max · {T rset - (2 · T r (n-1) -T r (n-2))}
(1)
In the simulation, the calculation step size Δt is set to 0.2 [h], and the calculation is repeatedly performed for 24 hours from midnight to midnight on the next day until the temperatures at midnight and midnight match. The result when the steady state was reached was recorded.

図7は、シミュレーション結果による各層における温度の日変化を示すグラフである。同図には、各ケースにおける、天井裏チャンバ50内の温度(Tb)、床下チャンバ80への導入空気の温度(Ts)、床吹出口72の空気の温度(Ta)、室温(Tr)、及びスラブ中央部の温度(Tc2)の時間変化をグラフに示している。   FIG. 7 is a graph showing the daily change in temperature in each layer according to the simulation result. In the figure, in each case, the temperature (Tb) in the ceiling back chamber 50, the temperature of the air introduced into the underfloor chamber 80 (Ts), the temperature of the air in the floor outlet 72 (Ta), the room temperature (Tr), And the time change of the temperature (Tc2) of the slab center part is shown on the graph.

図7に示すように、比較例1の空調制御の場合、躯体蓄熱終了時(8時:空調開始時)における室温(Tr)は23.9℃となり、居住環境としての適正な温度(26℃)に対して冷え過ぎてしまっている。これに対して、比較例2の空調制御の場合では、同時刻における室温(Tr)は24.1℃となり、比較例1の場合と比較して0.2℃しか上昇しておらず、室温低下があまり改善されていない。一方、実施例の空調制御の場合では、同時刻における室温(Tr)は24.7℃となって、比較例1の場合と比較して0.8℃上昇し、室温低下が緩和されている。   As shown in FIG. 7, in the case of the air conditioning control of Comparative Example 1, the room temperature (Tr) at the end of housing heat storage (8 o'clock: at the start of air conditioning) is 23.9 ° C., which is an appropriate temperature (26 ° C. as a living environment). ) Is too cold. On the other hand, in the air conditioning control of Comparative Example 2, the room temperature (Tr) at the same time is 24.1 ° C., which is only 0.2 ° C. higher than that of Comparative Example 1, The decline has not improved much. On the other hand, in the case of the air conditioning control of the example, the room temperature (Tr) at the same time was 24.7 ° C., increased by 0.8 ° C. compared to the case of Comparative Example 1, and the room temperature decrease was alleviated. .

一方、日中(午前8時〜午後8時)における室温(Tr)の変化は、比較例1、比較例2、及び実施例の何れもほぼ同等である。   On the other hand, changes in room temperature (Tr) during the daytime (8:00 am to 8:00 pm) are substantially the same in Comparative Example 1, Comparative Example 2, and Examples.

図8(a)は、シミュレーション結果に基づく空調機のファンの1日積算の電力消費量の計算結果を示す表であり、同図(b)は同図(a)の計算結果を棒グラフに示したものである。なお、同図(b)の各棒において、上部斜線部は躯体蓄熱時における電力消費量、下部斜線部は日中の空調時における電力消費量であり、1日の合計電力消費量は両電力消費量を棒グラフの全長で示している。   FIG. 8 (a) is a table showing the calculation result of the daily power consumption of the air conditioner fan based on the simulation result, and FIG. 8 (b) is a bar graph showing the calculation result of FIG. 8 (a). It is a thing. In each bar in FIG. 4B, the upper hatched portion indicates the power consumption during the heat storage of the chassis, and the lower hatched portion indicates the power consumption during the daytime air conditioning. Consumption is shown by the total length of the bar graph.

図8に示すように、比較例1〜2及び実施例の何れの場合も日中の空調時における電力消費量は、26.68〜27.81[Wh/m]とほぼ同程度である。一方、躯体蓄熱時の電力消費量は、比較例1の場合が24.33[Wh/m]であるのに対し、比較例2の場合は36.49[Wh/m]と大幅に増加する。一方、実施例の場合は、4.03[Wh/m]と大幅に減少する。 As shown in FIG. 8, the power consumption during air conditioning during the daytime is approximately the same as 26.68 to 27.81 [Wh / m 2 ] in any of Comparative Examples 1-2 and Examples. . On the other hand, the power consumption at the time of housing heat storage is 24.33 [Wh / m 2 ] in the case of the comparative example 1, whereas it is greatly increased to 36.49 [Wh / m 2 ] in the case of the comparative example 2. To increase. On the other hand, in the case of an Example, it reduces significantly with 4.03 [Wh / m < 2 >].

以上説明したようにシミュレーションによって、躯体蓄熱時に空調機から給気する風量を低下させる本実施形態の運転方法により、躯体蓄熱終了時(8時:空調開始時)における室温の冷え過ぎを緩和できるとともに、躯体蓄熱時及び1日積算においても空調機のファンの電力消費量を大幅に低減できる結果が得られ、本実施形態の運転方法の有効性を確認できた。   As described above, the operation method of the present embodiment that reduces the air volume supplied from the air conditioner during heat storage by the simulation can alleviate overcooling of the room temperature at the end of heat storage by the housing (8 o'clock: at the start of air conditioning). Moreover, the result which can reduce the electric power consumption of the fan of an air conditioner significantly was obtained also at the time of frame heat storage, and one day accumulation, and the effectiveness of the operation method of this embodiment was confirmed.

本実施形態に係る躯体蓄熱を実施可能な床吹出し空調システム10の概要図である。It is a schematic diagram of floor blowing air-conditioning system 10 which can carry out frame heat storage concerning this embodiment. 床下チャンバ内に冷風又は温風を導入したときの、導入口からの距離が異なる2つの測定位置の風速を測定した実験結果を示すグラフである。It is a graph which shows the experimental result which measured the wind speed of two measurement positions from which the distance from an inlet differs when cold wind or warm air was introduce | transduced in the underfloor chamber. 本実施形態に係る空調システム10の運転方法による効果を検討するためのシミュレーションモデルである。It is a simulation model for examining the effect by the operating method of air-conditioning system 10 concerning this embodiment. シミュレーションに用いた物性値の詳細を示す表である。It is a table | surface which shows the detail of the physical-property value used for simulation. シミュレーションに用いた床下チャンバ内の空気の水平方向の1次元的流れを示す図である。It is a figure which shows the one-dimensional flow of the horizontal direction of the air in the underfloor chamber used for simulation. シミュレーションに用いた風速と対流熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the wind speed used for simulation, and a convective heat transfer coefficient. シミュレーション結果による各層における温度の日変化を示すグラフである。It is a graph which shows the daily change of the temperature in each layer by a simulation result. シミュレーション結果に基づいて計算された空調機のファンの1日積算の電力消費量である。It is the electric power consumption of the daily integration of the fan of the air conditioner calculated based on the simulation result.

符号の説明Explanation of symbols

10 空調システム
20 空調機
22 ファン
24 熱交換器
26 給気ダクト
28 導入口
30 室内
40、90 スラブ
50 天井裏チャンバ
60 天井パネル
62 吸込口
70 床パネル
72 床吹出口
80 床下チャンバ
DESCRIPTION OF SYMBOLS 10 Air conditioning system 20 Air conditioner 22 Fan 24 Heat exchanger 26 Air supply duct 28 Inlet 30 Indoors 40, 90 Slab 50 Ceiling back chamber 60 Ceiling panel 62 Intake port 70 Floor panel 72 Floor outlet 80 Under floor chamber

Claims (5)

床パネルと床スラブとの間に形成された床下チャンバに、空調機から室温よりも低い温度に冷却された冷却空気を導入することにより冷熱を床スラブに蓄熱し、室内を冷房する際に前記床スラブに蓄熱した冷熱を利用する躯体蓄熱空調システムの運転方法であって、
前記床スラブへの蓄熱時に前記空調機により前記床下チャンバに導入される前記冷却空気の風量を、前記空調機の設計最大風量よりも小さく設定することを特徴とする躯体蓄熱空調システムの運転方法。
When cooling air is stored in the floor slab by introducing cooling air cooled to a temperature lower than room temperature from the air conditioner into the underfloor chamber formed between the floor panel and the floor slab, An operation method of a frame heat storage air conditioning system that uses the cold energy stored in the floor slab,
An operation method for a housing heat storage air conditioning system, wherein an air volume of the cooling air introduced into the underfloor chamber by the air conditioner when storing heat in the floor slab is set smaller than a design maximum air volume of the air conditioner.
前記蓄熱時に前記空調機により前記床下チャンバに導入される前記冷却空気の風量を、前記蓄熱を行う所定時間内に、前記床スラブに所定熱量を蓄熱させることができる程度に調節することを特徴とする請求項1に記載の躯体蓄熱空調システムの運転方法。   Adjusting the air volume of the cooling air introduced into the underfloor chamber by the air conditioner during the heat storage to such an extent that the floor slab can store a predetermined amount of heat within a predetermined time during which the heat is stored. The operation method of the housing thermal storage air conditioning system of Claim 1 to do. 前記蓄熱運転は、夜間電力適用時になされることを特徴とする請求項1又は2に記載の空調機の運転方法。   The method of operating an air conditioner according to claim 1 or 2, wherein the heat storage operation is performed when nighttime power is applied. 前記空調機として、インバータ制御方式のファンを具備する空調機を用いることを特徴とする請求項1〜3の何れかに記載の躯体蓄熱空調システムの運転方法。   The operation method of the housing heat storage air conditioning system according to any one of claims 1 to 3, wherein an air conditioner including an inverter control type fan is used as the air conditioner. 床パネルと床スラブとの間に形成された床下チャンバに、空調機から室温よりも低い温度に冷却された冷却空気を導入することにより冷熱を床スラブに蓄熱する蓄熱運転を行う機能を有し、室内を冷房する際に前記蓄熱運転により前記床スラブに蓄熱させた冷熱を利用する躯体蓄熱空調システムであって、
前記蓄熱運転時に前記空調機により前記床下チャンバに導入される前記冷却空気の風量が、前記空調機の設計最大風量よりも小さく設定されたことを特徴とする躯体蓄熱空調システム。
It has a function to perform a heat storage operation to store cold heat in the floor slab by introducing cooling air cooled to a temperature lower than room temperature from the air conditioner into the underfloor chamber formed between the floor panel and the floor slab. The housing heat storage air-conditioning system uses the cold energy stored in the floor slab by the heat storage operation when cooling the room,
An enclosure heat storage air conditioning system, wherein an air volume of the cooling air introduced into the underfloor chamber by the air conditioner during the heat storage operation is set smaller than a design maximum air volume of the air conditioner.
JP2007145988A 2007-05-31 2007-05-31 Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system Pending JP2008298380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145988A JP2008298380A (en) 2007-05-31 2007-05-31 Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145988A JP2008298380A (en) 2007-05-31 2007-05-31 Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system

Publications (1)

Publication Number Publication Date
JP2008298380A true JP2008298380A (en) 2008-12-11

Family

ID=40172055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145988A Pending JP2008298380A (en) 2007-05-31 2007-05-31 Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system

Country Status (1)

Country Link
JP (1) JP2008298380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087957A (en) * 2011-10-13 2013-05-13 Sekisui Chem Co Ltd Air conditioning system and building
JP2015068585A (en) * 2013-09-30 2015-04-13 パナホーム株式会社 Air conditioning system of building

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159805A (en) * 1997-11-25 1999-06-15 Taisei Corp Air conditioner for air conditioning system utilizing heat storage of building frame
JP2001090991A (en) * 1999-09-17 2001-04-03 Yamatake Building Systems Co Ltd Zone air-conditioning skelton heat-accumulating system
JP2002106946A (en) * 2000-09-27 2002-04-10 Kyoritsu Air Tech Inc Building frame heat storage floor blow-off outlet, and building frame heat storage system using the same
JP2003279071A (en) * 2002-03-26 2003-10-02 Hitachi Plant Eng & Constr Co Ltd Air conditioning system operating method and air- conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159805A (en) * 1997-11-25 1999-06-15 Taisei Corp Air conditioner for air conditioning system utilizing heat storage of building frame
JP2001090991A (en) * 1999-09-17 2001-04-03 Yamatake Building Systems Co Ltd Zone air-conditioning skelton heat-accumulating system
JP2002106946A (en) * 2000-09-27 2002-04-10 Kyoritsu Air Tech Inc Building frame heat storage floor blow-off outlet, and building frame heat storage system using the same
JP2003279071A (en) * 2002-03-26 2003-10-02 Hitachi Plant Eng & Constr Co Ltd Air conditioning system operating method and air- conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087957A (en) * 2011-10-13 2013-05-13 Sekisui Chem Co Ltd Air conditioning system and building
JP2015068585A (en) * 2013-09-30 2015-04-13 パナホーム株式会社 Air conditioning system of building

Similar Documents

Publication Publication Date Title
JP5094894B2 (en) Air conditioning system
CN107208415B (en) Heat-insulating shell, particularly for buildings
CN100559088C (en) A kind of air conditioner in machine room unit
JP5784654B2 (en) Air conditioning system and air conditioning method
CA2962291C (en) Micro environmental control system
CN106322522A (en) Air conditioner and control method thereof
JP2004177052A (en) Floor embedded air-conditioning unit
CN205481351U (en) Improve comfort&#39;s domestic air conditioner
JP2008298380A (en) Operating method of building frame thermal storage air-conditioning system and the building frame thermal storage air-conditioning system
JP2010014296A (en) Air conditioning system and unit building
JP2001090991A (en) Zone air-conditioning skelton heat-accumulating system
JP4490396B2 (en) Air conditioning system and control method thereof
JP4900860B1 (en) Underfloor air-conditioning method and apparatus
CN201110608Y (en) Machinery room air conditioner units
CN104411148A (en) Thermal radiation protection cabinet
CN105737253B (en) The air flow regulator of radiator
CN109346278B (en) Transformer room temperature optimization method based on high-temperature environment
JP2001324226A (en) Cooling-heating structure of construction using heat storage layer
CN207299347U (en) A kind of semiconductor refrigerating heating fan device and elevator applied to elevator
JP2009052765A (en) Underfloor heating system
JP5705015B2 (en) Air conditioning system and building
JP2009210216A (en) Air conditioning system
JP2014202369A (en) Circulator
JP5893905B2 (en) Underfloor thermal storage air conditioning system and energy-saving house equipped with the same
JP6224881B2 (en) Radiant air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821