JP2008297903A - Internal combustion engine control system - Google Patents

Internal combustion engine control system Download PDF

Info

Publication number
JP2008297903A
JP2008297903A JP2007141460A JP2007141460A JP2008297903A JP 2008297903 A JP2008297903 A JP 2008297903A JP 2007141460 A JP2007141460 A JP 2007141460A JP 2007141460 A JP2007141460 A JP 2007141460A JP 2008297903 A JP2008297903 A JP 2008297903A
Authority
JP
Japan
Prior art keywords
control
accelerator
accelerator opening
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141460A
Other languages
Japanese (ja)
Other versions
JP4937837B2 (en
Inventor
Hideo Nagakura
秀雄 永倉
Kazuhiko Kogure
一彦 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007141460A priority Critical patent/JP4937837B2/en
Publication of JP2008297903A publication Critical patent/JP2008297903A/en
Application granted granted Critical
Publication of JP4937837B2 publication Critical patent/JP4937837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve the following problem: the transmission over a CAN of accelerator-opening information is delayed to cause a control delay in the vehicle control system wherein an ECU for effecting an accelerator-opening-control output for an economy-running control and another ECU mounted directly on an internal combustion engine to effect a fuel injection-quantity control are connected over the CAN. <P>SOLUTION: The internal combustion engine control system is constituted so that the accelerator-opening-control output by the ECU for effecting an accelerator-opening-control output conforms with the deviation of an actual fuel-flow rate corresponding to an actual accelerator opening from a desired fuel-flow rate corresponding to a desired accelerator opening for the economy-running control, and if the actual fuel-flow rate exceeds the desired rate, the control output is effected at a desired value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関の燃料噴射制御に関する。本発明は、エコランと称される経済的な省燃費運転状態における燃料噴射量制御に利用する。本発明は、操作者が操作したアクセル操作量(以下、実アクセル開度という)の情報に基づいて、経済的な省燃費運転状態にするために実際に内燃機関に与える燃料噴射量に相当するアクセル制御出力を生成し、これを内燃機関の制御回路に与える制御技術に関する。本発明は、ディーゼルエンジンを備えた車両に実施するために開発された装置であるが、液体燃料を利用するエンジンに広く実施することができる。   The present invention relates to fuel injection control of an internal combustion engine. The present invention is used for fuel injection amount control in an economical fuel-saving driving state called eco-run. The present invention corresponds to the fuel injection amount that is actually given to the internal combustion engine in order to achieve an economical fuel-saving driving state based on information on the accelerator operation amount (hereinafter referred to as the actual accelerator opening) operated by the operator. The present invention relates to a control technique for generating an accelerator control output and supplying it to a control circuit of an internal combustion engine. The present invention is an apparatus developed for implementation in a vehicle equipped with a diesel engine, but can be widely implemented in engines using liquid fuel.

エコラン制御と称されるエンジン制御技術が知られている。この制御技術では、一例として、燃料消費を低減するために、アクセル操作量に対応したエンジンの規格どおりの出力トルクを出力するのではなく、燃料噴射量を低減した状態でエンジンの燃料噴射を制御したり、あるいは、アクセル操作量に対応した加速度を発揮しないように燃料噴射量を低減した状態で運転する制御を行う。   An engine control technique called eco-run control is known. In this control technology, as an example, in order to reduce fuel consumption, the engine fuel injection is controlled with the fuel injection amount reduced, instead of outputting the output torque according to the engine standard corresponding to the accelerator operation amount. Alternatively, control is performed so that the fuel injection amount is reduced so as not to exhibit acceleration corresponding to the accelerator operation amount.

このような制御技術として、アクセルを過度に操作することによって燃料消費が大きくなることを防止するために、エンジンに与える燃料供給量を実アクセル開度情報のまま与えるのではなく、車速に応じて加速度合を小さくして燃料噴射量を少なくするように目標アクセル開度を演算し、その目標アクセル開度閾値と比較し、実アクセル開度が目標アクセル開度より大きいときは、目標アクセル開度値をアクセル開度制御出力とし、目標アクセル開度値より小さいときは、実アクセル開度をアクセル開度制御出力として、エンジンの燃料噴射量を制御する技術が提案されている(特許文献1または2)。   As such a control technique, in order to prevent the fuel consumption from being increased by excessively operating the accelerator, the fuel supply amount given to the engine is not given as the actual accelerator opening information, but according to the vehicle speed. Calculate the target accelerator opening so as to reduce the amount of fuel injection and reduce the fuel injection amount, and compare it with the target accelerator opening threshold. If the actual accelerator opening is larger than the target accelerator opening, the target accelerator opening When the value is the accelerator opening control output and is smaller than the target accelerator opening value, a technique for controlling the fuel injection amount of the engine using the actual accelerator opening as the accelerator opening control output has been proposed (Patent Document 1 or 2).

この技術は、一つのECUで、入力された実アクセル開度、車速、変速段の情報に基づいて、そのときの車速、変速段に対応し、加速度あるいはトルクを低くしたエンジンの燃料噴射制御を行うものである。   This technology uses a single ECU to perform fuel injection control for an engine with low acceleration or torque corresponding to the vehicle speed and gear position at that time, based on the information on the actual accelerator opening, vehicle speed, and gear position that are input. Is what you do.

特開2004−50904号公報JP 2004-50904 A 特開2005−133671号公報JP 2005-133671 A

上述の特許文献1または2の技術は、一つのECUでそのサイクル毎に演算された目標アクセル開度値と実アクセル開度とを比較し、その大小関係で、エンジンに与えるアクセル制御出力を判断していた。   The technique of the above-mentioned patent document 1 or 2 compares the target accelerator opening value calculated for each cycle by one ECU with the actual accelerator opening, and determines the accelerator control output to be given to the engine based on the magnitude relationship. Was.

ところで、近年の車両の車両制御項目の増加や電装部品の増加により、CAN(Controller
Area Network)を用いて車両制御を行うことが図られており、CANで、車速情報、アクセル情報など車両情報を分散されたECU間で伝送して車両制御を行うようになってきた。
By the way, due to an increase in vehicle control items and electrical parts in recent years, CAN (Controller
It has been attempted to perform vehicle control using an area network, and vehicle control has been performed by transmitting vehicle information such as vehicle speed information and accelerator information between distributed ECUs using CAN.

このCANは、時分割伝送路であり、時分割で車両制御用のデータを伝送するものであり、伝送すべきデータにより、その伝送頻度は決まってくる。   This CAN is a time division transmission line, and transmits data for vehicle control in a time division manner, and its transmission frequency is determined by the data to be transmitted.

車両を制御するための運転操作の情報であるアクセル操作、ブレーキ操作、操舵操作などの情報は運転席のあるキャビン周辺から発生する。このため、アクセル操作量や変速操作の情報に基づいてエコラン制御を行うための運転制御に係わる制御系のECUは、キャビン近辺に置き、その判断の結果の制御出力はCANで、各種の制御を行うそれぞれの制御回路に伝送すればハーネス量を削減できる。   Information such as an accelerator operation, a brake operation, and a steering operation, which are information on a driving operation for controlling the vehicle, is generated around the cabin where the driver's seat is located. For this reason, the ECU of the control system related to the operation control for performing the eco-run control based on the information on the accelerator operation amount and the speed change operation is placed in the vicinity of the cabin, and the control output as a result of the determination is CAN, and various controls are performed. If it is transmitted to each control circuit to be performed, the amount of harness can be reduced.

また、エンジンでの燃料噴射制御については、汎用のエンジン制御用ECUが提供されているので、これを用い、エコラン運転制御を行う場合のアクセル制御は、運転制御に係わるECUから、エンジン制御ECUにアクセル制御出力をCANを介して与えて燃料噴射制御を行えばよい。   In addition, a general-purpose engine control ECU is provided for fuel injection control in the engine. Therefore, accelerator control when performing eco-run operation control is used from the ECU for operation control to the engine control ECU. The fuel injection control may be performed by giving an accelerator control output via CAN.

しかし、CANは時分割伝送路であるため、データによりその伝送速度(CAN内の占有帯域)は決まってくる。そこで、二つのECUをつなぐCANで伝送するアクセル制御情報が、エンジン制御用ECUの制御サイクルよりも遅い場合には、制御遅れが発生する問題がある。この制御遅れは、実アクセル開度と目標アクセル開度値とを比較した判定のタイミングと、実際の制御との間に時間遅れが発生することになり、燃料噴射制御にはオーバーシュート、アンダーシュートが発生し易くなる問題が生じる。   However, since CAN is a time division transmission line, its transmission speed (occupied band in CAN) is determined by data. Therefore, when the accelerator control information transmitted by the CAN connecting the two ECUs is later than the control cycle of the engine control ECU, there is a problem that a control delay occurs. This control delay causes a time delay between the timing of determination comparing the actual accelerator opening and the target accelerator opening value and the actual control. Overshoot and undershoot are used for fuel injection control. The problem that becomes easy to occur occurs.

CANの伝送速度をさらに上げて、運転制御ECUとエンジン制御用ECUとの間に時間遅れが発生しないようにすればこのような問題の発生を解決できるが、CANの伝送速度をさらに高速にすることは、標準化の問題もあり、また、高速な部品を使用しなければならないので、伝送システムそのものが高価になってしまう。また、これに伴い車両価格も高くなってしまう。   If the CAN transmission speed is further increased so that there is no time delay between the operation control ECU and the engine control ECU, such a problem can be solved, but the CAN transmission speed is further increased. This is due to standardization problems, and high-speed components must be used, so that the transmission system itself becomes expensive. This also increases the vehicle price.

本発明は、このような問題を解決するものであり、CANを用いてエコラン制御を二つのECUで協調して行う場合に、そのCANの伝送速度が低い場合であっても、燃料噴射制御について精度の高い制御が可能な内燃機関制御装置を提供することを目的とする。   The present invention solves such a problem. When eco-run control is performed in cooperation with two ECUs using CAN, fuel injection control is performed even when the CAN transmission speed is low. An object of the present invention is to provide an internal combustion engine control device capable of highly accurate control.

本発明は、実アクセル開度および車速の情報を取り込み、前記実アクセル開度および車速の情報に基づいて燃料消費を少なくした経済的な走行状態を実現する目標アクセル開度を演算する手段と、前記実アクセル開度に応じた実際の燃料流量(以下、実流量という)と前記目標アクセル開度に応じた目標とする燃料流量(以下、目標流量という)とを比較して内燃機関のアクセル制御出力を行う手段とを含むエコラン制御回路と、前記アクセル制御出力に基づいて内燃機関への燃料噴射量を制御する内燃機関制御回路とを備え、前記エコラン制御回路と前記内燃機関制御回路とが時分割通信路を介して接続され、前記アクセル制御出力を行う手段は、前記実流量と前記目標流量との偏差を演算し、その偏差量に応じたアクセル開度制御出力を生成する手段を含むことを特徴とする内燃機関制御装置である。   The present invention takes in information of the actual accelerator opening and the vehicle speed, and calculates a target accelerator opening that realizes an economical driving state with reduced fuel consumption based on the information of the actual accelerator opening and the vehicle speed; Accelerator control of an internal combustion engine by comparing an actual fuel flow rate (hereinafter referred to as an actual flow rate) according to the actual accelerator opening and a target fuel flow rate (hereinafter referred to as a target flow rate) according to the target accelerator opening. An eco-run control circuit including an output means, and an internal-combustion engine control circuit for controlling a fuel injection amount to the internal combustion engine based on the accelerator control output, the eco-run control circuit and the internal-combustion engine control circuit being The means for performing the accelerator control output that is connected via a divided communication path calculates a deviation between the actual flow rate and the target flow rate, and outputs an accelerator opening control output corresponding to the deviation amount. Including means for forming an internal combustion engine control apparatus according to claim.

本発明によれば、実流量と目標流量との偏差に基づいて精密なエコラン制御が可能となる。また、CANを用いて時分割で車両制御の情報の伝達を行う場合においても、制御遅れが発生することなく、精密なエコラン制御が可能となる。また、CANを利用することで車両全体のハーネスを少なくすることができ、車両の軽量化、車両コストの低減化を図ることができる。   According to the present invention, precise eco-run control can be performed based on the deviation between the actual flow rate and the target flow rate. In addition, even when vehicle control information is transmitted in a time-sharing manner using CAN, precise eco-run control can be performed without causing a control delay. Further, by using CAN, the harness of the entire vehicle can be reduced, and the weight of the vehicle and the cost of the vehicle can be reduced.

本発明の実施例を図1ないし図7を参照して説明する。図1および図2は本実施例の内燃機関制御装置の全体構成図であり、図1は車載状況を示しており、図2はCANによる接続状況を示している。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 and FIG. 2 are overall configuration diagrams of the internal combustion engine control apparatus of the present embodiment, FIG. 1 shows an in-vehicle situation, and FIG. 2 shows a connection situation by CAN.

一般的に、内燃機関制御装置は、本発明の目的であるエコラン制御機能以外にもオートクルーズやスピードリミッタなどの速度の自動制御機能や補助ブレーキ制御機能など、多様な機能を備えているが、本実施例の内燃機関制御装置の説明ではエコラン制御機能に限定して説明する。   In general, the internal combustion engine control device has various functions such as an automatic speed control function and an auxiliary brake control function such as an auto cruise and a speed limiter in addition to the eco-run control function which is the object of the present invention. In the description of the internal combustion engine control device of the present embodiment, the description will be limited to the eco-run control function.

本実施例の内燃機関制御装置は、図1に示すように、車両制御ECU10内に設けられたエコラン制御回路1と、エンジンECU20内に設けられた内燃機関制御回路2とから構成される。また、図2に示すように、エコラン制御回路1と内燃機関制御回路2とはCANにより接続されている。なお、CANを実現するための装置の図示は省略した。   As shown in FIG. 1, the internal combustion engine control apparatus according to the present embodiment includes an eco-run control circuit 1 provided in the vehicle control ECU 10 and an internal combustion engine control circuit 2 provided in the engine ECU 20. As shown in FIG. 2, the eco-run control circuit 1 and the internal combustion engine control circuit 2 are connected by CAN. In addition, illustration of the apparatus for implement | achieving CAN was abbreviate | omitted.

すなわち、本実施例の内燃機関制御装置は、実アクセル開度および車速の情報を取り込み、前記実アクセル開度および車速の情報に基づいて燃料消費を少なくした経済的な走行状態を実現する目標アクセル開度を演算する目標アクセル開度演算部3と、前記実アクセル開度に応じた実流量と前記目標アクセル開度に応じた目標流量とを比較して内燃機関のアクセル制御出力を行うアクセル開度制御出力生成部4とを含むエコラン制御回路1と、前記アクセル制御出力に基づいて内燃機関への燃料噴射量を制御する内燃機関制御回路2とを備え、エコラン制御回路1と内燃機関制御回路2とがCANによる時分割通信路を介して接続され、アクセル開度制御出力生成部4は、前記実流量と前記目標流量との偏差を演算し、その偏差量に応じたアクセル開度制御出力を生成することを特徴とする。   That is, the internal combustion engine control apparatus of the present embodiment takes in the information of the actual accelerator opening and the vehicle speed, and realizes an economical traveling state in which fuel consumption is reduced based on the information of the actual accelerator opening and the vehicle speed. A target accelerator opening calculation unit 3 that calculates the opening, and an accelerator opening that compares the actual flow rate according to the actual accelerator opening with the target flow rate according to the target accelerator opening and outputs the accelerator control output of the internal combustion engine. An eco-run control circuit 1 including a degree control output generation unit 4 and an internal combustion engine control circuit 2 for controlling a fuel injection amount to the internal combustion engine based on the accelerator control output, the eco-run control circuit 1 and the internal combustion engine control circuit 2 is connected via a CAN time-division communication path, and the accelerator opening control output generation unit 4 calculates a deviation between the actual flow rate and the target flow rate, and adjusts the amount corresponding to the deviation amount. And generating a cell opening control output.

例えば、目標アクセル開度演算部3は、トップギヤにおける高速走行中では、運転者がアクセルを頻繁に操作した場合でも車速を一定に保つような目標アクセル開度を演算する。また、トップギヤ以外の各ギヤ位置においては、それぞれのギヤ位置において加速度が所定の上限値を超えないように目標アクセル開度の演算を行う。すなわち、運転者のアクセル操作状況およびギヤ位置から運転者が希望する走行状態を推定し、燃料消費量を抑えつつ運転者の希望する走行状態を実現できるような目標アクセル開度を演算する。   For example, the target accelerator opening calculation unit 3 calculates a target accelerator opening that keeps the vehicle speed constant even when the driver frequently operates the accelerator during high-speed traveling in the top gear. At each gear position other than the top gear, the target accelerator opening is calculated so that the acceleration does not exceed a predetermined upper limit value at each gear position. That is, the driving state desired by the driver is estimated from the driver's accelerator operation state and the gear position, and the target accelerator opening that can realize the driving state desired by the driver is calculated while suppressing fuel consumption.

次に、図3および図4を参照してアクセル開度制御出力生成手順を説明する。図3は本実施例のアクセル開度制御出力生成手順を示すフローチャートである。図4は本実施例の目標アクセル開度算出マップを示す図であり、横軸に偏差をとり、縦軸に目標アクセル開度(%)をとる。   Next, the accelerator opening control output generation procedure will be described with reference to FIGS. 3 and 4. FIG. 3 is a flowchart showing the accelerator opening control output generation procedure of this embodiment. FIG. 4 is a diagram showing a target accelerator opening calculation map of the present embodiment, where the horizontal axis represents deviation and the vertical axis represents target accelerator opening (%).

図4のマップでは、偏差の値が負(−)の所定値(−a)以下である場合には、控え目な目標アクセル開度とする。すなわち、このような状況下では、未だ車両は低速走行中であり、運転者はアクセルペダルを大きく踏み込んでいないが、その後、運転者は急加速を図ろうとするため、大きな踏み込み量のアクセルペダル操作が行われると推定されるので目標アクセル開度は控え目にしておくことがよい。また、偏差の値が正(+)の所定値(+b)以上である場合には、一律に目標アクセル開度を−40%とする。これはアクセルペダルを最大に踏み込んでも所定のアクセル開度以上にはならないようにするためである。   In the map of FIG. 4, when the deviation value is equal to or less than a negative (−) predetermined value (−a), a conservative target accelerator opening is set. In other words, in such a situation, the vehicle is still running at a low speed and the driver has not depressed the accelerator pedal greatly. Therefore, the target accelerator opening is preferably conservative. When the deviation value is equal to or greater than a positive (+) predetermined value (+ b), the target accelerator opening is uniformly set to -40%. This is to prevent the accelerator pedal opening from exceeding a predetermined accelerator opening even when the accelerator pedal is fully depressed.

図3に示すように、目標アクセル開度演算部3は、実アクセル開度および車速の情報を取得し(S1)、目標アクセル開度を演算する(S2)。この目標アクセル開度の情報はアクセル開度制御出力生成部4に伝達される。   As shown in FIG. 3, the target accelerator opening calculation unit 3 acquires information on the actual accelerator opening and the vehicle speed (S1), and calculates the target accelerator opening (S2). Information on the target accelerator opening is transmitted to the accelerator opening control output generator 4.

次に、アクセル開度制御出力生成部4は、目標アクセル開度に応じた目標流量を算出する(S3)。この算出には、例えば、目標流量と目標アクセル開度との関係を示した目標流量算出マップを使用する。続いて、CANにより内燃機関制御回路2から実流量の情報を取得(100ms毎)し(S4)、実流量から目標流量を減算することによって偏差を算出する(S5)。続いて、算出した偏差に対応する目標アクセル開度を図4に示した目標アクセル開度算出マップを用いて算出する(S6)。続いて、算出した目標アクセル開度と実アクセル開度とを比較し(S7)、目標アクセル開度が実アクセル開度のときには(S8)、アクセル開度増加(S9)を内燃機関制御回路2に指示(アクセル開度制御出力送信)する(S11)。また、目標アクセル開度が実アクセル開度未満のときには(S8)、アクセル開度減少(S10)を内燃機関制御回路2に指示する(S11)。   Next, the accelerator opening control output generator 4 calculates a target flow rate corresponding to the target accelerator opening (S3). For this calculation, for example, a target flow rate calculation map showing the relationship between the target flow rate and the target accelerator opening is used. Subsequently, the actual flow rate information is acquired from the internal combustion engine control circuit 2 by CAN (every 100 ms) (S4), and the deviation is calculated by subtracting the target flow rate from the actual flow rate (S5). Then, the target accelerator opening corresponding to the calculated deviation is calculated using the target accelerator opening calculation map shown in FIG. 4 (S6). Subsequently, the calculated target accelerator opening is compared with the actual accelerator opening (S7). When the target accelerator opening is the actual accelerator opening (S8), the accelerator opening increase (S9) is determined as the internal combustion engine control circuit 2. (Accelerator opening control output transmission) (S11). When the target accelerator opening is less than the actual accelerator opening (S8), the internal combustion engine control circuit 2 is instructed to reduce the accelerator opening (S10) (S11).

(効果の説明)
本発明の効果を実施例を参照して説明する。図5は従来から行われている16ms毎の制御と、従来から行われている16ms毎の制御と同じ制御を100ms毎に行った場合の制御と、本発明の制御とを併記してその挙動を比較する図である。図5の例は、本願出願人が行った多数の実験結果の内、本発明の効果を顕著に表す代表例を示したものである。図6は従来の内燃機関制御装置の全体構成図である。図7は従来から行われている16ms毎の制御の手順を示すフローチャートである。
(Explanation of effect)
The effects of the present invention will be described with reference to examples. FIG. 5 shows the conventional control performed every 16 ms, the control when the same control as every 16 ms performed conventionally is performed every 100 ms, and the control according to the present invention. It is a figure which compares. The example of FIG. 5 shows a representative example that remarkably represents the effect of the present invention among many experimental results conducted by the applicant of the present application. FIG. 6 is an overall configuration diagram of a conventional internal combustion engine control device. FIG. 7 is a flowchart showing a conventional control procedure every 16 ms.

図6に示すように、従来の内燃機関制御装置は、一つのエンジンECU21内にエコラン制御回路11と内燃機関制御回路12とを備えており、互いに16ms毎に情報の授受を行うことができるため、16ms毎に制御を行うことができる。   As shown in FIG. 6, the conventional internal combustion engine control apparatus includes an eco-run control circuit 11 and an internal combustion engine control circuit 12 in one engine ECU 21, and can exchange information with each other every 16 ms. Control can be performed every 16 ms.

その制御手順は、図7に示すように、16ms毎に実流量情報を取得し(S20)、実流量が目標流量以上の場合には(S21)、毎秒40%の傾きでアクセル開度を減少させる(S22)。また、実流量が目標流量未満の場合には(S21)、毎秒20%の傾きでアクセル開度を増加させる(S23)。   As shown in FIG. 7, the control procedure acquires actual flow rate information every 16 ms (S20), and when the actual flow rate is equal to or higher than the target flow rate (S21), the accelerator opening is decreased with a slope of 40% per second. (S22). When the actual flow rate is less than the target flow rate (S21), the accelerator opening is increased with a slope of 20% per second (S23).

従来から行われている16ms毎の制御を用いた場合のアクセル開度制御の様子を図5の最下段に実線で示した。また、従来から行われている16ms毎の制御と同じ制御を100msで行った場合のアクセル開度制御の様子を二点鎖線で示した。   The state of accelerator opening control when the control performed every 16 ms that has been conventionally performed is used is shown by a solid line at the bottom of FIG. In addition, the state of the accelerator opening control when the same control as the control performed every 16 ms that is conventionally performed is performed in 100 ms is indicated by a two-dot chain line.

図5の二段目には、100ms毎の判定結果を示した。また、図5の三段目には、16ms毎の判定結果を示した。これらの判定結果を比較すると、互いに判定結果が逆転している部分が多く、従来から行われている16ms毎の制御をそのまま踏襲して100ms毎に行うことは適当ではないことを表している。   The second row of FIG. 5 shows the determination results every 100 ms. The third row in FIG. 5 shows the determination results every 16 ms. When these determination results are compared, there are many portions where the determination results are reversed with each other, and it is not appropriate to follow the conventional control every 16 ms as it is and perform it every 100 ms.

本発明の制御では、図5の四段目に示したように、実流量と目標流量との偏差を100ms毎に演算し、その演算結果を用いてアクセル開度制御を行っている。その様子を図5の最下段に一点鎖線で示した。   In the control of the present invention, as shown in the fourth stage of FIG. 5, the deviation between the actual flow rate and the target flow rate is calculated every 100 ms, and the accelerator opening degree control is performed using the calculation result. This is shown by a one-dot chain line at the bottom of FIG.

本発明の目的は、従来から行われている16ms毎の制御に近似した制御を、100ms毎の制御によって代替することである。この目的の達成度合いを数値化するために、従来から行われている16ms毎の制御と同じ制御を100ms毎に行った場合のアクセル開度制御(二点鎖線)と、本発明の制御(一点鎖線)とのそれぞれについて、従来から行われている16ms毎の制御によるアクセル開度制御(実線)からのグラフ上での距離を計測し、その距離の平均値を演算してみた。   The object of the present invention is to replace the control approximated to the conventional control every 16 ms by the control every 100 ms. In order to quantify the degree of achievement of this object, the accelerator opening control (two-dot chain line) when the same control as the conventional control every 16 ms is performed every 100 ms, and the control of the present invention (one point) The distance on the graph from the accelerator opening control (solid line) by the control performed every 16 ms, which has been conventionally performed, was measured for each of the chain lines), and the average value of the distances was calculated.

図5に記した距離Aは、従来から行われている16ms毎の制御と同じ制御を100ms毎に行った場合のアクセル開度制御(二点鎖線)の従来から行われている16ms毎の制御によるアクセル開度制御(実線)からの距離を等間隔に32回計測した数値であり、距離Bは、本発明の制御(一点鎖線)の従来から行われている16ms毎の制御によるアクセル開度制御(実線)からの距離を等間隔に32回計測した数値である。距離Aの合計は“−28”となり、距離Bの合計は“10.5”となった。これらの平均値を計算すると距離Aは“−0.9”となり、距離Bは“0.3”となり、本発明の制御(一点鎖線)の方が従来から行われている16ms毎の制御(実線)により近いことがわかる。   The distance A shown in FIG. 5 is the conventional control for every 16 ms of the accelerator opening control (two-dot chain line) when the same control as the conventional control for every 16 ms is performed every 100 ms. Is a numerical value obtained by measuring the distance from the accelerator opening control (solid line) by 32 times at equal intervals, and the distance B is the accelerator opening by the control of the present invention (dotted line) every 16 ms. It is the numerical value which measured the distance from control (solid line) 32 times at equal intervals. The total distance A was “−28”, and the total distance B was “10.5”. When these average values are calculated, the distance A becomes “−0.9”, the distance B becomes “0.3”, and the control (one-dot chain line) of the present invention is the control performed every 16 ms (conventional control). It can be seen that it is closer to the solid line.

なお、本明細書における説明は省略するが本願出願人が本発明の内燃機関制御装置を車両に搭載して行った実験結果からも本発明の制御が従来から行われている16ms毎の制御に代替し得ることは裏付けられている。   Although the description in this specification is omitted, the control of the present invention is also performed every 16 ms, which has been conventionally controlled from the results of experiments conducted by the applicant of the present invention by mounting the internal combustion engine control device of the present invention on a vehicle. What can be substituted is supported.

本発明によれば、CANを利用することによりエコラン制御が可能となるため、車両全体のハーネスを少なくすることができ、車両の軽量化、車両コストの低減化に利用することができる。   According to the present invention, since the eco-run control can be performed by using CAN, the harness of the entire vehicle can be reduced, and the vehicle can be used for weight reduction and vehicle cost reduction.

本実施例の内燃機関制御装置の全体構成図(車載状況)。1 is an overall configuration diagram of an internal combustion engine control device according to an embodiment (in-vehicle situation). 本実施例の内燃機関制御装置の全体構成図(CAN通信による接続状況)。1 is an overall configuration diagram of an internal combustion engine control device according to the present embodiment (connection status by CAN communication). FIG. 本実施例のアクセル開度制御出力生成手順を示すフローチャート。The flowchart which shows the throttle opening control output production | generation procedure of a present Example. 本実施例の目標アクセル開度算出マップを示す図。The figure which shows the target accelerator opening calculation map of a present Example. 従来から行われている16ms毎の制御と、従来から行われている16ms毎の制御と同じ制御を100ms毎に行った場合の制御と、本発明の制御とを併記してその挙動を比較する図。Compare the behavior of the conventional control every 16 ms, the control when the same control as the conventional 16 ms control is performed every 100 ms, and the control of the present invention. Figure. 従来の内燃機関制御装置の全体構成図。The whole internal combustion engine control apparatus block diagram. 従来から行われている16ms毎の制御の手順を示すフローチャート。The flowchart which shows the procedure of the control for every 16 ms conventionally performed.

符号の説明Explanation of symbols

1、11 エコラン制御回路
2、12 内燃機関制御回路
3 目標アクセル開度演算部
4 アクセル開度制御出力生成部
10 車両制御ECU
20、21 エンジンECU
DESCRIPTION OF SYMBOLS 1, 11 Eco-run control circuit 2, 12 Internal combustion engine control circuit 3 Target accelerator opening calculating part 4 Accelerator opening control output generation part 10 Vehicle control ECU
20, 21 Engine ECU

Claims (1)

アクセルペダルの操作量および車速の情報を取り込み、前記アクセルペダルの操作量および車速の情報に基づいて燃料消費を少なくした経済的な走行状態を実現する目標アクセル開度を演算する手段と、
前記アクセルペダルの操作量に応じた実際の燃料流量と前記目標アクセル開度に応じた目標とする燃料流量とを比較して内燃機関のアクセル制御出力を行う手段と
を含むエコラン制御回路と、
前記アクセル制御出力に基づいて内燃機関への燃料噴射量を制御する内燃機関制御回路と
を備え、
前記エコラン制御回路と前記内燃機関制御回路とが時分割通信路を介して接続され、
前記アクセル制御出力を行う手段は、前記実際の燃料流量と前記目標とする燃料流量との偏差を演算し、その偏差量に応じたアクセル開度制御出力を生成する手段を含む
ことを特徴とする内燃機関制御装置。
Means for taking in information on an accelerator pedal operation amount and vehicle speed, and calculating a target accelerator opening for realizing an economical driving state with reduced fuel consumption based on the information on the operation amount of the accelerator pedal and vehicle speed;
An eco-run control circuit including means for comparing an actual fuel flow rate according to an operation amount of the accelerator pedal and a target fuel flow rate according to the target accelerator opening, and performing an accelerator control output of the internal combustion engine;
An internal combustion engine control circuit for controlling a fuel injection amount to the internal combustion engine based on the accelerator control output,
The eco-run control circuit and the internal combustion engine control circuit are connected via a time division communication path,
The means for performing the accelerator control output includes means for calculating a deviation between the actual fuel flow rate and the target fuel flow rate, and generating an accelerator opening control output corresponding to the deviation amount. Internal combustion engine control device.
JP2007141460A 2007-05-29 2007-05-29 Internal combustion engine control device Expired - Fee Related JP4937837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141460A JP4937837B2 (en) 2007-05-29 2007-05-29 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141460A JP4937837B2 (en) 2007-05-29 2007-05-29 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2008297903A true JP2008297903A (en) 2008-12-11
JP4937837B2 JP4937837B2 (en) 2012-05-23

Family

ID=40171661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141460A Expired - Fee Related JP4937837B2 (en) 2007-05-29 2007-05-29 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4937837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002193A (en) * 2010-06-21 2012-01-05 Hino Motors Ltd Vehicle control device
JP2013019275A (en) * 2011-07-07 2013-01-31 Hino Motors Ltd Vehicle control system, vehicle, control method of vehicle, and program
CN104884745A (en) * 2012-12-21 2015-09-02 三菱日立电力系统株式会社 Steam valve and steam turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050904A (en) * 2002-07-17 2004-02-19 Hino Motors Ltd Accelerator controller
JP2005220775A (en) * 2004-02-04 2005-08-18 Denso Corp Engine control device
JP2006322332A (en) * 2005-05-17 2006-11-30 Fujitsu Ten Ltd Failure detection method for starter drive circuit and economical running control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050904A (en) * 2002-07-17 2004-02-19 Hino Motors Ltd Accelerator controller
JP2005220775A (en) * 2004-02-04 2005-08-18 Denso Corp Engine control device
JP2006322332A (en) * 2005-05-17 2006-11-30 Fujitsu Ten Ltd Failure detection method for starter drive circuit and economical running control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002193A (en) * 2010-06-21 2012-01-05 Hino Motors Ltd Vehicle control device
JP2013019275A (en) * 2011-07-07 2013-01-31 Hino Motors Ltd Vehicle control system, vehicle, control method of vehicle, and program
CN104884745A (en) * 2012-12-21 2015-09-02 三菱日立电力系统株式会社 Steam valve and steam turbine

Also Published As

Publication number Publication date
JP4937837B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
KR101074308B1 (en) Vehicle drive unit control apparatus
JP4760626B2 (en) Torque control device for power system
WO2010084611A1 (en) Vehicle control apparatus
US9719443B2 (en) Vehicle control system and vehicle control method
EP2803548B1 (en) Vehicle speed control apparatus
JP2006335097A (en) Control unit of engine with accessory
JP2004052769A (en) Control method for vehicle drive unit
US11685375B2 (en) Braking and driving force control device
JP5189241B2 (en) Method and apparatus for operation of a combustion engine
JP4937837B2 (en) Internal combustion engine control device
JP2007512475A (en) Torque speed control method for engines with all speed governors
JP4333668B2 (en) Control device for internal combustion engine
JP2011143915A (en) Vehicle control system and vehicle control method
KR20090061696A (en) A distance control system and the method for a car
JP2011126425A (en) Vehicle control system
JP2013151892A (en) Internal combustion engine control device
RU2263810C2 (en) Method of and device to control vehicle engine unit
US10807598B2 (en) Braking force control device
JP4609654B2 (en) Engine control device
JP2011122505A (en) Control device for internal combustion engine
JP5946342B2 (en) Engine output control device
JP2015113757A (en) Fuel injection-driving device
JP7298559B2 (en) vehicle controller
JP2010116799A (en) Control device for engine and control method for the same
JP4997208B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees