JP2008297589A - Method for producing clean silver microparticle - Google Patents

Method for producing clean silver microparticle Download PDF

Info

Publication number
JP2008297589A
JP2008297589A JP2007144248A JP2007144248A JP2008297589A JP 2008297589 A JP2008297589 A JP 2008297589A JP 2007144248 A JP2007144248 A JP 2007144248A JP 2007144248 A JP2007144248 A JP 2007144248A JP 2008297589 A JP2008297589 A JP 2008297589A
Authority
JP
Japan
Prior art keywords
silver
fine particles
solution
silver fine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007144248A
Other languages
Japanese (ja)
Inventor
Akihiro Higami
晃裕 樋上
Takahiro Uno
貴博 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007144248A priority Critical patent/JP2008297589A/en
Publication of JP2008297589A publication Critical patent/JP2008297589A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clean silver microparticle, in which an impurity carbon content is decreased in comparison with a conventional silver microparticle by making organic dirt removed from itself through an effective cleaning operation, and which is suitable for a material for electronic equipment, and to provide a production method therefor. <P>SOLUTION: A silver microparticle containing little organic impurity is produced by the steps of: adding a reducing agent to a silver ion solution to reductively deposit silver microparticles; separating the solid from the liquid; cleaning the solid with water; and further cleaning the solid with a chemical liquid of an alkaline solution, an aqueous solution of a strong reducing agent, or an amide-based solvent. The production method therefor is disclosed. The silver microparticle preferably contains impurity carbon of 2.0 mg/m<SP>2</SP>or less per unit surface area. The production method includes employing NaOH, KOH, Ca(OH)<SB>2</SB>or NH<SB>3</SB>for the alkaline solution, employing N<SB>2</SB>H<SB>2</SB>, NaBH<SB>4</SB>, KBH<SB>4</SB>or BH<SB>3</SB>NH(CH<SB>3</SB>)<SB>2</SB>for a water-soluble reducing liquid, and employing N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone or acetamide for the amide-based solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機不純物量の少ない銀微粒子とその製造方法に関する。より詳しくは、本発明は電子デバイスの配線材料や電極材料となるペースト成分として好適な微細な高分散性を有し、かつ有機不純物量の少ない銀微粒子とその製造方法に関する。   The present invention relates to silver fine particles having a small amount of organic impurities and a method for producing the same. More specifically, the present invention relates to a fine silver particle having a fine and high dispersibility suitable as a paste component used as a wiring material or an electrode material of an electronic device, and a method for producing the same.

近年、電子機器の高機能化を図るために、電子デバイスの小型化と高密度化が要請されており、配線および電極のファイン化を達成するために、これらを形成するペースト材料に用いられる銀微粒子についても、より微細で高分散性の微粒子が求められている。   In recent years, there has been a demand for miniaturization and high density of electronic devices in order to improve the functionality of electronic equipment. In order to achieve finer wiring and electrodes, silver used as a paste material for forming them As for the fine particles, finer and highly dispersible fine particles are required.

従来、電子機器材料に用いられる銀微粒子の製造方法として、銀塩のアンミン錯体を還元して銀微粒子を沈澱させ、これを洗浄乾燥して平均粒径が数μm程度の銀微粒子を得る方法が知られている。例えば、特開平8−134513号公報には、銀アンミン錯体を還元して銀微粒子を析出させる際に、還元時の液温を25〜60℃に調整して微細な銀粒子を製造する方法が記載されている(特許文献1)。   Conventionally, as a method for producing silver fine particles used in electronic device materials, there is a method of obtaining silver fine particles having an average particle diameter of about several μm by reducing silver salt ammine complexes to precipitate silver fine particles, and washing and drying them. Are known. For example, JP-A-8-134513 discloses a method for producing fine silver particles by reducing the silver ammine complex to precipitate silver fine particles and adjusting the liquid temperature during the reduction to 25 to 60 ° C. (Patent Document 1).

また、特開2001−107101号公報には、硝酸銀溶液にアンモニア水を添加して銀アンミン錯体溶液を形成した後に、還元剤を添加する際に、還元剤を20秒以内に混合することによってBET比表面積0.25m2/g以上の微細銀粒子を析出させる方法が記載されている(特許文献2)。さらに、銀アンミン錯体水溶液が流れる流路の途中に有機還元剤溶液を合流させることによって、管路内で銀を還元して結晶子径の小さい銀微粒子を製造する方法が知られている(特許文献3、4)。
特開平8−134513号公報 特開2001−107101号公報 特開2005−48236号公報 特開2005−48237号公報
Japanese Patent Laid-Open No. 2001-107101 discloses that after adding ammonia water to a silver nitrate solution to form a silver ammine complex solution, the reducing agent is mixed within 20 seconds when the reducing agent is added. A method for precipitating fine silver particles having a specific surface area of 0.25 m 2 / g or more is described (Patent Document 2). Furthermore, there is known a method for producing silver fine particles having a small crystallite size by reducing silver in a pipe line by joining an organic reducing agent solution in the middle of a flow path in which a silver ammine complex aqueous solution flows (patent) References 3, 4).
JP-A-8-134513 JP 2001-107101 A JP-A-2005-48236 JP 2005-48237 A

電子機器の高性能化の要求に応じ、電子機器材料用の微粒子について、さらに不純物の少ない高品位のものが要求されている。ところが、従来の上記製造方法によって得た銀微粒子は洗浄処理後においても有機物の汚れが残留しており、この汚れに基づく少量の炭素含有量が認められる。例えば、管路内に還元液を注入して銀微粒子を製造する方法(特許文献4)では、アルコール洗浄後の炭素含有量が0.25wt%程度の銀微粒子が得られることが記載されているが、半導体材料用としては更に不純物炭素量の少ない銀微粒子が求められる。   In response to the demand for higher performance of electronic equipment, there is a demand for high-quality fine particles for electronic equipment with fewer impurities. However, the silver fine particles obtained by the above-described conventional production method still have organic stains after the cleaning treatment, and a small amount of carbon content based on this stain is recognized. For example, in a method for producing silver fine particles by injecting a reducing solution into a pipeline (Patent Document 4), it is described that silver fine particles having a carbon content of about 0.25 wt% after alcohol washing can be obtained. However, silver fine particles with a smaller amount of impurity carbon are required for semiconductor materials.

本発明は、電子機器材料として好適な微細な銀微粒子について、従来の上記問題を解決したものであり、有機汚れを効果的に洗浄除去し、従来の銀微粒子よりも不純物炭素量を低減した清浄な銀微粒子とその製造方法を提供する。   The present invention solves the above-mentioned problems with respect to fine silver fine particles suitable as a material for electronic equipment, and effectively cleans and removes organic stains, thereby reducing the amount of impurity carbon compared to conventional silver fine particles. Provided are silver fine particles and a method for producing the same.

本発明によれば、以下の構成によって上記課題を解決した銀微粒子とその製造方法が提供される。
(1)銀イオン溶液に還元剤を添加して銀微粒子を還元析出させ、固液分離して水洗浄した後に、さらにアルカリ液、水溶液強還元液、またはアミド系溶剤を用いて薬液洗浄することによって、有機物不純物を低減したことを特徴とする有機不純物の少ない銀微粒子。
(2)不純物炭素量が単位表面積あたり2.0mg/m2以下である上記(1)の有機不純物の少ない銀微粒子。
(3)銀イオン溶液に還元剤を添加して銀微粒子を還元析出させ、固液分離して水洗浄した後に、さらにアルカリ液、水溶液強還元液、またはアミド系溶剤を用いて洗浄することによって、有機物不純物を低減することを特徴とする有機不純物の少ない銀微粒子の製造方法。
(4)アルカリ液としてNaOH、KOH、Ca(OH)2、NH3を用い、水溶性還元液としてN22、NaBH4、KBH4、BH3NH(CH3)2を用い、アミド系溶剤としてN,N−ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン、アセトアミドを用いる上記(3)の有機不純物の少ない銀微粒子の製造方法。
(5)アルカリ液、水溶液強還元液、またはアミド系溶剤を用いて洗浄した後の銀微粒子の不純物炭素量を単位表面積あたり2.0mg/m2以下に低減する上記(4)または上記(5)に記載する有機不純物の少ない銀微粒子の製造方法。
According to this invention, the silver fine particle which solved the said subject with the following structures, and its manufacturing method are provided.
(1) A reducing agent is added to a silver ion solution to reduce and precipitate silver fine particles, and after solid-liquid separation and water washing, chemical washing is further performed using an alkaline solution, an aqueous strong reducing solution, or an amide solvent. Silver fine particles with less organic impurities, characterized by reducing organic impurities.
(2) Silver fine particles having a small amount of organic impurities as described in (1) above, wherein the amount of impurity carbon is 2.0 mg / m 2 or less per unit surface area.
(3) By adding a reducing agent to the silver ion solution to reduce and precipitate silver fine particles, solid-liquid separation and washing with water, followed by washing with an alkaline solution, an aqueous strong reducing solution or an amide solvent. A method for producing silver fine particles with less organic impurities, characterized by reducing organic impurities.
(4) NaOH, KOH, Ca (OH) 2 , NH 3 are used as the alkaline solution, and N 2 H 2 , NaBH 4 , KBH 4 , BH 3 NH (CH 3 ) 2 are used as the water-soluble reducing solution, and the amide system (3) The method for producing silver fine particles with less organic impurities as described in (3) above, wherein N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone, or acetamide is used as a solvent.
(5) The impurity carbon content of the silver fine particles after being washed with an alkaline solution, an aqueous strong reducing solution, or an amide solvent is reduced to 2.0 mg / m 2 or less per unit surface area (4) or (5 The method for producing silver fine particles having a small amount of organic impurities described in (1).

本発明の銀微粒子は、銀アンミン錯体の還元によって析出した銀微粒子を固液分離して水洗浄(第一洗浄)した後に、特定の洗浄溶液、すなわち、アルカリ液、水溶液強還元液、またはアミド系溶剤を用いて薬液洗浄(第二洗浄)することよって、従来の洗浄除去されずに残留していた有機物汚れを除去したものであり、不純物炭素量の少ない銀微粒子である。   The silver fine particles of the present invention are obtained by solid-liquid separation of the silver fine particles precipitated by reduction of the silver ammine complex, followed by water washing (first washing), and then a specific washing solution, that is, an alkaline solution, an aqueous strong reducing solution, or an amide. By cleaning with a chemical solution (second cleaning) using a system solvent, organic contaminants remaining without being removed by conventional cleaning are removed, and silver fine particles with a small amount of impurity carbon are obtained.

具体的には、従来、不純物炭素量が少ないとして電子材料に用いられている銀微粒子について、さらに不純物炭素量を低減したものであり、例えば、不純物炭素量が単位表面積あたり(BET比表面m2あたり)2.0mg/m2以下の高品位の銀微粒子である。 Specifically, silver fine particles conventionally used in electronic materials with a small amount of impurity carbon are those in which the amount of impurity carbon is further reduced. For example, the amount of impurity carbon per unit surface area (BET specific surface m 2 Per unit) High-grade silver fine particles of 2.0 mg / m 2 or less.

本発明の製造方法は、銀アンミン錯体の還元によって析出した銀微粒子を固液分離して第一水洗浄した後に、上記洗浄溶液を用いて第二薬液洗浄する方法であり、第二洗浄に用いる薬液は何れも市販されている一般的なものであるので容易に実施することができる。しかも、本発明の方法は洗浄効果に優れ、従来、高純度品として市販されている銀微粒子について、さらに有機不純物を洗浄除去することができ、より不純物炭素量の少ない高品位銀微粒子を得ることができる。   The production method of the present invention is a method in which silver fine particles precipitated by reduction of a silver ammine complex are solid-liquid separated and washed with a first water, and then washed with a second chemical solution using the washing solution, and used for the second washing. Since any chemical solution is commercially available, it can be easily implemented. In addition, the method of the present invention has an excellent cleaning effect, and it is possible to further remove organic impurities from silver fine particles that have been commercially available as high-purity products, and to obtain high-quality silver fine particles with a smaller amount of impurity carbon. Can do.

以下、本発明を実施例と共に具体的に説明する。
本発明は、銀イオン溶液に還元剤を添加して銀微粒子を還元析出させ、固液分離して水洗浄した後に、さらにアルカリ液、水溶液強還元液、またはアミド系溶剤を用いて洗浄することによって、有機物不純物を低減したことを特徴とする有機不純物の少ない銀微粒子およびその製造方法に関する。
Hereinafter, the present invention will be specifically described with examples.
In the present invention, a reducing agent is added to a silver ion solution to reduce and precipitate silver fine particles, and after solid-liquid separation and water washing, washing is further performed using an alkaline solution, an aqueous strong reducing solution, or an amide solvent. The present invention relates to a silver fine particle having a small amount of organic impurities characterized by reducing organic impurities and a method for producing the same.

〔銀微粒子析出工程〕
銀微粒子の製造方法として、硝酸銀溶液などの銀イオン溶液にアンモニア水を添加して銀アンミン錯体を形成し、これにヒドロキノン液などの還元液を加えて銀微粒子を還元析出させる方法が従来から知られている。本発明の方法はこの析出方法を利用することができる。
[Silver fine particle precipitation process]
As a method for producing silver fine particles, a method has been conventionally known in which ammonia water is added to a silver ion solution such as a silver nitrate solution to form a silver ammine complex, and a reducing liquid such as a hydroquinone liquid is added thereto to reduce and precipitate silver fine particles. It has been. The method of the present invention can utilize this precipitation method.

また、銀微粒子の上記析出方法については以下の改良方法を利用することができる。
(1)還元液にアルカリを添加し、該還元液の酸化還元電位の安定域において、該還元液と銀アンミン錯体溶液とを混合することによって、平均粒径0.05〜1.0μm、結晶子径20nm〜150nmの銀微粒子を効率よく析出させることができる。なお、還元剤溶液の酸化還元電位の安定域とは、該酸化還元電位の極小値に至る直前の領域における極小値より0.02V高い酸化還元電位から極小値を経て極小値以降の定常値の範囲を含む領域である。
(2)互いに斜め下方に向かって相対向するノズルから銀アンミン錯体水溶液と還元剤溶液とを放出させて上記ノズルの下方で両溶液を合流させ、開放空間で銀アンミン錯体を還元することによって、平均粒子径0.08μm〜1.0μm、結晶子径20nm〜150nmであって粒子径5μm以上の粗大粒子を含まない銀微粒子を得ることができる。
(3)銀アンミン錯体溶液に、ハロゲンイオンの存在下で、還元液を添加して銀イオンを還元することによって微細な銀微粒子を析出させることができる。
(4)銀アンミン錯体溶液に還元剤を添加して銀微粒子を還元析出させる方法において、銀ナノ粒子を添加して銀イオンを還元することによって、微細な銀微粒子を析出させることができる。
(5)銀アンミン錯体溶液に還元剤を添加して銀微粒子を還元析出させる方法において、主還元剤と、主還元剤より還元力の強い副還元剤とを併用し、少量の副還元剤の存在下で主還元剤を加えて銀イオンを還元することによって、微細な銀微粒子を析出させることができる。
Moreover, the following improved methods can be utilized about the said precipitation method of silver fine particles.
(1) An alkali is added to the reducing solution, and the reducing solution and the silver ammine complex solution are mixed in the stable range of the redox potential of the reducing solution, whereby an average particle size of 0.05 to 1.0 μm, crystals Silver fine particles having a diameter of 20 nm to 150 nm can be efficiently precipitated. The stable region of the oxidation-reduction potential of the reducing agent solution is a steady-state value after the minimum value from the oxidation-reduction potential that is 0.02 V higher than the minimum value in the region immediately before reaching the minimum value of the oxidation-reduction potential. It is an area including a range.
(2) By releasing the silver ammine complex aqueous solution and the reducing agent solution from the nozzles facing each other obliquely downward, the two solutions are merged below the nozzle, and the silver ammine complex is reduced in an open space, Silver fine particles having an average particle diameter of 0.08 μm to 1.0 μm, a crystallite diameter of 20 nm to 150 nm, and no coarse particles having a particle diameter of 5 μm or more can be obtained.
(3) Fine silver fine particles can be deposited by adding a reducing solution to the silver ammine complex solution in the presence of halogen ions to reduce silver ions.
(4) In the method of reducing and precipitating silver fine particles by adding a reducing agent to the silver ammine complex solution, fine silver fine particles can be precipitated by adding silver nanoparticles and reducing silver ions.
(5) In a method of reducing and precipitating silver fine particles by adding a reducing agent to a silver ammine complex solution, a main reducing agent and an auxiliary reducing agent having a reducing power stronger than that of the main reducing agent are used in combination. By adding a main reducing agent in the presence to reduce silver ions, fine silver fine particles can be precipitated.

上記ハロゲンイオンの存在下で銀イオンを還元する方法は、例えば、(i)銀に対するヨウ素のモル比(I/Ag)を1.0×10-7〜1.8×10-6に調整して平均粒径1.5〜0.5μmの銀微粒子を析出させることができる。また、(ii)上記銀ヨウ素モル比を1.8×10-6〜3.0×10-5に調整して平均粒径0.5〜0.15μmの銀微粒子を析出させることができる。また、(iii)上記銀ヨウ素モル比を3.0×10-5〜1.5×10-3に調整して平均粒径0.15〜0.08μmの銀微粒子を析出させることができる。 In the method of reducing silver ions in the presence of the halogen ions, for example, (i) the molar ratio of iodine to silver (I / Ag) is adjusted to 1.0 × 10 −7 to 1.8 × 10 −6. Thus, silver fine particles having an average particle diameter of 1.5 to 0.5 μm can be precipitated. (Ii) Silver fine particles having an average particle diameter of 0.5 to 0.15 μm can be precipitated by adjusting the molar ratio of silver iodine to 1.8 × 10 −6 to 3.0 × 10 −5 . Further, (iii) the silver iodine molar ratio can be adjusted to 3.0 × 10 −5 to 1.5 × 10 −3 to precipitate silver fine particles having an average particle size of 0.15 to 0.08 μm.

また、主還元剤と副還元剤を用いて銀イオンを還元する方法は、例えば、銀イオン溶液としてアンモニア水を加えた硝酸銀溶液を用い、主還元剤としてヒドロキノン液を用い、副還元剤としてヒドラジンを用い、銀濃度に対するヒドラジンのモル比(銀ヒドラジン比:N22/Ag)が1.5×10-4以上になる量を添加して、平均粒径0.5μm以下の銀ナノ粒子を析出させることができる。 The method of reducing silver ions using a main reducing agent and a secondary reducing agent is, for example, using a silver nitrate solution added with aqueous ammonia as the silver ion solution, using a hydroquinone solution as the primary reducing agent, and hydrazine as the secondary reducing agent. Silver nanoparticles having an average particle diameter of 0.5 μm or less by adding an amount such that the molar ratio of hydrazine to silver concentration (silver hydrazine ratio: N 2 H 2 / Ag) is 1.5 × 10 −4 or more. Can be deposited.

また、主還元剤と副還元剤を用いて銀イオンを還元する方法は、例えば、銀イオン溶液としてアンモニア水を加えた硝酸銀溶液を用い、主還元剤としてヒドロキノン液を用い、副還元剤としてヒドラジンを用い、(i)銀濃度に対するヒドラジンのモル比(銀ヒドラジン比:N22/Ag)を2.5×10-8〜3.0×10-5に調整して平均粒径1.5〜0.5μmの銀微粒子を析出させることができる。また、(ii)上記銀ヒドラジン比を3.0×10-5〜4.2×10-2に調整して平均粒径0.5〜0.1μmの銀微粒子を析出させることができる。さらに、(iii)上記銀ヒドラジン比を4.2×10-2〜5.0×10-1に調整して平均粒径0.1〜0.05μmの銀微粒子を析出させることができる。 The method of reducing silver ions using a main reducing agent and a secondary reducing agent is, for example, using a silver nitrate solution added with aqueous ammonia as the silver ion solution, using a hydroquinone solution as the primary reducing agent, and hydrazine as the secondary reducing agent. (I) The molar ratio of hydrazine to silver concentration (silver hydrazine ratio: N 2 H 2 / Ag) was adjusted to 2.5 × 10 −8 to 3.0 × 10 −5 to obtain an average particle size of 1. Silver fine particles of 5 to 0.5 μm can be precipitated. In addition, (ii) the silver hydrazine ratio can be adjusted to 3.0 × 10 −5 to 4.2 × 10 −2 to precipitate silver fine particles having an average particle diameter of 0.5 to 0.1 μm. Furthermore, (iii) the silver hydrazine ratio can be adjusted to 4.2 × 10 −2 to 5.0 × 10 −1 to precipitate silver fine particles having an average particle size of 0.1 to 0.05 μm.

〔水洗浄工程〕
析出した銀微粒子を固液分離して水洗浄した後に、さらにアルカリ液、水溶液強還元液、またはアミド系溶剤を用いて洗浄する。具体的には、例えば、析出銀微粒子の分散液を遠心分離して上澄み液を除去した後に、イオン交換水を加えて振盪洗浄し、遠心分離して上澄み液を除去する水洗浄操作を数回、例えば5回前後繰り返し、上澄み液が無色透明になるまで十分に水洗浄を行う。
[Water washing process]
The precipitated silver fine particles are solid-liquid separated and washed with water, and then further washed with an alkaline solution, an aqueous strong reducing solution, or an amide solvent. Specifically, for example, after centrifuging the dispersion of precipitated silver fine particles to remove the supernatant, ion-exchanged water is added for shaking washing, and centrifugation is performed to remove the supernatant for several times. For example, it is repeated about 5 times, and the supernatant is sufficiently washed with water until the supernatant becomes colorless and transparent.

〔薬液洗浄工程〕
水洗浄の後に、アルカリ液、水溶液強還元液、またはアミド系溶剤を用いて薬液洗浄を行う。アルカリ液としては、NaOH、KOH、Ca(OH)2、NH3を用いることができる。水溶性還元液としては、N22、NaBH4、KBH4、BH3NH(CH3)2を用いることができる。アミド系溶剤としては、N,N−ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン、アセトアミドなどを用いることができる。
[Chemical solution cleaning process]
After the water cleaning, chemical cleaning is performed using an alkaline solution, an aqueous strong reducing solution, or an amide solvent. As the alkaline solution, NaOH, KOH, Ca (OH) 2 , NH 3 can be used. As the water-soluble reducing solution, N 2 H 2 , NaBH 4 , KBH 4 , BH 3 NH (CH 3 ) 2 can be used. As the amide solvent, N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone, acetamide and the like can be used.

水酸化アルカリ溶液の濃度0.01〜20wt%、アンモニア水の濃度0.1〜30wt%、ヒドラジンの濃度1〜60%、水素化ホウ素アルカリ塩の濃度1.0〜10wt%、BH3NH(CH3)2の濃度1.0〜5wt%、N,N−ジメチルアセトアミドの濃度5〜100wt%、ジメチルホルムアミドの濃度5〜100wt%、N−メチルピロリドンの濃度5〜100wt%、アセトアミドの濃度5〜100wt%が適当である。 Concentration of alkali hydroxide solution 0.01-20 wt%, ammonia water concentration 0.1-30 wt%, hydrazine concentration 1-60%, alkali borohydride concentration 1.0-10 wt%, BH 3 NH ( CH 3 ) 2 concentration 1.0 to 5 wt%, N, N-dimethylacetamide concentration 5 to 100 wt%, dimethylformamide concentration 5 to 100 wt%, N-methylpyrrolidone concentration 5 to 100 wt%, acetamide concentration 5 ˜100 wt% is suitable.

水洗浄した銀微粒子に上記薬液を加えて振盪洗浄し、遠心分離して上澄み液を除去する操作を繰り返し、上澄み液の着色状態を観察して洗浄状態を確認する。従来の銀微粒子は水洗浄において上澄み液が無色透明でも、上記薬液を用いた洗浄行うことによって、銀微粒子に付着している有機物が洗浄除去され、薬液洗浄による上澄み液が着色する。この薬液洗浄の上澄み液が無色透明になるまで洗浄操作を繰り返すことによって、有機物汚染の少ない高品位の銀微粒子を得ることができる。   The above chemical solution is added to the silver fine particles washed with water, washed with shaking, centrifuged, and the operation of removing the supernatant is repeated. The colored state of the supernatant is observed to confirm the washing state. Even if the conventional silver fine particles have a supernatant that is colorless and transparent in water washing, washing with the above chemical solution removes organic substances adhering to the silver fine particles and colors the supernatant liquid by the chemical washing. By repeating the washing operation until the supernatant obtained by this chemical washing is colorless and transparent, high-quality silver fine particles with little organic contamination can be obtained.

具体的には、例えば、市販時の銀微粒子の場合、単位表面積あたり(BET比表面m2あたり)炭素含有量2.2〜5mg/m2程度であるが、上記薬液洗浄を行うことによって、上記単位表面積あたりの炭素含有量を2.0mg/m2以下に低減することができる。 Specifically, for example, in the case of commercially available silver fine particles, the carbon content per unit surface area (per BET specific surface m 2 ) is about 2.2 to 5 mg / m 2 , but by performing the above chemical cleaning, The carbon content per unit surface area can be reduced to 2.0 mg / m 2 or less.

以下に本発明の実施例を比較例と共に示す。
〔実施例〕
市販の銀微粒子(体積平均粒径0.8μm、単位表面積あたりの炭素含有量2.6/m2)50gにイオン交換水400mlを加えて3分間浸透した後に、遠心分離器(株式会社コクサン社製品:H-7000S)に入れ、2000Gで5分間遠心分離処理し、上澄み液を除去する操作を繰り返し、上澄み液が無色透明になるまで水洗浄を行った。次いで、水洗浄した銀微粒子に、表1に示す薬液を加えて振盪洗浄し、遠心分離して上澄み液を除去する操作を繰り返し、上澄み液が無色透明になるまで薬液洗浄を行った。薬液洗浄後の銀微粒子について炭素含有量を測定した。この結果を表1に示した。
なお、炭素量の測定は燃焼−赤外線吸収法に従って行った。
表1に示すように、薬液洗浄後の単位表面積あたりの炭素含有量は何れも2.0mg/m2以下であり、洗浄前の炭素含有量に比べて大幅に炭素量が低減されている。
Examples of the present invention are shown below together with comparative examples.
〔Example〕
After adding 400 ml of ion-exchanged water to 50 g of commercially available silver fine particles (volume average particle diameter 0.8 μm, carbon content per unit surface area 2.6 / m 2 ) and infiltrating for 3 minutes, a centrifugal separator (Kokusan Co., Ltd.) Product: H-7000S), centrifuged at 2000 G for 5 minutes, and the operation of removing the supernatant was repeated, and the supernatant was washed with water until the supernatant became colorless and transparent. Subsequently, the chemical solution shown in Table 1 was added to the silver fine particles washed with water, washed with shaking, centrifuged, and the operation of removing the supernatant was repeated. The chemical solution was washed until the supernatant became colorless and transparent. The carbon content of the silver fine particles after chemical cleaning was measured. The results are shown in Table 1.
The carbon amount was measured according to the combustion-infrared absorption method.
As shown in Table 1, the carbon content per unit surface area after chemical cleaning is 2.0 mg / m 2 or less, and the carbon content is greatly reduced compared to the carbon content before cleaning.

〔比較例〕
実施例1の銀微粒子について、表2に示す薬液を用いた以外は実施例1と同様にして水洗浄および薬液洗浄を行い、薬液洗浄後の銀微粒子について炭素含有量を測定した。この結果を表2に示した。表2に示すように、表2の薬液を用いた場合には、銀微粒子に含まれる炭素量の低減効果が低い。
[Comparative Example]
The silver fine particles of Example 1 were washed with water and chemicals in the same manner as in Example 1 except that the chemicals shown in Table 2 were used, and the carbon content of the silver fine particles after chemicals was measured. The results are shown in Table 2. As shown in Table 2, when the chemical solution shown in Table 2 is used, the effect of reducing the amount of carbon contained in the silver fine particles is low.

Figure 2008297589
Figure 2008297589

Figure 2008297589
Figure 2008297589

Claims (5)

銀イオン溶液に還元剤を添加して銀微粒子を還元析出させ、固液分離して水洗浄した後に、さらにアルカリ液、水溶液強還元液、またはアミド系溶剤を用いて薬液洗浄することによって、有機物不純物を低減したことを特徴とする有機不純物の少ない銀微粒子。
By adding a reducing agent to the silver ion solution to reduce and precipitate silver fine particles, solid-liquid-separate and wash with water, and then wash with chemicals using an alkaline solution, an aqueous strong reducing solution, or an amide solvent, to obtain organic matter. Silver fine particles with less organic impurities characterized by reduced impurities.
不純物炭素量が単位表面積あたり2.0mg/m2以下である請求項1の有機不純物の少ない銀微粒子。
The silver fine particles with less organic impurities according to claim 1, wherein the amount of impurity carbon is 2.0 mg / m 2 or less per unit surface area.
銀イオン溶液に還元剤を添加して銀微粒子を還元析出させ、固液分離して水洗浄した後に、さらにアルカリ液、水溶液強還元液、またはアミド系溶剤を用いて洗浄することによって、有機物不純物を低減することを特徴とする有機不純物の少ない銀微粒子の製造方法。
After adding a reducing agent to the silver ion solution to reduce and precipitate silver fine particles, solid-liquid separation and washing with water, and then washing with an alkaline solution, an aqueous strong reducing solution, or an amide solvent, organic impurities A method for producing silver fine particles with less organic impurities, characterized by
アルカリ液としてNaOH、KOH、Ca(OH)2、NH3を用い、水溶性還元液としてN22、NaBH4、KBH4、BH3NH(CH3)2を用い、アミド系溶剤としてN,N−ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン、アセトアミドを用いる請求項3の有機不純物の少ない銀微粒子の製造方法。
NaOH, KOH, Ca (OH) 2 , NH 3 are used as the alkali solution, N 2 H 2 , NaBH 4 , KBH 4 , BH 3 NH (CH 3 ) 2 are used as the water-soluble reducing solution, and N as the amide solvent. , N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and acetamide, the method for producing silver fine particles with less organic impurities according to claim 3.
アルカリ液、水溶液強還元液、またはアミド系溶剤を用いて洗浄した後の銀微粒子の不純物炭素量を単位表面積あたり2.0mg/m2以下に低減する請求項4または請求項5に記載する有機不純物の少ない銀微粒子の製造方法。 The organic according to claim 4 or 5, wherein the impurity carbon content of the silver fine particles after being washed with an alkali solution, an aqueous strong reducing solution or an amide solvent is reduced to 2.0 mg / m 2 or less per unit surface area. A method for producing silver fine particles with few impurities.
JP2007144248A 2007-05-30 2007-05-30 Method for producing clean silver microparticle Withdrawn JP2008297589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144248A JP2008297589A (en) 2007-05-30 2007-05-30 Method for producing clean silver microparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144248A JP2008297589A (en) 2007-05-30 2007-05-30 Method for producing clean silver microparticle

Publications (1)

Publication Number Publication Date
JP2008297589A true JP2008297589A (en) 2008-12-11

Family

ID=40171369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144248A Withdrawn JP2008297589A (en) 2007-05-30 2007-05-30 Method for producing clean silver microparticle

Country Status (1)

Country Link
JP (1) JP2008297589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023722A (en) * 2011-07-20 2013-02-04 Sumitomo Metal Mining Co Ltd Method of manufacturing silver powder
KR20190048317A (en) * 2017-10-31 2019-05-09 엘에스니꼬동제련 주식회사 The manufacturing method of silver
KR20200066074A (en) * 2018-11-30 2020-06-09 엘에스니꼬동제련 주식회사 Method for producing the silver powder controlling the degree of agglomeration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023722A (en) * 2011-07-20 2013-02-04 Sumitomo Metal Mining Co Ltd Method of manufacturing silver powder
KR20190048317A (en) * 2017-10-31 2019-05-09 엘에스니꼬동제련 주식회사 The manufacturing method of silver
WO2019088510A1 (en) * 2017-10-31 2019-05-09 엘에스니꼬동제련 주식회사 Method for producing silver powder
KR102081183B1 (en) * 2017-10-31 2020-02-25 엘에스니꼬동제련 주식회사 The manufacturing method of silver
KR20200066074A (en) * 2018-11-30 2020-06-09 엘에스니꼬동제련 주식회사 Method for producing the silver powder controlling the degree of agglomeration
KR102178011B1 (en) * 2018-11-30 2020-11-12 엘에스니꼬동제련 주식회사 Method for producing the silver powder controlling the degree of agglomeration

Similar Documents

Publication Publication Date Title
TWI600776B (en) Silver powder, and electrically conductive paste
JP5148821B2 (en) Flake silver powder production method and flake silver powder produced by the production method
JP5305789B2 (en) Silver powder manufacturing method
JP2011026665A (en) Metal nanoparticle having dendritic portion and method for producing the same
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
JP2010515642A (en) Method for producing nano lead oxide
KR102556595B1 (en) polishing composition
KR102146598B1 (en) METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION
JP2008297589A (en) Method for producing clean silver microparticle
JP2009062580A (en) Copper fine particle, its manufacturing method, and copper fine particle dispersion liquid
CN102990061B (en) Preparation method of tightly-combined silver-coated copper powder
JP2017521554A (en) Method for purifying metal nanowires
JP3868421B2 (en) Metal powder manufacturing method, metal powder, and conductive paste and multilayer ceramic capacitor using the same
CN104108738A (en) Method for using copper sulfate waste liquid to prepare high-purity spherical copper oxide
TWI684571B (en) Tin(ii) oxide powder and method for manufacturing tin(ii) oxide powder
CN109292767A (en) A kind of purification process of graphene oxide
JP2008031526A (en) Method for producing silver particulate
JP6007006B2 (en) Method for producing hexagonal ferrite magnetic powder
JP2006219688A (en) Method for refining metallic ultrafine powder
JP7161630B2 (en) Copper powder and method for producing copper powder
JP2010236007A (en) Spherical silver particle and method and apparatus for producing the same
JP5168592B2 (en) Method for producing nickel powder
KR20150014752A (en) Method for manufacturing silver nanoparticles
JP2008255377A (en) Method for producing silver particulate
JP2017133110A (en) METHOD FOR RECOVERING NOBLE METAL FROM HYDROCHLORIC ACID ACIDIC Sn-CONTAINING NOBLE METAL CATALYST RECOVERY LIQUID

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803