JP2008297504A - Heat accumulation system - Google Patents

Heat accumulation system Download PDF

Info

Publication number
JP2008297504A
JP2008297504A JP2007147653A JP2007147653A JP2008297504A JP 2008297504 A JP2008297504 A JP 2008297504A JP 2007147653 A JP2007147653 A JP 2007147653A JP 2007147653 A JP2007147653 A JP 2007147653A JP 2008297504 A JP2008297504 A JP 2008297504A
Authority
JP
Japan
Prior art keywords
heat storage
copper
heat
weight
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007147653A
Other languages
Japanese (ja)
Other versions
JP5531375B2 (en
Inventor
Toru Sugawa
徹 壽川
Motohiro Suzuki
基啓 鈴木
Atsushi Kakimoto
敦 柿本
Takehiro Maruyama
剛広 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007147653A priority Critical patent/JP5531375B2/en
Publication of JP2008297504A publication Critical patent/JP2008297504A/en
Application granted granted Critical
Publication of JP5531375B2 publication Critical patent/JP5531375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: when a copper-made heat accumulation vessel or heat exchange part is used for storing or heat exchanging with heat accumulation material comprising, by weight, 97 to 99.9% sodium acetate trihydride and 0.02 to 3% sodium pyrophosphate, the corrosion inhibition of copper is difficult. <P>SOLUTION: The heat accumulation material comprising, by weight, 97 to 99.9% sodium acetate trihydride and 0.02 to 3% sodium pyrophosphate is admixed with 0.05 to 0.2% sodium hydroxide. Thus, when the copper-made heat accumulation vessel or heat exchange part is used, the corrosion of copper can be inhibited. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐食性が高く、かつ熱を高い効率で利用できる蓄熱システムに関する。   The present invention relates to a heat storage system that has high corrosion resistance and can use heat with high efficiency.

蓄熱システムに利用する潜熱蓄熱材は、顕熱型蓄熱材に比べて蓄熱密度が高く、相変化温度が一定であるため、熱の取り出し温度が安定であるという利点を活かして実用化されている。また、特に給湯用の潜熱蓄熱材としては、酢酸ナトリウム・3水和物が良く検討されている。しかし、従来の熱交換器では、伝熱管及びフィンは銅によって構成されることが多く、水和塩を用いる潜熱蓄熱材は腐食性が強いため伝熱管及びフィンが徐々に腐食してしまう。この結果、熱交換部の破損を招き、蓄熱システムの寿命が短くなってしまうという問題がある。この問題に対して、従来は特許文献1に開示されているように伝熱管及びフィンの表面にエポキシ樹脂被覆の前処理した蓄熱システムが用いられる。また、特許文献2に開示されているように、特に伝熱管及びフィンの材質が銅である場合には表面を加熱することで、酸化銅(I)を主成分とする被膜形成することが行われてきた。
特開2003−232595号公報 特公平4−63149号公報
The latent heat storage material used in the heat storage system has been put to practical use by taking advantage of the fact that the heat extraction temperature is stable because the heat storage density is higher than the sensible heat storage material and the phase change temperature is constant. . In particular, sodium acetate trihydrate has been well studied as a latent heat storage material for hot water supply. However, in conventional heat exchangers, the heat transfer tubes and fins are often made of copper, and the latent heat storage material using hydrated salt is highly corrosive, so the heat transfer tubes and fins gradually corrode. As a result, there is a problem that the heat exchange part is damaged and the life of the heat storage system is shortened. Conventionally, a heat storage system in which an epoxy resin coating is pretreated on the surfaces of the heat transfer tubes and fins is used as disclosed in Patent Document 1. In addition, as disclosed in Patent Document 2, in particular, when the material of the heat transfer tube and the fin is copper, it is possible to form a film mainly composed of copper (I) oxide by heating the surface. I have been.
JP 2003-232595 A Japanese Patent Publication No. 4-63149

しかしながら、従来例である特許文献1の構成はエポキシ樹脂被覆の前処理を行うため、熱抵抗増大の課題がある。また、特許文献2の構成は酸化銅(I)(CuO)を主成分とする酸化被膜を形成するものであるが、酸化被膜生成量が不十分であれば腐食が進行する可能性がある。いずれの方法に於いても、伝熱管またはフィンの腐食を抑制し、かつ、熱伝導性も良好な適度な厚みの被膜を形成することは、容易ではない。 However, since the configuration of Patent Document 1 as a conventional example performs pretreatment of epoxy resin coating, there is a problem of increasing thermal resistance. Although the configuration of Patent Document 2 is intended to form an oxide film composed mainly of copper oxide (I) (Cu 2 O) , it may progress corrosion if insufficient oxide film produced amount is there. In any of the methods, it is not easy to form a film having an appropriate thickness that suppresses corrosion of the heat transfer tubes or fins and also has good thermal conductivity.

本発明は、上述の課題を解決する蓄熱システムを提供することを目的としている。   An object of the present invention is to provide a heat storage system that solves the above-described problems.

上述した課題を解決するため、本発明の蓄熱システムでは、蓄熱材が酢酸ナトリウム・3水和物97〜99.9重量%、ピロリン酸ナトリウム0.02〜3重量%含有し、前記蓄熱材を収容する蓄熱容器からなる蓄熱部と、前記蓄熱材に蓄熱または放熱させるために、前記蓄熱材と熱交換する熱媒体を流通させ、前記蓄熱部の少なくとも一部の材質が銅であり、前記蓄熱材が水酸化ナトリウム0.05〜0.2重量%含有することを特徴とする。   In order to solve the above-described problem, in the heat storage system of the present invention, the heat storage material contains sodium acetate trihydrate 97 to 99.9% by weight, sodium pyrophosphate 0.02 to 3% by weight, and the heat storage material In order to store or dissipate heat to the heat storage material, and to store or dissipate heat to the heat storage material, a heat medium that exchanges heat with the heat storage material is circulated, and at least a part of the material of the heat storage unit is copper, and the heat storage The material contains 0.05 to 0.2% by weight of sodium hydroxide.

また、より望ましくは、前記蓄熱容器には、熱伝達率を高めるためのフィンが設けられており、フィンの材質が銅であることを特徴としている。   More preferably, the heat storage container is provided with fins for increasing the heat transfer coefficient, and the material of the fins is copper.

本発明によれば、簡単な方法により、伝熱管またはフィンの腐食を抑制し、かつ、熱伝導性も良好な適度な厚みの被膜を作成することができる。   According to the present invention, it is possible to form a film having an appropriate thickness that suppresses corrosion of heat transfer tubes or fins and has good thermal conductivity by a simple method.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態)
図1は、本実施の形態にかかる蓄熱システムの構成図である。蓄熱容器2には、潜熱蓄熱材3が満たされている。そして、蓄熱容器2を積層化することで蓄熱部1を構成する。
また、蓄熱容器2の伝熱壁6を介して、一方には蓄熱時の熱媒体と潜熱蓄熱材3との熱交換を行なう第1の熱交換部4、他方には放熱時の熱媒体との熱交換を行なう第2の熱交換部5を設けている。さらに熱媒体を加熱する熱源部として、圧縮機10、放熱器11、膨張弁12、蒸発器13から構成されるヒートポンプサイクルを設けている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment)
FIG. 1 is a configuration diagram of a heat storage system according to the present embodiment. The heat storage container 2 is filled with a latent heat storage material 3. And the thermal storage part 1 is comprised by laminating | stacking the thermal storage container 2. As shown in FIG.
Also, through the heat transfer wall 6 of the heat storage container 2, one side is a first heat exchanging unit 4 that performs heat exchange between the heat medium during heat storage and the latent heat storage material 3, and the other is a heat medium during heat dissipation. A second heat exchanging unit 5 is provided for performing heat exchange. Furthermore, a heat pump cycle including a compressor 10, a radiator 11, an expansion valve 12, and an evaporator 13 is provided as a heat source unit for heating the heat medium.

本発明では熱媒体としては給湯用の水を用いる。また、ヒートポンプサイクルの冷媒として、給湯用途に適した二酸化炭素を用いる。   In the present invention, hot water is used as the heat medium. In addition, carbon dioxide suitable for hot water supply is used as a refrigerant for the heat pump cycle.

次に、本実施の形態にかかる蓄熱システムの動作について説明する。蓄熱時には、水が蓄熱時の流れ方向8に流動し、放熱器11において、高温、高圧となった冷媒との熱交換が行われ、加熱された水は第1の熱交換部4の上側から流入し、潜熱蓄熱材3を加熱した後、下側から流出し、再び冷媒との熱交換を行うサイクルとして動作する。また、放熱時には、水が放熱時の流れ方向9に流動し、水が第2の熱交換部5の下側から流入し、潜熱蓄熱材3から吸熱した後、上側から流出し、給湯等の用途に供せられる。
(銅の腐食抑制方法の検討)
まず、本発明の銅の腐食速度と酸化銅被膜生成量の測定方法について説明する。酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材を1500ccの容器に1000cc調整した。ピロリン酸ナトリウムは酢酸ナトリウム・3水和物の過冷却防止剤として添加する。添加したピロリン酸ナトリウムは攪拌せずに長期間放置しておくと、容器上部では含有量が0.02重量%まで減少することもあったが蓄熱性能には影響がないことを確認した。また、ピロリン酸ナトリウムの含有量を増加させると酢酸ナトリウム・3水和物の含有量が減少し蓄熱量が低下するため、3重量%までが望ましい。この調整した潜熱蓄熱材を80度に加熱することで溶融させ、溶液を20ccずつポリプロピレン容器に小分けした。このポリプロピレン容器に幅8mm、高さ70mm、厚み0.05mmの銅箔を浸漬させた試料を作成し、80℃の恒温槽内で所定の期間放置した。所定の期間経過後、試料から銅箔を取り出し、溶液をICP発光分光分析法(VARIAN製 VISTA−RL)で分析することで銅イオンの溶出量を測定し、その結果から腐食速度を算出した。酸化銅被膜生成量に関しては、参考文献(中山茂吉ら、「銅の空気酸化被膜の成長に関するボルタンメトリー的解析」材料と環境,51(2002), 566)に記載するDSCV(Double Sweep Cyclic Voltametry)法により測定した。
Next, operation | movement of the thermal storage system concerning this Embodiment is demonstrated. At the time of heat storage, the water flows in the flow direction 8 at the time of heat storage, and heat exchange with the refrigerant having a high temperature and a high pressure is performed in the radiator 11, and the heated water is from above the first heat exchange unit 4. After flowing in and heating the latent heat storage material 3, it flows out from the lower side and operates as a cycle in which heat exchange with the refrigerant is performed again. Moreover, at the time of heat dissipation, water flows in the flow direction 9 at the time of heat dissipation, water flows in from the lower side of the second heat exchange unit 5, absorbs heat from the latent heat storage material 3, flows out from the upper side, Provided for use.
(Investigation of copper corrosion control methods)
First, a method for measuring the corrosion rate of copper and the amount of copper oxide film produced of the present invention will be described. 1000 cc of a latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate was prepared in a 1500 cc container. Sodium pyrophosphate is added as a supercooling inhibitor for sodium acetate trihydrate. When the added sodium pyrophosphate was allowed to stand for a long time without stirring, the content of the upper part of the container was sometimes reduced to 0.02% by weight, but it was confirmed that the heat storage performance was not affected. Further, when the content of sodium pyrophosphate is increased, the content of sodium acetate trihydrate is decreased and the amount of stored heat is decreased. The adjusted latent heat storage material was melted by heating at 80 degrees, and the solution was subdivided into polypropylene containers by 20 cc. A sample in which a copper foil having a width of 8 mm, a height of 70 mm, and a thickness of 0.05 mm was immersed in this polypropylene container was prepared, and left in a constant temperature bath at 80 ° C. for a predetermined period. After a predetermined period of time, the copper foil was taken out from the sample, and the elution amount of copper ions was measured by analyzing the solution by ICP emission spectroscopic analysis (VISTA-RL manufactured by VARIAN), and the corrosion rate was calculated from the result. Regarding the amount of copper oxide coating produced, the DSCV (Double Sweep Cyclic Voltammetry) method described in the reference (Shigekichi Nakayama et al., “Voltammetric Analysis on the Growth of Copper Oxide Oxide Coating” Materials and Environment, 51 (2002), 566). It was measured by.

次に、銅の酸化被膜生成について説明する。銅は腐食が進むと同時に、表面に通常2種類の銅酸化被膜、すなわち酸化銅(I)(CuO)または酸化銅(II)(CuO)が生成される。どちらが生成されるかは、空気中に暴露するならば湿度や空気中不純物ガス濃度、液体に浸漬するならば液体中の成分により異なる。両酸化被膜の性質は異なり、本発明の潜熱蓄熱材中でどちらの酸化被膜が生成されるかを予め正確に解析する必要がある。 Next, copper oxide film production will be described. Simultaneously with the corrosion of copper, two types of copper oxide films, that is, copper oxide (I) (Cu 2 O) or copper oxide (II) (CuO) are usually formed on the surface. Which is produced depends on the humidity and impurity gas concentration in the air if exposed to the air, and the components in the liquid if immersed in the liquid. The properties of both oxide films are different, and it is necessary to accurately analyze in advance which oxide film is produced in the latent heat storage material of the present invention.

Figure 2008297504
Figure 2008297504

表1は酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材と酢酸ナトリウム・3水和物のみの潜熱蓄熱材の銅酸化被膜の比較である。前述の方法で試料を作成し、80℃の恒温槽で4日間放置した後、銅箔の酸化被膜をDSCV法で解析を行った。表1から酢酸ナトリウム・3水和物のみの場合は酸化銅(II)(CuO)が主成分となり、ピロリン酸ナトリウムを加えた場合には酸化銅(I)(CuO)のみしか形成されないことが分かる。 Table 1 shows a comparison between a copper oxide film of a latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate and a latent heat storage material consisting only of sodium acetate trihydrate. A sample was prepared by the above-described method and left in a constant temperature bath at 80 ° C. for 4 days, and then the copper foil oxide film was analyzed by the DSCV method. From Table 1, when only sodium acetate trihydrate is used, copper (II) oxide (CuO) is the main component, and when sodium pyrophosphate is added, only copper oxide (I) (Cu 2 O) is formed. I understand that.

図2は酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材と酢酸ナトリウム・3水和物のみの潜熱蓄熱材との溶出量の比較である。上述したように、過冷却防止剤として、ピロリン酸ナトリウムは添加するのが望ましい。しかし、ピロリン酸ナトリウムを加えた場合には溶出量が増加することが分かる。ピロリン酸ナトリウムを加えた場合には前述に示すように酸化銅(I)(CuO)のみしか形成されず、また溶出量が増加する理由に関しては、溶出を防止するのに十分な酸化銅(I)または、(II)被膜が形成されないためと考えられる。すなわち、ピロリン酸ナトリウム(化学式:Na)が溶液中で解離し、下記式に示すように酸化銅(II)(CuO)と反応するためであると考えられる。 FIG. 2 is a comparison of the amount of elution between a latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate and a latent heat storage material containing only sodium acetate trihydrate. As described above, it is desirable to add sodium pyrophosphate as a supercooling inhibitor. However, it can be seen that the amount of elution increases when sodium pyrophosphate is added. When sodium pyrophosphate is added, only copper oxide (I) (Cu 2 O) is formed as described above, and the reason why the amount of elution increases is that copper oxide sufficient to prevent elution This is probably because (I) or (II) a film is not formed. That is, it is considered that sodium pyrophosphate (chemical formula: Na 2 H 2 P 2 O 7 ) dissociates in the solution and reacts with copper (II) oxide (CuO) as shown in the following formula.

2CuO+P −4+2H2O =4OH+Cu
図3は酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材の酸化銅(I)(CuO)被膜生成量の経時変化である。前述の条件で試料を作成し、所定の期間放置後、DSCV法により酸化銅(I)(CuO)被膜生成量を測定した。初期には被膜生成量は増加し続けるが、30日目以降は被膜生成量をほぼ一定になる。
2CuO + P 2 O 7 -4 + 2H 2 O = 4OH - + Cu 2 P 2 O 7
FIG. 3 shows changes over time in the amount of copper oxide (I) (Cu 2 O) coating produced by a latent heat storage material composed of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate. A sample was prepared under the above-mentioned conditions, and after being left for a predetermined period, the amount of copper oxide (I) (Cu 2 O) film produced was measured by DSCV method. Although the amount of film formation continues to increase in the initial stage, the amount of film formation becomes almost constant after the 30th day.

図4は酸化銅(I)(CuO)被膜生成量と銅の腐食速度の関係である。酸化銅(I)(CuO)被膜生成量が少ない場合には腐食速度が大きく、腐食が激しく進行する。一方、酸化銅(I)(CuO)被膜が1(W/1000(kgm2))以上生成すると、腐食速度が10分の1以下に低下し、腐食が進行しない。つまり、酸化銅(I)(CuO)被膜生成量は銅の腐食量に大きな影響を及ぼし、酸化銅(I)(CuO)被膜が十分に形成されれば腐食は進行しない。 FIG. 4 shows the relationship between the amount of copper (I) oxide (Cu 2 O) film produced and the corrosion rate of copper. When the amount of copper (I) oxide (Cu 2 O) coating is small, the corrosion rate is high and the corrosion proceeds vigorously. On the other hand, when a copper (I) oxide (Cu 2 O) film is formed in an amount of 1 (W / 1000 (kgm 2)) or more, the corrosion rate is reduced to 1/10 or less, and the corrosion does not proceed. In other words, the amount of copper oxide (I) (Cu 2 O) coating produced greatly affects the amount of copper corrosion, and corrosion does not proceed if the copper oxide (I) (Cu 2 O) coating is sufficiently formed.

以上、表1および図3,4で示したように、酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材は、酸化銅(I)(CuO)被膜を生成し、銅の腐食を決定的に進行させるものではない。しかしながら、後述するように、この系に、さらに、水酸化ナトリウムを添加することにより、銅の溶出量を抑制することができる。 As described above, as shown in Table 1 and FIGS. 3 and 4, the latent heat storage material comprising 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate is a copper (I) oxide (Cu 2 O) coating. And does not decisively advance copper corrosion. However, as will be described later, the elution amount of copper can be suppressed by further adding sodium hydroxide to this system.

図5に酢酸ナトリウム・3水和物とピロリン酸ナトリウムからなる潜熱蓄熱材に銅箔のみ浸漬した場合と銅箔に酸化銅(II)(CuO)を形成して浸漬した場合の溶出量の比較を示す。銅箔に酸化処理剤(エンプレートMB−438A及び438B(メルテックス株式会社製))を用いて、表面にあらかじめ酸化銅(II)(CuO)被膜を十分に形成(5(W/1000(kgm2))以上)した。しかし、図5に示すように溶出量は減少せず、むしろ増加傾向を示した。つまり、酢酸ナトリウム・3水和物とピロリン酸ナトリウムからなる潜熱蓄熱材では酸化銅(II)(CuO)被膜を形成しても、銅の腐食量を抑制できないことが分かる。   Fig. 5 shows a comparison of the elution amount when only copper foil is immersed in a latent heat storage material consisting of sodium acetate trihydrate and sodium pyrophosphate and when copper oxide (II) (CuO) is immersed in copper foil. Indicates. A copper oxide (II) (CuO) film is sufficiently formed on the surface in advance using an oxidation treatment agent (Emplate MB-438A and 438B (Meltex Co., Ltd.)) on the copper foil (5 (W / 1000 (kgm2)). )) More) However, as shown in FIG. 5, the elution amount did not decrease, but rather showed an increasing tendency. That is, it can be seen that a latent heat storage material composed of sodium acetate trihydrate and sodium pyrophosphate cannot suppress the amount of copper corrosion even if a copper (II) oxide (CuO) film is formed.

以上述べたように、酢酸ナトリウム・3水和物とピロリン酸ナトリウムからなる潜熱蓄熱材中に銅を用いる場合に腐食量を抑制するためには、酸化銅(I)(CuO)被膜は有効である。そして、酸化銅(I)(CuO)被膜を迅速に形成することにより、さらに、銅の溶出量を抑制できると考えられる。 As described above, in order to suppress the amount of corrosion when copper is used in the latent heat storage material composed of sodium acetate trihydrate and sodium pyrophosphate, the copper (I) oxide (Cu 2 O) coating is It is valid. And it is thought that the elution amount of copper can be further suppressed by rapidly forming a copper (I) oxide (Cu 2 O) film.

一方、水溶液中の金属の腐食反応には水素イオン(H+)や水酸化物イオン(OH−)が関与することが多く、溶液のpHを考えなければならない。図6はCu―HOの電位―pH図である。ただし、本発明で銅を浸漬する環境は水(HO)だけからなる水溶液ではなく、酢酸ナトリウム・3水和物が溶融した水溶液となるため、図6の傾向と完全に一致するとは言えない。しかし、酢酸ナトリウム・3水和物は水和塩であるため水だけの場合と近い傾向を示すと考えられる。 On the other hand, hydrogen ions (H +) and hydroxide ions (OH−) are often involved in the corrosion reaction of metals in aqueous solutions, and the pH of the solution must be considered. FIG. 6 is a potential-pH diagram of Cu—H 2 O. However, the environment in which copper is immersed in the present invention is not an aqueous solution consisting only of water (H 2 O), but an aqueous solution in which sodium acetate trihydrate is melted, and therefore it can be said that the environment completely coincides with the tendency of FIG. Absent. However, since sodium acetate trihydrate is a hydrated salt, it is considered to show a tendency close to that of water alone.

図7に酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材の水酸化ナトリウム(NaOH)添加量とpHの関係を示す。水酸化ナトリウム(NaOH)添加量の増加とともにpHは上昇していき、0.4重量%以上添加するとpHはほぼ一定になる。一方、図6よりpHが13を超えると、イオンであるCuO 2−の安定領域に入り、酸化銅(I)(CuO)被膜が安定に形成されないと考えられる。以上の検討から、pH=13を目安と考え、水酸化ナトリウム(NaOH)の添加量を決定した。
(実施例)
以下、実施例により本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
(実施例1)
酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材を作成し、水酸化ナトリウム(NaOH)を0.05重量%添加した。前述と同様に銅箔を浸漬した試料を作成し、所定の期間経過後、銅の腐食量の測定を行った。測定結果を表2に示す。
(実施例2)
実施例1と同様の潜熱蓄熱材を作成し、水酸化ナトリウム(NaOH)を0.10重量%添加した。他は、実施例1と同様に行った。測定結果を表2に示す。
(実施例3)
実施例1と同様の潜熱蓄熱材を作成し、水酸化ナトリウム(NaOH)を0.20重量%添加した。他は、比較例と同様に行った。測定結果を表2に示す。
(比較例1)
酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材を作成した。この試験は水酸化ナトリウムを加えない場合の溶出量を確認するためである。他は実施例1と同様である。測定結果を表2に示す
(比較例2)
比較例1と同様の潜熱蓄熱材を作成し、水酸化ナトリウム(NaOH)を0.01重量%添加した。この試験は水酸化ナトリウム(NaOH)の添加量が少ないと効果がないことを確認するためである。他は実施例1と同様に行った。測定結果を表2に示す。
(比較例3)
比較例1と同様の潜熱蓄熱材を作成し、水酸化ナトリウム(NaOH)を1重量%添加した。この試験はpH>13を超えると溶出量が逆に増加することを確認するためである。他は、実施例1と同様に行った。測定結果を表2に示す。
FIG. 7 shows the relationship between the amount of sodium hydroxide (NaOH) added to the latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate and the pH. The pH rises as the amount of sodium hydroxide (NaOH) added increases, and the pH becomes substantially constant when 0.4 wt% or more is added. On the other hand, when pH exceeds 13 from FIG. 6, it will be considered that it enters into the stable region of CuO 2 2− which is an ion, and a copper (I) oxide (Cu 2 O) film is not stably formed. From the above examination, pH = 13 was considered as a standard, and the amount of sodium hydroxide (NaOH) added was determined.
(Example)
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
Example 1
A latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate was prepared, and 0.05% by weight of sodium hydroxide (NaOH) was added. A sample in which copper foil was immersed was prepared in the same manner as described above, and the corrosion amount of copper was measured after a predetermined period. The measurement results are shown in Table 2.
(Example 2)
A latent heat storage material similar to that in Example 1 was prepared, and 0.10% by weight of sodium hydroxide (NaOH) was added. Others were the same as in Example 1. The measurement results are shown in Table 2.
Example 3
A latent heat storage material similar to that in Example 1 was prepared, and 0.20% by weight of sodium hydroxide (NaOH) was added. Others were performed in the same manner as in the comparative example. The measurement results are shown in Table 2.
(Comparative Example 1)
A latent heat storage material comprising 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate was prepared. This test is for confirming the elution amount when sodium hydroxide is not added. Others are the same as in the first embodiment. The measurement results are shown in Table 2 (Comparative Example 2).
A latent heat storage material similar to that of Comparative Example 1 was prepared, and 0.01% by weight of sodium hydroxide (NaOH) was added. This test is to confirm that there is no effect when the amount of sodium hydroxide (NaOH) added is small. Others were performed in the same manner as in Example 1. The measurement results are shown in Table 2.
(Comparative Example 3)
A latent heat storage material similar to that in Comparative Example 1 was prepared, and 1% by weight of sodium hydroxide (NaOH) was added. This test is for confirming that the amount of elution increases conversely when pH> 13. Others were the same as in Example 1. The measurement results are shown in Table 2.

Figure 2008297504
Figure 2008297504

表2から、本発明のように酢酸ナトリウム・3水和物およびピロリン酸ナトリウムからなる潜熱蓄熱材に水酸化ナトリウム0.05重量%以上、0.20重量%以下、より望ましくは0.10重量%以下、添加すれば、前述に示す効果により溶出量が低減し、水酸化ナトリウムを加えない場合と比較して銅の溶出量を低減することができる。また、本発明の構成は従来例のように表面処理などの前処理が必要ないため、蓄熱システムの低コスト化が可能となる。   From Table 2, the latent heat storage material comprising sodium acetate trihydrate and sodium pyrophosphate as in the present invention is 0.05% by weight or more and 0.20% by weight or less, more preferably 0.10% by weight. If added in an amount of not more than%, the elution amount is reduced by the effects described above, and the elution amount of copper can be reduced as compared with the case where sodium hydroxide is not added. Moreover, since the configuration of the present invention does not require pretreatment such as surface treatment unlike the conventional example, the cost of the heat storage system can be reduced.

また、以上述べたように、pHの調整には、NaOHに限らず、KOHのような他のアルカリを用いるのも有効と考えられる。ただし、本発明の蓄熱システムは、酢酸ナトリウム・3水和物を可逆的に用いる系であるので、ナトリウムイオンを生成するNaOHを用いるのがもっとも適切である。   Further, as described above, it is considered effective to use other alkalis such as KOH as well as NaOH for adjusting the pH. However, since the heat storage system of the present invention is a system that reversibly uses sodium acetate trihydrate, it is most appropriate to use NaOH that generates sodium ions.

本発明にかかる蓄熱システムは家庭用の給湯機用途に展開できるが、必ずしもこれに限定されるものではなく、家庭用の暖房用途や産業用の排熱の貯蔵等にも展開することができる。   The heat storage system according to the present invention can be developed for household water heater applications, but is not necessarily limited thereto, and can also be deployed for household heating applications, industrial waste heat storage, and the like.

本発明の実施の形態における蓄熱システムの構成図The block diagram of the thermal storage system in embodiment of this invention 酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材と酢酸ナトリウム・3水和物のみの潜熱蓄熱材の溶出量を比較した図Comparison of the amount of elution of a latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate and a latent heat storage material consisting only of sodium acetate trihydrate 酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材の酸化銅(I)(Cu2O)被膜生成量の経時変化を表す図The figure showing the time-dependent change of the copper oxide (I) (Cu2O) film production amount of the latent heat storage material which consists of sodium acetate trihydrate 99 weight% and sodium pyrophosphate 1 weight%. 酸化銅(I)(CuO)被膜生成量と銅の腐食速度を表す図The figure showing copper oxide (I) (Cu 2 O) film production amount and copper corrosion rate 酢酸ナトリウム・3水和物とピロリン酸ナトリウムからなる潜熱蓄熱材に銅箔のみ浸漬した場合と銅箔に酸化銅(II)(CuO)を形成して浸漬した場合の溶出量を比較した図Figure comparing the amount of elution when only copper foil is immersed in a latent heat storage material consisting of sodium acetate trihydrate and sodium pyrophosphate, and when copper oxide (II) (CuO) is immersed in copper foil. Cu―HOの電位―pH図Potential-pH diagram of Cu-H 2 O 酢酸ナトリウム・3水和物99重量%、ピロリン酸ナトリウム1重量%からなる潜熱蓄熱材の水酸化ナトリウム(NaOH)添加量とpHの関係を表す図The figure showing the relationship between the amount of sodium hydroxide (NaOH) added to the latent heat storage material consisting of 99% by weight of sodium acetate trihydrate and 1% by weight of sodium pyrophosphate and pH

符号の説明Explanation of symbols

1 蓄熱部
2 蓄熱容器
3 潜熱蓄熱材
4 第1の熱交換部
5 第2の熱交換部
6 伝熱壁
7 フィン
8 蓄熱時の流れ方向
9 放熱時の流れ方向
10 圧縮機
11 放熱器
12 膨張弁
13 蒸発器
DESCRIPTION OF SYMBOLS 1 Heat storage part 2 Thermal storage container 3 Latent heat storage material 4 1st heat exchange part 5 2nd heat exchange part 6 Heat transfer wall 7 Fin 8 Flow direction at the time of heat storage 9 Flow direction at the time of heat dissipation 10 Compressor 11 Radiator 12 Expansion Valve 13 Evaporator

Claims (1)

蓄熱材が酢酸ナトリウム・3水和物97〜99.9重量%、ピロリン酸ナトリウム0.02〜3重量%含有し、前記蓄熱材を収容する蓄熱容器からなる蓄熱部と、前記蓄熱材に蓄熱または放熱させるために、前記蓄熱材と熱交換する熱媒体を流通させ、前記熱媒体の熱交換部を備え、前記蓄熱容器には熱伝達率を高めるためのフィンが設けられており、前記蓄熱容器及びフィンの少なくとも一部の材質が銅であり、前記蓄熱材の総重量に対して水酸化ナトリウム0.05〜0.2重量%含有することを特徴とする蓄熱システム。   A heat storage material containing sodium acetate trihydrate 97 to 99.9% by weight and sodium pyrophosphate 0.02 to 3% by weight, and a heat storage unit comprising a heat storage container for storing the heat storage material, and storing heat in the heat storage material Alternatively, in order to dissipate heat, a heat medium that exchanges heat with the heat storage material is circulated, the heat storage part of the heat medium is provided, and the heat storage container is provided with fins for increasing the heat transfer rate, and the heat storage At least a part of the material of the container and the fin is copper, and 0.05 to 0.2% by weight of sodium hydroxide is contained with respect to the total weight of the heat storage material.
JP2007147653A 2007-06-04 2007-06-04 Heat storage system Expired - Fee Related JP5531375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147653A JP5531375B2 (en) 2007-06-04 2007-06-04 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147653A JP5531375B2 (en) 2007-06-04 2007-06-04 Heat storage system

Publications (2)

Publication Number Publication Date
JP2008297504A true JP2008297504A (en) 2008-12-11
JP5531375B2 JP5531375B2 (en) 2014-06-25

Family

ID=40171308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147653A Expired - Fee Related JP5531375B2 (en) 2007-06-04 2007-06-04 Heat storage system

Country Status (1)

Country Link
JP (1) JP5531375B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238189A (en) * 1987-03-14 1988-10-04 ビーエーエスエフ・アクチエンゲゼルシヤフト Cooling substance mixture based on glycol containing no nitrite and phosphate
JPH0860141A (en) * 1994-08-25 1996-03-05 Mitsubishi Chem Corp Thermal storage medium
JP2001158878A (en) * 1999-09-24 2001-06-12 Shoowa Kk Cooling liquid composition
JP2003232595A (en) * 2002-02-08 2003-08-22 Daikin Ind Ltd Thermal storage device
JP2006176674A (en) * 2004-12-22 2006-07-06 Jfe Engineering Kk Cold heat transportation medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238189A (en) * 1987-03-14 1988-10-04 ビーエーエスエフ・アクチエンゲゼルシヤフト Cooling substance mixture based on glycol containing no nitrite and phosphate
JPH0860141A (en) * 1994-08-25 1996-03-05 Mitsubishi Chem Corp Thermal storage medium
JP2001158878A (en) * 1999-09-24 2001-06-12 Shoowa Kk Cooling liquid composition
JP2003232595A (en) * 2002-02-08 2003-08-22 Daikin Ind Ltd Thermal storage device
JP2006176674A (en) * 2004-12-22 2006-07-06 Jfe Engineering Kk Cold heat transportation medium

Also Published As

Publication number Publication date
JP5531375B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US20090020264A1 (en) Method of heat accumulation and heat accumulation system
JP5713614B2 (en) Fuel cell system and fuel cell vehicle
WO2010055621A1 (en) Ebullient cooling apparatus
WO2010095373A1 (en) Ebullient cooling apparatus
JPWO2009063640A1 (en) Chemical heat storage device
JP5531375B2 (en) Heat storage system
JP2010235889A (en) Cooling liquid composition
JP7310685B2 (en) Corrosion-resistant film forming method, corrosion-resistant member having corrosion-resistant film formed thereon, heat exchanger, and fuel cell system
JP2012220288A (en) Anticorrosion performance deterioration detection sensor, and hot water feeding and heating system and facility device equipped with the same
JP4645187B2 (en) Cold transport medium
CN109385635A (en) A kind of compounding ionic liquid corrosion inhibiter and preparation method thereof
JP4936772B2 (en) Water treatment method
JP5556538B2 (en) Thermal storage device and air conditioner using the same
JP6699777B2 (en) Refrigerant piping, heat exchanger, and method for manufacturing refrigerant piping
KR101881659B1 (en) Heat transfer tube having rare-earth oxide superhydrophobic surface and manufacturing method therefor
JPH03263592A (en) Operating fluid for heat pipe
Kumar Experimental Investigation of Latent Heat Energy Storage System (LHTESS) for Enhancing Performance of Dry-Cooling Powerplant
EP3792372A1 (en) Anticorrosive high thermal conductivity aln coating for metallic surfaces in contact with salt hydrates and its application to heat exchangers used in thermal energy storage systems
JP2012072930A (en) Heat storage device and air conditioner equipped with the same
CN1225519C (en) Phase-transition material for storing heat
JP5792434B2 (en) Surface treatment copper pipe and heat pump water heater
Nygård Comparison of pipe materials for cooling systems
WO2023006584A1 (en) Novel use for coolants with low electrical conductivity
Supowit et al. Experimental investigation of designer working fluids in a flat heat pipe
CN204678743U (en) Evaporimeter and Split hot heat exchange of heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5531375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees