JP2008293875A - Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same - Google Patents

Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2008293875A
JP2008293875A JP2007140167A JP2007140167A JP2008293875A JP 2008293875 A JP2008293875 A JP 2008293875A JP 2007140167 A JP2007140167 A JP 2007140167A JP 2007140167 A JP2007140167 A JP 2007140167A JP 2008293875 A JP2008293875 A JP 2008293875A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007140167A
Other languages
Japanese (ja)
Other versions
JP5150966B2 (en
Inventor
Masaaki Matsuu
正明 松宇
Tatsuji Numata
達治 沼田
Takehiro Noguchi
健宏 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007140167A priority Critical patent/JP5150966B2/en
Publication of JP2008293875A publication Critical patent/JP2008293875A/en
Application granted granted Critical
Publication of JP5150966B2 publication Critical patent/JP5150966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a positive electrode for a nonaqueous electrolyte secondary battery capable of balancing output characteristics with a life characteristic; and a nonaqueous electrolyte secondary battery using the same. <P>SOLUTION: The positive electrode for a nonaqueous electrolyte secondary battery has a two-layer structure configured by forming a second positive electrode active material layer 13 containing positive electrode active material powder B15 having an average particle diameter intermediate between that of small-particle-diameter powder and that of large-particle-diameter powder on a first positive electrode active material layer 12 containing positive electrode active material powder A14 small in the average particle diameter and positive electrode active material powder C16 large in the average particle diameter out of positive electrode active material powder. The nonaqueous electrolyte secondary battery using the positive electrode for a nonaqueous electrolyte secondary battery is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解液二次電池用正極およびそれを用いた非水電解液二次電池に関し、詳細には、高出力でかつ長寿命特性、特に高温におけるサイクル特性を改善したリチウムイオン電池等に用いる非水電解液二次電池用正極およびそれを用いた非水電解液二次電池に関する。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same, and more particularly, a lithium ion battery having high output and long life characteristics, particularly improved cycle characteristics at high temperatures. The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery to be used for the above and a non-aqueous electrolyte secondary battery using the same.

リチウムイオン二次電池は、リチウムをドープ、脱ドープすることができる炭素質材料等やリチウムおよびリチウムと合金を形成する金属材料を活物質とした負極と、リチウムと遷移金属酸化物との複合酸化物を活物質とした正極が用いられており、それぞれ帯状の負極集電体、正極集電体に塗布してセパレータを介して積層したものを、外装材で被覆するか、あるいはこれらを積層したものを渦巻状に巻回した巻回体を電池缶内に収容して電池を製造している。この正極に用いられる正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウムと遷移金属との複合酸化物が用いられる。   Lithium-ion secondary batteries are a composite oxidation of lithium and transition metal oxides with a negative electrode using a carbonaceous material that can be doped or dedoped with lithium, or a metal material that forms an alloy with lithium and lithium. A positive electrode using an active material as an active material is used, and a belt-shaped negative electrode current collector and a positive electrode current collector, which are applied and laminated via a separator, are covered with an exterior material or laminated. A battery is manufactured by accommodating a wound body in which a product is wound in a spiral shape in a battery can. As the positive electrode active material used for the positive electrode, a composite oxide of lithium and a transition metal such as lithium cobaltate, lithium nickelate, and lithium manganate is used.

リチウムイオン二次電池等の非水電解液二次電池は、携帯電話、ノート型パソコン、カムコーダ等の電源として広く用いられている。これらの非水電解液二次電池は、従来の鉛蓄電池、アルカリ蓄電池等の水性電解液を用いた二次電池に比べて、体積、あるいは重量容量密度が大きく、しかも高電圧を取り出すことが可能であるので、小型の機器用の電源として広く採用され、今日のモバイル機器の発展に大きく寄与している。   Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as power sources for mobile phones, notebook computers, camcorders, and the like. These non-aqueous electrolyte secondary batteries have a larger volume or weight capacity density and can take out a higher voltage than secondary batteries using aqueous electrolyte such as conventional lead storage batteries and alkaline storage batteries. Therefore, it is widely adopted as a power source for small devices, and greatly contributes to the development of today's mobile devices.

一方、近年では環境問題への意識の高まりからクリーンエネルギー社会への移行、環境技術の確立が注目を集めており、電力貯蔵用途、無停電電源(UPS)用途、移動体向け電源用途などに適した高性能二次電池の早期実現が求められている。リチウムイオン二次電池は前述の高エネルギー密度という特性から、こうした大型電池への展開にも積極的に検討されているものの、適用製品の幅広い普及のためには、現有製品に対するライフサイクルコスト上の優位性が必須であり、単位エネルギーあたりの低価格化が不可欠な要素である。   On the other hand, in recent years, the shift to a clean energy society and the establishment of environmental technology have attracted attention due to the growing awareness of environmental issues, and it is suitable for power storage applications, uninterruptible power supply (UPS) applications, mobile power supply applications, etc. Early realization of high performance secondary batteries is required. Lithium ion secondary batteries are being actively studied for such large-scale batteries due to the above-mentioned characteristics of high energy density. However, in order to spread a wide range of applicable products, the life cycle cost of existing products is high. Superiority is essential, and price reduction per unit energy is an essential factor.

換言すると、動作電圧の高いリチウムイオン二次電池において、大充放電電流を流すことのできるものが長期間持続して使用することが出来れば、高性能のUPSあるいはハイブリッド自動車(HEV)、電気自動車(EV)の実現、ひいては高度情報化社会、クリーンエネルギー社会の構築に寄与できる。こうした背景から、リチウムイオン二次電池の高容量・高出力化と長寿命化は積極的に検討されている。   In other words, if a lithium ion secondary battery having a high operating voltage capable of flowing a large charge / discharge current can be used continuously for a long period of time, a high-performance UPS, hybrid vehicle (HEV), or electric vehicle can be used. (EV) realization, and in turn, can contribute to the construction of an advanced information society and a clean energy society. Against this background, high capacity, high output and long life of lithium ion secondary batteries are being actively studied.

高出力化への検討として、電極反応面積の増大を狙い、正極活物質の比表面積を大きくすることが特許文献1、2で提案されている。具体的に比表面積を大きくするということは、平均粒子径を小さくすることである。しかし、平均粒子径の小さい粉末では、目的の出力は得られるものの、反応面積の増大のため、電極表面における含有水分により生成した酸の影響を受けやすく、活物質粒子の出力特性の悪化を引き起こす。また、活物質粒子の遊離による不活性化を抑制するために、集電体へ結着させるためのバインダー量が大量に必要となるため、エネルギー密度低下の原因ともなる。また、集電体に塗布するためのスラリー作製時の溶剤が大量に必要となるため、生産性の悪化に繋がる問題があった。   Patent Documents 1 and 2 propose increasing the specific surface area of the positive electrode active material with the aim of increasing the electrode reaction area as a study for higher output. Specifically, increasing the specific surface area means reducing the average particle diameter. However, with a powder having a small average particle diameter, the desired output can be obtained, but due to the increase in the reaction area, it is easily affected by the acid generated by the moisture contained on the electrode surface, causing the output characteristics of the active material particles to deteriorate. . In addition, in order to suppress inactivation due to the liberation of the active material particles, a large amount of binder is required for binding to the current collector, which causes a decrease in energy density. In addition, since a large amount of solvent is required at the time of slurry preparation for application to the current collector, there is a problem that leads to deterioration in productivity.

正極活物質内の粒子径を制御する技術として、正極活物質の粒度分布に二つのピークを持つ粉体を用いることが特許文献3で提案されている。しかし、この場合、電極表面に存在する粒径の小さい粒子が、含有水分により生成した酸の影響を受けやすく、また、活物質粒子の遊離による不活性化により、寿命性能はある程度望めるが、出力特性が著しく劣化してしまう恐れがあった。   Patent Document 3 proposes to use a powder having two peaks in the particle size distribution of the positive electrode active material as a technique for controlling the particle diameter in the positive electrode active material. However, in this case, particles with a small particle size present on the electrode surface are easily affected by the acid generated by the contained water, and the life performance can be expected to some extent due to the inactivation due to the liberation of the active material particles. There was a risk that the characteristics would be significantly degraded.

また、高出力化に向けての内部抵抗の低減を狙い、正極活物質間の電子伝導性を確保するために、正極活物質であるリチウム含有複合酸化物表面に導電材としてカーボンブラック等の炭素材料を付着させ、良好な導電パスを形成させるという提案が特許文献4に記載されている。粒子表面に導電材としての炭素材料を付着させ、粒子間に介在させることにより、電極の直流抵抗の低減が実現できるものの、充放電に寄与しない導電性炭素を多く含むことになるため電極自体のエネルギー密度の低下に繋がる問題があった。   In addition, in order to reduce internal resistance for higher output and to ensure electronic conductivity between the positive electrode active materials, carbon such as carbon black is used as a conductive material on the surface of the lithium-containing composite oxide that is the positive electrode active material. Japanese Patent Application Laid-Open No. H10-228867 describes a proposal to deposit a material and form a good conductive path. By attaching a carbon material as a conductive material to the particle surface and interposing between the particles, the direct current resistance of the electrode can be reduced, but it contains a lot of conductive carbon that does not contribute to charge and discharge, so the electrode itself There was a problem that led to a decrease in energy density.

正極活物質の平均粒子径を大きくした場合、比表面積を低く抑えることができ、電極反応面積が小さくなるため、電極表面での活物質の劣化や溶出を抑制することができ、長寿命化に繋がる。しかし、大電流値での電池の充放電を行うと、正極活物質層の厚さ方向に活物質の反応ムラが大きく生じる場合がある。すなわち、充放電反応に伴うリチウムイオンの挿入・脱離反応が、集電体に近い側に位置する活物質に集中し、集電体から遠い側に位置する活物質が有効に寄与できず、結果として出力の低下を招く。   When the average particle size of the positive electrode active material is increased, the specific surface area can be kept low, and the electrode reaction area is reduced, so that deterioration and elution of the active material on the electrode surface can be suppressed, thereby extending the life. Connected. However, when the battery is charged / discharged at a large current value, reaction unevenness of the active material may occur greatly in the thickness direction of the positive electrode active material layer. That is, the lithium ion insertion / desorption reaction associated with the charge / discharge reaction concentrates on the active material located on the side closer to the current collector, and the active material located on the side far from the current collector cannot contribute effectively. As a result, the output is reduced.

特開平7−335220号公報JP 7-335220 A 特開2002−373654号公報JP 2002-373654 A 特開2000−82466号公報JP 2000-82466 A 特開2001−250553号公報JP 2001-250553 A

以上述べてきたように、自動車用途などの高出力が必要とされる使用条件において、リチウム二次電池の高出力と長寿命との両立については、積極的に検討されているものの、両者の満足のいく両立は困難であった。そこで本発明は、優れた高出力特性及び長期寿命特性の両立を可能にする非水電解液二次電池用正極およびそれを用いた非水電解液二次電池を提供することを目的とする。   As described above, the compatibility between the high output and long life of lithium secondary batteries under active use conditions that require high output, such as automotive applications, has been actively studied, but both are satisfactory. It was difficult to achieve both. Accordingly, an object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same, which can achieve both excellent high output characteristics and long-term life characteristics.

本発明者らは、従来の技術を精査し、上記の目的を達成するために種々の検討を重ねた結果、正極活物質粉末のうち平均粒子径の小さい小粒子径の粉末と平均粒子径の大きい大粒子径の粉末を中心として成る正極活物質層の上に、小粒子径の粉末と大粒子径の粉末の中間の平均粒子径を有する粉末を中心として成る正極活物質層を形成した二層構造を有する正極を使用することにより、高出力特性及び長期寿命特性の両立に極めて大きな影響を与えることを見出し、本発明に至ったものである。   As a result of scrutinizing the conventional technology and repeating various studies to achieve the above object, the inventors of the present invention have found that the positive electrode active material powder has a small average particle size and a small average particle size. A positive electrode active material layer mainly composed of a powder having an average particle size intermediate between a small particle size powder and a large particle size powder is formed on a positive electrode active material layer centered on a large large particle size powder. It has been found that the use of a positive electrode having a layer structure has a great influence on the compatibility between high output characteristics and long-term life characteristics, and the present invention has been achieved.

本発明によれば、正極集電体の表面に形成された第一の正極活物質層と、前記第一の正極活物質層上に形成された第二の正極活物質層とを有し、前記第一の正極活物質層には平均粒子径の小さな正極活物質粉末Aと平均粒子径の大きな正極活物質粉末Cとを含み、前記第二の正極活物質層には平均粒子径が中間の正極活物質粉末Bを含むことを特徴とする非水電解液二次電池用正極が得られ、前記正極活物質粉末Aの平均粒子径が0.5μm以上4μm未満であり、前記正極活物質粉末Bの平均粒子径が4μm以上12μm未満であり、前記正極活物質粉末Cの平均粒子径が12μm以上50μm以下であることが好ましい。   According to the present invention, the first positive electrode active material layer formed on the surface of the positive electrode current collector, the second positive electrode active material layer formed on the first positive electrode active material layer, The first positive electrode active material layer includes a positive electrode active material powder A having a small average particle size and a positive electrode active material powder C having a large average particle size, and the second positive electrode active material layer has a medium average particle size. A positive electrode for a non-aqueous electrolyte secondary battery, wherein the positive electrode active material powder A has an average particle size of 0.5 μm or more and less than 4 μm, and the positive electrode active material The average particle size of the powder B is preferably 4 μm or more and less than 12 μm, and the average particle size of the positive electrode active material powder C is preferably 12 μm or more and 50 μm or less.

また本発明によれば、前記正極活物質粉末Aと前記正極活物質粉末Cの混合後の粒子のBET比表面積Pが前記正極活物質粉末BのBET比表面積Qに対し、0.5≦P/Q≦2となることを特徴とする非水電解液二次電池用正極が得られる。   According to the present invention, the BET specific surface area P of the mixed particles of the positive electrode active material powder A and the positive electrode active material powder C is 0.5 ≦ P with respect to the BET specific surface area Q of the positive electrode active material powder B. A positive electrode for a non-aqueous electrolyte secondary battery is obtained, wherein / Q ≦ 2.

さらに本発明によれば、少なくとも、リチウムを挿入・脱離可能な負極と、非水電解液を介して該負極と対向配置された正極を備えた非水電解液二次電池において、該正極が、請求項1〜3のいずれかに記載の非水電解液二次電池用正極であることを特徴とする非水電解液二次電池が得られる。   Furthermore, according to the present invention, in a non-aqueous electrolyte secondary battery comprising at least a negative electrode capable of inserting / extracting lithium and a positive electrode disposed opposite to the negative electrode via a non-aqueous electrolyte, the positive electrode A nonaqueous electrolyte secondary battery comprising the positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3 is obtained.

本発明の正極は、集電体側に配置された第一の正極活物質層に含まれる平均粒子径の小さい粉末、例えば平均粒子径0.5μm以上4μm未満の粉末Aを含むことにより、大電流値における電池の充放電を行う際、平均粒子径の小さい粉末A、つまり、比表面積の大きい粉末Aが速やかにリチウムイオンの挿入・脱離反応を起こすため、高出力を達成することができる。第一の正極活物質層に含まれる平均粒子径の大きい粉末、例えば平均粒子径12μm以上50μm以下の粉末Cは、第一の正極活物質層を集電体に結着させるためのバインダー量を少量にすることができ、また集電体に塗布するためのスラリー作製時の溶剤を低減することができる。また、粉末Cは、集電体側に配置された第一の正極活物質層にのみ含まれるため、大電流における電池の充放電の際には、正極活物質層の厚さ方向に伴うリチウムイオンの挿入・脱離反応のムラは生じず、すべての粒子が効率的に充放電に寄与することができる。   The positive electrode of the present invention includes a powder having a small average particle size, for example, a powder A having an average particle size of 0.5 μm or more and less than 4 μm, contained in the first positive electrode active material layer disposed on the current collector side, thereby providing a large current. When charging / discharging the battery at the value, the powder A having a small average particle diameter, that is, the powder A having a large specific surface area promptly causes the insertion / desorption reaction of lithium ions, so that high output can be achieved. A powder having a large average particle diameter, for example, a powder C having an average particle diameter of 12 μm or more and 50 μm or less, contained in the first positive electrode active material layer has a binder amount for binding the first positive electrode active material layer to the current collector. The amount of the solvent can be reduced, and the solvent for preparing the slurry to be applied to the current collector can be reduced. In addition, since the powder C is contained only in the first positive electrode active material layer disposed on the current collector side, lithium ions associated with the thickness direction of the positive electrode active material layer at the time of charge / discharge of the battery at a large current There is no unevenness in the insertion / desorption reaction, and all particles can efficiently contribute to charge / discharge.

また、本発明の第二の正極活物質層が、第一の正極活物質層の上に配置されることにより、前記の効果を有効に発揮できるようにしている。平均粒子径の中間の粉末、例えば平均粒子径4μm以上12μm未満の粉末Bは、第二の正極活物質層にのみ含まれることにより、電池の長期使用による平均粒子径の小さい粉末Aの遊離による不活性化を抑制し、含有水分により生成した酸の影響も最小限にすることができる。また、大電流での電池の充放電によるリチウムイオンの挿入・脱離反応の反応ムラを緩和することができる。   In addition, the second positive electrode active material layer of the present invention is arranged on the first positive electrode active material layer, so that the above-described effects can be effectively exhibited. An intermediate powder having an average particle diameter, for example, a powder B having an average particle diameter of 4 μm or more and less than 12 μm, is contained only in the second positive electrode active material layer, thereby freeing powder A having a small average particle diameter due to long-term use of the battery. Inactivation can be suppressed, and the influence of the acid generated by the contained water can be minimized. Further, it is possible to alleviate reaction unevenness of lithium ion insertion / extraction reaction due to charging / discharging of the battery with a large current.

次に本発明の実施の形態について図面を参照して説明する。図1は本発明の非水電解液二次電池用正極の構成を示す模式図である。正極集電体11と、正極活物質粉末A14および正極活物質粉末C16を含有する第一の正極活物質層12と、第一の正極活物質層の上に形成された正極活物質粉末B15を含有する第二の正極活物質層13から構成されている。なお、本発明においては、説明の都合上、図面を誇張して表現しており、本発明の技術的範囲は、図面に示す形態に限定されない。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the positive electrode for a non-aqueous electrolyte secondary battery of the present invention. A positive electrode current collector 11, a first positive electrode active material layer 12 containing a positive electrode active material powder A14 and a positive electrode active material powder C16, and a positive electrode active material powder B15 formed on the first positive electrode active material layer The second positive electrode active material layer 13 is contained. In the present invention, the drawings are exaggerated for convenience of explanation, and the technical scope of the present invention is not limited to the forms shown in the drawings.

図2は本発明の非水電解液二次電池の構成を示す模式図である。正極集電体21と、リチウムイオンを吸蔵、放出し得る正極活物質を含有する図1で説明した正極22と、リチウムイオンを吸蔵、放出する負極活物質を含有する負極23と、負極集電体24と、電解液25、およびこれを含むセパレータ26から構成されている。   FIG. 2 is a schematic diagram showing the configuration of the nonaqueous electrolyte secondary battery of the present invention. A positive electrode current collector 21, a positive electrode 22 described in FIG. 1 containing a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode 23 containing a negative electrode active material occluding and releasing lithium ions, and a negative electrode current collector It is comprised from the body 24, the electrolyte solution 25, and the separator 26 containing this.

(正極)
本発明の実施形態の非水電解液二次電池用正極においては、4V級の正極材料、またはそれ以外の充放電電位を示す正極材料を正極活物質として用いることができる。
(Positive electrode)
In the positive electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, a 4V class positive electrode material or other positive electrode material exhibiting a charge / discharge potential can be used as the positive electrode active material.

4V級の正極材料としては、たとえばLiCoO2、LiNiO2、LiMn24等のリチウム含有金属酸化物を用いることができる。この中でも、LiMn24で表されるスピネル型のリチウムマンガン複合酸化物が好ましく用いられる。LiMn24を用いた場合、Li量を過剰にすることや、3価のMnを他元素で置換することもできる。たとえば、組成式Lix1 yMn2-xーy4(M1はAl、B、Cr、Co、Ni、Ti、Fe、Mg、Ba、Zn、Ge、Nbから選ばれる1種以上、0≦x≦0.3、0≦y≦0.3、)で表されるリチウムマンガン複合酸化物を用いることができる。これにより、構造安定性を向上させることができる。 As the 4V class positive electrode material, for example, a lithium-containing metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used. Among these, a spinel type lithium manganese composite oxide represented by LiMn 2 O 4 is preferably used. When LiMn 2 O 4 is used, the amount of Li can be excessive, or trivalent Mn can be replaced with other elements. For example, the composition formula Li x M 1 y Mn 2- x over y O 4 (M 1 is Al, B, Cr, Co, Ni, Ti, Fe, Mg, Ba, Zn, Ge, 1 or more selected from Nb , 0 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.3)). Thereby, structural stability can be improved.

上記4V級の正極材料以外の正極材料としては、たとえばリチウム含有複合酸化物が好適に用いられる。リチウム含有複合酸化物としては、LiMn1-x2 x4(0≦x<1、M2=Ni、Co、Cr、Cu、Fe)で表されるスピネル型リチウムマンガン複合酸化物、LiM3PO4(M3=Co、Ni、Fe)で表されるオリビン型リチウム含有複合酸化物、LiNiVO4などの逆スピネル型リチウム含有複合酸化物などが例示される。 As a positive electrode material other than the 4V class positive electrode material, for example, a lithium-containing composite oxide is preferably used. Examples of the lithium-containing composite oxide include spinel type lithium manganese composite oxide represented by LiMn 1-x M 2 x O 4 (0 ≦ x <1, M 2 = Ni, Co, Cr, Cu, Fe), LiM Examples include olivine-type lithium-containing composite oxides represented by 3 PO 4 (M 3 = Co, Ni, Fe), and reverse spinel-type lithium-containing composite oxides such as LiNiVO 4 .

第一の正極活物質層に含まれる正極活物質粉末Aと正極活物質粉末Cの混合の比率については、正極活物質粉末Aと正極活物質粉末Cとの混合後に得られる混合正極活物質のBET比表面積Pが、正極活物質粉末BのBET比表面積Qに対して、0.5≦P/Q≦2となる範囲で混合されることが好ましい。比表面積Pが前記の範囲を逸脱する場合では、出力特性及び寿命特性の最適な両立は困難であるが、出力特性及び寿命特性のどちらか一方を優先する場合に限り、上記の範囲を逸脱する場合があってもよい。   About the mixing ratio of the positive electrode active material powder A and the positive electrode active material powder C contained in the first positive electrode active material layer, the mixed positive electrode active material obtained after mixing the positive electrode active material powder A and the positive electrode active material powder C is used. It is preferable that the BET specific surface area P is mixed with the BET specific surface area Q of the positive electrode active material powder B within a range of 0.5 ≦ P / Q ≦ 2. When the specific surface area P deviates from the above range, it is difficult to optimally balance the output characteristics and the life characteristics, but deviates from the above ranges only when priority is given to either the output characteristics or the life characteristics. There may be cases.

また、正極活物質層に含まれる成分比は、特に限定されるものではない。また、正極活物質は複数の種類の正極活物質が含まれていても良い。   Moreover, the component ratio contained in the positive electrode active material layer is not particularly limited. In addition, the positive electrode active material may include a plurality of types of positive electrode active materials.

尚、導電性付与剤としては特に制限は無く、カーボンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等の通常用いられるものを用いることができる。また、バインダーとしても、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常用いられるものを用いることができる。   In addition, there is no restriction | limiting in particular as an electroconductivity imparting agent, What is used normally, such as carbon black, acetylene black, natural graphite, artificial graphite, carbon fiber, can be used. Also, as the binder, commonly used ones such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) can be used.

好ましくは導電性付与剤の添加量は合剤の質量に対し1〜10質量%程度であり、結着剤の添加量も合剤の質量に対し1〜10質量%程度である。これは、非水電解液二次電池用の正極活物質の割合が大きい方が重量当たりの容量が大きくなるためである。導電性付与剤と結着剤の割合が小さすぎると、導電性が保てなくなったり、電極剥離の問題が生じたりすることがある。また、形成された二次電池正極を構成する、集電体を除いた、合剤の密度は、2.55〜3.05g/cm3とするのが好ましい。合剤の密度を上記値とすると、高放電レートでの使用時における放電容量が向上し好ましい。 Preferably, the addition amount of the conductivity imparting agent is about 1 to 10% by mass with respect to the mass of the mixture, and the addition amount of the binder is also about 1 to 10% by mass with respect to the mass of the mixture. This is because the capacity per unit weight increases as the proportion of the positive electrode active material for the non-aqueous electrolyte secondary battery increases. If the ratio between the conductivity-imparting agent and the binder is too small, the conductivity may not be maintained, or a problem of electrode peeling may occur. Moreover, it is preferable that the density of the mixture which comprises the formed secondary battery positive electrode except the electrical power collector shall be 2.55-3.05 g / cm < 3 >. When the density of the mixture is the above value, the discharge capacity at the time of use at a high discharge rate is preferably improved.

(負極)
負極活物質はリチウム金属または炭素材料などのリチウムを吸蔵、放出できる材料により構成されている。炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなど、あるいはこれらの複合物を用いることができる。負極活物質としてリチウム金属を用いる場合には融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル‐ゲル方式、などの適宜な方式により負極となる層23を得ることができる。また、炭素材料の場合には、カーボンとポリビニリデンフルオライド(PVDF)等の結着剤を混合し、NMP等の溶剤中に分散混錬し、これを銅箔等の基体上に塗布するなどの方法や、蒸着法、CVD法、スパッタリング法などの方法により負極23を得ることができる。
(Negative electrode)
The negative electrode active material is made of a material that can occlude and release lithium, such as lithium metal or carbon material. As the carbon material, graphite that occludes lithium, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, carbon nanohorn, or a composite thereof can be used. When lithium metal is used as the negative electrode active material, a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc. Thus, the layer 23 to be the negative electrode can be obtained. In the case of carbon materials, carbon and a binder such as polyvinylidene fluoride (PVDF) are mixed, dispersed and kneaded in a solvent such as NMP, and this is applied onto a substrate such as copper foil. The negative electrode 23 can be obtained by a method such as vapor deposition, CVD, or sputtering.

(集電体)
正極集電体11、21としてはアルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができ、負極集電体24としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
(Current collector)
Aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used as the positive electrode current collectors 11 and 21, and copper, stainless steel, nickel, titanium, or an alloy thereof can be used as the negative electrode current collector 24. Can do.

(セパレータ)
セパレータ26としては、織布、不織布、多孔膜等を用いることができる。特にポリプロピレン、ポリエチレン系の多孔膜が薄膜でかつ大面積化、膜強度や膜抵抗の面で好ましく用いられる。
(Separator)
As the separator 26, a woven fabric, a nonwoven fabric, a porous film, or the like can be used. In particular, a polypropylene or polyethylene-based porous film is preferably used in terms of a thin film and a large area, film strength and film resistance.

(電解液)
本発明における電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1、2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1、3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種又は二種以上を混合して使用できる。このうち、プロピレンカーボネート、エチレンカーボネート、γ−ブチルラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを単独もしくは混合して用いることが好ましい。
(Electrolyte)
Examples of the electrolytic solution in the present invention include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl Chain carbonates such as methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1, 2 -Chain ethers such as diethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide , Dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl- Mixing one or more aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester Can be used. Of these, propylene carbonate, ethylene carbonate, γ-butyl lactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used alone or in combination.

これらの有機溶媒には支持塩としてリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSBF6、LiCF3SO3、LiC49CO3、LiC(CF3SO22、LiN(CF3SO22、LiN(C25SO22、LiB10Cl10、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質を用いてもよい。電解質濃度は、たとえば0.5mol/Lから1.5mol/Lとする。濃度が高すぎると密度と粘度が増加する。濃度が低すぎると電気電導率が低下することがある。 In these organic solvents, a lithium salt is dissolved as a supporting salt. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSBF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic carboxylic acid lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides, etc. can give. Further, a polymer electrolyte may be used instead of the electrolytic solution. The electrolyte concentration is, for example, 0.5 mol / L to 1.5 mol / L. If the concentration is too high, density and viscosity increase. If the concentration is too low, the electrical conductivity may decrease.

本発明に係るリチウム二次電池は、乾燥空気または不活性ガス雰囲気において、負極23および正極22を、セパレータ26を介して積層、あるいは積層したものを捲回した後に、外装体に挿入し、電解液25を含浸させた後、電池外装体を封止することで得られる。   In the lithium secondary battery according to the present invention, the negative electrode 23 and the positive electrode 22 are laminated via the separator 26 in a dry air or an inert gas atmosphere, or the laminated one is wound, and then inserted into the outer package, After impregnating the liquid 25, the battery outer package is sealed.

電池形状には制限がなく、セパレータを挟んで対向した正極、負極を巻回型、積層型などの形態を取ることが可能であり、セルにも、コイン型、ラミネートパック、角型セル、円筒型セルを用いることができる。   There are no restrictions on the battery shape, and it can take the form of a positive electrode and negative electrode facing each other with a separator in between, a wound type, a laminated type, etc., and the cell can also be a coin type, laminate pack, square cell, cylinder Type cells can be used.

以下に本発明を、以下の実施例及び比較例を用いて説明する。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described using the following examples and comparative examples. The present invention is not limited to the following examples.

(正極の作製)
正極活物質粉末Bとして、平均粒子径9.8μm、BET比表面積0.8m2/gのスピネル型マンガン酸リチウム(LiMn24)を準備し、導電性付与剤としてのカーボンブラックと乾式混合し、バインダーであるフッ化ビニリデン樹脂(PVDF)を溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させスラリーを作製しスラリーBとした。スラリーB中の固形分比率は正極活物質:導電性付与剤:PVDF=89:4:7(質量%)とした。
(Preparation of positive electrode)
As positive electrode active material powder B, spinel type lithium manganate (LiMn 2 O 4 ) having an average particle size of 9.8 μm and a BET specific surface area of 0.8 m 2 / g is prepared, and dry mixed with carbon black as a conductivity imparting agent. The slurry was uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which vinylidene fluoride resin (PVDF) as a binder was dissolved to prepare slurry B. The solid content ratio in the slurry B was positive electrode active material: conductivity imparting agent: PVDF = 89: 4: 7 (mass%).

続いて、正極活物質Aとして平均粒子径1.4μm、比表面積3.1m2/gのスピネル型マンガン酸リチウムを準備し、また、正極活物質Cとして平均粒子径21.2μm、比表面積0.3m2/gのスピネル型マンガン酸リチウムを準備した。正極活物質粉末Aと正極活物質粉末Cを正極活物質粉末A:正極活物質粉末C=20:80となるように混合した。得られた混合正極活物質粉末の比表面積Pは0.86m2/gであった。次いで、スラリーBの作製と同様の手法により、スラリーAを作製した。 Subsequently, spinel type lithium manganate having an average particle size of 1.4 μm and a specific surface area of 3.1 m 2 / g was prepared as the positive electrode active material A, and an average particle size of 21.2 μm and a specific surface area of 0 as the positive electrode active material C. A spinel type lithium manganate of 3 m 2 / g was prepared. The positive electrode active material powder A and the positive electrode active material powder C were mixed so as to be positive electrode active material powder A: positive electrode active material powder C = 20: 80. The specific surface area P of the obtained mixed positive electrode active material powder was 0.86 m 2 / g. Next, slurry A was prepared by the same method as that for preparing slurry B.

スラリーAを正極集電体となるアルミ金属箔(厚さ20μm)上に塗布後、NMPを蒸発させることにより、正極活物質粉末Aと正極活物質粉末Cとを有する第一の正極活物質層(膜厚55μm)をアルミ金属箔上作製し、これを正極シートAとした。次いで、上記で作製したスラリーBを正極シートA上に塗布後、NMPを蒸発させることにより、第一の正極活物質層の上層に正極活物質粉末Bを有する第二の正極活物質層(膜厚55μm)を作製し、膜厚110μmの正極シートとした。また、同様の方法を用いて、正極活物質粉末Aと正極活物質粉末Cの混合比を変更することにより、混合正極活物質粉末の比表面積Pを変えた正極シートを作製し実施例1〜5とした。表1に実施例で作製した正極シートの混合正極活物質粉末の比表面積Pを示す。なお前述で具体的に例示したものは実施例3である。また、表1には第一の正極活物質層に含まれる混合正極活物質の比表面積Pおよび、比表面積Pと正極活物質Bの比表面積Qの比(P/Q)も同時に記載した。また、表1には後述の電池の評価結果もまとめて記載した。   The first positive electrode active material layer having the positive electrode active material powder A and the positive electrode active material powder C by evaporating NMP after applying the slurry A onto the aluminum metal foil (thickness 20 μm) serving as the positive electrode current collector (Film thickness 55 μm) was prepared on an aluminum metal foil, and this was used as a positive electrode sheet A. Next, after applying the slurry B prepared above on the positive electrode sheet A, NMP is evaporated, whereby the second positive electrode active material layer (film) having the positive electrode active material powder B on the first positive electrode active material layer. A positive electrode sheet having a thickness of 110 μm was prepared. Moreover, the positive electrode sheet which changed the specific surface area P of mixed positive electrode active material powder by changing the mixing ratio of the positive electrode active material powder A and the positive electrode active material powder C using the same method, and produced Example 1 It was set to 5. Table 1 shows the specific surface area P of the mixed positive electrode active material powder of the positive electrode sheet produced in the example. In addition, what was specifically illustrated above is Example 3. Table 1 also shows the specific surface area P of the mixed positive electrode active material contained in the first positive electrode active material layer and the ratio (P / Q) of the specific surface area P to the specific surface area Q of the positive electrode active material B. Table 1 also summarizes the evaluation results of the batteries described below.

比較例として、正極活物質粉末A、B、およびCのみを用いて作製したスラリー、または、スラリーAから膜厚110μmの正極シートをそれぞれ作製した。いずれも上記のスラリー作製と同様の手法を用いた。比較例1〜3は、それぞれ正極活物質粉末A、B、Cのみを用いて正極シートを作製し、比較例4〜8は実施例1〜5に用いた正極活物質粉末A、Cの混合正極活物質粉末を用いて正極シートを作製したものである。   As a comparative example, a slurry prepared using only the positive electrode active material powders A, B, and C, or a positive electrode sheet having a thickness of 110 μm was prepared from the slurry A. In either case, the same method as the above slurry preparation was used. Comparative Examples 1-3 produced positive electrode sheets using only positive electrode active material powders A, B, and C, respectively, and Comparative Examples 4-8 were a mixture of positive electrode active material powders A, C used in Examples 1-5. A positive electrode sheet is prepared using a positive electrode active material powder.

負極活物質は炭素材料よりなり、カーボン:PVDF=90:10(質量%)の比率となるように混合しNMPに分散させ、負極集電体となる銅箔(厚さ10μm)上に塗布して膜厚65μmの負極シートを作製した。電解質溶液は、電解質としての1mol/LのLiPF6を用いた。その後、負極と正極シートとをポリエチレンからなるセパレータを介して積層し、円筒型非水電解液二次電池を作製した。 The negative electrode active material is made of a carbon material, mixed so as to have a ratio of carbon: PVDF = 90: 10 (mass%), dispersed in NMP, and coated on a copper foil (thickness 10 μm) serving as a negative electrode current collector. Thus, a negative electrode sheet having a film thickness of 65 μm was produced. As the electrolyte solution, 1 mol / L LiPF 6 as an electrolyte was used. Thereafter, the negative electrode and the positive electrode sheet were laminated via a separator made of polyethylene to produce a cylindrical nonaqueous electrolyte secondary battery.

作製した円筒型非水電解液二次電池の高温サイクル特性を評価した。温度60℃において、充電レート1.0C、放電レート1.0C、充電終止電圧4.3V、放電終止電圧2.5V、とした。容量維持率(%)は300サイクル後の放電容量(mAh)を、10サイクル目の放電容量(mAh)で割った値である。結果を表1に示す。   The high-temperature cycle characteristics of the produced cylindrical nonaqueous electrolyte secondary battery were evaluated. At a temperature of 60 ° C., the charge rate was 1.0 C, the discharge rate was 1.0 C, the charge end voltage was 4.3 V, and the discharge end voltage was 2.5 V. The capacity retention rate (%) is a value obtained by dividing the discharge capacity (mAh) after 300 cycles by the discharge capacity (mAh) at the 10th cycle. The results are shown in Table 1.

また、作製した円筒型非水電解液二次電池の出力特性を評価した。室温下において0.2Cで4.2Vまで定電流充電し、続いて2時間の定電圧充電を行った。その後、0.1Cで定電流放電を行って、このときの容量(以下、「低電流放電容量」という。)を各円筒型非水電解液二次電池について測定した。引き続き、室温下において0.2Cで4.2Vまでの定電流充電と2時間の定電圧充電とを行い、その後、10Cで定電流放電を行って、このときの容量(以下、「高電流放電容量」という。)を各リチウムイオン二次電池について測定した。なお、各リチウムイオン二次電池の設計容量が1.4Ahであることから、上記の充放電を行う際の1Cは1.4Aとした。上記の測定結果を基に低電流放電容量に対する高電流放電容量の百分率(以下、「放電容量比」という。)を算出した。結果を表1に示す。この放電容量比が大きい程、出力特性が高いといえる。   Moreover, the output characteristics of the produced cylindrical nonaqueous electrolyte secondary battery were evaluated. At room temperature, the battery was charged with a constant current to 4.2 V at 0.2 C, and then charged with a constant voltage for 2 hours. Thereafter, constant current discharge was performed at 0.1 C, and the capacity at this time (hereinafter referred to as “low current discharge capacity”) was measured for each cylindrical non-aqueous electrolyte secondary battery. Subsequently, constant current charging up to 4.2 V at 0.2 C and constant voltage charging for 2 hours at room temperature is performed, and then constant current discharging is performed at 10 C, and the capacity at this time (hereinafter referred to as “high current discharging”). Capacity ") was measured for each lithium ion secondary battery. In addition, since the design capacity | capacitance of each lithium ion secondary battery is 1.4Ah, 1C at the time of performing said charging / discharging was set to 1.4A. Based on the above measurement results, the percentage of the high current discharge capacity to the low current discharge capacity (hereinafter referred to as “discharge capacity ratio”) was calculated. The results are shown in Table 1. It can be said that the larger the discharge capacity ratio, the higher the output characteristics.

Figure 2008293875
Figure 2008293875

各実施例と比較例との比較から、本発明の正極活物質粉末のうち平均粒子径の小さい小粒径粉末と平均粒子径の大きい大粒径を中心として成る第一の正極活物質層の上に、小粒径粉末と大粒径粉末の中間の平均粒子径を有する粉末を中心として成る第二の正極活物質層の二層構造を有する正極を使用することにより、従来の正極シートより高出力特性及び長期寿命特性の両立がなされていることが分かる。従って、本発明により、電池の出力特性および長期寿命特性の向上に有効に寄与しうることがわかる。   From the comparison between each example and the comparative example, the first positive electrode active material layer mainly composed of the small particle size powder having a small average particle size and the large particle size having a large average particle size among the positive electrode active material powders of the present invention. On top of that, by using a positive electrode having a two-layer structure of a second positive electrode active material layer mainly composed of a powder having an average particle size intermediate between a small particle size powder and a large particle size powder, It can be seen that both high output characteristics and long life characteristics are achieved. Therefore, it can be seen that the present invention can effectively contribute to the improvement of the output characteristics and long-term life characteristics of the battery.

本発明の非水電解液二次電池用正極の構成を示す模式図。The schematic diagram which shows the structure of the positive electrode for nonaqueous electrolyte secondary batteries of this invention. 本発明の非水電解液二次電池の構成を示す模式図。The schematic diagram which shows the structure of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

11、21 正極集電体
12 第一の正極活物質層
13 第二の正極活物質層
14 正極活物質粉末A
15 正極活物質粉末B
16 正極活物質粉末C
22 正極
23 負極
24 負極集電体
25 電解液
26 セパレータ
11, 21 Positive electrode current collector 12 First positive electrode active material layer 13 Second positive electrode active material layer 14 Positive electrode active material powder A
15 Positive electrode active material powder B
16 Positive electrode active material powder C
22 Positive electrode 23 Negative electrode 24 Negative electrode current collector 25 Electrolytic solution 26 Separator

Claims (4)

正極集電体の表面に形成された第一の正極活物質層と、前記第一の正極活物質層上に形成された第二の正極活物質層とを有し、前記第一の正極活物質層には平均粒子径の小さな正極活物質粉末Aと平均粒子径の大きな正極活物質粉末Cとを含み、前記第二の正極活物質層には平均粒子径が中間の正極活物質粉末Bを含むことを特徴とする非水電解液二次電池用正極。   A first positive electrode active material layer formed on the surface of the positive electrode current collector; a second positive electrode active material layer formed on the first positive electrode active material layer; The material layer includes a positive electrode active material powder A having a small average particle size and a positive electrode active material powder C having a large average particle size, and the second positive electrode active material layer has a positive electrode active material powder B having an intermediate average particle size. A positive electrode for a non-aqueous electrolyte secondary battery. 前記正極活物質粉末Aの平均粒子径が0.5μm以上4μm未満であり、前記正極活物質粉末Bの平均粒子径が4μm以上12μm未満であり、前記正極活物質粉末Cの平均粒子径が12μm以上50μm以下であることを特徴とする請求項1に記載の非水電解液二次電池用正極。   The positive electrode active material powder A has an average particle size of 0.5 μm or more and less than 4 μm, the positive electrode active material powder B has an average particle size of 4 μm or more and less than 12 μm, and the positive electrode active material powder C has an average particle size of 12 μm. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is 50 μm or less. 前記正極活物質粉末Aと前記正極活物質粉末Cの混合後の粒子のBET比表面積Pが前記正極活物質粉末BのBET比表面積Qに対し、0.5≦P/Q≦2となることを特徴とする請求項1または2に記載の非水電解液二次電池用正極。   The BET specific surface area P of the mixed particles of the positive electrode active material powder A and the positive electrode active material powder C is 0.5 ≦ P / Q ≦ 2 with respect to the BET specific surface area Q of the positive electrode active material powder B. The positive electrode for nonaqueous electrolyte secondary batteries according to claim 1 or 2. 少なくとも、リチウムを挿入・脱離可能な負極と、非水電解液を介して該負極と対向配置された正極を備えた非水電解液二次電池において、該正極が、請求項1〜3のいずれかに記載の非水電解液二次電池用正極であることを特徴とする非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising at least a negative electrode capable of inserting / extracting lithium and a positive electrode disposed opposite to the negative electrode via a non-aqueous electrolyte, A nonaqueous electrolyte secondary battery, which is a positive electrode for a nonaqueous electrolyte secondary battery according to any one of the above.
JP2007140167A 2007-05-28 2007-05-28 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same Active JP5150966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140167A JP5150966B2 (en) 2007-05-28 2007-05-28 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140167A JP5150966B2 (en) 2007-05-28 2007-05-28 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008293875A true JP2008293875A (en) 2008-12-04
JP5150966B2 JP5150966B2 (en) 2013-02-27

Family

ID=40168386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140167A Active JP5150966B2 (en) 2007-05-28 2007-05-28 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5150966B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070802A (en) * 2009-09-24 2011-04-07 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN102306777A (en) * 2011-08-30 2012-01-04 广州市云通磁电有限公司 Positive electrode sheet of lithium iron phosphate type lithium ion battery, and preparation method thereof
JP2012064537A (en) * 2010-09-17 2012-03-29 Toyota Motor Corp Lithium ion secondary battery
WO2012044133A3 (en) * 2010-09-30 2012-06-14 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including same
JP2012134023A (en) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2013073823A (en) * 2011-09-28 2013-04-22 Mitsubishi Motors Corp Secondary battery
JP2013120724A (en) * 2011-12-08 2013-06-17 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2013137928A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc Electrode, lithium secondary battery, and method of manufacturing electrode
CN104205425A (en) * 2012-04-18 2014-12-10 株式会社Lg化学 Electrode having multi-layer structure and manufacturing method therefor
US8932747B2 (en) 2010-12-23 2015-01-13 Industrial Technology Research Institute Lithium battery and electrode plate structure
JP2016201228A (en) * 2015-04-09 2016-12-01 デンカ株式会社 Active material and battery using the same
EP2804241B1 (en) * 2012-04-17 2017-09-13 LG Chem, Ltd. Lithium secondary battery comprising anode active material having low moisture retention
WO2018097562A1 (en) * 2016-11-23 2018-05-31 주식회사 엘지화학 Positive electrode for secondary battery and lithium secondary battery comprising same
CN109560249A (en) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 A kind of double-layer structure anode pole piece, and its preparation method and application
EP3518329A4 (en) * 2016-09-21 2020-09-16 Contemporary Amperex Technology Co., Limited Secondary battery and cathode piece of same
CN112582580A (en) * 2020-12-14 2021-03-30 珠海冠宇电池股份有限公司 Positive plate and lithium ion battery comprising same
CN113498558A (en) * 2020-12-31 2021-10-12 东莞新能源科技有限公司 Electrochemical device and electronic device
JP2022063677A (en) * 2020-10-12 2022-04-22 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery
WO2022248968A1 (en) * 2021-05-28 2022-12-01 株式会社半導体エネルギー研究所 Battery, electronic device, power storage system, and mobile body
WO2023097566A1 (en) * 2021-12-01 2023-06-08 宁德时代新能源科技股份有限公司 Positive electrode sheet and secondary battery comprising same, battery module, battery pack, and power consumption device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230030409A (en) * 2021-08-25 2023-03-06 삼성에스디아이 주식회사 Electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963588A (en) * 1995-08-23 1997-03-07 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2006210003A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2007080583A (en) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963588A (en) * 1995-08-23 1997-03-07 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2006210003A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2007080583A (en) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070802A (en) * 2009-09-24 2011-04-07 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2012064537A (en) * 2010-09-17 2012-03-29 Toyota Motor Corp Lithium ion secondary battery
JP2012531726A (en) * 2010-09-30 2012-12-10 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and lithium secondary battery including the same
US9379377B2 (en) * 2010-09-30 2016-06-28 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
WO2012044132A3 (en) * 2010-09-30 2012-06-14 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including same
EP2541652A4 (en) * 2010-09-30 2015-12-30 Lg Chemical Ltd Cathode for lithium secondary battery and lithium secondary battery including same
CN102742050A (en) * 2010-09-30 2012-10-17 株式会社Lg化学 Positive electrode for lithium secondary battery and lithium secondary battery including same
CN102792491A (en) * 2010-09-30 2012-11-21 株式会社Lg化学 Cathode for lithium secondary battery and lithium secondary battery including same
US9178209B2 (en) 2010-09-30 2015-11-03 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
JP2013543221A (en) * 2010-09-30 2013-11-28 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and lithium secondary battery including the same
KR101313078B1 (en) 2010-09-30 2013-09-30 주식회사 엘지화학 Cathode for lithium secondary battery and Lithium secondary battery comprising the same
WO2012044133A3 (en) * 2010-09-30 2012-06-14 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including same
EP2500965A4 (en) * 2010-09-30 2015-12-30 Lg Chemical Ltd Positive electrode for lithium secondary battery and lithium secondary battery including same
US20130209865A1 (en) * 2010-09-30 2013-08-15 Lg Chem, Ltd. Cathode For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
US20130216897A1 (en) * 2010-09-30 2013-08-22 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
JP2012134023A (en) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US8932747B2 (en) 2010-12-23 2015-01-13 Industrial Technology Research Institute Lithium battery and electrode plate structure
CN102306777A (en) * 2011-08-30 2012-01-04 广州市云通磁电有限公司 Positive electrode sheet of lithium iron phosphate type lithium ion battery, and preparation method thereof
JP2013073823A (en) * 2011-09-28 2013-04-22 Mitsubishi Motors Corp Secondary battery
JP2013120724A (en) * 2011-12-08 2013-06-17 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
CN103165935A (en) * 2011-12-08 2013-06-19 索尼公司 Electrode, secondary battery, battery pack, electric vehicle and electric power storage system
JP2013137928A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc Electrode, lithium secondary battery, and method of manufacturing electrode
EP2804241B1 (en) * 2012-04-17 2017-09-13 LG Chem, Ltd. Lithium secondary battery comprising anode active material having low moisture retention
US9960412B2 (en) 2012-04-17 2018-05-01 Lg Chem, Ltd. Electrode active material with low moisture retention and lithium secondary battery including the same
EP2811551A4 (en) * 2012-04-18 2015-08-19 Lg Chemical Ltd Electrode having multi-layer structure and manufacturing method therefor
CN104205425A (en) * 2012-04-18 2014-12-10 株式会社Lg化学 Electrode having multi-layer structure and manufacturing method therefor
US10122011B2 (en) 2012-04-18 2018-11-06 Lg Chem, Ltd. Multi layered electrode and method of manufacturing the same
JP2016201228A (en) * 2015-04-09 2016-12-01 デンカ株式会社 Active material and battery using the same
EP3518329A4 (en) * 2016-09-21 2020-09-16 Contemporary Amperex Technology Co., Limited Secondary battery and cathode piece of same
JP2019515465A (en) * 2016-11-23 2019-06-06 エルジー・ケム・リミテッド Positive electrode for secondary battery and lithium secondary battery including the same
US10686215B2 (en) 2016-11-23 2020-06-16 Lg Chem, Ltd. Positive electrode for secondary battery, and lithium secondary battery including same
WO2018097562A1 (en) * 2016-11-23 2018-05-31 주식회사 엘지화학 Positive electrode for secondary battery and lithium secondary battery comprising same
CN109560249A (en) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 A kind of double-layer structure anode pole piece, and its preparation method and application
JP2022063677A (en) * 2020-10-12 2022-04-22 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery
JP7213215B2 (en) 2020-10-12 2023-01-26 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
CN112582580A (en) * 2020-12-14 2021-03-30 珠海冠宇电池股份有限公司 Positive plate and lithium ion battery comprising same
CN113498558A (en) * 2020-12-31 2021-10-12 东莞新能源科技有限公司 Electrochemical device and electronic device
WO2022141508A1 (en) * 2020-12-31 2022-07-07 东莞新能源科技有限公司 Electrochemical device and electronic device
CN113498558B (en) * 2020-12-31 2023-08-25 东莞新能源科技有限公司 Electrochemical device and electronic device
WO2022248968A1 (en) * 2021-05-28 2022-12-01 株式会社半導体エネルギー研究所 Battery, electronic device, power storage system, and mobile body
WO2023097566A1 (en) * 2021-12-01 2023-06-08 宁德时代新能源科技股份有限公司 Positive electrode sheet and secondary battery comprising same, battery module, battery pack, and power consumption device
US11901561B2 (en) 2021-12-01 2024-02-13 Contemporary Amperex Technology Co., Limited Positive electrode sheet and secondary battery including the same, battery module, battery pack, and electrical apparatus

Also Published As

Publication number Publication date
JP5150966B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5150966B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP5582587B2 (en) Lithium ion secondary battery
CN110854382A (en) Positive electrode lithium supplement material, positive electrode containing positive electrode lithium supplement material and preparation method of positive electrode lithium supplement material
KR101666871B1 (en) Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
JP5278994B2 (en) Lithium secondary battery
JPWO2015152113A1 (en) Graphite negative electrode active material, negative electrode and lithium ion secondary battery
WO2013046711A1 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
CN102376946A (en) Anode active material and lithium battery comprising anode active material
CN111771300A (en) Multi-layer anode comprising silicon-based compound and lithium secondary battery comprising the same
JPWO2017057123A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2016121585A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
CN109860546B (en) Cathode material and electrochemical device comprising same
JP5046602B2 (en) Positive electrode for secondary battery and secondary battery using the same
US20190020057A1 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
WO2016194733A1 (en) Lithium ion secondary battery
WO2015152114A1 (en) Graphite-based active material, negative electrode, and negative ion secondary cell
US20140315087A1 (en) Positive active material, method of preparing the same, and rechargeable lithium battery including the same
JP5483413B2 (en) Lithium ion secondary battery
US20140045069A1 (en) Lithium secondary cell
JP5376640B2 (en) Lithium ion secondary battery
KR20130117351A (en) The electrodes for secondary battery and the secondary battery comprising the same
CN110291664B (en) Positive electrode for lithium ion battery and lithium ion battery
JP2000357517A (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP4951879B2 (en) Lithium secondary battery and positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5150966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250