JP2008292386A - Position detector, driving device, and optical equipment - Google Patents

Position detector, driving device, and optical equipment Download PDF

Info

Publication number
JP2008292386A
JP2008292386A JP2007140206A JP2007140206A JP2008292386A JP 2008292386 A JP2008292386 A JP 2008292386A JP 2007140206 A JP2007140206 A JP 2007140206A JP 2007140206 A JP2007140206 A JP 2007140206A JP 2008292386 A JP2008292386 A JP 2008292386A
Authority
JP
Japan
Prior art keywords
magnetic field
optical
movable member
generating member
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007140206A
Other languages
Japanese (ja)
Other versions
JP4941104B2 (en
Inventor
Ryuichi Yoshida
龍一 吉田
Takayuki Hoshino
隆之 干野
Kazumi Sugitani
一三 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007140206A priority Critical patent/JP4941104B2/en
Publication of JP2008292386A publication Critical patent/JP2008292386A/en
Application granted granted Critical
Publication of JP4941104B2 publication Critical patent/JP4941104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position detector compact with high linearity, a driving device and optical equipment. <P>SOLUTION: The position detector comprises: a magnetic field generating member 7 with magnetic field variation configured to polarize only one each of N-pole and S-pole in the advancing/retreating direction (a) of a movable member 3 so that surface magnetic flux density varies in the advancing/retreating direction of the movable member 3; and a magnetic field detecting means 6 comprising two magnetic field detecting elements 6A, 6B arranged with a space A in the advancing/retreating direction of the movable member and detecting magnetic field variation associated with the movement of the magnetic field generating member 7. The magnetic field generating member 7 is configured such that the space A between the two magnetic field detecting elements 6A, 6B forming the magnetic field detecting means 6 is L/4<A<L/4+t/2, wherein L is an advancing/retreating direction length, and t is the thickness. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁界の変化を検出することによって可動体の位置を検出する位置検出装置、及びその位置検出装置を搭載した駆動装置に関し、特に、デジタルカメラなどの撮像装置や光ピックアップなどの光学機器におけるレンズ駆動機構などに適用される位置検出装置、駆動装置駆動に関するものである。   The present invention relates to a position detection device that detects the position of a movable body by detecting a change in a magnetic field, and a drive device equipped with the position detection device, and in particular, an optical apparatus such as an imaging device such as a digital camera or an optical pickup. The present invention relates to a position detecting device applied to a lens driving mechanism and the like, and driving of the driving device.

特許文献1及び2には、可動部材の位置を、可動部材に付設した磁界発生部材による磁界の変化として、磁界検出手段によって検出する位置検出装置が記載されている。   Patent Documents 1 and 2 describe a position detection device that detects a position of a movable member as a change in magnetic field by a magnetic field generating member attached to the movable member by a magnetic field detection unit.

図11に、特許文献1に記載されている位置検出装置の概略構成を示す。図11に示す位置検出装置100は、N極に着磁された幅1/2δのN極部102と、S極に着磁された幅1/2δのS極部103とが交互に繰り返して配置された磁界発生部材104と、2つの磁界検出素子105a,105bとを有する。磁界発生部材104の磁極の周期は、δである。2つの磁界検出素子105a,105bは、(1+1/4)δの距離の間隔をおいて設けられている。アンプ106a,106bで増幅した磁界検出素子105a,105bからの検出信号A,Bは、演算装置107で演算処理されて出力される。   FIG. 11 shows a schematic configuration of the position detection device described in Patent Document 1. In the position detection device 100 shown in FIG. 11, the N pole portion 102 having a width of 1 / 2δ magnetized to the N pole and the S pole portion 103 having a width of 1 / 2δ magnetized to the S pole are alternately repeated. The magnetic field generation member 104 is disposed, and two magnetic field detection elements 105a and 105b are provided. The period of the magnetic pole of the magnetic field generating member 104 is δ. The two magnetic field detection elements 105a and 105b are provided with a distance of (1 + 1/4) δ. The detection signals A and B from the magnetic field detection elements 105a and 105b amplified by the amplifiers 106a and 106b are processed by the arithmetic unit 107 and output.

このように、2つの磁界検出素子105a,105bが磁界周期δに対し1/4周期分だけ間隔をおいて設けられているのは、位置検出の線形性が最もよくなるためである。すなわち、可動部材の移動方向に対し略正弦波状に変化する磁界を2つの磁界検出素子で検出する場合、2つの磁界検出素子の間隔を(n+1/4)δとすることによって、位置検出精度を高めることができる。   Thus, the reason why the two magnetic field detection elements 105a and 105b are provided at intervals of ¼ period with respect to the magnetic field period δ is that the linearity of position detection is the best. That is, when a magnetic field that changes in a substantially sine wave shape with respect to the moving direction of the movable member is detected by two magnetic field detection elements, the position detection accuracy is improved by setting the interval between the two magnetic field detection elements to (n + 1/4) δ. Can be increased.

また、図12に特許文献2に記載されている位置検出装置の概略構成を示す。図12に示す位置検出装置110は、厚み方向にN極とS極とが配置された2つの磁石113a,113bをその側辺同士を対向させて配置した磁界発生部材114と、2つの磁界検出素子115a,115bを有する。この位置検出装置は、磁界発生部材114が各1つのN極とS極で構成されている点において図11に示す位置検出装置と異なり、また、2つの磁界検出素子の間隔についての開示はなく、図面上は、磁界発生部材114を構成する磁石113a,113bの長さ寸法に対し1/10程度の間隔となっている。   FIG. 12 shows a schematic configuration of the position detection device described in Patent Document 2. The position detection device 110 shown in FIG. 12 includes a magnetic field generating member 114 in which two magnets 113a and 113b having N poles and S poles arranged in the thickness direction are arranged to face each other, and two magnetic field detections. It has elements 115a and 115b. This position detection device differs from the position detection device shown in FIG. 11 in that the magnetic field generating member 114 is composed of one N pole and one S pole, and there is no disclosure about the interval between the two magnetic field detection elements. In the drawing, the interval is about 1/10 of the length of the magnets 113a and 113b constituting the magnetic field generating member 114.

また、図13に特許文献1に記載されている他の構成の位置検出装置の概略構成を示す。図13に示す位置検出装置は、厚み方向にN極とS極とが配置された2つの磁石123,124をその側辺同士を対向させて配置し、間に不着磁部125を配置した磁界発生部材121と、2つの磁界検出素子126a,126bを備えた磁界検出手段122を備える。アンプ127a,127bで増幅した磁界検出素子126a,126bからの検出信号A,Bは、演算装置1128で演算処理されて出力される。   FIG. 13 shows a schematic configuration of a position detecting device having another configuration described in Patent Document 1. The position detection device shown in FIG. 13 is a magnetic field in which two magnets 123 and 124 having N and S poles arranged in the thickness direction are arranged with their sides facing each other, and a non-magnetized portion 125 is arranged therebetween. A generation member 121 and a magnetic field detection means 122 including two magnetic field detection elements 126a and 126b are provided. The detection signals A and B from the magnetic field detection elements 126a and 126b amplified by the amplifiers 127a and 127b are processed by the calculation device 1128 and output.

また、特許文献1には、上記構成の位置検出装置において、磁界発生部材121及び2つの磁界検出素子の間隔について開示されており、磁界発生部材は、例えば、全長が6.2mm、幅が2.5mm、厚みが1.0mmであり、2つの磁界検出素子126a,126bの間隔は1.6mmであることが開示されている。この数値から演算すると、2つの磁界検出素子126a,126bの間隔は、磁界周期の略1/3.87となっており、上記の通り、線形性を高めるために磁界周期δに対し略1/4周期の間隔が設けられている。
特開2006−292396号公報 特開平1−150812号公報
Patent Document 1 discloses the distance between the magnetic field generation member 121 and the two magnetic field detection elements in the position detection apparatus having the above configuration. The magnetic field generation member has a total length of 6.2 mm and a width of 2, for example. It is disclosed that the thickness is 0.5 mm and the thickness is 1.0 mm, and the distance between the two magnetic field detection elements 126a and 126b is 1.6 mm. When calculated from this numerical value, the interval between the two magnetic field detection elements 126a and 126b is approximately 1 / 3.87 of the magnetic field period, and as described above, approximately 1 / 0.8 with respect to the magnetic field period δ in order to improve linearity. An interval of 4 periods is provided.
JP 2006-292396 A Japanese Patent Laid-Open No. 1-150812

しかし、図12及び図13に示すそれぞれ1つのS極とN極が設けられている磁界発生部材を有する位置検出装置においては、位置検出の高い線形性が確保することが困難であり、さらに高精度の位置検出を行うことができる位置検出装置が求められていた。   However, in the position detection device having a magnetic field generating member provided with one S pole and one N pole shown in FIGS. 12 and 13, it is difficult to ensure high linearity of position detection. There has been a demand for a position detection device that can perform accurate position detection.

したがって、本発明が解決しようとする技術的課題は、コンパクトで線形性の高い位置検出装置、駆動装置及び光学機器を提供することである。   Accordingly, the technical problem to be solved by the present invention is to provide a compact, highly linear position detecting device, driving device, and optical apparatus.

本発明は、上記技術的課題を解決するために、以下の構成の位置検出装置を提供する。   In order to solve the above technical problem, the present invention provides a position detection device having the following configuration.

本発明の第1態様によれば、進退可能に構成された可動部材に一体的に付設され、可動部材の進退方向にN極及びS極が各1極のみ着磁されて表面磁束密度が可動部材の進退方向に変化するように構成された磁界変化を有する磁界発生部材と、
前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出し、間隔Aをおいて前記可動部材の進退方向に並べて配置された2つの磁界検出素子を備える磁界検出手段と、
前記磁界検出手段の検出信号に基づいて、前記可動部材の位置を求める演算手段とを備え、
前記磁界発生部材は、前記進退方向長さL、厚さtを有し、
前記磁界検出手段を構成する2つの磁界検出素子の間隔Aは、
L/4<A<L/4+t/2
となるように構成されていることを特徴とする、位置検出装置を提供する。
According to the first aspect of the present invention, it is integrally attached to a movable member configured to be able to advance and retract, and only one each of the N pole and the S pole is magnetized in the advance and retreat direction of the movable member, so that the surface magnetic flux density is movable. A magnetic field generating member having a magnetic field change configured to change in the advancing and retracting direction of the member;
Magnetic field detection means comprising two magnetic field detection elements that are arranged side by side in the advance and retreat direction of the movable member at intervals A, detecting a magnetic field change accompanying the movement of the magnetic field generating member based on the advance and retreat operation of the movable member;
Calculating means for obtaining a position of the movable member based on a detection signal of the magnetic field detecting means;
The magnetic field generating member has a length L in the forward / backward direction and a thickness t,
The distance A between the two magnetic field detection elements constituting the magnetic field detection means is:
L / 4 <A <L / 4 + t / 2
A position detection device is provided that is configured to be as follows.

本発明の第2態様によれば、前記磁界発生部材は、厚さ方向に正着磁された矩形状の第1磁石と、厚さ方向に負着磁された矩形状の第2磁石とを備えており、前記第1磁石と第2磁石の側辺同士を対向させて固着した略四角形状を呈していることを特徴とする、第1態様の位置検出装置を提供する。   According to the second aspect of the present invention, the magnetic field generating member includes: a rectangular first magnet that is positively magnetized in the thickness direction; and a rectangular second magnet that is negatively magnetized in the thickness direction. A position detection device according to a first aspect is provided, which is provided and has a substantially square shape in which the sides of the first magnet and the second magnet are fixed to face each other.

本発明の第3態様によれば、前記磁界検出素子は、ホール素子であることを特徴とする、第1又は第2態様の位置検出装置を提供する。   According to a third aspect of the present invention, there is provided the position detection device according to the first or second aspect, wherein the magnetic field detection element is a Hall element.

本発明の第4態様によれば、第1から第3態様のいずれか1つの位置検出装置と、
前記磁界検出手段が固定されたフレームに一端が固定され、前記可動方向に伸縮する電気機械変換素子と、
前記電気機械変換素子の他端に連結され、前記可動部材が摩擦係合する案内軸と、
を備えることを特徴とする駆動装置を提供する。
According to a fourth aspect of the present invention, any one of the position detection devices according to the first to third aspects;
An electromechanical transducer having one end fixed to the frame to which the magnetic field detecting means is fixed and extending and contracting in the movable direction;
A guide shaft connected to the other end of the electromechanical conversion element and frictionally engaged with the movable member;
A drive device is provided.

本発明の第5態様によれば、少なくとも1つの光学素子が光軸上に配置された機構を備える光学機器であって、
第4態様の駆動装置における可動装置が、前記光学素子を保持して該光学素子をその案内軸上に進退動作させる保持体として機能するように構成したことを特徴とする光学機器を提供する。
According to a fifth aspect of the present invention, there is provided an optical apparatus comprising a mechanism in which at least one optical element is disposed on an optical axis,
An optical apparatus is provided in which the movable device in the driving device according to the fourth aspect is configured to function as a holding body that holds the optical element and moves the optical element back and forth on its guide shaft.

本発明の第6態様によれば、光学素子の光軸と、可動部材の進退方向とが平行になるように、光学素子が可動部材により保持されていることを特徴とする第5態様の光学機器を提供する。   According to the sixth aspect of the present invention, the optical element is held by the movable member so that the optical axis of the optical element and the advancing / retreating direction of the movable member are parallel to each other. Provide equipment.

本発明の第7態様によれば、光学機器が撮像装置であり、光学素子が、その撮影光学系の一部を構成する光学素子であることを特徴とする第5態様の光学機器を提供する。   According to a seventh aspect of the present invention, there is provided the optical instrument according to the fifth aspect, wherein the optical instrument is an imaging device, and the optical element is an optical element constituting a part of the photographing optical system. .

本発明の第8態様によれば、光学機器が光ピックアップ装置であり、光学素子が、その光ピックアップ光学系の一部を構成する光学素子であることを特徴とする第7態様の光学機器を提供する。   According to an eighth aspect of the present invention, there is provided the optical instrument according to the seventh aspect, wherein the optical instrument is an optical pickup device, and the optical element is an optical element constituting a part of the optical pickup optical system. provide.

本発明の第9態様によれば、光学素子が、光ピックアップ光学系のレンズであり、前記レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成されていることを特徴とする第8態様の光学機器を提供する。   According to the ninth aspect of the present invention, the optical element is a lens of an optical pickup optical system, and the lens is moved in the optical axis direction by the advance / retreat operation of the movable member, so that aberration correction is performed. An optical device according to an eighth aspect is provided.

本発明によれば、各1つのS極及びN極を有する磁界発生部材と、2つの磁界検出素子を備える磁界検出手段を備える位置検出装置においては、2つの磁界検出素子の間隔Aを磁界周期の1/4よりも磁界発生手段の厚み寸法によって決定する寸法だけ大きくすることによって、線形性を高めることができる。すなわち、各1つのS極及びN極を有する磁界発生部材においては、磁界発生部材の両端に発生する磁界は、外側の磁石の影響がないため、磁束が大きく磁石を回り込むことになる。そのため、磁束がフラットになる位置は、磁界発生部材の端部より外側になる。したがって、磁界検出部材によって検出される検出値が同一方向で0クロスする間隔は、磁界発生部材の磁石の寸法よりも広くなる。すなわち、上記構成においては、磁界検出部材によって検出される磁界周期が、磁界発生部材を構成する磁石の両極間の距離よりも長くなる。したがって、磁界周期の1/4よりも若干長い間隔を設けることによって、位置検出装置の位置検出精度を高めることができる。   According to the present invention, in a position detection device including a magnetic field generating member having one S pole and one N pole and a magnetic field detection means including two magnetic field detection elements, the interval A between the two magnetic field detection elements is set to a magnetic field period. The linearity can be enhanced by making the dimension determined by the thickness dimension of the magnetic field generating means larger than ¼. That is, in the magnetic field generating member having one S pole and one N pole, the magnetic field generated at both ends of the magnetic field generating member is not affected by the outer magnet, and therefore the magnetic flux greatly wraps around the magnet. Therefore, the position where the magnetic flux becomes flat is outside the end of the magnetic field generating member. Therefore, the interval at which the detection values detected by the magnetic field detection member cross zero in the same direction is wider than the size of the magnet of the magnetic field generation member. In other words, in the above configuration, the magnetic field period detected by the magnetic field detection member is longer than the distance between the two poles of the magnets constituting the magnetic field generation member. Therefore, the position detection accuracy of the position detection device can be increased by providing an interval slightly longer than ¼ of the magnetic field period.

また、第2態様の位置検出装置によれば、正着磁部と負着磁部とが直線的に入れ替わることから、可動部材の微小な移動でも大きな磁界変動を生じさせることが可能であるので、可動部材が比較的狭い範囲で可動する装置において検出精度を高めることができる。   Further, according to the position detection device of the second aspect, since the positive magnetization portion and the negative magnetization portion are linearly switched, it is possible to cause a large magnetic field fluctuation even with a minute movement of the movable member. The detection accuracy can be increased in an apparatus in which the movable member moves within a relatively narrow range.

また、磁界検出素子としてホール素子を用いれば、一般にホール素子は小型であることから、装置への組み込み性にすぐれ、安価であるため、位置検出装置を小型かつ安価に提供することができる。   If a Hall element is used as the magnetic field detection element, since the Hall element is generally small, it can be easily incorporated into the apparatus and is inexpensive. Therefore, the position detection apparatus can be provided in a small and inexpensive manner.

また、本発明の第4態様の駆動装置によれば、検出精度の高い位置検出装置と電気機械変換素子を用いた駆動装置とを組み合わせることによって、小型で検出精度が高い駆動装置を提供することができる。   In addition, according to the drive device of the fourth aspect of the present invention, a small drive device with high detection accuracy is provided by combining a position detection device with high detection accuracy and a drive device using an electromechanical transducer. Can do.

第5態様若しくは第6態様にかかる光学機器によれば、各種の光学機器が備えている光学素子の光軸上への移動制御を、本発明の上記のいずれかの態様の駆動装置により行うよう構成しているので、低コスト且つ簡便な構成で、しかも可動部材の位置検出を動作環境変化に影響されることなく精度良く行うことができる。   According to the optical device according to the fifth aspect or the sixth aspect, the movement control of the optical element included in the various optical devices on the optical axis is performed by the driving device according to any one of the above aspects of the present invention. Since it is configured, it is possible to accurately detect the position of the movable member without being affected by changes in the operating environment with a low-cost and simple configuration.

第7態様にかかる光学機器によれば、デジタルカメラ等の撮像装置において、その撮影光学系に組み付けられているズームレンズ等の駆動を、低コスト且つ簡便な構成で、しかも動作環境変化に影響されず精度良く行わせることができる。   According to the optical device of the seventh aspect, in an imaging apparatus such as a digital camera, the driving of the zoom lens or the like assembled in the imaging optical system is affected by changes in the operating environment with a low cost and simple configuration. Therefore, it can be performed with high accuracy.

第8態様にかかる光学機器によれば、光ピックアップにおいて、そのピックアップ光学系に組み付けられているレンズ等の駆動を、低コスト且つ簡便な構成で、しかも動作環境変化に影響されず精度良く行わせることができる。また、第9態様にかかる光学機器によれば、上記いずれかの態様の駆動装置により収差補正を行わせる構成であり、当該駆動装置の利便性をより向上させることができる。   According to the optical device of the eighth aspect, in the optical pickup, the driving of the lens and the like assembled in the pickup optical system can be performed with a low cost and a simple configuration with high accuracy without being affected by the change in the operating environment. be able to. Moreover, according to the optical apparatus concerning a 9th aspect, it is the structure which performs an aberration correction with the drive device of the said aspect, The convenience of the said drive device can be improved more.

以下、本発明の一実施形態に係る位置検出装置を用いた駆動装置について、図面を参照しながら説明する。   Hereinafter, a drive device using a position detection device according to an embodiment of the present invention will be described with reference to the drawings.

(全体構成)
図1は本発明の実施形態にかかる位置検出装置を搭載した駆動装置Sのシステム構成図である。この駆動装置Sは、圧電アクチュエータP(駆動手段)と、この圧電アクチュエータPを駆動させる駆動回路4及び制御回路5と、圧電アクチュエータPが備える可動部材3に一体的に付設されその進退方向に表面磁束密度が変化されている磁界発生部材7と、この磁界発生部材7により生成される磁界を検出する磁界検出手段6と、該磁界検出手段6の検出信号に基づいて前記可動部材3のポジションを求める検出回路8とを備えている。なお、前記磁界検出手段6、磁界発生部材7、及び検出回路8は、可動部材3の位置センサ部を構成する。
(overall structure)
FIG. 1 is a system configuration diagram of a drive device S equipped with a position detection device according to an embodiment of the present invention. The driving device S is integrally attached to a piezoelectric actuator P (driving means), a driving circuit 4 and a control circuit 5 for driving the piezoelectric actuator P, and a movable member 3 included in the piezoelectric actuator P, and has a surface in a forward and backward direction. The magnetic field generating member 7 whose magnetic flux density is changed, the magnetic field detecting means 6 for detecting the magnetic field generated by the magnetic field generating member 7, and the position of the movable member 3 based on the detection signal of the magnetic field detecting means 6 And a detection circuit 8 to be obtained. The magnetic field detection means 6, the magnetic field generation member 7, and the detection circuit 8 constitute a position sensor unit of the movable member 3.

圧電アクチュエータPは、電気機械変換素子1と、該電気機械変換素子1の一端に固定された駆動部材(案内軸)2と、該駆動部材2上に移動可能に保持された可動部材3とから構成されている。前記電気機械変換素子1としては、ピエゾ素子等の圧電素子を好適に用いることができる。電気機械変換素子1(以下、圧電素子1という)の電歪方向(伸縮方向)の一端側には、前記駆動部材2が接着等の手法により固着されており、前記圧電素子1の伸縮動作により図中矢印aの方向へ移動されるようになっている。一方、圧電素子1の他端側は固定部9(当該駆動装置Sの本体ボディ等)に固定されており、これにより圧電素子1の伸長方向が規制されている。   The piezoelectric actuator P includes an electromechanical conversion element 1, a drive member (guide shaft) 2 fixed to one end of the electromechanical conversion element 1, and a movable member 3 movably held on the drive member 2. It is configured. As the electromechanical conversion element 1, a piezoelectric element such as a piezoelectric element can be preferably used. The driving member 2 is fixed to one end side of the electrostrictive direction (stretching direction) of the electromechanical conversion element 1 (hereinafter referred to as piezoelectric element 1) by a technique such as adhesion. It is moved in the direction of arrow a in the figure. On the other hand, the other end side of the piezoelectric element 1 is fixed to a fixing portion 9 (a main body or the like of the driving device S), thereby restricting the extending direction of the piezoelectric element 1.

可動部材3は、例えばレンズ鏡筒や精密ステージの可動片等の被駆動体に対して移動力を与える部材である。この可動部材3は貫通孔を備えており、この貫通孔に前記駆動部材2が挿通される態様で、所定の摩擦係合力をもって駆動部材2に取り付けられている。   The movable member 3 is a member that applies a moving force to a driven body such as a lens barrel or a movable piece of a precision stage. The movable member 3 is provided with a through hole, and is attached to the drive member 2 with a predetermined frictional engagement force in such a manner that the drive member 2 is inserted into the through hole.

図2A及び図2Bは、上記のような圧電アクチュエータPの動作原理を説明するための図であり、図2Aは駆動部材2上における可動部材3の進退動作状態を示す模式図であり、また図2Bは駆動部材2の軸変位を時間軸に示したグラフ図である。つまり、図2Bに示すような軸変位動作を駆動部材が為すように、圧電素子1に対して鋸歯状の駆動パルス電圧が与えられるものである。なお、図2A(a)、(b)、(c)の各状態図と、図2B中に付記している記号(a)、(b)、(c)の時間ポイントとは一致させて描いている。   2A and 2B are diagrams for explaining the operation principle of the piezoelectric actuator P as described above, and FIG. 2A is a schematic diagram showing the advancing / retreating operation state of the movable member 3 on the driving member 2. 2B is a graph showing the axial displacement of the driving member 2 on the time axis. That is, a sawtooth drive pulse voltage is applied to the piezoelectric element 1 so that the drive member performs an axial displacement operation as shown in FIG. 2B. 2A (a), (b), (c) and the time points of (a), (b), (c) added in FIG. ing.

先ず図2A(a)の状態を初期状態とすると、図2A(b)の状態に移行するとき、すなわち繰り出し方向へ伸長するとき、図2Bのグラフ図に示すように、圧電素子1(駆動部材2)は緩やかに伸び変位する。これに伴って駆動部材2も緩やかな速度で繰り出し方向に移動されることから、駆動部材2に摩擦係合された可動部材3は、その摩擦係合力により同期追随して変位する。次に、図2A(b)から図2A(c)の状態へ移行するとき、つまり圧電素子1に前記鋸歯状駆動パルス電圧の急峻な立下がり部の電圧が印加された場合、圧電素子1は急速に縮み変位する。これに伴って駆動部材2も急峻な速度で戻り方向に移動されることから、可動部材3と駆動部材2の摩擦係合部に滑りが生じることとなる。この滑りにより、可動部材3は駆動部材2の軸変位に追随して変位せず、戻り方向に僅かに戻るようになる。このような動作が繰り返されることにより、可動部材3は駆動部材2の軸上を圧電素子1から離れる方向に移動されるものである。   First, assuming that the state of FIG. 2A (a) is an initial state, when the state is shifted to the state of FIG. 2A (b), that is, when extending in the feeding direction, as shown in the graph of FIG. 2) Elongates and displaces gently. Accordingly, the drive member 2 is also moved in the feeding direction at a moderate speed, so that the movable member 3 frictionally engaged with the drive member 2 is displaced in synchronization with the friction engagement force. Next, when transitioning from the state of FIG. 2A (b) to the state of FIG. 2A (c), that is, when the voltage at the sharp falling portion of the sawtooth drive pulse voltage is applied to the piezoelectric element 1, the piezoelectric element 1 It rapidly shrinks and displaces. Along with this, the drive member 2 is also moved in the return direction at a steep speed, so that slip occurs between the movable member 3 and the friction engagement portion of the drive member 2. Due to this slip, the movable member 3 does not move following the axial displacement of the drive member 2 but slightly returns in the return direction. By repeating such an operation, the movable member 3 is moved in the direction away from the piezoelectric element 1 on the axis of the drive member 2.

本実施形態において用いられる駆動手段としては、上記の圧電アクチュエータPのように、いわゆる「非磁力源タイプ」の駆動手段を用いることが望ましい。具体的には、駆動手段が備える可動部材3の進退に伴って生じる表面磁束密度が0.1mT以下のものである一方、磁界発生部材7が発生する表面磁束密度の最大値が1mT以上とすることが望ましい。このように、駆動手段の動作により発生される表面磁束密度を、磁界発生部材7が発生する表面磁束密度の1/10程度以下に抑制することで、漏れ磁束により磁界検出手段6の検出信号が乱されず、可動部材3の高精度な位置決めが達成できるようになる。   As the driving means used in the present embodiment, it is desirable to use a so-called “non-magnetic source type” driving means like the piezoelectric actuator P described above. Specifically, the surface magnetic flux density generated as the movable member 3 provided in the driving means moves is 0.1 mT or less, while the maximum surface magnetic flux density generated by the magnetic field generating member 7 is 1 mT or more. It is desirable. Thus, by suppressing the surface magnetic flux density generated by the operation of the driving means to about 1/10 or less of the surface magnetic flux density generated by the magnetic field generating member 7, the detection signal of the magnetic field detecting means 6 is caused by the leakage magnetic flux. Without being disturbed, highly accurate positioning of the movable member 3 can be achieved.

このような「非磁力源タイプ」の駆動手段としては、上記構成の圧電アクチュエータPのほか、超音波モータを用いて可動部材3を進退動作させる超音波アクチュエータや、形状記憶部材を用いて可動部材3を進退動作させる形状記憶アクチュエータなどを例示することができる。   As such “non-magnetic source type” driving means, in addition to the piezoelectric actuator P configured as described above, an ultrasonic actuator that moves the movable member 3 back and forth using an ultrasonic motor, and a movable member that uses a shape memory member. For example, a shape memory actuator that moves 3 forward and backward can be exemplified.

図1に戻って、制御回路5は、図示省略の上位コンピュータなどから与えられる位置指令(可動部材3の変位指令)を受け取り、可動部材3を指令位置に移動させるための駆動制御信号を生成する。この駆動制御信号は、前記検出回路8から送信される可動部材3の位置信号と、前記位置指令に基づく位置信号との差に応じ、可動部材3が所定の移動量だけ移動するように生成される。   Returning to FIG. 1, the control circuit 5 receives a position command (displacement command for the movable member 3) given from a host computer (not shown), and generates a drive control signal for moving the movable member 3 to the command position. . This drive control signal is generated so that the movable member 3 moves by a predetermined movement amount according to the difference between the position signal of the movable member 3 transmitted from the detection circuit 8 and the position signal based on the position command. The

このように生成された駆動制御信号は、駆動回路4に入力される。駆動回路4は、前記駆動制御信号に基づいて、可動部材3が所定の移動量だけ移動するよう、圧電素子1を駆動させる駆動信号を生成し、圧電素子1を実際に駆動させる。   The drive control signal generated in this way is input to the drive circuit 4. Based on the drive control signal, the drive circuit 4 generates a drive signal for driving the piezoelectric element 1 so that the movable member 3 moves by a predetermined movement amount, and actually drives the piezoelectric element 1.

磁界発生部材7は、前記可動部材3に一体的に付設され、可動部材3の進退動作に応じてその進退方向に磁界発生部材7も移動されるよう構成されている。この磁界発生部材7は、可動部材3に直接的に固定しても良いが、可動部材3に取り付けられる被駆動部材に固定する等して、間接的に可動部材3に取り付けるようにしても良い。この磁界発生部材7としては、可動部材3の進退方向に表面磁束密度が変化されたものが用いられる。表面磁束密度の変化態様としては特に制限はなく、固定的に配置されている磁界検出手段6に対して、自身の進退移動による表面磁束密度変化が作用する変化態様を具備していれば良い。その具体例については、後に詳述する。   The magnetic field generating member 7 is integrally attached to the movable member 3, and the magnetic field generating member 7 is also moved in the forward / backward direction according to the forward / backward movement of the movable member 3. The magnetic field generating member 7 may be directly fixed to the movable member 3, but may be indirectly attached to the movable member 3 by being fixed to a driven member attached to the movable member 3. . As the magnetic field generating member 7, a member whose surface magnetic flux density is changed in the advancing and retracting direction of the movable member 3 is used. There is no particular limitation on the change mode of the surface magnetic flux density, and it is only necessary to have a change mode in which a change in the surface magnetic flux density due to its own advance / retreat movement acts on the magnetic field detection means 6 that is fixedly arranged. Specific examples thereof will be described in detail later.

磁界検出手段6は、前記可動部材3の進退動作に基づく磁界発生部材7の移動に伴う磁界変化を検出するもので、前記磁界発生部材7の移動経路近傍に固定的に並置された第1の磁界検出素子6Aと第2の磁界検出素子6Bとを備えている。また、この実施形態では、二つの磁界検出素子6A、6Bを可動部材3の移動方向に沿って並置した例を示しているが、磁界発生部材7としてその進退方向の面において直交する方向にも表面磁束密度変化が現れるものを用いた場合は、前記直交方向に複数の磁界検出素子を並置するよう構成することもできる。   The magnetic field detection means 6 detects a change in the magnetic field associated with the movement of the magnetic field generating member 7 based on the advance / retreat operation of the movable member 3, and is a first fixedly juxtaposed in the vicinity of the moving path of the magnetic field generating member 7. A magnetic field detection element 6A and a second magnetic field detection element 6B are provided. Further, in this embodiment, an example is shown in which two magnetic field detection elements 6A and 6B are juxtaposed along the moving direction of the movable member 3. However, the magnetic field generating member 7 also extends in the direction perpendicular to the plane of the advance / retreat direction. In the case where a surface magnetic flux density change appears, a plurality of magnetic field detecting elements can be arranged in parallel in the orthogonal direction.

上記磁界検出素子6A、6Bとしては、各種の磁気センサを用いることができる。代表的なものとして、磁気抵抗効果用いたMR素子やホール効果を用いたホール素子など、検出された磁界に応じて電気信号を出力する磁界検出素子を例示することができる。このうちホール素子は、一般に小型であってこの種駆動装置Sへの組込み性に優れ、また安価であることから、好適に用いることができる。   Various magnetic sensors can be used as the magnetic field detection elements 6A and 6B. As a typical example, a magnetic field detection element that outputs an electric signal in accordance with a detected magnetic field, such as an MR element using a magnetoresistance effect or a Hall element using a Hall effect, can be exemplified. Among these, the Hall element can be suitably used because it is generally small in size, excellent in incorporation into this kind of driving device S, and inexpensive.

検出回路8は、前記磁界検出手段6の検出信号に基づいて、可動部材3のポジションを求める演算手段として機能する。すなわち、前記第1の磁界検出素子6A及び第2の磁界検出素子6Bによりそれぞれ検出された磁界検出信号が検出回路8に入力され、当該2つの磁界検出信号を増幅、演算することで、可動部材3の現在位置情報である位置信号が生成される。ここで生成された位置信号は、前記制御回路5へ出力される。   The detection circuit 8 functions as calculation means for obtaining the position of the movable member 3 based on the detection signal of the magnetic field detection means 6. That is, the magnetic field detection signals respectively detected by the first magnetic field detection element 6A and the second magnetic field detection element 6B are input to the detection circuit 8, and the two magnetic field detection signals are amplified and calculated, thereby moving the movable member. 3 is generated as position information which is current position information. The position signal generated here is output to the control circuit 5.

(位置検出装置の構成)
図3Aは、この駆動装置Sにおいて位置検出装置を構成する部分、すなわち磁界検出手段6、磁界発生部材7、および検出回路8から構成される位置検出装置の一例を詳細に示した構成図である。この実施形態においては、磁界発生部材7として、可動部材3の進退方向に沿って、正着磁が支配的な1つの正着磁部と、負着磁が支配的な1つの負着磁部とを備えるものが用いられている。このような磁界発生部材7であれば、正着磁部、負着磁部という磁気発生条件が可動部材3の進退方向に異なる磁界発生部材が、可動部材3の進退に応じて移動するので、可動部材の進退による磁界変動が大きくなるという利点がある。
(Configuration of position detection device)
FIG. 3A is a block diagram showing in detail an example of a position detection device including a portion of the drive device S that constitutes the position detection device, that is, a magnetic field detection means 6, a magnetic field generation member 7, and a detection circuit 8. . In this embodiment, as the magnetic field generating member 7, one positive magnetized portion in which positive magnetization is dominant and one negative magnetized portion in which negative magnetization is dominant along the advancing / retreating direction of the movable member 3. What is provided with is used. With such a magnetic field generating member 7, the magnetic field generating members having different magnetic generation conditions of the positive magnetized portion and the negative magnetized portion in the advance / retreat direction of the movable member 3 move according to the advance / retreat of the movable member 3. There is an advantage that the magnetic field fluctuation due to the advance and retreat of the movable member becomes large.

その具体的な構成として、図3Aでは、厚さ方向に正着磁(つまり、磁界検出手段6に対向する面がN極で、その裏面がS極)された矩形の第1磁石7Aと、厚さ方向に負着磁(つまり、磁界検出手段6に対向する面がS極で、その裏面がN極)された矩形の第2磁石7Bとを備えており、前記第1・第2磁石7A、7Bの側辺同士を対向させて固着した略四角形状を呈する磁界発生部材7を例示している。したがって、磁界発生部材7の表面磁束密度は、その進退方向に対して、図中左端近傍で正の最大値をとり、中央部でゼロとなり、図中右端近傍で負の最大値(絶対値)をとる。磁界発生部材7の寸法としては、厚み方向寸法tが例えば、1.2mmであり、長さ方向寸法Lが4.8mmであり、高さ寸法Hは例えば1.5mmである。   As a specific configuration, in FIG. 3A, a rectangular first magnet 7A that is positively magnetized in the thickness direction (that is, the surface facing the magnetic field detection means 6 is N-pole and the back surface is S-pole); A rectangular second magnet 7B negatively magnetized in the thickness direction (that is, the surface facing the magnetic field detecting means 6 is the S pole and the back surface is the N pole), and the first and second magnets The magnetic field generating member 7 having a substantially rectangular shape in which the sides of 7A and 7B are fixed to face each other is illustrated. Therefore, the surface magnetic flux density of the magnetic field generating member 7 takes a positive maximum value in the vicinity of the left end in the figure, zero in the center, and zero in the center, and a negative maximum value (absolute value) in the vicinity of the right end in the figure. Take. As the dimensions of the magnetic field generating member 7, the thickness direction dimension t is, for example, 1.2 mm, the length direction dimension L is 4.8 mm, and the height dimension H is, for example, 1.5 mm.

このように構成することにより、第1の磁界検出素子6A及び第2の磁界検出素子6Bにより検出される磁界は、第1磁石72Aと第2磁石72Bとの境界部分の、各磁界検出素子における検出ポイントの通過の前後により大きく変化するので、同様に可動部材3の可動範囲が比較的狭い駆動装置Sに適している。   With this configuration, the magnetic field detected by the first magnetic field detection element 6A and the second magnetic field detection element 6B is in each magnetic field detection element at the boundary between the first magnet 72A and the second magnet 72B. Since it changes greatly before and after passage of the detection point, it is also suitable for the driving device S in which the movable range of the movable member 3 is relatively narrow.

さらに磁界発生部材7は、第1磁石72Aと第2磁石72Bとの複着磁方式としているので、該磁界発生部材72が発生する磁束は、対向配置されている磁界検出手段6を直交する方向(図面奥側から手前へ伸びる方向)に貫通することになる。従って、磁界検出手段6に作用する磁束が多くなり、感度良く磁界検出を行うことができる。   Further, since the magnetic field generating member 7 has a double magnetizing system of the first magnet 72A and the second magnet 72B, the magnetic flux generated by the magnetic field generating member 72 is in a direction perpendicular to the magnetic field detecting means 6 arranged to face each other. It penetrates in the direction extending from the back of the drawing to the front. Accordingly, the magnetic flux acting on the magnetic field detection means 6 increases, and the magnetic field detection can be performed with high sensitivity.

このような磁界発生部材7が磁界検出手段6に対向するよう可動部材3に固定されている。そして、磁界発生部材7の進退方向に沿って第1の磁界検出素子6Aと第2の磁界検出素子6Bとが間隔A(例えば,1.5mm)をおいて固定的に並置されている。従って、磁界発生部材7が矢印aの方向に移動すると、第1の磁界検出素子6Aおよび第2の磁界検出素子6B周辺の磁界が、磁界発生部材7から与えられる表面磁束密度の変化に応じてそれぞれ変化するため、第1、第2の磁界検出素子6A、6Bが検出する出力信号も変化することとなる。しかも、第1の磁界検出素子6Aと第2の磁界検出素子6Bは、間隔Aをおいて配置されているため、両者が同時刻において検出する磁束密度は、磁界発生部材7の異なる位置を検出し、異なる検出信号が発生される。   Such a magnetic field generating member 7 is fixed to the movable member 3 so as to face the magnetic field detecting means 6. The first magnetic field detection element 6A and the second magnetic field detection element 6B are fixedly juxtaposed at an interval A (for example, 1.5 mm) along the advancing / retreating direction of the magnetic field generating member 7. Therefore, when the magnetic field generating member 7 moves in the direction of the arrow a, the magnetic field around the first magnetic field detecting element 6A and the second magnetic field detecting element 6B changes according to the change in the surface magnetic flux density applied from the magnetic field generating member 7. Since these change, the output signals detected by the first and second magnetic field detection elements 6A and 6B also change. In addition, since the first magnetic field detection element 6A and the second magnetic field detection element 6B are arranged at an interval A, the magnetic flux density detected by both at the same time detects different positions of the magnetic field generating member 7. However, different detection signals are generated.

磁界発生部材7の進退方向の幅は、可動部材3がその移動ストローク範囲において如何なる位置にあっても、磁界発生部材7と磁界検出手段6との対向関係を確保できる長さに選定しておくことが望ましい。すなわち、磁界検出手段6が、可動部材3と一体的に進退動作を行う磁界発生部材7に対向して固定的に配置される場合において、可動部材3の進退動作領域の全域に亘り、磁界発生部材7からの磁力線が磁界検出手段6に作用するよう、磁界発生部材7の形状を選定することが望ましい。このような構成であれば、可動部材3が全ストローク範囲において可動部材3の位置検出が行えるので好ましい。なお、磁界発生部材7と磁界検出手段6との間隙は、離れすぎると検出精度が低下し、近すぎると磁石7と磁気センサ6が接触する危惧があるため、0.1〜1.2mm程度に設定することが望ましい。   The width of the magnetic field generating member 7 in the advancing / retreating direction is selected so that the opposing relationship between the magnetic field generating member 7 and the magnetic field detecting means 6 can be ensured regardless of the position of the movable member 3 in the moving stroke range. It is desirable. That is, when the magnetic field detection means 6 is fixedly disposed opposite to the magnetic field generating member 7 that performs an advance / retreat operation integrally with the movable member 3, the magnetic field generation is performed over the entire area of the advance / retreat operation region of the movable member 3. It is desirable to select the shape of the magnetic field generating member 7 so that the lines of magnetic force from the member 7 act on the magnetic field detecting means 6. Such a configuration is preferable because the movable member 3 can detect the position of the movable member 3 in the entire stroke range. If the gap between the magnetic field generating member 7 and the magnetic field detecting means 6 is too far, the detection accuracy is lowered, and if it is too close, there is a risk that the magnet 7 and the magnetic sensor 6 come into contact with each other. It is desirable to set to.

2つの磁界検出素子6A,6Bの間の間隔Aは、磁界発生部材7の長さ寸法及び厚み寸法に応じて算出される値をとることが好ましい。すなわち、2つの磁界検出素子6A,6Bの間隔Aは、2つの磁界検出素子6A,6Bから出力される検出信号の値を異ならせ、2つの信号からの出力によって可動部材3の位置検出の精度を高めるためであり、最も位置検出の精度が高まるように調整されるべきものである。   The distance A between the two magnetic field detection elements 6A and 6B preferably takes a value calculated according to the length dimension and the thickness dimension of the magnetic field generating member 7. That is, the interval A between the two magnetic field detection elements 6A and 6B is different in the value of the detection signal output from the two magnetic field detection elements 6A and 6B, and the position detection accuracy of the movable member 3 is determined by the output from the two signals. Therefore, it should be adjusted so that the accuracy of position detection is most enhanced.

そして、一般には、間隔Aは、磁界周期の1/4程度とすることが好ましいが、本実施形態では、磁界周期(すなわち、磁界発生部材7の長さ寸法L)の1/4よりも若干長く調整されており、その調整分は、磁界発生部材7の厚み寸法tによって決定される数値である。以下、この理由について詳細に説明する。   In general, the interval A is preferably about ¼ of the magnetic field period. However, in this embodiment, the interval A is slightly less than ¼ of the magnetic field period (that is, the length dimension L of the magnetic field generating member 7). The length of the adjustment is a value determined by the thickness dimension t of the magnetic field generating member 7. Hereinafter, this reason will be described in detail.

図4は、正磁着と負磁着が繰り返し行われている磁界発生部材7xの磁界の変動方向に沿って磁界検出素子6xが相対移動する場合の模式図と磁界検出素子6xからの出力信号値を示す図である。図4に示す位置検出の構造がとられている場合は、x軸方向に繰り返し設けられている磁界に対して、x軸方向に磁界検出素子6xが相対移動する。そして、磁界発生部材7xから発生する磁束Mは、図4(a)に示すように、N極から隣り合うS曲へ磁界発生部材の7xの表裏側にわたって延在することがない。よって、磁界検出素子6x側に発生する磁束Mのみが磁界検出素子6xの検出信号の出力値を決定する。磁界検出素子6xは、磁束Mのz軸方向の成分のみを検出することから、正磁着と負磁着の境界部分では、出力値が0となり、正磁着と負磁着の中央部分での出力値が最大となる。よって、磁界のからの出力値は、図4(b)に示すように、正弦波となる。   FIG. 4 is a schematic diagram when the magnetic field detection element 6x is relatively moved along the magnetic field fluctuation direction of the magnetic field generating member 7x in which the positive magnetic attachment and the negative magnetic attachment are repeatedly performed, and an output signal from the magnetic field detection element 6x. It is a figure which shows a value. When the position detection structure shown in FIG. 4 is adopted, the magnetic field detection element 6x moves relative to the magnetic field repeatedly provided in the x-axis direction in the x-axis direction. As shown in FIG. 4A, the magnetic flux M generated from the magnetic field generating member 7x does not extend across the front and back sides of the magnetic field generating member 7x from the N pole to the adjacent S curve. Therefore, only the magnetic flux M generated on the magnetic field detection element 6x side determines the output value of the detection signal of the magnetic field detection element 6x. Since the magnetic field detection element 6x detects only the component of the magnetic flux M in the z-axis direction, the output value is 0 at the boundary between the positive and negative magnetic attachments, and at the central portion between the positive and negative magnetic attachments. Output value is the maximum. Therefore, the output value from the magnetic field is a sine wave as shown in FIG.

この場合磁界検出素子6xの出力信号の周期は、磁界周期(すなわち着磁ピッチLの寸法)に一致する。したがって、2つの磁界検出素子6xを用いて位置検出を行う場合、単純に、2つの磁界検出素子6xを磁界検出素子6xの出力値の周期の1/4だけの間隔をおいて配置することにより、位置検出の精度を高めることができる。   In this case, the period of the output signal of the magnetic field detection element 6x coincides with the magnetic field period (that is, the dimension of the magnetization pitch L). Therefore, when position detection is performed using the two magnetic field detection elements 6x, the two magnetic field detection elements 6x are simply arranged at intervals of 1/4 of the period of the output value of the magnetic field detection element 6x. The accuracy of position detection can be improved.

これに対して、正磁着及び負磁着がそれぞれ1箇所である場合は、このように2つの磁界検出素子6xの間隔を設定すると、誤差が大きくなる。図5は、正磁着と負磁着が1つずつである磁界発生部材7xの磁界の変動方向に沿って磁界検出素子6が相対移動する場合の模式図と磁界検出素子6xからの出力信号値を示す図である。上記構成が採用されている場合は、磁界発生部材7xから発生する磁束Mは、図5(a)に示すように、磁界発生部材7xの中央部分では、磁界検出素子側に発生するが、両端では、さらに外側に着磁部分がないため、同じ着磁部分を回り込みながら同じ着磁部分の表裏間で発生する。その結果、磁界発生部材7xの両端位置における磁界検出素子6xの検出値は0にはならず、磁界発生部材7xの外側の点fの部分で検出値0となる。点fの位置は、同じ着磁部分を回り込む磁束によって決定するため、磁界発生部材7xが厚ければ、より大きな弧の磁束となり外側へシフトすることとなる。   On the other hand, in the case where there is one positive magnetic attachment and one negative magnetic attachment, the error increases when the distance between the two magnetic field detection elements 6x is set in this way. FIG. 5 is a schematic diagram when the magnetic field detection element 6 moves relative to the magnetic field variation direction of the magnetic field generating member 7x having one positive magnetic attachment and one negative magnetic attachment, and an output signal from the magnetic field detection element 6x. It is a figure which shows a value. When the above configuration is adopted, the magnetic flux M generated from the magnetic field generation member 7x is generated on the magnetic field detection element side in the central portion of the magnetic field generation member 7x as shown in FIG. Then, since there is no magnetized part on the outer side, it occurs between the front and back of the same magnetized part while wrapping around the same magnetized part. As a result, the detection value of the magnetic field detection element 6x at both end positions of the magnetic field generation member 7x does not become 0, but becomes the detection value 0 at the point f outside the magnetic field generation member 7x. Since the position of the point f is determined by the magnetic flux that goes around the same magnetized portion, if the magnetic field generating member 7x is thick, it becomes a larger arc magnetic flux and shifts outward.

よって、磁界検出素子6xの出力信号は、略正弦波に近い値となるが、その周期は、磁界周期(すなわち着磁ピッチLの寸法)よりも長くなり、点f、f間の距離となる。そして、その磁界周期に対しての延長分αは、磁界発生部材7xの厚み寸法により変動する。   Therefore, the output signal of the magnetic field detection element 6x has a value substantially close to a sine wave, but the period is longer than the magnetic field period (that is, the dimension of the magnetization pitch L) and is the distance between the points f and f. . The extension α with respect to the magnetic field period varies depending on the thickness dimension of the magnetic field generating member 7x.

以上の理由により、本実施形態では、隣り合う2つの磁界検出素子6A,6Bの間隔Aを磁界周期(すなわち、磁界発生部材7の長さ寸法L)の1/4よりも長くし、L/4<A<L/4+t/2の範囲となるように設定する。   For the above reason, in this embodiment, the distance A between two adjacent magnetic field detection elements 6A and 6B is set to be longer than ¼ of the magnetic field period (that is, the length dimension L of the magnetic field generating member 7). It is set so that 4 <A <L / 4 + t / 2.

この実施形態において、検出回路8は、演算増幅器からなる第1の加算器8A及び第2の加算器8Bと、第1の加算器8A及び第2の加算器8Bの出力値に基づいて演算処理を行う演算器8Cとを備えている。   In this embodiment, the detection circuit 8 performs arithmetic processing based on output values of the first adder 8A and the second adder 8B, which are operational amplifiers, and the first adder 8A and the second adder 8B. And an arithmetic unit 8C.

第1の加算器8Aは、第1の磁界検出素子6Aが磁界を検出して出力する出力電気信号を増幅するもので、第1の磁界検出素子6Aのプラス側端子61Aが第1の加算器8Aの非反転入力端子に接続されている。また第1の磁界検出素子6Aのマイナス側端子62Aは、第1の加算器8Aの反転入力端子に接続されている。   The first adder 8A amplifies the output electric signal output by the first magnetic field detection element 6A detecting the magnetic field, and the positive side terminal 61A of the first magnetic field detection element 6A is the first adder. It is connected to the non-inverting input terminal of 8A. The negative terminal 62A of the first magnetic field detection element 6A is connected to the inverting input terminal of the first adder 8A.

一方第2の加算器8Bは、第2の磁界検出素子6Bが磁界を検出して出力する出力電気信号を増幅するもので、第2の磁界検出素子6Bのプラス側端子61Bが第2の加算器8Bの反転入力端子に接続されている。また第2の磁界検出素子6Bのマイナス側端子62Bは、第2の加算器8Bの非反転入力端子に接続されている。   On the other hand, the second adder 8B amplifies the output electric signal output by detecting the magnetic field by the second magnetic field detection element 6B, and the plus side terminal 61B of the second magnetic field detection element 6B is the second addition. Connected to the inverting input terminal of the device 8B. The minus side terminal 62B of the second magnetic field detection element 6B is connected to the non-inverting input terminal of the second adder 8B.

このように、第1の磁界検出素子6Aと第2の磁界検出素子6Bとで、それぞれ第1の加算器8A及び第2の加算器8Bへ接続する極性を変えているのは、第1の磁界検出素子6Aは磁界発生部材7のN極磁束を支配的に検知し、一方第2の磁界検出素子6Bは磁界発生部材7のS極磁束を支配的に検知することから、極性を反転させることで後段の演算器8Cにおいて、演算処理を容易に行うためである。   As described above, the first magnetic field detection element 6A and the second magnetic field detection element 6B change the polarities connected to the first adder 8A and the second adder 8B, respectively. The magnetic field detection element 6A predominantly detects the N pole magnetic flux of the magnetic field generation member 7, while the second magnetic field detection element 6B predominantly detects the S pole magnetic flux of the magnetic field generation member 7, thereby reversing the polarity. This is because the arithmetic unit 8C in the subsequent stage easily performs arithmetic processing.

(光学機器への適用)
図6は、本発明における駆動装置Sを、デジタルカメラ等の撮像装置や光ピックアップ装置等の光学機器における光学素子の駆動系に応用した場合の構成例である。すなわち、少なくとも一つの光学素子が光軸上に配置された機構を備える光学機器において、上記で説明した駆動装置Sにおける可動部材3に光学素子を保持させ、該光学素子をその案内軸上に進退動作させるようにした実施形態を示している。
(Application to optical equipment)
FIG. 6 shows a configuration example in which the driving device S according to the present invention is applied to a driving system for an optical element in an optical apparatus such as an imaging device such as a digital camera or an optical pickup device. That is, in an optical apparatus having a mechanism in which at least one optical element is arranged on the optical axis, the optical element is held by the movable member 3 in the driving device S described above, and the optical element is advanced and retracted on the guide axis. An embodiment to be operated is shown.

図6では、駆動される光学素子としてレンズホルダ11で保持されたレンズ12を例示している。このレンズ12は、適用される光学機器が撮像装置である場合は、その撮影光学系の一部を構成するレンズ(ズームレンズ)であり、適用される光学機器が光ピックアップ装置である場合は、その光ピックアップ光学系の一部を構成するレンズである。   FIG. 6 illustrates a lens 12 held by a lens holder 11 as an optical element to be driven. This lens 12 is a lens (zoom lens) that constitutes a part of the photographing optical system when the applied optical device is an imaging device, and when the applied optical device is an optical pickup device, It is a lens that constitutes a part of the optical pickup optical system.

この実施形態にかかる光学機器は、前述のレンズホルダ11で保持されたレンズ12と、このレンズ12を進退動作させる圧電アクチュエータPと、レンズホルダ11の側縁に固着される磁界発生部材7と、該磁界発生部材7に対向配置された第1の磁界検出素子6A及び第2の磁界検出素子6Bを備える磁界検出手段6と、レンズホルダ11をガイドする副軸10とを備えて構成されている。   The optical apparatus according to this embodiment includes a lens 12 held by the lens holder 11 described above, a piezoelectric actuator P that moves the lens 12 forward and backward, a magnetic field generating member 7 fixed to a side edge of the lens holder 11, The magnetic field detection means 6 includes a first magnetic field detection element 6 </ b> A and a second magnetic field detection element 6 </ b> B disposed to face the magnetic field generation member 7, and a counter shaft 10 that guides the lens holder 11. .

レンズホルダ11は、その一端側が圧電アクチュエータPの可動部材3に取り付けられ(保持され)ている。このレンズホルダ11の取り付けは、レンズ12の光軸と、可動部材3の進退方向(つまり駆動部材2の延在方向)とが平行になる位置関係とされている。一方、レンズホルダ11の他端側には貫通孔が設けられており、前記貫通孔に副軸10が挿通されている。従ってレンズホルダ11は、圧電アクチュエータPの可動部材3により進退動作力が与えられ、副軸10によりガイドされつつ進退動作する(図6の上下方向の動作)ようになっている。なお、圧電アクチュエータPの圧電素子1は、該光学機器の本体ボディに設けられている取り付け部90に固定されている。   One end of the lens holder 11 is attached (held) to the movable member 3 of the piezoelectric actuator P. The lens holder 11 is attached in such a positional relationship that the optical axis of the lens 12 is parallel to the advancing / retreating direction of the movable member 3 (that is, the extending direction of the driving member 2). On the other hand, a through hole is provided on the other end side of the lens holder 11, and the auxiliary shaft 10 is inserted through the through hole. Accordingly, the lens holder 11 is given a forward / backward movement force by the movable member 3 of the piezoelectric actuator P, and moves forward / backward while being guided by the auxiliary shaft 10 (up-down direction operation in FIG. 6). The piezoelectric element 1 of the piezoelectric actuator P is fixed to a mounting portion 90 provided on the main body of the optical device.

磁界発生部材7は、可動部材3に直接的に取り付けられるのではなく、レンズホルダ11の他端側(副軸10の側)の側縁部に固定されている。そして磁界検出手段6は、磁界発生部材7に対向するよう配置されている。この磁界検出手段6及び磁界発生部材7については、上述の図3Aの構成が採用されている。   The magnetic field generating member 7 is not directly attached to the movable member 3 but is fixed to the side edge of the lens holder 11 on the other end side (the side of the auxiliary shaft 10). The magnetic field detection means 6 is disposed so as to face the magnetic field generating member 7. As for the magnetic field detecting means 6 and the magnetic field generating member 7, the configuration shown in FIG. 3A described above is employed.

このような構成の光学機器によれば、撮影光学系や光ピックアップなどの光学素子の位置決めは、光軸方向に対する傾き精度が厳しく、優れた直進性と、高い位置決め精度が要求されるところ、前記圧電アクチュエータAを使用して光学素子(レンズ12)を駆動するので、駆動部材2そのものが案内軸の機能を有しているため優れた直進性を有し、また磁界検出手段6により検出された可動部材3の位置情報を用いてフィードバック制御することで、高い位置決め精度を達成できる。   According to the optical apparatus having such a configuration, the positioning of the optical element such as the photographing optical system or the optical pickup is required to have a high inclination accuracy with respect to the optical axis direction, and to have excellent straightness and high positioning accuracy. Since the optical element (lens 12) is driven using the piezoelectric actuator A, the drive member 2 itself has the function of a guide shaft, so that it has excellent straightness and is detected by the magnetic field detection means 6. By performing feedback control using the position information of the movable member 3, high positioning accuracy can be achieved.

さらに、第1の磁界検出素子6A及び第2の磁界検出素子6Bから出力される2つの出力信号に基づいて可動部材3の位置検出を行うので、実質的に当該光学機器の動作環境温度変化の影響を受けることなく、正確に位置検出を行うことができる。また、第1の磁界検出素子6A及び/又は第2の磁界検出素子6Bの出力値に基づいて温度算出部803により温度を算出し、この温度情報に基づいて位置補正信号生成部806にて位置補正信号を生成し、制御駆動信号に対して動作環境温度に応じた補正を加える構成としているので、被駆動部材である光学素子(レンズ12)にサイズ的な温度依存性があったとしても、正確な移動制御を行えるという利点がある。すなわち、光学機器における光学系全体の温度特性を補償することができるようになる。   Further, since the position of the movable member 3 is detected based on the two output signals output from the first magnetic field detection element 6A and the second magnetic field detection element 6B, the operating environment temperature change of the optical device is substantially reduced. Position detection can be performed accurately without being affected. Further, the temperature calculation unit 803 calculates the temperature based on the output value of the first magnetic field detection element 6A and / or the second magnetic field detection element 6B, and the position correction signal generation unit 806 calculates the position based on the temperature information. Since the correction signal is generated and the control drive signal is corrected according to the operating environment temperature, even if the optical element (lens 12) that is the driven member has a temperature dependency in terms of size, There is an advantage that accurate movement control can be performed. That is, the temperature characteristic of the entire optical system in the optical apparatus can be compensated.

なお、図3Aに示した実施形態では、磁界発生部材7を副軸10側に取り付けた例を示したが、他の位置、例えば、レンズホルダ11の直下に設けるようにしてもよい。   In the embodiment shown in FIG. 3A, the example in which the magnetic field generating member 7 is attached to the auxiliary shaft 10 side is shown, but it may be provided at another position, for example, directly below the lens holder 11.

さらに、磁界発生部材7と磁界検出手段6との配置関係を入れ替える構成、すなわち可動部材3もしくはレンズホルダ11の可動部分に磁界検出手段6を配置し、固定部分に磁界発生部材7を配置してもよい。この場合においても、上記と実質的に同様な動作を行わせることが可能である。   Further, the arrangement of the magnetic field generating member 7 and the magnetic field detecting means 6 is switched, that is, the magnetic field detecting means 6 is arranged in the movable part of the movable member 3 or the lens holder 11, and the magnetic field generating member 7 is arranged in the fixed part. Also good. Even in this case, it is possible to perform substantially the same operation as described above.

また上記構成において、光ピックアップ光学系のレンズを被駆動部材とし、該レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成することもできる。すなわち、レンズの球面収差や色収差等に起因する像の乱れを補正するために、本発明にかかる駆動装置を用いてレンズを駆動させ、収差による影響が最小限に抑制できるよう構成しても良い。   In the above configuration, the lens of the optical pickup optical system may be a driven member, and the lens may be moved in the optical axis direction by the advance / retreat operation of the movable member so that aberration correction is performed. That is, in order to correct image distortion caused by spherical aberration, chromatic aberration, etc. of the lens, the driving device according to the present invention may be used to drive the lens so that the influence of aberration can be suppressed to a minimum. .

(実施例)
図3Aに示す位置検出装置を搭載した、図1に示す駆動装置を用いて、磁界発生部材7の位置に対する出力の変化を実験にて算出した。磁界検出装置の磁界発生部材7は、長さ寸法Lは4.8mm、高さ寸法Hは1.5mm、厚み寸法1.2mmのものを用い、2つの磁界検出素子6A,6Bの間隔Aを1.0,1.2,1.4,1.6,1.8mmと変化させた。磁界検出素子6A,6Bと磁界発生部材7の間隔は0.5mmとして固定した。
また、磁界発生部材7の使用ストロークを2.4mmとした。
(Example)
Using the drive device shown in FIG. 1 equipped with the position detection device shown in FIG. 3A, the change in output relative to the position of the magnetic field generating member 7 was calculated by experiment. The magnetic field generating member 7 of the magnetic field detection device has a length dimension L of 4.8 mm, a height dimension H of 1.5 mm, and a thickness dimension of 1.2 mm, and uses a distance A between the two magnetic field detection elements 6A and 6B. It was changed to 1.0, 1.2, 1.4, 1.6, and 1.8 mm. The distance between the magnetic field detection elements 6A and 6B and the magnetic field generating member 7 was fixed at 0.5 mm.
Moreover, the use stroke of the magnetic field generation member 7 was 2.4 mm.

図7は、磁界検出素子6A,6Bの出力信号である。それぞれの出力信号は、略正弦波形状となるが、両端において、原点に近似するように伸びる近似部分が発生した。また、間隔Aによって、その周期のズレが変化することとなる。   FIG. 7 shows output signals of the magnetic field detection elements 6A and 6B. Each output signal has a substantially sinusoidal shape, but at both ends, an approximate portion that extends to approximate the origin is generated. Further, the interval deviation A changes the period.

図8に磁界検出素子6A,6Bの出力値から算出された磁界発生部材の位置に対する出力の変化及びその出力変化のグラフの傾きを示すグラフである。グラフ中の横軸は、中央の原点からのシフト量、縦軸は、出力値の比を示している。図8において、実線が出力の変化の演算結果、破線が演算結果の微分値すなわち出力の変化の傾きを示している。図8(a)は、間隔Aが1.0mmの場合、図8(b)は、間隔Aが1.2mmの場合、図8(c)は、間隔Aが1.4mmの場合、図8(d)は、間隔Aが1.6mmの場合、図8(e)は、間隔Aが1.8mmの場合をそれぞれ示している。図8のグラフでは、グラフの傾きの変化が少ないほど線形性が高く、好ましい。図1に示すように、検出回路8の出力を制御回路5にフィードバックして可動部材3の位置決めを行う場合、ゲイン余裕を持たせる必要があるため、位置検出装置の感度の変化は5倍程度が限度である。よって、傾きの変化が比較的少ない間隔Aが1.4mm、1.6mmのものが好ましいと考えられる。   FIG. 8 is a graph showing the change in output with respect to the position of the magnetic field generating member calculated from the output values of the magnetic field detection elements 6A and 6B and the slope of the graph of the output change. In the graph, the horizontal axis indicates the shift amount from the central origin, and the vertical axis indicates the ratio of output values. In FIG. 8, the solid line indicates the calculation result of the output change, and the broken line indicates the differential value of the calculation result, that is, the slope of the output change. 8A shows a case where the distance A is 1.0 mm, FIG. 8B shows a case where the distance A is 1.2 mm, and FIG. 8C shows a case where the distance A is 1.4 mm. (D) shows the case where the distance A is 1.6 mm, and FIG. 8 (e) shows the case where the distance A is 1.8 mm. In the graph of FIG. 8, the smaller the change in the slope of the graph, the higher the linearity, which is preferable. As shown in FIG. 1, when positioning the movable member 3 by feeding back the output of the detection circuit 8 to the control circuit 5, it is necessary to provide a gain margin, so the change in sensitivity of the position detection device is about 5 times. Is the limit. Therefore, it is considered preferable that the interval A having a relatively small change in inclination is 1.4 mm and 1.6 mm.

図8に示す演算結果より、線形性を求めた結果を図9に示す。線形性の指標は、傾きの値の最低値/最大値により算出される。上記の通り、磁界発生部材7の長さ寸法Lは4.8mmであるから、間隔Aが磁界周期の長さの1/4の1.2mmよりも1.4mm,1.6mmの方が線形性に優れており、間隔Aが1.5mm付近で最も線形性が高くなるとの結果を得た。すなわち、従来において最適値と考えられていた磁界周期の1/4である1.2mmに対して、測定結果の最適値は差分0.3mmだけシフトしていることとなる。上記の通り、磁界発生部材の厚み寸法tは1.2mmであるので、最適値のシフト分は磁界発生部材7の厚み寸法tの1/4に相当することとなる。また、シフト分0(すなわち間隔A=1.2mm)とシフト分が厚み寸法tの1/2である0.6mm(すなわち分間隔A=1.8mm)がほぼ同値となる。その結果、間隔Aは、磁界発生部材7の長さ寸法Lの1/4よりも長く、シフト分が磁界発生部材7の厚み寸法tの1/2となるようにすることにより、線形性が高くなるとの結果を得た。   FIG. 9 shows the result of obtaining linearity from the calculation result shown in FIG. The linearity index is calculated by the minimum value / maximum value of the slope value. As described above, since the length L of the magnetic field generating member 7 is 4.8 mm, the distance A is more linear at 1.4 mm and 1.6 mm than 1.2 mm, which is ¼ of the length of the magnetic field period. The results showed that the linearity was highest when the distance A was around 1.5 mm. That is, the optimum value of the measurement result is shifted by a difference of 0.3 mm with respect to 1.2 mm, which is ¼ of the magnetic field period, which is conventionally considered to be the optimum value. As described above, since the thickness dimension t of the magnetic field generating member is 1.2 mm, the shift amount of the optimum value corresponds to ¼ of the thickness dimension t of the magnetic field generating member 7. Further, the shift amount 0 (that is, the interval A = 1.2 mm) and the shift amount 0.6 mm (that is, the minute interval A = 1.8 mm), which is ½ of the thickness dimension t, are substantially the same value. As a result, the interval A is longer than ¼ of the length dimension L of the magnetic field generating member 7, and the linearity is improved by making the shift amount ½ of the thickness dimension t of the magnetic field generating member 7. The result was that it would be higher.

なお、同様の実験を磁界発生部材7の厚み寸法tを0.8mmにしたことを除いて同条件で行った。このときの実験結果を図10に示す。磁界発生部材7の厚み寸法を0.1mm薄くすることにより、線形性の最適値は、0.1mm小さくなることが判明した。すなわち、最も線形性がよくなる間隔Aの条件としては、(L+t)/4であるという実験結果となった。また、間隔Aは、L/4<A<L/4+t/2の範囲とすることで、より線形性を向上させることができるという結果となった。   A similar experiment was performed under the same conditions except that the thickness t of the magnetic field generating member 7 was 0.8 mm. The experimental results at this time are shown in FIG. It has been found that by reducing the thickness dimension of the magnetic field generating member 7 by 0.1 mm, the optimum linearity value is reduced by 0.1 mm. That is, the experimental result was (L + t) / 4 as the condition of the interval A at which the linearity was most improved. In addition, the interval A was in a range of L / 4 <A <L / 4 + t / 2, which resulted in further improved linearity.

上記実施例の変形例として、磁界発生部材を図3Bに示すように、中央部に非着磁部分を設けて構成しても、上記と同様の実験を行った結果、磁界発生部材の進退方向長さL及び厚さtに基づき、間隔AをL/4<A<L/4+t/2の範囲とすることによって、線形性が向上するという結果を得た。なお、図3Bにおいては、第1の加算器及び第2の加算器の記載を省略している。   As a modification of the above embodiment, even when the magnetic field generating member is configured by providing a non-magnetized portion at the center as shown in FIG. Based on the length L and the thickness t, by setting the interval A in the range of L / 4 <A <L / 4 + t / 2, the linearity was improved. In FIG. 3B, the description of the first adder and the second adder is omitted.

図3Bに示す磁界発生部材71は、厚さ方向に正着磁(つまり、磁界検出手段6に対向する面がN極で、その裏面がS極)された矩形の第1磁石71Aと、厚さ方向に負着磁(つまり、磁界検出手段6に対向する面がS極で、その裏面がN極)された矩形の第2磁石71Bとを備えており、第1・第2磁石71A、71Bの側辺同士の間に非着磁部分72を挟むようにして第1・第2磁石7A、7Bを対向させて固着した略四角形状を呈する構成を採用する。磁界発生部材71の寸法は、例えば、進退方向長さ寸法Lが5.0mm、厚さ寸法tが0.8mm、高さ寸法Hは1.4mmである。また、非着磁部分72の進退方向長さ寸法Wは1mmであり、第1の磁界検出素子6Aと第2の磁界検出素子6Bの間隔Aは例えば1.5mm、磁界検出素子6A,6Bと第1・第2磁石71A、71Bの間隔は0.48mmである。   The magnetic field generating member 71 shown in FIG. 3B includes a rectangular first magnet 71A that is positively magnetized in the thickness direction (that is, the surface facing the magnetic field detection means 6 is N-pole and the back surface is S-pole), A rectangular second magnet 71B that is negatively magnetized in the vertical direction (that is, the surface facing the magnetic field detecting means 6 is the S pole and the back surface is the N pole), and the first and second magnets 71A, A configuration is adopted in which the first and second magnets 7A and 7B are opposed to each other and are fixed so as to sandwich the non-magnetized portion 72 between the sides of 71B. The dimensions of the magnetic field generating member 71 are, for example, a length dimension L in the advancing / retreating direction of 5.0 mm, a thickness dimension t of 0.8 mm, and a height dimension H of 1.4 mm. The length W of the non-magnetized portion 72 in the advancing / retreating direction is 1 mm, the distance A between the first magnetic field detecting element 6A and the second magnetic field detecting element 6B is, for example, 1.5 mm, and the magnetic field detecting elements 6A and 6B The distance between the first and second magnets 71A and 71B is 0.48 mm.

上記のように第1・第2磁石71A、71Bの間に非着磁部分72を設けた場合であっても、磁界検出素子6A,6Bの間隔AをL/4<A<L/4+t/2の範囲とすることによって、線形性が向上するという結果を得た。   Even when the non-magnetized portion 72 is provided between the first and second magnets 71A and 71B as described above, the distance A between the magnetic field detecting elements 6A and 6B is set to L / 4 <A <L / 4 + t / By setting it as the range of 2, the result that linearity improved was obtained.

本発明の実施形態にかかる位置検出装置を搭載した駆動装置のシステム構成図である。1 is a system configuration diagram of a drive device equipped with a position detection device according to an embodiment of the present invention. 摩擦駆動型の圧電アクチュエータの動作原理を説明するための説明図である。It is explanatory drawing for demonstrating the operation | movement principle of a friction drive type piezoelectric actuator. 摩擦駆動型の圧電アクチュエータの駆動軸変位を表す説明図である。It is explanatory drawing showing the drive shaft displacement of a friction drive type piezoelectric actuator. 本発明にかかる駆動装置の位置センサ部分を詳細に示した構成図である。It is the block diagram which showed the position sensor part of the drive device concerning this invention in detail. 本発明にかかる駆動装置の位置センサ部分の変形例を詳細に示した構成図である。It is the block diagram which showed in detail the modification of the position sensor part of the drive device concerning this invention. 正磁着と負磁着が繰り返し行われている磁界発生部材の磁界の変動方向に沿って磁界検出素子が相対移動する場合の模式図(a)と磁界検出素子からの出力信号値を示す図(b)である。A schematic diagram (a) in the case where the magnetic field detecting element relatively moves along the direction of fluctuation of the magnetic field of the magnetic field generating member in which the positive magnetic attachment and the negative magnetic attachment are repeatedly performed, and a diagram showing an output signal value from the magnetic field detecting element (B). 正磁着と負磁着が1つずつである磁界発生部材の磁界の変動方向に沿って磁界検出素子が相対移動する場合の模式図(a)と磁界検出素子からの出力信号値を示す図(b)である。Schematic diagram (a) when the magnetic field detection element relatively moves along the direction of fluctuation of the magnetic field of the magnetic field generating member having one positive magnetic attachment and one negative magnetic attachment, and a diagram showing an output signal value from the magnetic field detection element (B). 図1の駆動装置を、光学機器における光学素子の駆動系に応用した場合の構成例を示す構成図である。It is a block diagram which shows the structural example at the time of applying the drive device of FIG. 1 to the drive system of the optical element in an optical device. 磁界検出素子6A,6Bの出力信号を示すグラフである。It is a graph which shows the output signal of magnetic field detection element 6A, 6B. 磁界検出素子の間隔を異ならせた場合の磁界検出素子の出力値から算出された磁界発生部材の位置に対する出力の変化及びその出力変化のグラフの傾きを示すグラフである。It is a graph which shows the change of the output with respect to the position of the magnetic field generation member computed from the output value of the magnetic field detection element at the time of changing the space | interval of a magnetic field detection element, and the inclination of the graph of the output change. 図8の算出結果に基づく線形性と間隔Aとの関係を示すグラフである。It is a graph which shows the relationship between the linearity based on the calculation result of FIG. 磁界発生部材の厚み寸法を0.8mmとした場合の線形性と間隔Aとの関係を示すグラフである。It is a graph which shows the relationship between the linearity and the space | interval A when the thickness dimension of a magnetic field generation member shall be 0.8 mm. 従来の位置検出装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional position detection apparatus. 従来の他の位置検出装置の構成を示す概略図である。It is the schematic which shows the structure of the other conventional position detection apparatus. 従来のさらに他の位置検出装置の構成を示す概略図である。It is the schematic which shows the structure of the other conventional position detection apparatus.

符号の説明Explanation of symbols

1 圧電素子
2 駆動部材
3 可動部材
4 駆動回路
5 制御回路
6 磁界検出手段
6A 第1の磁界検出素子
6B 第2の磁界検出素子
7 磁界発生部材
7A 矩形状の第1磁石
7B 矩形状の第2磁石
8 検出回路
8A 第1の加算器
8B 第2の加算器
8C 演算器
10 副軸
11 レンズホルダ
12 レンズ
A 磁界検出素子の間隔
L 磁界発生部材の長さ寸法
t 磁界発生部材の厚み寸法
P 圧電アクチュエータ
DESCRIPTION OF SYMBOLS 1 Piezoelectric element 2 Drive member 3 Movable member 4 Drive circuit 5 Control circuit 6 Magnetic field detection means 6A 1st magnetic field detection element 6B 2nd magnetic field detection element 7 Magnetic field generation member 7A Rectangular first magnet 7B Rectangular second Magnet 8 Detection circuit 8A 1st adder 8B 2nd adder 8C Operation unit 10 Countershaft 11 Lens holder 12 Lens A Magnetic field detection element interval L Magnetic field generation member length dimension t Magnetic field generation member thickness dimension P Piezoelectric Actuator

Claims (9)

進退可能に構成された可動部材に一体的に付設され、可動部材の進退方向にN極及びS極が各1極のみ着磁されて表面磁束密度が可動部材の進退方向に変化するように構成された磁界変化を有する磁界発生部材と、
前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出し、間隔Aをおいて前記可動部材の進退方向に並べて配置された2つの磁界検出素子を備える磁界検出手段と、
前記磁界検出手段の検出信号に基づいて、前記可動部材の位置を求める演算手段とを備え、
前記磁界発生部材は、前記進退方向長さL、厚さtを有し、
前記磁界検出手段を構成する2つの磁界検出素子の間隔Aが、
L/4<A<L/4+t/2
となるように構成されていることを特徴とする、位置検出装置。
It is integrally attached to a movable member configured to be able to advance and retreat, and is configured so that only one north pole and one south pole are magnetized in the forward and backward direction of the movable member, and the surface magnetic flux density changes in the forward and backward direction of the movable member. A magnetic field generating member having a changed magnetic field;
Magnetic field detection means comprising two magnetic field detection elements that are arranged side by side in the advance and retreat direction of the movable member at intervals A, detecting a magnetic field change accompanying the movement of the magnetic field generating member based on the advance and retreat operation of the movable member;
Calculating means for obtaining a position of the movable member based on a detection signal of the magnetic field detecting means;
The magnetic field generating member has a length L in the forward / backward direction and a thickness t,
An interval A between two magnetic field detecting elements constituting the magnetic field detecting means is
L / 4 <A <L / 4 + t / 2
It is comprised so that it may become. The position detection apparatus characterized by the above-mentioned.
前記磁界発生部材は、厚さ方向に正着磁された矩形状の第1磁石と、厚さ方向に負着磁された矩形状の第2磁石とを備えており、前記第1磁石と第2磁石の側辺同士を対向させて固着した略四角形状を呈していることを特徴とする、請求項1に記載の位置検出装置。   The magnetic field generating member includes a rectangular first magnet that is positively magnetized in the thickness direction, and a rectangular second magnet that is negatively magnetized in the thickness direction. The position detection device according to claim 1, wherein the position detection device has a substantially rectangular shape in which the sides of the two magnets are fixed to face each other. 前記磁界検出素子は、ホール素子であることを特徴とする、請求項1又は2に記載の位置検出装置。   The position detection device according to claim 1, wherein the magnetic field detection element is a Hall element. 請求項1から3のいずれか1つの位置検出装置と、
前記磁界検出手段が固定されたフレームに一端が固定され、前記可動方向に伸縮する電気機械変換素子と、
前記電気機械変換素子の他端に連結され、前記可動部材が摩擦係合する案内軸と、
を備えることを特徴とする駆動装置。
A position detection device according to any one of claims 1 to 3,
An electromechanical transducer having one end fixed to the frame to which the magnetic field detecting means is fixed and extending and contracting in the movable direction;
A guide shaft connected to the other end of the electromechanical conversion element and frictionally engaged with the movable member;
A drive device comprising:
少なくとも1つの光学素子が光軸上に配置された機構を備える光学機器であって、
請求項4に記載の駆動装置における可動装置が、前記光学素子を保持して該光学素子をその案内軸上に進退動作させる保持体として機能するように構成したことを特徴とする光学機器。
An optical apparatus comprising a mechanism in which at least one optical element is disposed on an optical axis,
5. The optical apparatus according to claim 4, wherein the movable device in the driving device is configured to function as a holding body that holds the optical element and moves the optical element forward and backward on its guide shaft.
光学素子の光軸と、可動部材の進退方向とが平行になるように、光学素子が可動部材により保持されていることを特徴とする請求項5記載の光学機器。   6. The optical apparatus according to claim 5, wherein the optical element is held by the movable member so that the optical axis of the optical element is parallel to the advancing / retreating direction of the movable member. 光学機器が撮像装置であり、光学素子が、その撮影光学系の一部を構成する光学素子であることを特徴とする請求項5記載の光学機器。   6. The optical apparatus according to claim 5, wherein the optical apparatus is an image pickup apparatus, and the optical element is an optical element constituting a part of the photographing optical system. 光学機器が光ピックアップ装置であり、光学素子が、その光ピックアップ光学系の一部を構成する光学素子であることを特徴とする請求項7記載の光学機器。   8. The optical apparatus according to claim 7, wherein the optical apparatus is an optical pickup device, and the optical element is an optical element constituting a part of the optical pickup optical system. 光学素子が、光ピックアップ光学系のレンズであり、前記レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成されていることを特徴とする請求項8記載の光学機器。   9. The optical element according to claim 8, wherein the optical element is a lens of an optical pickup optical system, and the lens is moved in the optical axis direction by an advance / retreat operation of a movable member, so that aberration correction is performed. The optical instrument described.
JP2007140206A 2007-05-28 2007-05-28 POSITION DETECTION DEVICE, DRIVE DEVICE, AND OPTICAL DEVICE Expired - Fee Related JP4941104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140206A JP4941104B2 (en) 2007-05-28 2007-05-28 POSITION DETECTION DEVICE, DRIVE DEVICE, AND OPTICAL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140206A JP4941104B2 (en) 2007-05-28 2007-05-28 POSITION DETECTION DEVICE, DRIVE DEVICE, AND OPTICAL DEVICE

Publications (2)

Publication Number Publication Date
JP2008292386A true JP2008292386A (en) 2008-12-04
JP4941104B2 JP4941104B2 (en) 2012-05-30

Family

ID=40167251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140206A Expired - Fee Related JP4941104B2 (en) 2007-05-28 2007-05-28 POSITION DETECTION DEVICE, DRIVE DEVICE, AND OPTICAL DEVICE

Country Status (1)

Country Link
JP (1) JP4941104B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216986A (en) * 2009-03-17 2010-09-30 Olympus Corp Calibration method for inertial drive actuator, inertial drive actuator device, and method of calculating position of moving body
JP2015225294A (en) * 2014-05-29 2015-12-14 旭化成エレクトロニクス株式会社 Camera module
JP2016020926A (en) * 2009-12-04 2016-02-04 ヒルシュマン オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングHirschmann Automotive GmbH Sensor device configured to detect motion of element
JP2017142158A (en) * 2016-02-10 2017-08-17 メレキシス テクノロジーズ エヌ ヴィ Displacement detector
KR20200056320A (en) * 2018-11-14 2020-05-22 아사히 가세이 일렉트로닉스 가부시끼가이샤 Camera module
KR20200078196A (en) * 2018-12-21 2020-07-01 주식회사 지니틱스 Method for making a displacement curve of an auto focus driver unit into a linear form
JP2021047030A (en) * 2019-09-17 2021-03-25 内山工業株式会社 Magnetic encoder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150812A (en) * 1987-12-08 1989-06-13 Nippon Seiko Kk Displacement detecting device
JP2006292396A (en) * 2005-04-06 2006-10-26 Konica Minolta Opto Inc Position detector and positioning apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150812A (en) * 1987-12-08 1989-06-13 Nippon Seiko Kk Displacement detecting device
JP2006292396A (en) * 2005-04-06 2006-10-26 Konica Minolta Opto Inc Position detector and positioning apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216986A (en) * 2009-03-17 2010-09-30 Olympus Corp Calibration method for inertial drive actuator, inertial drive actuator device, and method of calculating position of moving body
JP2016020926A (en) * 2009-12-04 2016-02-04 ヒルシュマン オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングHirschmann Automotive GmbH Sensor device configured to detect motion of element
JP2015225294A (en) * 2014-05-29 2015-12-14 旭化成エレクトロニクス株式会社 Camera module
JP2017142158A (en) * 2016-02-10 2017-08-17 メレキシス テクノロジーズ エヌ ヴィ Displacement detector
KR20210091092A (en) * 2018-11-14 2021-07-21 아사히 가세이 일렉트로닉스 가부시끼가이샤 Camera module
KR102278971B1 (en) 2018-11-14 2021-07-20 아사히 가세이 일렉트로닉스 가부시끼가이샤 Camera module
KR20200056320A (en) * 2018-11-14 2020-05-22 아사히 가세이 일렉트로닉스 가부시끼가이샤 Camera module
KR102428836B1 (en) 2018-11-14 2022-08-04 아사히 가세이 일렉트로닉스 가부시끼가이샤 Camera module
US11431269B2 (en) 2018-11-14 2022-08-30 Asahi Kasei Microdevices Corporation Camera module including magnet sensors and coils
JP7364435B2 (en) 2018-11-14 2023-10-18 旭化成エレクトロニクス株式会社 The camera module
US11984835B2 (en) 2018-11-14 2024-05-14 Asahi Kasei Microdevices Corporation Camera module
KR20200078196A (en) * 2018-12-21 2020-07-01 주식회사 지니틱스 Method for making a displacement curve of an auto focus driver unit into a linear form
KR102246679B1 (en) 2018-12-21 2021-04-30 주식회사 지니틱스 Method for making a displacement curve of an auto focus driver unit into a linear form
JP2021047030A (en) * 2019-09-17 2021-03-25 内山工業株式会社 Magnetic encoder
JP7388687B2 (en) 2019-09-17 2023-11-29 内山工業株式会社 magnetic encoder

Also Published As

Publication number Publication date
JP4941104B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP2005284169A (en) Driving device and optical equipment
JP4941104B2 (en) POSITION DETECTION DEVICE, DRIVE DEVICE, AND OPTICAL DEVICE
JP4600060B2 (en) Drive device
US8013596B2 (en) Position detector and positioning device
US6456444B1 (en) Lens barrel
US8582205B2 (en) Lens barrel and optical apparatus including the same
US8159746B2 (en) Optical apparatus with image stabilizing and movable lenses and actuators for shifting and/or moving the lenses
KR101438233B1 (en) Position detecting apparatus and optical device
KR101032919B1 (en) Brushless dc motor and image pickup apparatus
US9635244B2 (en) Image pickup apparatus
JP2013250468A (en) Lens drive device
JP2012068339A (en) Position detection sensor and lens drive device
JP4655701B2 (en) Position detection device, blur correction device, and lens barrel
JP2006162876A (en) Driving device and lens driving device using the same
JP5218418B2 (en) Position detector and positioning device
JP5529637B2 (en) Linear motor position detection system
JP3893701B2 (en) Linear actuator and lens barrel using the same
JP2009015023A (en) Driving device and imaging apparatus equipped therewith
JPH11289743A (en) Linear actuator and lens driving device and lens barrel using the same
JP2008289315A (en) Drive arrangement and optical instrument
JP4374060B1 (en) Magnetic position detection method and position detection sensor
JP2005107008A (en) Lens barrel and imaging device
JP2013003524A (en) Image blur correction device and optical equipment using the same
JP2006243668A (en) Zoom lens device
JP2007256144A (en) Position-detecting device and lens-driving device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees