JP2008292315A - Stirrer and auto-analyzer - Google Patents

Stirrer and auto-analyzer Download PDF

Info

Publication number
JP2008292315A
JP2008292315A JP2007138287A JP2007138287A JP2008292315A JP 2008292315 A JP2008292315 A JP 2008292315A JP 2007138287 A JP2007138287 A JP 2007138287A JP 2007138287 A JP2007138287 A JP 2007138287A JP 2008292315 A JP2008292315 A JP 2008292315A
Authority
JP
Japan
Prior art keywords
container
sound wave
heat
reaction vessel
stirring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007138287A
Other languages
Japanese (ja)
Inventor
Naoki Akamatsu
直樹 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007138287A priority Critical patent/JP2008292315A/en
Priority to PCT/JP2008/059066 priority patent/WO2008146628A1/en
Publication of JP2008292315A publication Critical patent/JP2008292315A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/86Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with vibration of the receptacle or part of it
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00554Mixing by a special element, e.g. stirrer using ultrasound

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stirrer and an auto-analyzer capable of restraining a sample liquid from becoming thermally affected, by moving heat generated in a piezoelectric substrate or a container of an sound wave generation means caused by the interference of sound waves, to a position located at a distant from the container. <P>SOLUTION: This stirrer/auto-analyzer stirs the liquid held in the container by sound waves. The stirrer 20 is provided with a surface acoustic wave element 23, having the piezoelectric substrate 23b provided in the container 5 and an electrode 23b formed in the piezoelectric substrate, and for generating the sound waves for stirring the liquid, and a heat-conducting member 24 provided on the container or a discontinuous face 23e of an acoustic impedance of the piezoelectric substrate; and for making the heat generated by the interference of the sound waves emitted from the surface acoustic wave element with the sound waves reflected on the discontinuous face, move to a position at distant from the container. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、攪拌装置及び自動分析装置に関するものである。   The present invention relates to a stirring device and an automatic analyzer.

従来、自動分析装置は、検体と試薬を含む液体試料を攪拌して反応させ、反応液の光学的特性を測定することにより、検体中の成分濃度等を分析している。このとき、液体試料を攪拌する攪拌装置は、いわゆるキャリーオーバーを回避すべく検体と試薬を含む液体試料に音波発生手段が発生した音波を照射することによって非接触で攪拌する攪拌装置が知られている(例えば、特許文献1参照)。特許文献1に開示された攪拌装置で使用する音波発生手段は、圧電基板上に櫛歯状電極(IDT)からなる振動子が形成され、容器の壁面に取り付けて使用され、振動子が音波を発生させる。   Conventionally, an automatic analyzer analyzes a component concentration and the like in a specimen by stirring and reacting a liquid sample containing the specimen and a reagent and measuring optical characteristics of the reaction liquid. At this time, a stirring device that stirs a liquid sample is known as a stirring device that performs non-contact stirring by irradiating a liquid sample containing a specimen and a reagent with a sound wave generated by a sound wave generating means so as to avoid so-called carryover. (For example, refer to Patent Document 1). The sound wave generating means used in the stirring device disclosed in Patent Document 1 is formed by forming a vibrator composed of comb-like electrodes (IDT) on a piezoelectric substrate and using it attached to the wall surface of a container. generate.

特開2006−90791号公報JP 2006-90791 A

ところで、特許文献1の攪拌装置は、音波発生手段が発生した音波を液体試料に照射することによって生ずる音響流による液体試料の発熱や、音波発生手段の圧電基板内や容器壁内を伝搬する音波と圧電基板や容器壁の音響インピーダンスの不連続面で反射した音波との干渉による容器の発熱が生じる。この場合、音響流による液体試料の発熱は回避できないが、圧電基板や容器の壁は、攪拌対象である液体試料と接するか、液体試料に接近した位置にあることから液体試料への熱的影響が大きい。しかも、近年、分析コストの低減や被験者への負担低減から、検体や試薬の微量化が望まれている。しかし、検体や試薬の微量化によって液体試料が微量になる程、液体試料の熱容量が小さくなるため、液体試料の温度上昇が大きくなってしまうという問題があった。特に、生化学分析装置は、血液等の生体試料を分析することから液体試料の温度上昇によって攪拌対象が変性し、検体の正確な分析に支障を生ずる可能性があった。   By the way, the stirring device of Patent Document 1 generates heat of a liquid sample due to an acoustic flow generated by irradiating the liquid sample with sound waves generated by the sound wave generating means, and sound waves propagating in the piezoelectric substrate or the container wall of the sound wave generating means. The container generates heat due to interference between the piezoelectric substrate and the acoustic wave reflected from the acoustic impedance discontinuous surface of the container wall. In this case, the heat generation of the liquid sample due to the acoustic flow cannot be avoided, but the piezoelectric substrate and the wall of the container are in contact with the liquid sample to be agitated or are close to the liquid sample, so the thermal influence on the liquid sample Is big. Moreover, in recent years, it has been desired to reduce the amount of specimens and reagents in order to reduce the analysis cost and the burden on the subject. However, there is a problem that the temperature rise of the liquid sample increases because the heat capacity of the liquid sample decreases as the amount of the liquid sample decreases due to the minute amount of the specimen or reagent. In particular, since the biochemical analyzer analyzes a biological sample such as blood, the object to be stirred is denatured due to a rise in the temperature of the liquid sample, which may hinder accurate analysis of the specimen.

本発明は、上記に鑑みてなされたものであって、音波の干渉に起因して音波発生手段の圧電基板内や容器壁内で発生した熱を容器から離れた位置へ移動させ、液体試料への熱的影響を抑制することが可能な攪拌装置及び自動分析装置を提供することを目的とする。   The present invention has been made in view of the above, and the heat generated in the piezoelectric substrate or the container wall of the sound wave generating means due to the interference of the sound waves is moved to a position away from the container, to the liquid sample. It is an object of the present invention to provide a stirring device and an automatic analyzer that can suppress the thermal influence of the water.

上述した課題を解決し、目的を達成するために、本発明の攪拌装置は、容器に保持された液体を音波によって攪拌する攪拌装置において、前記容器に設ける圧電基板及び当該圧電基板に形成した電極を有し、前記液体を攪拌する音波を発生させる音波発生手段と、前記容器又は前記圧電基板の音響インピーダンスの不連続面に設けられ、前記音波発生手段が出射した音波と前記不連続面で反射した音波との干渉によって発生する熱を前記容器から離れた位置へ移動させる熱伝導部材と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the stirring device of the present invention is a stirring device that stirs a liquid held in a container by sound waves, and a piezoelectric substrate provided in the container and an electrode formed on the piezoelectric substrate. And a sound wave generating means for generating a sound wave for stirring the liquid, and a sound wave emitted from the sound wave generating means and reflected by the discontinuous surface, provided on a discontinuous surface of the acoustic impedance of the container or the piezoelectric substrate. And a heat conduction member that moves heat generated by the interference with the sound wave to a position away from the container.

また、本発明の攪拌装置は、上記の発明において、前記音響インピーダンスの不連続面は、前記音波の伝搬方向に交差する前記圧電基板の端面又は前記容器の端面であることを特徴とする。   The stirrer of the present invention is characterized in that, in the above invention, the discontinuous surface of the acoustic impedance is an end surface of the piezoelectric substrate or an end surface of the container that intersects the propagation direction of the sound wave.

また、本発明の攪拌装置は、上記の発明において、前記容器は、当該容器の壁から突出し、前記壁内を伝搬する音波を音響インピーダンスの境界部によって前記容器から遠ざかる方向へ導く誘導部が設けられ、前記熱伝導部材は、前記誘導部の音響インピーダンスの不連続面に設けられることを特徴とする。   In the stirring device according to the present invention, in the above invention, the container is provided with a guide portion that projects from the wall of the container and guides a sound wave propagating through the wall in a direction away from the container by an acoustic impedance boundary. The heat conducting member is provided on a discontinuous surface of acoustic impedance of the induction portion.

また、本発明の攪拌装置は、上記の発明において、前記音波発生手段は、表面弾性波素子又は厚み縦振動子であることを特徴とする。   The stirrer according to the present invention is characterized in that, in the above invention, the sound wave generating means is a surface acoustic wave element or a thickness longitudinal vibrator.

また、上述した課題を解決し、目的を達成するために、本発明の自動分析装置は、複数の異なる液体を攪拌して反応させ、反応液の光学的特性を測定して前記反応液を分析する自動分析装置であって、前記攪拌装置を用いて検体と試薬とを攪拌し、反応液を光学的に分析することを特徴とする。   In order to solve the above-described problems and achieve the object, the automatic analyzer of the present invention causes a plurality of different liquids to stir and react, measures the optical properties of the reaction liquid, and analyzes the reaction liquid. In this automatic analyzer, the sample and the reagent are stirred using the stirring device, and the reaction solution is optically analyzed.

また、本発明の自動分析装置は、上記の発明において、前記熱伝導部材によって前記容器から離れた位置へ移動された熱を放熱する放熱部材を有することを特徴とする。   The automatic analyzer according to the present invention is characterized in that in the above invention, the automatic analyzer has a heat dissipating member that dissipates heat moved to a position away from the container by the heat conducting member.

本発明の攪拌装置は、容器に設ける圧電基板及び圧電基板に形成した電極を有し、液体を攪拌する音波を発生させる音波発生手段と、容器又は圧電基板の音響インピーダンスの不連続面に設けられ、音波発生手段が出射した音波と不連続面で反射した音波との干渉によって発生する熱を容器から離れた位置へ移動させる熱伝導部材とを備え、本発明の自動分析装置は、前記攪拌装置を用いて検体と試薬とを攪拌し、反応液を光学的に分析するので、音波の干渉に起因して音波発生手段の圧電基板内や容器壁内で発生した熱を容器から離れた位置へ移動させ、容器が保持した液体試料への熱的影響を抑制することができるという効果を奏する。   The stirring device of the present invention includes a piezoelectric substrate provided in a container and an electrode formed on the piezoelectric substrate, and is provided on a discontinuous surface of acoustic impedance of the container or the piezoelectric substrate, and a sound wave generating means for generating a sound wave for stirring the liquid. A heat conduction member that moves heat generated by interference between the sound wave emitted by the sound wave generation means and the sound wave reflected by the discontinuous surface to a position away from the container, and the automatic analyzer according to the present invention includes the stirrer Since the sample and reagent are stirred using optical analysis of the reaction solution, the heat generated in the piezoelectric substrate and the container wall of the sound wave generating means due to the interference of sound waves is moved away from the container. There is an effect that it is possible to suppress the thermal influence on the liquid sample held by the container.

(実施の形態1)
以下、本発明の攪拌装置及び自動分析装置にかかる実施の形態1について、図面を参照しつつ詳細に説明する。図1は、本発明の攪拌装置を備えた実施の形態1の自動分析装置を示す概略構成図である。図2は、実施の形態1の自動分析装置及び攪拌装置の構成を示すブロック図である。図3は、実施の形態1の自動分析装置で使用される攪拌装置の表面弾性波素子と、表面弾性波素子を取り付けた反応容器とを示す斜視図である。図4は、表面弾性波素子が取り付けられ、実施の形態1の自動分析装置で使用される反応容器を送電体と共に示す斜視図である。
(Embodiment 1)
Hereinafter, Embodiment 1 concerning the stirring apparatus and automatic analyzer of this invention is demonstrated in detail, referring drawings. FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to Embodiment 1 including a stirring device of the present invention. FIG. 2 is a block diagram illustrating configurations of the automatic analyzer and the agitation device according to the first embodiment. FIG. 3 is a perspective view showing a surface acoustic wave element of the stirring device used in the automatic analyzer of Embodiment 1 and a reaction vessel equipped with the surface acoustic wave element. FIG. 4 is a perspective view showing a reaction vessel together with a power transmission body, to which a surface acoustic wave element is attached and used in the automatic analyzer according to the first embodiment.

自動分析装置1は、図1及び図2に示すように、試薬テーブル2,3、反応テーブル4、検体容器移送機構8、分析光学系12、洗浄機構13、制御部15及び攪拌装置20を備えている。   As shown in FIGS. 1 and 2, the automatic analyzer 1 includes reagent tables 2 and 3, a reaction table 4, a specimen container transfer mechanism 8, an analysis optical system 12, a cleaning mechanism 13, a control unit 15, and a stirring device 20. ing.

試薬テーブル2,3は、図1に示すように、それぞれ周方向に配置される複数の試薬容器2a,3aを保持し、駆動手段に回転されて試薬容器2a,3aを周方向に搬送する。   As shown in FIG. 1, the reagent tables 2 and 3 hold a plurality of reagent containers 2a and 3a arranged in the circumferential direction, respectively, and are rotated by a driving unit to convey the reagent containers 2a and 3a in the circumferential direction.

反応テーブル4は、図1に示すように、複数の反応容器5が周方向に沿って配列されており、試薬テーブル2,3の駆動手段とは異なる駆動手段によって正転或いは逆転されて反応容器5を搬送する。反応テーブル4は、例えば、一周期で時計方向に(1周−1反応容器)/4周回転し、四周期で(1周−1反応容器)周回転する。   As shown in FIG. 1, the reaction table 4 has a plurality of reaction containers 5 arranged in the circumferential direction, and is rotated forward or reverse by a driving means different from the driving means of the reagent tables 2 and 3 to 5 is conveyed. The reaction table 4 rotates, for example, clockwise in one cycle (1 turn-1 reaction vessel) / 4 turns and in 4 cycles (1 turn-1 reaction vessel).

反応容器5は、容量が数nL〜数十μLと微量な容器であり、分析光学系12の発光部12aから出射された分析光に含まれる光の80%以上を透過する透明素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等の合成樹脂が使用される。反応容器5は、図3及び図4に示すように、側壁5a,5bと底壁とによって液体を保持する水平断面が四角形の液体保持部が形成され、液体保持部の上部に開口5cを有する四角筒形状のキュベットである。反応容器5は、側壁5aに取り付けられる表面弾性波素子23と共に攪拌装置20を構成している。反応容器5は、表面弾性波素子23を半径方向外方へ向けて反応テーブル4に配置され、反応テーブル4の近傍に設けた試薬分注機構6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。   The reaction container 5 is a very small container having a capacity of several nL to several tens of μL, and is a transparent material that transmits 80% or more of the light contained in the analysis light emitted from the light emitting unit 12a of the analysis optical system 12, for example, Glasses including heat-resistant glass, synthetic resins such as cyclic olefin and polystyrene are used. As shown in FIGS. 3 and 4, the reaction vessel 5 has a side wall 5a, 5b and a bottom wall to form a liquid holding portion having a quadrangular horizontal section for holding the liquid, and has an opening 5c at the top of the liquid holding portion. It is a square tube-shaped cuvette. The reaction vessel 5 constitutes a stirring device 20 together with the surface acoustic wave element 23 attached to the side wall 5a. The reaction container 5 is disposed on the reaction table 4 with the surface acoustic wave element 23 facing outward in the radial direction, and the reagent containers 2a of the reagent tables 2 and 3 are provided by the reagent dispensing mechanisms 6 and 7 provided in the vicinity of the reaction table 4. , 3a, the reagent is dispensed.

ここで、試薬分注機構6,7は、それぞれ水平面内を矢印方向に回動するアーム6a,7aに試薬を分注するプローブ6b,7bが設けられ、洗浄水によってプローブ6b,7bを洗浄する洗浄手段を有している。   Here, the reagent dispensing mechanisms 6 and 7 are respectively provided with probes 6b and 7b for dispensing reagents on arms 6a and 7a that rotate in the direction of the arrow in a horizontal plane, and wash the probes 6b and 7b with washing water. Has cleaning means.

検体容器移送機構8は、図1に示すように、フィーダ9に配列した複数のラック10を矢印方向に沿って1つずつ移送する移送手段であり、ラック10を歩進させながら移送する。ラック10は、検体を収容した複数の検体容器10aを保持している。ここで、検体容器10aは、検体容器移送機構8によって移送されるラック10の歩進が停止するごとに、水平方向に回動する駆動アーム11aとプローブ11bとを有する検体分注機構11によって検体が各反応容器5へ分注される。このため、検体分注機構11は、洗浄水によってプローブ11bを洗浄する洗浄手段を有している。   As shown in FIG. 1, the sample container transfer mechanism 8 is a transfer unit that transfers a plurality of racks 10 arranged in the feeder 9 one by one along the arrow direction, and transfers the racks 10 while stepping. The rack 10 holds a plurality of sample containers 10a containing samples. Here, the sample container 10a is sampled by the sample dispensing mechanism 11 having the drive arm 11a and the probe 11b that rotate in the horizontal direction each time the step of the rack 10 transferred by the sample container transfer mechanism 8 stops. Is dispensed into each reaction vessel 5. For this reason, the specimen dispensing mechanism 11 has a cleaning means for cleaning the probe 11b with cleaning water.

分析光学系12は、試薬と検体とが反応した反応容器5内の液体を分析するための分析光(340〜800nm)を出射するもので、図1に示すように、発光部12a,分光部12b及び受光部12cを有している。発光部12aから出射された分析光は、反応容器5内の液体を透過し、分光部12bと対向する位置に設けた受光部12cによって受光される。受光部12cは、制御部15と接続され、受光した分析光の光量信号を制御部15へ出力する。   The analysis optical system 12 emits analysis light (340 to 800 nm) for analyzing the liquid in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIG. 12b and a light receiving portion 12c. The analysis light emitted from the light emitting unit 12a passes through the liquid in the reaction vessel 5 and is received by the light receiving unit 12c provided at a position facing the spectroscopic unit 12b. The light receiving unit 12 c is connected to the control unit 15 and outputs a light amount signal of the received analysis light to the control unit 15.

洗浄機構13は、ノズル13aによって反応容器5内の液体を吸引して排出した後、ノズル13aから洗剤や洗浄水等の洗浄液を注入し、吸引する動作を複数回繰り返すことにより、分析光学系12による測光が終了した反応容器5内を洗浄する。   The cleaning mechanism 13 sucks and discharges the liquid in the reaction vessel 5 through the nozzle 13a, and then injects and sucks a cleaning liquid such as a detergent and cleaning water from the nozzle 13a, and repeats the suction operation a plurality of times, whereby the analysis optical system 12 The inside of the reaction vessel 5 in which the photometry is completed is washed.

制御部15は、例えば、マイクロコンピュータ等が使用され、図1及び図2に示すように、自動分析装置1の各構成部と接続されてこれらの作動を制御すると共に、発光部12aの出射光量と受光部12cが受光した光量に基づく反応容器5内の液体の吸光度に基づいて検体の成分濃度等を分析する。制御部15は、キーボード等の入力部16から入力される分析指令に基づいて自動分析装置1の各構成部の作動を制御しながら分析動作を実行させると共に、分析結果や警告情報の他、入力部16から入力される表示指令に基づく各種情報等をディスプレイパネル等の表示部17に表示する。   For example, a microcomputer or the like is used as the control unit 15 and is connected to each component of the automatic analyzer 1 as shown in FIGS. 1 and 2 to control the operation thereof, and the amount of light emitted from the light emitting unit 12a. The component concentration of the specimen is analyzed based on the absorbance of the liquid in the reaction container 5 based on the amount of light received by the light receiving unit 12c. The control unit 15 executes the analysis operation while controlling the operation of each component of the automatic analyzer 1 based on the analysis command input from the input unit 16 such as a keyboard, and inputs the analysis result and warning information as well as the input Various information based on the display command input from the unit 16 is displayed on the display unit 17 such as a display panel.

攪拌装置20は、表面弾性波素子23を駆動して発生する音波によって反応容器5に保持された液体を攪拌するもので、反応容器5の他に、図1及び図2に示すように、送電体21と表面弾性波素子23とを有している。   The stirring device 20 stirs the liquid held in the reaction vessel 5 by sound waves generated by driving the surface acoustic wave element 23. In addition to the reaction vessel 5, as shown in FIGS. It has a body 21 and a surface acoustic wave element 23.

送電体21は、反応テーブル4外周の互いに対向する位置に反応容器5と水平方向に対向させて配置され、数MHz〜数百MHz程度の高周波交流電源から供給される電力を表面弾性波素子23に送電する。送電体21は、駆動回路とコントローラとを備えており、図4に示すように、表面弾性波素子23の電気端子23dに当接するブラシ状の接触子21aを有している。このとき、送電体21は、図1に示すように、配置決定部材22に支持されており、反応テーブル4の回転が停止したときに接触子21aから電気端子23dに電力を送電する。   The power transmission body 21 is disposed in a position facing the reaction vessel 5 in a horizontal direction at positions facing each other on the outer periphery of the reaction table 4, and power supplied from a high frequency AC power source of about several MHz to several hundred MHz is supplied to the surface acoustic wave element 23. Power to. The power transmission body 21 includes a drive circuit and a controller, and has a brush-like contactor 21a that abuts against an electrical terminal 23d of the surface acoustic wave element 23 as shown in FIG. At this time, as shown in FIG. 1, the power transmission body 21 is supported by the arrangement determining member 22, and transmits power from the contactor 21 a to the electrical terminal 23 d when the reaction table 4 stops rotating.

配置決定部材22は、送電体21から電気端子23dに電力を送電する送電時に、送電体21を移動させて送電体21と電気端子23dとの反応テーブル4の周方向並びに半径方向における相対配置を調整するもので、例えば、2軸ステージが使用される。具体的には、配置決定部材22は、反応テーブル4が回転し、送電体21から電気端子23dに電力を送電していない非送電時は作動を停止し、送電体21と電気端子23dとの間を一定の距離に保持している。   The arrangement determining member 22 moves the power transmission body 21 during power transmission to transmit power from the power transmission body 21 to the electric terminal 23d, and thereby arranges the relative arrangement in the circumferential direction and the radial direction of the reaction table 4 between the power transmission body 21 and the electric terminal 23d. For example, a two-axis stage is used. Specifically, the arrangement determining member 22 stops its operation when the reaction table 4 rotates and power is not transmitted from the power transmission body 21 to the electrical terminal 23d, and the operation is stopped between the power transmission body 21 and the electrical terminal 23d. The distance is kept at a certain distance.

そして、反応テーブル4が回転を停止すると、配置決定部材22は、制御部15の制御の下に送電体21を移動させ、送電体21と電気端子23dとが対向するように反応テーブル4の周方向に沿った位置を調整すると共に、相対配置を決定する。これにより、反応テーブル4が回転を停止すると、送電体21は、接触子21aが電気端子23dに接触し、接触子21aから電気端子23dに電力を送電する。   Then, when the reaction table 4 stops rotating, the arrangement determining member 22 moves the power transmission body 21 under the control of the control unit 15, and the circumference of the reaction table 4 is set so that the power transmission body 21 and the electrical terminal 23d face each other. Adjust the position along the direction and determine the relative placement. Thus, when the reaction table 4 stops rotating, the power transmitting body 21 contacts the electrical terminal 23d with the contact 21a, and transmits power from the contact 21a to the electrical terminal 23d.

表面弾性波素子23は、図3及び図5に示すように、例えば、ニオブ酸リチウム(LiNbO3)等からなる圧電基板23aの一方の面に複数の櫛歯状電極(IDT)からなる振動子23bが設けられると共に、バスバー23cの端部に受電手段となる電気端子23dが設けられた音波発生手段である。振動子23bは、送電体21から送電された電力によって音波を発生する。表面弾性波素子23は、振動子23b及び電気端子23dを外側に向け、エポキシ樹脂や紫外線硬化樹脂等の音響整合層を介して反応容器5の側壁5aに取り付けられる。   As shown in FIGS. 3 and 5, the surface acoustic wave element 23 includes, for example, a vibrator 23b made of a plurality of comb-like electrodes (IDT) on one surface of a piezoelectric substrate 23a made of lithium niobate (LiNbO3) or the like. And a sound wave generating means in which an electric terminal 23d as a power receiving means is provided at the end of the bus bar 23c. The vibrator 23 b generates sound waves by the power transmitted from the power transmission body 21. The surface acoustic wave element 23 is attached to the side wall 5a of the reaction vessel 5 through an acoustic matching layer such as an epoxy resin or an ultraviolet curable resin with the vibrator 23b and the electric terminal 23d facing outward.

このとき、表面弾性波素子23は、図5に示すように、圧電基板23aの端面23eに熱伝導部材24が設けられている。ここで、端面23eは、圧電基板23a内を伝搬する音波の伝搬方向における音響インピーダンスの不連続面である。   At this time, as shown in FIG. 5, the surface acoustic wave element 23 is provided with a heat conducting member 24 on the end face 23e of the piezoelectric substrate 23a. Here, the end surface 23e is a discontinuous surface of acoustic impedance in the propagation direction of the sound wave propagating in the piezoelectric substrate 23a.

熱伝導部材24は、表面弾性波素子23が出射した音波と端面23eで反射した音波との干渉によって発生する熱を反応容器5から離れた位置へ移動させる部材であり、例えば、金属微粒子を混入した合成樹脂が使用される。このとき、熱伝導部材24は、図5に示すように、反応容器5から離れた端部が、自動分析装置1を構成する機体、例えば、反応テーブル4に形成したブラケット4aに接続されている。ブラケット4aは、熱伝導部材24によって反応容器5から離れた位置へ移動された熱を放熱する放熱部材である。   The heat conducting member 24 is a member that moves the heat generated by the interference between the sound wave emitted from the surface acoustic wave element 23 and the sound wave reflected by the end face 23e to a position away from the reaction vessel 5, for example, mixed with metal fine particles The synthetic resin used is used. At this time, as shown in FIG. 5, the end portion of the heat conducting member 24 that is away from the reaction vessel 5 is connected to a machine body constituting the automatic analyzer 1, for example, a bracket 4 a formed on the reaction table 4. . The bracket 4 a is a heat radiating member that radiates heat moved to a position away from the reaction vessel 5 by the heat conducting member 24.

以上のように構成される自動分析装置1は、制御部15の制御の下に作動し、回転する反応テーブル4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注機構6,7が試薬容器2a,3aから試薬を順次分注する。試薬が分注された反応容器5は、検体分注機構11によってラック10に保持された複数の検体容器10aから検体が順次分注される。   The automatic analyzer 1 configured as described above operates under the control of the control unit 15, and the reagent dispensing mechanism 6 is supplied to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating reaction table 4. , 7 sequentially dispenses the reagents from the reagent containers 2a, 3a. In the reaction container 5 into which the reagent has been dispensed, the specimen is dispensed sequentially from the plurality of specimen containers 10 a held in the rack 10 by the specimen dispensing mechanism 11.

そして、試薬と検体が分注された反応容器5は、反応テーブル4が停止する都度、攪拌装置20によって順次攪拌されて試薬と検体とが反応し、反応テーブル4が再び回転したときに分析光学系12を通過する。このとき、反応容器5内の反応液は、受光部12cで測光され、制御部15によって成分濃度等が分析される。そして、反応液の測光が終了した反応容器5は、洗浄機構13によって洗浄された後、再度検体の分析に使用される。   Then, each time the reaction table 4 stops, the reaction container 5 into which the reagent and the sample have been dispensed is sequentially stirred by the stirring device 20 so that the reagent and the sample react, and the reaction table 4 rotates again. Pass through system 12. At this time, the reaction solution in the reaction vessel 5 is photometrically measured by the light receiving unit 12c, and the concentration of the component is analyzed by the control unit 15. Then, after the photometry of the reaction liquid is completed, the reaction container 5 is washed by the washing mechanism 13 and then used again for analyzing the specimen.

このとき、攪拌装置20は、送電体21から電力を送電して表面弾性波素子23を駆動すると、図6に示すように、振動子23bの発生した音波(バルク波)が圧電基板23a及び側壁5aを伝搬して反応容器5に保持された液体試料Ls中へ入射し、液体試料Ls中に音響流を発生させて液体試料Lsを攪拌する。   At this time, when the stirring device 20 transmits power from the power transmission body 21 and drives the surface acoustic wave element 23, as shown in FIG. 6, the sound wave (bulk wave) generated by the vibrator 23b is transmitted to the piezoelectric substrate 23a and the side wall. The liquid sample Ls propagates through 5a and enters the liquid sample Ls held in the reaction vessel 5, and an acoustic stream is generated in the liquid sample Ls to stir the liquid sample Ls.

この場合、振動子23bが発生した音波(バルク波)には、反射しながら圧電基板23a内を伝搬する音波WbA、反射しながら側壁5a内を伝搬する音波WbB及び液体試料Ls中へ入射する音波WbCがある。これらの音波のうち、音波WbCのみが液体試料Lsの攪拌に寄与し、音波WbA,WbBは圧電基板23a内及び側壁5a内を多重反射しながら伝搬することで減衰してゆく。なお、図6に示す攪拌装置20は、圧電基板23aと側壁5aとの間に配置される音響整合層を省略しており、以下の説明で使用する他の図面においても音響整合層を省略している。   In this case, the sound wave (bulk wave) generated by the vibrator 23b includes a sound wave WbA that propagates in the piezoelectric substrate 23a while being reflected, a sound wave WbB that propagates in the side wall 5a while being reflected, and a sound wave that enters the liquid sample Ls. There is WbC. Of these sound waves, only the sound wave WbC contributes to the stirring of the liquid sample Ls, and the sound waves WbA and WbB are attenuated by propagating through the piezoelectric substrate 23a and the side wall 5a while being subjected to multiple reflections. 6 omits an acoustic matching layer disposed between the piezoelectric substrate 23a and the side wall 5a, and omits the acoustic matching layer in other drawings used in the following description. ing.

このとき、図6に示すように、振動子23bが発生した音波(バルク波)のうち反射しながら圧電基板23a内を伝搬する音波WbAは、音響インピーダンスの不連続面となる端面23eで反射する。このため、図7に示すように、圧電基板23a内を反射しながら伝搬する音波WbAと端面24eで反射した反射音波WbARとが干渉する結果、音波WbA,WbARの伝搬経路上にある圧電基板23aの領域Aiが発熱する。   At this time, as shown in FIG. 6, the sound wave WbA propagating in the piezoelectric substrate 23a while being reflected among the sound waves (bulk waves) generated by the vibrator 23b is reflected by the end face 23e serving as a discontinuous surface of the acoustic impedance. . For this reason, as shown in FIG. 7, as a result of interference between the sound wave WbA that propagates while reflecting in the piezoelectric substrate 23a and the reflected sound wave WbAR reflected by the end face 24e, the piezoelectric substrate 23a on the propagation path of the sound waves WbA and WbAR. The area Ai generates heat.

しかし、本発明の攪拌装置20は、図5〜図7に示すように、圧電基板23aの上下の端面23eに熱伝導部材24が設けられている。このため、攪拌装置20は、図7に示すように、上部の端面23eに近い領域Aiが発熱しても、この熱を熱伝導部材24が、図6及び図7に矢印で示すようにブラケット4aを介して反応テーブル4へ移動させ、反応容器5側へは移動させない。これは、下部の端面23eに近い領域が発熱した場合も同じである。   However, in the stirring device 20 of the present invention, as shown in FIGS. 5 to 7, the heat conducting member 24 is provided on the upper and lower end surfaces 23 e of the piezoelectric substrate 23 a. For this reason, as shown in FIG. 7, the agitator 20 generates heat in the region Ai close to the upper end face 23e as shown in FIG. It moves to the reaction table 4 through 4a, and does not move to the reaction vessel 5 side. This is the same when the region near the lower end face 23e generates heat.

この結果、自動分析装置1は、攪拌装置20を使用することによって、反応容器5に保持された液体試料Lsへの熱的影響を抑制することができるので、温度上昇に伴う液体試料Lsの変性を回避することができ、検体の分析精度が向上する。   As a result, since the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5 by using the stirring device 20, the denaturation of the liquid sample Ls accompanying the temperature rise. Can be avoided, and the analysis accuracy of the specimen is improved.

(変形例1)
ここで、攪拌装置20は、表面弾性波素子23を反応容器5の底壁に取り付けても液体試料を攪拌することができる。この場合、熱伝導部材24は、図8に示すように、圧電基板23aの長手方向両側の端面23eに設ける。
(Modification 1)
Here, the stirring device 20 can stir the liquid sample even when the surface acoustic wave element 23 is attached to the bottom wall of the reaction vessel 5. In this case, the heat conducting member 24 is provided on the end faces 23e on both sides in the longitudinal direction of the piezoelectric substrate 23a as shown in FIG.

このようにしても、攪拌装置20は、圧電基板23a内を伝搬してくる音波WbAと、端面23eで反射した音波との干渉によって生じた熱を熱伝導部材24によって反応容器5から離れた位置へ移動させ、反応容器5が保持した液体試料Lsへの熱的影響を抑制することができる。   Even in this case, the stirring device 20 is located at a position away from the reaction vessel 5 by the heat conducting member 24 due to the interference between the sound wave WbA propagating in the piezoelectric substrate 23a and the sound wave reflected by the end face 23e. The thermal influence on the liquid sample Ls held by the reaction vessel 5 can be suppressed.

ここで、圧電基板23aは、予め音響インピーダンスの不連続面となる端面23eに薬品による化学的処理やサンドブラスト等の物理的処理を施すことによって乱反射面に加工しておくと、伝搬してくる音波と乱反射した音波との干渉による発熱領域がより端面23eに近くなり、熱伝導部材24による熱の移動、従って液体試料への熱的影響の抑制がより容易になる。これは、反応容器5における音響インピーダンスの不連続面となる側壁5aと底壁の端面に対しても当てはまり、以下に説明する各実施の形態においても同様である。   Here, if the piezoelectric substrate 23a is processed into an irregular reflection surface by subjecting the end surface 23e, which is a discontinuous surface of acoustic impedance, to chemical treatment with chemicals or physical treatment such as sandblasting in advance, the sound wave that propagates. The heat generation region due to the interference between the sound wave and the irregularly reflected sound wave is closer to the end surface 23e, and it becomes easier to suppress the movement of heat by the heat conducting member 24 and hence the thermal influence on the liquid sample. This also applies to the side wall 5a and the end surface of the bottom wall, which are discontinuous surfaces of the acoustic impedance in the reaction vessel 5, and the same applies to each embodiment described below.

また、実施の形態1の攪拌装置は、表面弾性波素子23が出射する音波としてバルク波を使用する場合について説明した。しかし、攪拌装置は、振動子23bを側壁5aに向けて表面弾性波素子23を反応容器5に取り付け、表面弾性波(SAW)によって反応容器5が保持した液体試料Lsを攪拌すると共に、熱伝導部材24によって音波の干渉に起因した熱を移動させ、反応容器5が保持した液体試料Lsへの熱的影響を抑制してもよい。   Moreover, the stirring apparatus of Embodiment 1 demonstrated the case where a bulk wave was used as a sound wave which the surface acoustic wave element 23 radiate | emits. However, the stirring device attaches the surface acoustic wave element 23 to the reaction vessel 5 with the vibrator 23b facing the side wall 5a, stirs the liquid sample Ls held in the reaction vessel 5 by surface acoustic waves (SAW), and conducts heat. The member 24 may move the heat caused by the sound wave interference to suppress the thermal influence on the liquid sample Ls held by the reaction vessel 5.

(実施の形態2)
次に、本発明の攪拌装置及び自動分析装置にかかる実施の形態2について、図面を参照しつつ詳細に説明する。実施の形態1の攪拌装置は、熱伝導部材を表面弾性波素子に設けたが、実施の形態2の攪拌装置は、熱伝導部材を反応容器の外壁に設けている。図9は、実施の形態2の自動分析装置で使用される攪拌装置の表面弾性波素子、表面弾性波素子を取り付けた反応容器及び熱伝導部材を示す断面図である。図10は、図9に示す反応容器に設けた熱伝導部材による熱の移動を説明する要部を拡大して示す断面図である。ここで、以下に説明する各実施の形態の自動分析装置及び攪拌装置は、実施の形態1の自動分析装置1及び攪拌装置20と基本構成が同じのものを使用するので、同じ構成要素には同じ符号を使用し、重複した説明を省略している。
(Embodiment 2)
Next, a second embodiment of the stirring device and the automatic analyzer according to the present invention will be described in detail with reference to the drawings. In the stirring device of the first embodiment, the heat conduction member is provided in the surface acoustic wave element, but in the stirring device of the second embodiment, the heat conduction member is provided on the outer wall of the reaction vessel. FIG. 9 is a cross-sectional view showing a surface acoustic wave device, a reaction vessel equipped with the surface acoustic wave device, and a heat conducting member of the stirring device used in the automatic analyzer according to the second embodiment. FIG. 10 is an enlarged cross-sectional view showing a main part for explaining the heat transfer by the heat conducting member provided in the reaction vessel shown in FIG. Here, since the automatic analyzer and the stirrer of each embodiment described below use the same basic configuration as the automatic analyzer 1 and the stirrer 20 of the first embodiment, the same components are used. The same reference numerals are used, and duplicate descriptions are omitted.

実施の形態2の自動分析装置で使用される攪拌装置25は、図9及び図10に示すように、表面弾性波素子23を反応容器5の側壁5aに設けると共に、側壁5aの下部から底壁に亘る範囲に熱伝導部材24を設けている。熱伝導部材24は、図10に示すように、反応容器5から離れた端部が、例えば、反応テーブル4に形成した放熱用のブラケット4aに接続されている。   As shown in FIGS. 9 and 10, the stirrer 25 used in the automatic analyzer of the second embodiment is provided with the surface acoustic wave element 23 on the side wall 5a of the reaction vessel 5, and from the bottom of the side wall 5a to the bottom wall. The heat conducting member 24 is provided in a range extending over. As shown in FIG. 10, the heat conducting member 24 is connected to a heat radiating bracket 4 a formed on the reaction table 4 at the end away from the reaction vessel 5, for example.

このため、攪拌装置25は、反応容器5の側壁5a内を伝搬してくる音波WbBと、側壁5a下部の端面で反射した音波との干渉によって生じた熱を、熱伝導部材24が図10に矢印で示すようにブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置25を使用することによって、反応容器5に保持された液体試料Lsへの熱的影響を抑制することができるので、温度上昇に伴う液体試料Lsの変性を回避することができ、検体の分析精度が向上する。   For this reason, in the stirring device 25, heat generated by the interference between the sound wave WbB propagating in the side wall 5a of the reaction vessel 5 and the sound wave reflected by the end face of the lower side wall 5a is shown in FIG. As indicated by an arrow, the reaction table 4 is moved through the bracket 4a. As a result, since the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5 by using the stirring device 25, the denaturation of the liquid sample Ls accompanying the temperature rise. Can be avoided, and the analysis accuracy of the specimen is improved.

ここで、攪拌装置25は、表面弾性波素子23を反応容器5の底壁に取り付けても液体試料を攪拌することができる。この場合、熱伝導部材24は、振動子23bの並び方向両側に位置する底壁から側壁5a下部に亘る面に設ける。   Here, the stirring device 25 can stir the liquid sample even when the surface acoustic wave element 23 is attached to the bottom wall of the reaction vessel 5. In this case, the heat conducting member 24 is provided on the surface extending from the bottom wall located on both sides of the vibrator 23b in the arrangement direction to the lower portion of the side wall 5a.

(変形例1)
ここで、攪拌装置25は、図11及び図12に示すように、圧電基板23aを設けた側壁5aの上部に熱伝導部材24を設けてもよい。この場合、熱伝導部材24は、図11に示すように、反応容器5から離れた端部を放熱用のブラケット4aに接続する。
(Modification 1)
Here, as shown in FIG.11 and FIG.12, the stirring apparatus 25 may provide the heat conductive member 24 in the upper part of the side wall 5a which provided the piezoelectric substrate 23a. In this case, as shown in FIG. 11, the heat conducting member 24 connects the end portion away from the reaction vessel 5 to the heat radiating bracket 4a.

このとき、攪拌装置25は、表面弾性波素子23が出射した音波のうち、図12に示すように、反射しながら側壁5a内を上方へ伝搬する音波WbBが側壁5aの上端面で反射され、反射した音波が上方へ伝搬する音波WbBと干渉して側壁5aの上端面近傍が発熱する。しかし、攪拌装置25は、側壁5aの上部に熱伝導部材24を設けたので、発生した熱を熱伝導部材24が矢印で示すようにブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置25を使用することによって、反応容器5に保持された液体試料Lsへの熱的影響を抑制することができる。   At this time, among the sound waves emitted from the surface acoustic wave element 23, the stirring device 25 reflects the sound wave WbB propagating upward in the side wall 5a while being reflected by the upper end surface of the side wall 5a, as shown in FIG. The reflected sound wave interferes with the sound wave WbB propagating upward, and the vicinity of the upper end surface of the side wall 5a generates heat. However, since the heat conduction member 24 is provided in the upper part of the side wall 5a, the stirring device 25 moves the generated heat to the reaction table 4 via the bracket 4a as indicated by an arrow. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5 by using the stirring device 25.

(変形例2)
また、攪拌装置25は、図13に示すように、振動子23bを側壁5aに向けて表面弾性波素子23を反応容器5に取り付け、表面弾性波(SAW)によって反応容器5が保持した液体試料Lsを攪拌してもよい。この場合、攪拌装置25は、反応容器5の側壁5aの上部と下部に熱伝導部材24を設け、熱伝導部材24の端部を放熱用のブラケット4aに接続する。
(Modification 2)
Further, as shown in FIG. 13, the stirring device 25 has a liquid sample held in the reaction vessel 5 by surface acoustic waves (SAW) by attaching the surface acoustic wave element 23 to the reaction vessel 5 with the vibrator 23b facing the side wall 5a. Ls may be stirred. In this case, the stirring device 25 is provided with the heat conducting member 24 at the upper and lower portions of the side wall 5a of the reaction vessel 5, and the end of the heat conducting member 24 is connected to the heat radiating bracket 4a.

このとき、攪拌装置25は、表面弾性波(SAW)によって液体試料Lsを攪拌する際、反射しながら側壁5a内を伝搬する音波WaBと側壁5aの上下の端面で反射した音波とが干渉して上下の端面近傍で側壁5aが発熱する。しかし、攪拌装置25は、側壁5aの上部と下部に熱伝導部材24を設けたので、発生した熱を熱伝導部材24がブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置25を使用することによって、反応容器5に保持された液体試料Lsへの熱的影響を抑制することができる。   At this time, when the agitating device 25 agitates the liquid sample Ls by surface acoustic waves (SAW), the sound wave WaB propagating through the side wall 5a while being reflected interferes with the sound wave reflected by the upper and lower end surfaces of the side wall 5a. The side wall 5a generates heat near the upper and lower end faces. However, since the stirring device 25 is provided with the heat conducting member 24 at the upper and lower portions of the side wall 5a, the heat conducting member 24 moves the generated heat to the reaction table 4 via the bracket 4a. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5 by using the stirring device 25.

(実施の形態3)
次に、本発明の攪拌装置及び自動分析装置にかかる実施の形態3について、図面を参照しつつ詳細に説明する。実施の形態2の攪拌装置は、熱伝導部材を反応容器に直接設けたが、実施の形態3の攪拌装置は、熱伝導部材を反応容器に形成した誘導部に設けている。図14は、実施の形態3の自動分析装置で使用される攪拌装置の表面弾性波素子、表面弾性波素子を取り付けた反応容器及び熱伝導部材を示す断面図である。
(Embodiment 3)
Next, a third embodiment of the stirring device and the automatic analyzer according to the present invention will be described in detail with reference to the drawings. In the stirring device of the second embodiment, the heat conduction member is directly provided in the reaction vessel, but in the stirring device of the third embodiment, the heat conduction member is provided in the induction portion formed in the reaction vessel. FIG. 14 is a cross-sectional view showing a surface acoustic wave element, a reaction vessel to which the surface acoustic wave element is attached, and a heat conduction member of the stirring device used in the automatic analyzer according to the third embodiment.

実施の形態3の自動分析装置で使用される攪拌装置30は、図14に示す反応容器5Aを使用する。反応容器5Aは、表面弾性波素子23を取り付けた側壁5a下部に側壁5aから外方へ突出する突縁状の誘導部5eが設けられ、誘導部5eの外面に熱伝導部材24が設けられている。熱伝導部材24は、反応容器5Aから離れた端部が放熱用のブラケット4aに接続されている。また、反応容器5Aは、底面部材51によって底壁が形成されている。   The stirring device 30 used in the automatic analyzer of the third embodiment uses a reaction vessel 5A shown in FIG. The reaction vessel 5A is provided with a rim-shaped guiding portion 5e protruding outward from the side wall 5a at the lower portion of the side wall 5a to which the surface acoustic wave element 23 is attached, and a heat conducting member 24 is provided on the outer surface of the guiding portion 5e. Yes. The heat conducting member 24 is connected to the heat radiating bracket 4a at the end away from the reaction vessel 5A. Further, the bottom wall of the reaction vessel 5 </ b> A is formed by the bottom surface member 51.

ここで、誘導部5eは、側壁5a内を伝搬する音波WbB(図15参照)を反応容器5Aから遠ざかる方向へ導く突出部であり、側壁5aと同じ素材から成形されている。底面部材51は、外方に向かって低くなる傾斜面が周囲に形成された四角形状の板材であり、側壁5aの下部に接着層52によって接着されている。   Here, the guiding portion 5e is a protruding portion that guides the sound wave WbB (see FIG. 15) propagating in the side wall 5a in a direction away from the reaction vessel 5A, and is formed from the same material as the side wall 5a. The bottom surface member 51 is a quadrangular plate member having an inclined surface that is lowered outward, and is bonded to the lower portion of the side wall 5a by an adhesive layer 52.

このとき、反応容器5Aは、誘導部5e,底面部材51,接着層52の音響インピーダンスをそれぞれZ1,Z2,Z3とし、音波の波長をλ、接着層52の厚さをLとしたとき、音響インピーダンスZ1,Z2,Z3がそれぞれ次式の関係を満たすように設定する。   At this time, the reaction vessel 5A has acoustic impedances Z1, Z2, and Z3 of the guiding portion 5e, the bottom member 51, and the adhesive layer 52, λ is the wavelength of the sound wave, and L is the thickness of the adhesive layer 52. Impedances Z1, Z2, and Z3 are set so as to satisfy the following relationship.

Z3≠(Z1+Z2)/2
Z1<Z2<Z3, 又はZ3<Z1<Z2, 又はZ2<Z1<Z3, 又はZ3<Z2<Z1
L≠(λ/2)・n (nは自然数)
Z3 ≠ (Z1 + Z2) / 2
Z1 <Z2 <Z3, or Z3 <Z1 <Z2, or Z2 <Z1 <Z3, or Z3 <Z2 <Z1
L ≠ (λ / 2) · n (n is a natural number)

但し、誘導部5eと底面部材51は、同一素材であってもよいので、音響インピーダンスZ1,Z2,Z3は以下の式を満たせばよい。   However, since the induction | guidance | derivation part 5e and the bottom face member 51 may be the same raw material, the acoustic impedances Z1, Z2, and Z3 should just satisfy | fill the following formula | equation.

Z1=Z2<Z3, 又はZ3<Z1=Z2 Z1 = Z2 <Z3, or Z3 <Z1 = Z2

音響インピーダンスZ1,Z2,Z3を以上のように設定すると、接着層52は、誘導部5eと底面部材51との間で音響インピーダンスが不連続となる音響インピーダンスの境界部となり、側壁5a内を伝搬する音波WbBを反射して反応容器5Aから遠ざかる誘導部5eへと導くことができる。   When the acoustic impedances Z1, Z2, and Z3 are set as described above, the adhesive layer 52 becomes a boundary portion of the acoustic impedance where the acoustic impedance becomes discontinuous between the guiding portion 5e and the bottom surface member 51, and propagates in the side wall 5a. The reflected sound wave WbB can be reflected and guided to the guiding portion 5e moving away from the reaction vessel 5A.

従って、反応容器5Aを使用した攪拌装置30においては、表面弾性波素子23が出射した音波のうち、図15に示すように、反射しながら側壁5a内を伝搬する音波WbBは、音響インピーダンスの相違によって接着層52の表面で反射され、反応容器5Aから遠ざかる誘導部5eへと伝搬する。このようにして誘導部5eへ伝搬した音波WbBは、誘導部5eの端面に到達すると反射し、誘導部5eへ伝搬してくる音波WbBと干渉する。これにより、反応容器5Aは、誘導部5e内の端面近傍が発熱する。   Therefore, in the stirring device 30 using the reaction vessel 5A, among the sound waves emitted from the surface acoustic wave element 23, the sound wave WbB propagating in the side wall 5a while reflecting is different in acoustic impedance as shown in FIG. Is reflected on the surface of the adhesive layer 52 and propagates to the guiding portion 5e moving away from the reaction vessel 5A. The sound wave WbB propagated to the guiding part 5e in this way is reflected when reaching the end face of the guiding part 5e, and interferes with the sound wave WbB propagating to the guiding part 5e. Thereby, as for reaction container 5A, the end surface vicinity in the guidance | induction part 5e heat | fever-generates.

しかし、攪拌装置30は、誘導部5eの外面に熱伝導部材24が設けられている。このため、攪拌装置30は、発生した熱を熱伝導部材24がブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置30を使用することによって、反応容器5に保持された液体試料Lsへの熱的影響を抑制することができる。   However, the stirring device 30 is provided with the heat conducting member 24 on the outer surface of the guiding portion 5e. For this reason, in the stirring device 30, the heat conduction member 24 moves the generated heat to the reaction table 4 via the bracket 4a. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5 by using the stirring device 30.

(変形例1)
ここで、攪拌装置30で使用する反応容器は、図16に示す反応容器5Bのように、2つの側壁5aの下部に誘導部53を設け、表面弾性波素子23を設けた側壁5a側に位置する誘導部53の外面に熱伝導部材24を設けてもよい。このとき、熱伝導部材24は、反応容器5Bから離れた端部が放熱用のブラケット4aに接続されている。誘導部53は、側壁5a内を伝搬する音波WbB(図17参照)を反応容器5Bから遠ざかる方向へ導く部材であり、斜めに切断した接着面53aが一方に形成されている。また、反応容器5Bは、底壁5dの側面に接着面53aに対応して傾斜させた傾斜面5fが形成されている。反応容器5Bは、傾斜面5fと接着面53aとの間が接着層54によって接着されている。
(Modification 1)
Here, the reaction vessel used in the stirring device 30 is located on the side of the side wall 5a where the guiding portion 53 is provided below the two side walls 5a and the surface acoustic wave element 23 is provided, as in the reaction vessel 5B shown in FIG. The heat conducting member 24 may be provided on the outer surface of the guiding portion 53 to be performed. At this time, the end portion of the heat conducting member 24 away from the reaction vessel 5B is connected to the heat radiating bracket 4a. The guiding portion 53 is a member that guides the sound wave WbB (see FIG. 17) propagating in the side wall 5a in a direction away from the reaction vessel 5B, and has an adhesive surface 53a cut obliquely on one side. In addition, the reaction vessel 5B is formed with an inclined surface 5f inclined on the side surface of the bottom wall 5d corresponding to the bonding surface 53a. In the reaction vessel 5B, the inclined surface 5f and the bonding surface 53a are bonded by the bonding layer 54.

このとき、反応容器5Bは、側壁5a,誘導部53,接着層54の音響インピーダンスをそれぞれZ1,Z4,Z3とし、音波の波長をλ、接着層54の厚さをLとしたとき、音響インピーダンスZ1,Z2,Z3がそれぞれ次式の関係を満たすように設定する。   At this time, the reaction container 5B has acoustic impedances when the acoustic impedances of the side wall 5a, the guiding portion 53, and the adhesive layer 54 are Z1, Z4, and Z3, the wavelength of the sound wave is λ, and the thickness of the adhesive layer 54 is L, respectively. Z1, Z2, and Z3 are set so as to satisfy the following relationship.

Z3=(Z1+Z4)/2
L=(λ/2)・n (nは自然数)
Z3 = (Z1 + Z4) / 2
L = (λ / 2) · n (n is a natural number)

音響インピーダンスZ1,Z2,Z3を以上のように設定すると、接着層54は、側壁5aと誘導部53との間で音響インピーダンスが不連続となる音響インピーダンスの境界部となり、側壁5a内を伝搬する音波WbBを透過して反応容器5Bから遠ざかる方向へ導くことができる。   When the acoustic impedances Z1, Z2, and Z3 are set as described above, the adhesive layer 54 becomes a boundary portion of the acoustic impedance where the acoustic impedance is discontinuous between the side wall 5a and the guiding portion 53, and propagates in the side wall 5a. The sound wave WbB can be transmitted and guided away from the reaction vessel 5B.

以上のように設定することにより、反応容器5Bを使用した攪拌装置30においては、表面弾性波素子23が出射した音波のうち、図17に示すように、反射しながら側壁5a内を伝搬する音波WbBは、音響インピーダンスの相違によって接着層54を透過し、反応容器5Bから遠ざかる誘導部53へと伝搬する。このようにして誘導部53へ伝搬した音波WbBは、誘導部53の外面に到達すると反射し、誘導部53へ伝搬してくる音波WbBと干渉する。これにより、反応容器5Bは、誘導部53内の端面近傍が発熱する。   By setting as described above, in the stirring device 30 using the reaction vessel 5B, among the sound waves emitted from the surface acoustic wave element 23, as shown in FIG. 17, the sound waves propagating in the side wall 5a while being reflected. WbB passes through the adhesive layer 54 due to the difference in acoustic impedance, and propagates to the guiding portion 53 that moves away from the reaction vessel 5B. The sound wave WbB propagated to the guiding part 53 in this way is reflected when reaching the outer surface of the guiding part 53 and interferes with the sound wave WbB propagating to the guiding part 53. Thereby, as for reaction container 5B, the end surface vicinity in the induction | guidance | derivation part 53 heat | fever-generates.

しかし、反応容器5Bを使用した攪拌装置30は、誘導部53の外面に熱伝導部材24が設けられている。このため、攪拌装置30は、発生した熱を熱伝導部材24がブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置30を使用することによって、反応容器5Bに保持された液体試料Lsへの熱的影響を抑制することができる。   However, the stirring device 30 using the reaction vessel 5 </ b> B is provided with the heat conducting member 24 on the outer surface of the guiding portion 53. For this reason, in the stirring device 30, the heat conduction member 24 moves the generated heat to the reaction table 4 via the bracket 4a. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5B by using the stirring device 30.

(変形例2)
また、攪拌装置30で使用する反応容器は、図18に示す反応容器5Cのように、誘導部5eと底壁5dとの間に半円形の溝からなる凹部5gを設けてもよい。反応容器5Cは、凹部5gが音響インピーダンスの境界部となって、反射しながら側壁5a内を伝搬する音波WbB(図19参照)を反射して反応容器5Cから遠ざかる誘導部5eへ導く。
(Modification 2)
Moreover, the reaction container used with the stirring apparatus 30 may provide the recessed part 5g which consists of a semicircular groove | channel between the guidance | induction part 5e and the bottom wall 5d like reaction container 5C shown in FIG. In the reaction vessel 5C, the concave portion 5g serves as an acoustic impedance boundary, and the reflected sound wave WbB (see FIG. 19) propagating in the side wall 5a is reflected and guided to the guiding portion 5e moving away from the reaction vessel 5C.

従って、反応容器5Cを使用した攪拌装置30においては、表面弾性波素子23が出射した音波のうち、図19に示すように、反射しながら側壁5a内を伝搬する音波WbBは、音響インピーダンスの相違によって凹部5gで反射し、反応容器5Cから遠ざかる誘導部5eへと伝搬する。このようにして誘導部5eへ伝搬した音波WbBは、誘導部5eの外面に到達すると反射し、誘導部5eへ伝搬してくる音波WbBと干渉する。これにより、反応容器5Aは、誘導部5e内の端面近傍が発熱する。   Therefore, in the stirring device 30 using the reaction vessel 5C, among the sound waves emitted from the surface acoustic wave element 23, the sound wave WbB propagating in the side wall 5a while reflecting is different in acoustic impedance as shown in FIG. Is reflected by the concave portion 5g and propagates to the guiding portion 5e moving away from the reaction vessel 5C. The sound wave WbB propagated to the guiding part 5e in this way is reflected when reaching the outer surface of the guiding part 5e, and interferes with the sound wave WbB propagating to the guiding part 5e. Thereby, as for reaction container 5A, the end surface vicinity in the guidance | induction part 5e heat | fever-generates.

しかし、攪拌装置30は、誘導部5eの外面に熱伝導部材24が設けられている。このため、攪拌装置30は、発生した熱を熱伝導部材24がブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置30を使用することによって、反応容器5Cに保持された液体試料Lsへの熱的影響を抑制することができる。   However, the stirring device 30 is provided with the heat conducting member 24 on the outer surface of the guiding portion 5e. For this reason, in the stirring device 30, the heat conduction member 24 moves the generated heat to the reaction table 4 via the bracket 4a. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5C by using the stirring device 30.

ここで、反応容器5Cは、音響インピーダンスの境界部として音波の反射端面となれば、半円形の溝からなる凹部5gに代えて、図20に示すように、誘導部5eと底壁5dとの間に断面形状三角形の溝からなる凹部5hを設けてもよい。この場合、凹部5hの斜面で反射し、反応容器5Cから遠ざかる誘導部5eへ伝搬した音波WbBは、誘導部5eの外面に到達すると反射し、誘導部5eへ伝搬してくる音波WbBと干渉する。これにより、反応容器5Aは、誘導部5e内の端面近傍が発熱する。   Here, if the reaction vessel 5C becomes a reflection end face of the sound wave as a boundary portion of the acoustic impedance, the reaction vessel 5C is replaced with a concave portion 5g made of a semicircular groove, as shown in FIG. 20, between the guiding portion 5e and the bottom wall 5d. You may provide the recessed part 5h which consists of a groove | channel of a cross-sectional shape triangle between them. In this case, the sound wave WbB reflected by the inclined surface of the recess 5h and propagated to the guiding part 5e moving away from the reaction vessel 5C is reflected when reaching the outer surface of the guiding part 5e and interferes with the sound wave WbB propagating to the guiding part 5e. . Thereby, as for reaction container 5A, the end surface vicinity in the guidance | induction part 5e heat | fever-generates.

しかし、この熱は、誘導部5eの外面に設けた熱伝導部材24がブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置30を使用することによって、反応容器5Cに保持された液体試料Lsへの熱的影響を抑制することができる。   However, this heat is transferred to the reaction table 4 via the bracket 4a by the heat conducting member 24 provided on the outer surface of the guiding portion 5e. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5C by using the stirring device 30.

また、実施の形態3の攪拌装置は、表面弾性波素子23が出射する音波としてバルク波を使用する場合について説明したが、振動子23bを側壁5aに向けて表面弾性波素子23を反応容器5に取り付け、表面弾性波(SAW)によって反応容器5が保持した液体試料Lsを攪拌すると共に、熱伝導部材24によって音波を吸収することで反応容器5Cの音波の干渉による発熱を抑制してもよい。   Moreover, although the stirring apparatus of Embodiment 3 demonstrated the case where a bulk wave was used as the sound wave which the surface acoustic wave element 23 radiate | emits, the surface acoustic wave element 23 is made the reaction container 5 toward the side wall 5a. The liquid sample Ls held by the reaction vessel 5 is agitated by surface acoustic waves (SAW), and the heat conduction member 24 absorbs the sound wave to suppress the heat generation due to the sound wave interference of the reaction vessel 5C. .

(実施の形態4)
次に、本発明の攪拌装置及び自動分析装置にかかる実施の形態4について、図面を参照しつつ詳細に説明する。実施の形態1〜3の攪拌装置は、音波発生手段として表面弾性波素子を使用したが、実施の形態4の攪拌装置は、音波発生手段として厚み縦振動子を使用している。図21は、実施の形態4の自動分析装置で使用される攪拌装置の厚み縦振動子、厚み縦振動子を取り付けた反応容器及び熱伝導部材を示す断面図である。
(Embodiment 4)
Next, a fourth embodiment of the stirring device and the automatic analyzer according to the present invention will be described in detail with reference to the drawings. Although the stirrers of Embodiments 1 to 3 use surface acoustic wave elements as sound wave generating means, the stirrer of Embodiment 4 uses a thickness longitudinal vibrator as sound wave generating means. FIG. 21 is a cross-sectional view showing a thickness vertical vibrator, a reaction vessel to which the thickness vertical vibrator is attached, and a heat conduction member of the stirring device used in the automatic analyzer according to the fourth embodiment.

実施の形態4の自動分析装置で使用される攪拌装置40は、図21に示すように、実施の形態1と同じ反応容器5を使用し、側壁5aの上部に熱伝導部材24を設けると共に、表面弾性波素子23に代えて、側壁5aの下部に楔41を介して厚み縦振動子42を配置している。このとき、熱伝導部材24は、反応容器5から離れた端部が放熱用のブラケット4aに接続されている。   As shown in FIG. 21, the stirring device 40 used in the automatic analyzer of the fourth embodiment uses the same reaction vessel 5 as in the first embodiment, and is provided with a heat conducting member 24 on the upper portion of the side wall 5a. Instead of the surface acoustic wave element 23, a thickness longitudinal vibrator 42 is disposed under the side wall 5 a via a wedge 41. At this time, the heat conducting member 24 is connected to the heat radiating bracket 4 a at the end away from the reaction vessel 5.

従って、攪拌装置40においては、厚み縦振動子42が出射した音波のうち、図示のように、反射しながら側壁5a内を伝搬する音波Wは、側壁5aの上部に到達すると上端面で反射し、伝搬してくる音波Wと干渉する。これにより、反応容器5は、側壁5aの上端面近傍が発熱する。   Therefore, in the stirring device 40, among the sound waves emitted from the thickness longitudinal vibrator 42, the sound wave W propagating in the side wall 5a while reflecting is reflected on the upper end surface when reaching the upper part of the side wall 5a as shown in the figure. Interfering with the propagating sound wave W. Thereby, the reaction container 5 generates heat near the upper end surface of the side wall 5a.

しかし、この熱は、側壁5aの上部に設けた熱伝導部材24がブラケット4aを介して反応テーブル4へ移動させる。この結果、自動分析装置1は、攪拌装置40を使用することによって、反応容器5に保持された液体試料Lsへの熱的影響を抑制することができる。   However, this heat is transferred to the reaction table 4 through the bracket 4a by the heat conducting member 24 provided on the upper portion of the side wall 5a. As a result, the automatic analyzer 1 can suppress the thermal influence on the liquid sample Ls held in the reaction vessel 5 by using the stirring device 40.

なお、本発明の攪拌装置で使用する反応容器は、実施の形態1〜4で説明した各態様を適宜組み合わせて使用してもよい。   In addition, you may use the reaction container used with the stirring apparatus of this invention combining each aspect demonstrated in Embodiment 1-4 suitably.

また、本発明の攪拌装置は、音波の干渉によって容器や圧電基板に発生した熱を熱伝導部材によって反応テーブル4に形成した放熱用のブラケット4aに移動させたが、自動分析装置1を構成する機体であればブラケット4aに限れるものではなく、例えば、試薬テーブル2,3等の試薬保冷庫やハウジング等に移動させてもよい。   In the stirring device of the present invention, the heat generated in the container and the piezoelectric substrate due to the interference of sound waves is moved to the heat radiation bracket 4a formed on the reaction table 4 by the heat conducting member. If it is a machine body, it is not restricted to bracket 4a, For example, you may move to reagent cold storage, a housing, etc., such as reagent tables 2 and 3.

更に、本発明の自動分析装置は、2つの試薬テーブル2,3を有するものについて説明したが、試薬テーブルは1つであってもよい。更に、本発明の自動分析装置は、1つの自動分析装置をユニットとして複数ユニット備えたものであってもよい。   Furthermore, although the automatic analyzer of the present invention has been described as having two reagent tables 2 and 3, the number of reagent tables may be one. Furthermore, the automatic analyzer of the present invention may include a single automatic analyzer as a unit.

本発明の攪拌装置を備えた実施の形態1の自動分析装置を示す概略構成図である。It is a schematic block diagram which shows the automatic analyzer of Embodiment 1 provided with the stirring apparatus of this invention. 実施の形態1の自動分析装置及び攪拌装置の構成を示すブロック図である。It is a block diagram which shows the structure of the automatic analyzer of Embodiment 1, and a stirring apparatus. 実施の形態1の自動分析装置で使用される攪拌装置の表面弾性波素子と、表面弾性波素子を取り付けた反応容器とを示す斜視図である。FIG. 2 is a perspective view showing a surface acoustic wave element of a stirring device used in the automatic analyzer of Embodiment 1 and a reaction vessel equipped with the surface acoustic wave element. 表面弾性波素子が取り付けられ、実施の形態1の自動分析装置で使用される反応容器を送電体と共に示す斜視図である。It is a perspective view which shows the reaction container with which a surface acoustic wave element is attached and is used with the automatic analyzer of Embodiment 1 with a power transmission body. 表面弾性波素子及び熱伝導部材が取り付けられ、実施の形態1の自動分析装置で使用される反応容器を放熱用のブラケットと共に示す正面図である。It is a front view which shows the reaction container with which a surface acoustic wave element and a heat conductive member are attached, and is used with the automatic analyzer of Embodiment 1 with the bracket for thermal radiation. 表面弾性波素子が出射した音波の干渉によって発生した熱の熱伝導部材による移動を説明する要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part explaining the movement by the heat conductive member of the heat which generate | occur | produced by interference of the sound wave which the surface acoustic wave element radiate | emitted. 図6のA部拡大図である。It is the A section enlarged view of FIG. 実施の形態1の攪拌装置の変形例1に関する要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part regarding the modification 1 of the stirring apparatus of Embodiment 1. FIG. 実施の形態2の自動分析装置で使用される攪拌装置の表面弾性波素子、表面弾性波素子を取り付けた反応容器及び熱伝導部材を示す断面図である。It is sectional drawing which shows the reaction container and heat conduction member which attached the surface acoustic wave element of the stirring apparatus used with the automatic analyzer of Embodiment 2, and the surface acoustic wave element. 図9に示す反応容器に設けた熱伝導部材による熱の移動を説明する要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part explaining the movement of the heat | fever by the heat conductive member provided in the reaction container shown in FIG. 実施の形態2の攪拌装置の変形例1に関する反応容器の正面図である。FIG. 10 is a front view of a reaction vessel related to Modification 1 of the stirring device according to Embodiment 2. 図11の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 実施の形態2の攪拌装置の変形例2に関する反応容器の断面図である。FIG. 10 is a cross-sectional view of a reaction vessel related to Modification 2 of the stirring device according to Embodiment 2. 実施の形態3の自動分析装置で使用される攪拌装置の表面弾性波素子、表面弾性波素子を取り付けた反応容器及び熱伝導部材を示す断面図である。FIG. 6 is a cross-sectional view showing a surface acoustic wave element, a reaction vessel equipped with a surface acoustic wave element, and a heat conduction member of a stirring device used in the automatic analyzer of Embodiment 3. 表面弾性波素子が出射した音波の干渉によって発生した熱の熱伝導部材による移動を説明する図14の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 14 explaining the movement by the heat conductive member of the heat | fever generated by interference of the sound wave which the surface acoustic wave element radiate | emitted. 図14に示す攪拌装置の変形例1の断面図である。It is sectional drawing of the modification 1 of the stirring apparatus shown in FIG. 表面弾性波素子が出射した音波の干渉によって発生した熱の熱伝導部材による移動を説明する図16の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 16 explaining the movement by the heat conductive member of the heat which generate | occur | produced by interference of the sound wave which the surface acoustic wave element radiate | emitted. 図14に示す攪拌装置の変形例2の断面図である。It is sectional drawing of the modification 2 of the stirring apparatus shown in FIG. 表面弾性波素子が出射した音波の干渉によって発生した熱の熱伝導部材による移動を説明する図18の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 18 explaining the movement by the heat conductive member of the heat | fever produced | generated by the interference of the sound wave which the surface acoustic wave element radiate | emitted. 変形例2の他の例を示す断面図である。12 is a cross-sectional view showing another example of Modification 2. FIG. 実施の形態4の自動分析装置で使用される攪拌装置の厚み縦振動子、厚み縦振動子を取り付けた反応容器及び熱伝導部材を示す断面図である。FIG. 6 is a cross-sectional view showing a thickness longitudinal vibrator, a reaction vessel equipped with a thickness longitudinal vibrator, and a heat conduction member of a stirring device used in the automatic analyzer according to the fourth embodiment.

符号の説明Explanation of symbols

1 自動分析装置
2,3 試薬テーブル
4 反応テーブル
5 反応容器
5e 誘導部
6,7 試薬分注機構
8 検体容器移送機構
9 フィーダ
10 ラック
11 検体分注機構
12 分析光学系
13 洗浄機構
15 制御部
16 入力部
17 表示部
20 攪拌装置
21 送電体
22 配置決定部材
23 表面弾性波素子
24 熱伝導部材
25,30 攪拌装置
40 攪拌装置
41 楔
42 厚み縦振動子
51 底面部材
52 接着層
53 誘導部
54 接着層
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2,3 Reagent table 4 Reaction table 5 Reaction container 5e Guide part 6,7 Reagent dispensing mechanism 8 Specimen container transfer mechanism 9 Feeder 10 Rack 11 Specimen dispensing mechanism 12 Analysis optical system 13 Washing mechanism 15 Control part 16 Input unit 17 Display unit 20 Stirring device 21 Power transmission body 22 Arrangement determining member 23 Surface acoustic wave element 24 Thermal conduction member 25, 30 Stirring device 40 Stirring device 41 Wedge 42 Thickness longitudinal vibrator 51 Bottom surface member 52 Adhesive layer 53 Inducing portion 54 Adhesion layer

Claims (6)

容器に保持された液体を音波によって攪拌する攪拌装置において、
前記容器に設ける圧電基板及び当該圧電基板に形成した電極を有し、前記液体を攪拌する音波を発生させる音波発生手段と、
前記容器又は前記圧電基板の音響インピーダンスの不連続面に設けられ、前記音波発生手段が出射した音波と前記不連続面で反射した音波との干渉によって発生する熱を前記容器から離れた位置へ移動させる熱伝導部材と、
を備えたことを特徴とする攪拌装置。
In a stirrer that stirs the liquid held in the container by sound waves,
A sound wave generating means that has a piezoelectric substrate provided in the container and an electrode formed on the piezoelectric substrate, and generates a sound wave for stirring the liquid;
The heat generated by the interference between the sound wave emitted by the sound wave generating means and the sound wave reflected by the discontinuous surface is moved to a position away from the container. A heat conducting member
A stirrer comprising:
前記音響インピーダンスの不連続面は、前記音波の伝搬方向に交差する前記圧電基板の端面又は前記容器の端面であることを特徴とする請求項1に記載の攪拌装置。   The stirrer according to claim 1, wherein the discontinuous surface of the acoustic impedance is an end surface of the piezoelectric substrate or an end surface of the container that intersects a propagation direction of the sound wave. 前記容器は、当該容器の壁から突出し、前記壁内を伝搬する音波を音響インピーダンスの境界部によって前記容器から遠ざかる方向へ導く誘導部が設けられ、
前記熱伝導部材は、前記誘導部の音響インピーダンスの不連続面に設けられることを特徴とする請求項1に記載の攪拌装置。
The container is provided with a guiding portion that protrudes from a wall of the container and guides a sound wave propagating through the wall in a direction away from the container by an acoustic impedance boundary,
The stirrer according to claim 1, wherein the heat conducting member is provided on a discontinuous surface of acoustic impedance of the induction unit.
前記音波発生手段は、表面弾性波素子又は厚み縦振動子であることを特徴とする請求項1に記載の攪拌装置。   The stirring device according to claim 1, wherein the sound wave generating means is a surface acoustic wave element or a thickness longitudinal vibrator. 複数の異なる液体を攪拌して反応させ、反応液の光学的特性を測定して前記反応液を分析する自動分析装置であって、請求項1〜4のいずれか一つに記載の攪拌装置を用いて検体と試薬とを攪拌し、反応液を光学的に分析することを特徴とする自動分析装置。   An automatic analyzer that analyzes a reaction liquid by stirring a plurality of different liquids and measuring optical characteristics of the reaction liquid, wherein the stirring apparatus according to any one of claims 1 to 4 is used. An automatic analyzer characterized by using a sample and a reagent to stir and optically analyzing a reaction solution. 前記熱伝導部材によって前記容器から離れた位置へ移動された熱を放熱する放熱部材を有することを特徴とする請求項5に記載の自動分析装置。   The automatic analyzer according to claim 5, further comprising a heat radiating member that radiates heat moved to a position away from the container by the heat conducting member.
JP2007138287A 2007-05-24 2007-05-24 Stirrer and auto-analyzer Withdrawn JP2008292315A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007138287A JP2008292315A (en) 2007-05-24 2007-05-24 Stirrer and auto-analyzer
PCT/JP2008/059066 WO2008146628A1 (en) 2007-05-24 2008-05-16 Agitating device, and automatic analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138287A JP2008292315A (en) 2007-05-24 2007-05-24 Stirrer and auto-analyzer

Publications (1)

Publication Number Publication Date
JP2008292315A true JP2008292315A (en) 2008-12-04

Family

ID=40074893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138287A Withdrawn JP2008292315A (en) 2007-05-24 2007-05-24 Stirrer and auto-analyzer

Country Status (2)

Country Link
JP (1) JP2008292315A (en)
WO (1) WO2008146628A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239425A (en) * 1987-03-27 1988-10-05 Anritsu Corp Surface acoustic wave variable diffraction grating
JP2553367B2 (en) * 1987-11-30 1996-11-13 アンリツ株式会社 Multiple reflection type surface acoustic wave optical diffraction element
JP4861664B2 (en) * 2005-09-07 2012-01-25 ベックマン コールター, インコーポレイテッド Stirrer and analyzer equipped with stirrer

Also Published As

Publication number Publication date
WO2008146628A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US7808631B2 (en) Stirrer and analyzer
JP2009025248A (en) Automatic analyzer and dispensation method
JP4469928B2 (en) Stirring vessel
US20080225634A1 (en) Stirring vessel, stirring method, stirrer, and analyzer provided with stirrer
WO2006134777A1 (en) Stirring container and analyzer
JP5274188B2 (en) Stirrer and analyzer
WO2007108179A1 (en) Stirring device and analyzing device
WO2007108238A1 (en) Stirring device and analyzer
US7802479B2 (en) Stirring apparatus, abnormality determining method of same, and analyzer
JP2007108061A (en) Agitator, container, and analyzer
JP4794404B2 (en) Stirring device, determination circuit, abnormality determination method for stirrer, and analyzer
US20080240995A1 (en) Reaction vessel and analyzer
JP2007108062A (en) Agitator, container, and analyzer
JP2008292314A (en) Stirrer and auto-analyzer
JP2008292315A (en) Stirrer and auto-analyzer
JP4842182B2 (en) Stirrer and automatic analyzer
JP2010217050A (en) Automatic analyzer and method for inhibiting temperature rise of liquid sample thereof
JP4861879B2 (en) Container and analyzer
JP2007232521A (en) Stirrer and analyzer
JP2007232523A (en) Stirrer and analyzer
JP2009014412A (en) Sonic wave generating member, container and analyzer
JP2008256565A (en) Stirring apparatus and analyzer
JP2008268078A (en) Stirrer and autoanalyzer
JP2007046953A (en) Reaction container and analyzer
JP2007205816A (en) Analyzer and photometric method of it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803