JP2008292018A - Supercritical water biomass combustion boiler - Google Patents

Supercritical water biomass combustion boiler Download PDF

Info

Publication number
JP2008292018A
JP2008292018A JP2007135728A JP2007135728A JP2008292018A JP 2008292018 A JP2008292018 A JP 2008292018A JP 2007135728 A JP2007135728 A JP 2007135728A JP 2007135728 A JP2007135728 A JP 2007135728A JP 2008292018 A JP2008292018 A JP 2008292018A
Authority
JP
Japan
Prior art keywords
combustion
temperature
pressure
scwo
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007135728A
Other languages
Japanese (ja)
Other versions
JP4284471B2 (en
Inventor
Kunio Arai
邦夫 新井
Hiroshi Inomata
宏 猪股
Lee Smith Richard
リチャード リー スミス
Masaru Watanabe
賢 渡邉
Sanenobu Ono
實信 小野
Akira Suzuki
明 鈴木
Shinichirou Kawasaki
慎一朗 川崎
Kiyotaka Hatada
清隆 畑田
Hideo Hattori
秀雄 服部
Toshiyuki Nonaka
利之 野中
Masahiko Tajima
聖彦 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tohoku University NUC
Priority to JP2007135728A priority Critical patent/JP4284471B2/en
Priority to PCT/JP2008/058819 priority patent/WO2008143078A1/en
Publication of JP2008292018A publication Critical patent/JP2008292018A/en
Application granted granted Critical
Publication of JP4284471B2 publication Critical patent/JP4284471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/22Methods of steam generation characterised by form of heating method using combustion under pressure substantially exceeding atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/08Other methods of steam generation; Steam boilers not provided for in other groups of this subclass at critical or supercritical pressure values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Solid-Fuel Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously generate high-temperature and high-pressure combustion gas by using, as fuel, all types of biomass having a water content of approximately 90% or smaller regardless of shapes and forms, to generate supercritical water by the direct drive of a gas turbine for power generation or by heat exchange and use the supercritical water for the drive of a steam turbine for power generation, to simplify a device configuration, to collect and effectively use waste heat, to and achieve economy for a distributed power plant. <P>SOLUTION: This combustion boiler device uses a supercritical water oxidative reaction, uses an organic matter with a high water content such as biomass as fuel, and generates high-temperature and high-pressure combustion gas mainly composed of supercritical water. The combustion boiler device has divided operation elements such as "sealing-pressure intensification", "constant pressure-temperature rise", "combustion-temperature rise", "stable combustion" and "discharge-filling", and operates reactors of the respective operation elements. This operation can continuously generate a stable thermal output, eliminate the necessity of the continuous supply of solid fuel such as biomass to a high-temperature and high-pressure system, and achieve batch supply at an easily-supplied temperature and pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、85%程度の高含水率のバイオマスも含めて、その種類や形態を選ばず、殆どの未利用バイオマスを燃焼させ、高温高圧の超臨界水と二酸化炭素を直接発生させる高温高圧バイオマスボイラーに関するもので、バイオマスの発生箇所で、発生量に応じて対応できる分散型パワープラントへの利用を目指したものである。   The present invention includes a high water content biomass of about 85%, regardless of the type or form, and burns most unused biomass to directly generate high temperature and high pressure supercritical water and carbon dioxide. It relates to boilers, and is intended for use in distributed power plants that can respond to biomass generation locations according to the generation amount.

人類は、その誕生以来産業革命までの数百万年の永い間、暖房や灯り、煮炊き等の日常生活に必要な熱エネルギー源として、周囲に生育するバイオマスを利用してきた。しかし、バイオマスは一般に高含水率のため、燃料として使用する場合、含水率の低い、あるいは比較的乾燥が容易で、輸送し易い木材、あるいは加工された木炭が使用されてきた。また、農山村では農耕牧畜で排出される乾燥藁や里山の枯れ木、落ち葉等も使用されてきた。これらを燃焼させるための装置は竈やストーブ等極めて小規模のものであるが、空気の取り入や煙道等に対して、燃焼効率や熱効率を上げるため様々な工夫がなされてきた。
これに対し、産業革命以降は蒸気機関の発明を起点として、動力源としてのエネルギーの利用が急速に拡大した。これを支えたのが、地球に埋蔵されている石炭、石油、や天然ガス等の有限の化石資源で、熱源を含めてバイオマスの燃料としての地位は殆ど失われている。化石資源の大量供給により、巨大火力発電所を拠点とした電力、ガスや灯油等、各家庭でも、従来とは比較にならないエネルギーの使用が可能になり、社会的には、飛行機、鉄道、自動車等の運輸、交通手段が発達し、様々な産業機械が発明され、物資の大量生産、大規模な土地開発、膨大な食糧増産等々、人類史上嘗て無い物質的豊かさと急激な人口増加を実現した。
しかし、このような有限な化石資源の膨大な消費はその枯渇を招くのみではなく、大気への大量の二酸化炭素の放出による地球温暖化の要因になっており、化石資源への依存度を可及的に速やかに減少しなければならない状況に直面しつつある。こうした問題の解決のためには、太古から行われてきたバイオマスの燃料としての利用が最も効果的で、直接的である。
Mankind has used the biomass that grows around it as a heat energy source necessary for daily life such as heating, lighting, and cooking for many millions of years since its birth until the industrial revolution. However, since biomass generally has a high water content, when it is used as a fuel, wood having a low water content or relatively easy to dry and easy to transport, or processed charcoal has been used. In rural areas, dry straw, satoyama dead trees, fallen leaves, etc. discharged from agricultural pasture have been used. Devices for burning these are extremely small-scale devices such as soot and stoves, but various devices have been made to increase combustion efficiency and thermal efficiency with respect to air intake and flues.
On the other hand, since the industrial revolution, the use of energy as a power source has rapidly expanded from the invention of the steam engine. This was supported by finite fossil resources such as coal, oil, and natural gas buried on the earth, and the status of biomass, including heat sources, was almost lost. By supplying a large amount of fossil resources, it becomes possible for households to use energy, gas, kerosene, etc., which is based on a huge thermal power plant. Socially, airplanes, railroads and automobiles can be used. Transportation, transportation, etc. have been developed, various industrial machines have been invented, material mass production, large-scale land development, enormous food production, etc. have realized unprecedented material abundance and rapid population growth. .
However, this huge consumption of finite fossil resources not only leads to its depletion, but also contributes to global warming due to the release of a large amount of carbon dioxide to the atmosphere. We are facing a situation that needs to be reduced as quickly as possible. In order to solve such problems, the use of biomass as fuel, which has been carried out since ancient times, is the most effective and direct.

しかしながら、従来使用されてきた木材の燃焼はその集積と量の問題から極めて限定された利用となる。例えば、製材所における木屑、廃材の燃焼熱による発電等が考えられ、一部実用化もなされているが、その立地はかなり限定されたものである。一方、耕作地を転用し、とうもろこし、芋、砂糖等の糖類からの醗酵エタノールや植物油脂等を内燃機関の液体燃料とする試みがなされている。これらの液体燃料の製造は従来技術の応用であり、技術的な課題は少ないが、これらバイオ燃料は食糧との競合という大きな問題が存在し、現在の収穫量も越える大量の消費が予想されることから、食糧価格の高騰のみで収まらず、食糧輸入国においては、将来的には絶対的な食料不足も懸念される。
これに対して、セルロースやリグニン等の未利用バイオマスをガス化し、水素や一酸化炭素を製造し、水素エネルギーやFT反応による合成ガソリンとしての利用が考えられている。前者は燃料電池との組合せによる将来エネルギーとして重要な技術として捉えられる。また、後者においては前段のガス化技術は開発途上であるが、後段のFT反応は石炭を原料として実用化された大量生産技術である。しかし、広く薄く分散し、しかも多様な形態と多様な成分で構成されるバイオマスを化石資源と同様な大量生産、大量供給システムで取り扱うことは必ずしも適切ではない。一方、植物による年間の炭素循環量は900億炭素
トンとも言われており、量的にはバイオマス資源は膨大であり、その循環量の10%程度で、現在、消費されている化石資源を代替できることになる。
However, the burning of wood that has been used in the past is extremely limited due to its accumulation and quantity problems. For example, wood chips at a sawmill, power generation using combustion heat of waste materials, etc. can be considered, and some have been put into practical use, but the location is quite limited. On the other hand, attempts have been made to divert cultivated land and use fermented ethanol, vegetable oils and the like from sugars such as corn, straw and sugar as liquid fuels for internal combustion engines. The production of these liquid fuels is an application of the prior art, and there are few technical issues, but these biofuels have a big problem of competition with food, and a large amount of consumption exceeding the current harvest is expected As a result, food prices will not only rise and food importing countries are worried that there will be an absolute shortage of food in the future.
On the other hand, it is considered that unused biomass such as cellulose and lignin is gasified to produce hydrogen and carbon monoxide and used as synthetic gasoline by hydrogen energy and FT reaction. The former is regarded as an important technology as future energy by combining with the fuel cell. In the latter, the former gasification technology is still under development, but the latter FT reaction is a mass production technology that has been put to practical use using coal as a raw material. However, it is not always appropriate to handle biomass that is widely and thinly dispersed and that is composed of various forms and various components in a mass production and supply system similar to fossil resources. On the other hand, the annual carbon cycle by plants is said to be 90 billion carbon tons. In terms of quantity, biomass resources are enormous, and about 10% of the circulation amount replaces the currently consumed fossil resources. It will be possible.

バイオマスを燃料として使用することは太古から行われてきたことであるが、その使用
は煮炊きや暖房の域を超えていない。現在、エネルギー資源の最大の消費源として火力発電所が挙げられる。ここでは、石油や石炭を燃料とし、一系列100万kWの発電も可能な超
大型ボイラーが稼動している。発電効率を40%とすれば、このボイラーで必要な燃焼熱は250万kWとなり、発熱量が45000kJ/kgの化石資源を1時間当たり200トン燃焼させること
になる。これをバイオマスに置き換えると発熱量は化石資源の約1/3とすれば、600トン/hrのバイオマスが必要となる。この量を生産するのに必要な土地面積を概算してみる。
今光合成効率を2%とし、地表が受ける太陽光エネルギー250W/m2とすれば、バイオマスエネルギーの固定量は50kw/haで、セルロース生成量で換算すれば0.00286kg-セルロース/s/ha=10.3kg/hr/haのバイオマス生産が見積られる。生育する全てのバイオマスがボイラ
ー燃料に使用されるとすれば、100万kWの発電に必要なバイオマスの収穫に要する面積は愛媛県の耕地面積に相当する約60,000ha(600km2)に達する。このような概略計算が示すように、現在の大規模発電の代替燃料としてバイオマスを位置づけることはその集荷を考えただけでも非現実的であることがわかる。しかも、従来のボイラー装置で安定的に燃焼させるためには含水率の低い乾燥木材等のバイオマスに限定されるため、実際にはさらに膨大な土地が必要とされる。
The use of biomass as fuel has been practiced since ancient times, but its use does not exceed the range of cooking and heating. Currently, thermal power plants can be cited as the largest source of energy resources. Here, there is an ultra-large boiler that can generate 1 million kW of power using oil and coal as fuel. If the power generation efficiency is 40%, the necessary combustion heat in this boiler will be 2.5 million kW, and 200 tons of fossil resources with a calorific value of 45,000 kJ / kg will be burned per hour. If this is replaced with biomass, if the calorific value is about 1/3 of fossil resources, biomass of 600 tons / hr is required. Approximate the land area required to produce this quantity.
If the photosynthesis efficiency is now 2% and the solar energy received on the surface is 250W / m2, the fixed amount of biomass energy is 50kw / ha, and if converted in terms of cellulose production, 0.00286kg-cellulose / s / ha = 10.3kg Estimated biomass production of / hr / ha. If all the biomass that grows is used for boiler fuel, the area required to harvest 1 million kW of biomass will reach approximately 60,000 ha (600 km2), equivalent to the cultivated land area in Ehime Prefecture. As shown in this rough calculation, it can be seen that positioning biomass as an alternative fuel for current large-scale power generation is unrealistic just considering its collection. Moreover, since it is limited to biomass such as dry wood having a low water content in order to stably burn it with a conventional boiler device, a larger amount of land is actually required.

しかし、百ヘクタールの農耕地等でのバイオマスエネルギー生産量は5000kWにもなり、その1割が発電や熱エネルギーに分散的に使用可能とすれば、農耕作に必要なエネルギー
を充分に供給でき、バイオマスは将来重要なエネルギー資源の一つであることは疑う余地も無い。現状でも、火力発電所における二酸化炭素削減対策は喫緊の課題であり、既存の火力発電所における高々数%のバイオマス混焼も重要な施策として挙げられている。また、廃材や木屑等が集中して発生する場所では、既存技術の延長線上で、バイオマスをボイラー燃料とするパワープラントの立地が可能になりつつある。
規模の大きさによらずプラントの構成が殆ど変わらないとすれば、生産単価は規模が大きくなればなるほど減少し、巨大発電所が有利になる。従って、産地が限定され、有限な化石資源から、周囲で生育し、再生可能なバイオマスへの変換は小規模分散型のパワープラントの経済性を高めなければならず、装置そのものの抜本的な変革による簡素化がきわめて重要である。幸い、パワープラントの規模の縮小は装置コストに起因するデメリットのみではなく、発電に際しての約60%にも達する廃熱の総合的利用や売電を目的とせず自家消費を主体とする規模では、送電損失や送電コストが無視できる。現時点でも、石油価格の高騰や温暖化対策の必要性を考慮すれば、既存技術でのバイオマス発電でも、立地によっては、既存の電力網からの買電と比較しても必ずしも経済性においても劣るとは限らなくなりつつある。
However, biomass energy production in cultivated land of 100 hectares can be as high as 5000 kW, and if 10% of it can be used in a distributed manner for power generation and thermal energy, the energy required for farming can be sufficiently supplied, There is no doubt that biomass is one of the important energy resources in the future. Even at present, measures to reduce carbon dioxide in thermal power plants are an urgent issue, and at most several percent of biomass co-firing in existing thermal power plants is also cited as an important measure. Also, in places where waste materials, wood chips, etc. are concentrated, it is becoming possible to locate power plants that use biomass as boiler fuel on the extension of existing technology.
If the plant configuration hardly changes regardless of the scale, the unit price of production decreases as the scale increases, and a huge power plant becomes advantageous. Therefore, conversion from limited fossil resources to biomass that grows in the surroundings and can be recycled has to improve the economics of small-scale distributed power plants and drastically change the equipment itself. Simplification by is very important. Fortunately, the reduction in the size of the power plant is not only a demerit due to equipment costs, but on a scale that is mainly for self-consumption without the purpose of comprehensive use of waste heat and power sales reaching about 60% during power generation, Transmission loss and transmission cost can be ignored. Even at this time, considering the rising oil prices and the need for global warming countermeasures, biomass power generation using existing technologies may be less economical than existing power grid purchases depending on location. Is becoming limited.

従来の燃焼技術では、前述したように含水率や原料形態の制約から極めて限定された種類のバイオマスのみを対象とせざるを得ない。セルロースをバイオマス成分として、種々の含水率下で、純酸素中、理論酸素量で完全燃焼させたときの断熱火炎温度を求めると、図1のようになる。酸素存在下での自然発火温度を350℃とすれば、大気圧(0.1014MPa)下では、含水率が0.833以下でないと断熱火炎温度は自然発火温度には到達しない。勿論、500〜700℃程度の比較的低温で安定的に燃焼させる既存の大気圧ボイラーは未だ存在しな
い。しかも、燃焼を安定的に持続させるためには、断熱火炎温度は定常燃焼温度以上が望ましく、燃焼温度を1000℃とすれば、このときのバイオマスの含水率は0.74程度となり、特別な燃焼装置の開発なくしては、殆どのバイオマスを生のまま安定的に燃やすことが難しいことがわかる。
In the conventional combustion technology, as described above, only the types of biomass that are extremely limited due to restrictions on the moisture content and the raw material form must be targeted. Fig. 1 shows the adiabatic flame temperature when cellulose is used as a biomass component and completely burned with a theoretical oxygen amount in pure oxygen under various moisture contents. If the spontaneous ignition temperature in the presence of oxygen is 350 ° C., the adiabatic flame temperature does not reach the spontaneous ignition temperature unless the water content is 0.833 or less under atmospheric pressure (0.1014 MPa). Of course, there is no existing atmospheric pressure boiler that stably burns at a relatively low temperature of about 500 to 700 ° C. Moreover, in order to sustain combustion stably, the adiabatic flame temperature is preferably equal to or higher than the steady combustion temperature, and if the combustion temperature is 1000 ° C., the moisture content of the biomass at this time is about 0.74, It can be seen that without development, it is difficult to stably burn most biomass raw.

これに対し、燃焼圧力を増加させると、図1に示したように断熱火炎温度は上昇し、20MPa以上では含水率が0.9程度でも自然発火温度(350℃)以上になることが分かる。しかも
、このような高圧下での燃焼は超臨界水酸化反応(SCWO)として、自然発火温度を超えれば、種々の有機物の安定的な酸化(燃焼)が可能であることは公知であり、PCBやダイオキ
シン等の有害有機物の無害化処理として数多くの論文や特許が提案され、また一部実用化
されている。また、下水汚泥等の分解処理に、250℃程度の熱水環境下で酸化触媒を使用
した湿式酸化法も提案され、その有効性も確証されている。また、多くの文献や特許において、その酸化熱の回収についても言及されている。例えば、米国特許第5,667,698号明
細書(特許文献1)、同第7,186,345号明細書(特許文献2)、それらの文献で引用され
ている文献が挙げられる。
しかしながら、その主目的はあくまでも有害廃棄物処理であり、熱回収は他の処理法に対して競争力を増すための処理コスト低減効果の手段として期待されているのみである。すなわち、現時点では超臨界水酸化反応(SCWO: supercritical water oxidation)をボイ
ラー専用装置への燃焼法として具体的に検討された例は見当たらない。
On the other hand, when the combustion pressure is increased, the adiabatic flame temperature rises as shown in FIG. 1, and it can be seen that at 20 MPa or higher, the moisture content is about 0.9 or higher even when the water content is about 0.9. Moreover, combustion under such high pressure is known as supercritical water oxidation (SCWO), and it is well known that stable oxidation (combustion) of various organic substances is possible if the pyrophoric temperature is exceeded. Numerous papers and patents have been proposed as detoxification treatments for harmful organic substances such as water and dioxin, and some have been put into practical use. In addition, a wet oxidation method using an oxidation catalyst in a hydrothermal environment of about 250 ° C. for the decomposition treatment of sewage sludge has been proposed and its effectiveness has been confirmed. In addition, in many documents and patents, the recovery of the oxidation heat is also mentioned. For example, US Pat. No. 5,667,698 (Patent Document 1), US Pat. No. 7,186,345 (Patent Document 2), and literatures cited in those documents are cited.
However, its main purpose is only hazardous waste treatment, and heat recovery is only expected as a means for reducing treatment costs to increase competitiveness over other treatment methods. In other words, at present, there is no example in which supercritical water oxidation (SCWO) is specifically studied as a combustion method for a boiler dedicated device.

米国特許第5,667,698号明細書U.S. Pat.No. 5,667,698 米国特許第7,186,345号明細書U.S. Patent No. 7,186,345

本発明は、山林、原野、ゴルフ場、果樹園や田畑等の農耕地、淡水や海水域で発生する全てのバイオマス(1次産品に直接関わる穀物の茎、剪定枝等の未利用バイオマスのみな
らず、下草、落葉、雑草や、さらには休作期間中の栽培による光合成効率の高い植物等)
、あるいは飲料、食品加工工場等での搾りかすや抽出残渣等のバイオマス廃棄物、生ごみ(プラスチック等有機物製品を含有も可)等の可燃系都市ごみ等を燃料とするバイオマスボイラープラントに関するものである。
本発明が解決すべき主要技術課題は、
1)形状、形態を選ばず、含水率90%程度までのあらゆる種類のバイオマスを燃料として使用できること、
2)高温・高圧の燃焼ガスを連続的に生成し、発電用のガスタービンを直接駆動する
か、熱交換により超臨界水を発生させ、発電用スチームタービンの駆動に供することを可能にすること、
3)装置構成の簡素化と廃熱の回収、有効利用も考慮し、分散型パワープラント用と
しての経済性を実現すること、
である。
The present invention covers all biomass generated in forests, wilderness, golf courses, farmland such as orchards and fields, freshwater and seawater (only unused biomass such as grain stems and pruned branches directly related to primary products) , Undergrowth, defoliation, weeds, and plants with high photosynthetic efficiency by cultivation during the rest period)
Or, it is related to a biomass boiler plant that uses biomass waste such as squeezed residue and extraction residue in beverages, food processing factories, etc., and combustible municipal waste such as garbage (including organic products such as plastic) as fuel. is there.
The main technical problems to be solved by the present invention are:
1) Any type of biomass up to 90% moisture content can be used as fuel, regardless of shape and form.
2) To generate high-temperature and high-pressure combustion gas continuously and directly drive the power generation gas turbine, or generate supercritical water by heat exchange and enable it to drive the power generation steam turbine. ,
3) Considering the simplification of equipment configuration, recovery of waste heat, and effective use, realizing economic efficiency for distributed power plants,
It is.

種々の有機物は超臨界水酸化反応(SCWO)により安定的に燃焼させうることは公知のことである。その燃焼条件は400〜650℃、20〜30MPaの超臨界水中で空気あるいは酸素を酸
化剤とすることが一般的である。また、大概の有機物は酸素存在下で300℃を超えると有
意の速度で酸化反応が自発的に進行する。
本発明は超臨界水酸化反応の条件をバイオマスの燃焼に適用し、バイオマス自ら含む水と必要に応じて水を添加して、350〜650℃、20〜30MPaの超臨界水場をバイオマス等の有
機物の燃焼熱で安定的に生成させ、超臨界水を主成分とすると高温高圧の排燃焼流体に連続的に生成する有機物燃焼ボイラー、例えば、バイオマス燃焼ボイラー(燃焼装置)並びに燃焼技術に関するものである。該燃焼ボイラーには複数のSCWO反応器とその後段に配置された燃焼室を有しており、当該複数のSCWO反応器を順次サイクル操作することにより、大気圧下でのバイオマス燃料の回分供給を可能にし、かつ、連続的な出力を安定に得ることができる。
It is well known that various organic substances can be stably combusted by supercritical water oxidation (SCWO). The combustion conditions are generally that air or oxygen is used as the oxidizing agent in supercritical water at 400 to 650 ° C. and 20 to 30 MPa. In addition, most organic substances spontaneously undergo oxidation at a significant rate when the temperature exceeds 300 ° C. in the presence of oxygen.
The present invention applies the supercritical water oxidation reaction conditions to the combustion of biomass, adds the water contained in the biomass itself and water as necessary, and converts the supercritical water field at 350 to 650 ° C. and 20 to 30 MPa to such as biomass. Organic combustion boilers, such as biomass combustion boilers (combustion equipment) and combustion technology, which are produced stably with the combustion heat of organic matter and are continuously produced in high-temperature and high-pressure exhaust combustion fluid when supercritical water is the main component. is there. The combustion boiler has a plurality of SCWO reactors and a combustion chamber arranged at the subsequent stage. By sequentially cycling the plurality of SCWO reactors, a batch supply of biomass fuel at atmospheric pressure is performed. And a continuous output can be stably obtained.

本発明は、次のものを提供している。
〔1〕超臨界水酸化反応(SCWO)を応用し、少なくともバイオマスを包含しており且つ高含水率の有機物を燃料とし、超臨界水を主成分とする高温・高圧燃焼流体を発生させるものであることを特徴とする燃焼ボイラー装置。
〔2〕少なくとも2以上のSCWO反応器と、当該SCWO反応器から流出され且つ当該有機
物のSCWOにより発生された超臨界水を主成分とする高温・高圧燃焼流体を受容する燃焼室を備えていることを特徴とする上記〔1〕に記載の燃焼ボイラー装置。
〔3〕燃焼ボイラー装置の操作を、少なくとも「密閉・昇圧」、「定圧・昇温」、「燃焼・昇温」又は「定圧・燃焼・昇温」、「定常燃焼」、及び「排出・充填」の操作要素に分け、該各操作を実施可能にする配管及びバルブ系を備えている、安定した熱出力を連続して発生し、かつ、高温、高圧系へのバイオマス等の固体燃料の連続供給を不要にし、供給容易な温度、圧力で回分供給を可能にするものであることを特徴とする上記〔1〕又は〔2〕に記載の燃焼ボイラー装置。
〔4〕SCWO反応器から流出する全ての流体を合流させ、その流出流体に含まれる未燃焼有機物(主として熱水に溶解する有機物)を一括して完全燃焼させる燃焼室を該反応器後段に設け、高温・高圧流体を連続的に発生させるものであることを特徴とする上記〔1〕〜〔3〕のいずれか一に記載の燃焼ボイラー装置。
〔5〕SCWO反応器の後段の燃焼室の下流に熱交換器が設けられており、該熱交換器を介して高温・高圧スチームを発生させることができるものであることを特徴とする上記〔1〕〜〔4〕のいずれか一に記載の燃焼ボイラー装置。
〔6〕SCWO反応器の後段の燃焼室として第1燃焼室及び第2燃焼室を備え、SCWO反応器が「燃焼・昇温」と「定常燃焼」操作の場合、該「燃焼・昇温」操作状態のSCWO反応器及び「定常燃焼」操作状態のSCWO反応器からの未燃焼物含有排出流体を第1燃焼室に導入せしめる配管ラインを有し、当該未燃焼物含有排出流体を受容している時に第1燃焼室は未燃焼物を燃焼可能であり且つ発生した高温・高圧流体の一部を、「密閉・昇圧」操作状態のSCWO反応器及び「定圧・昇温」操作状態のSCWO反応器に送出する配管ラインを有し、一方、該第1燃焼室で発生した高温・高圧流体の残部を第2燃焼室に導入せしめる配管ラインを有し、該第2燃焼室は、上記高温・高圧流体の残部と「定圧・昇圧」操作状態のSCWO反応器より排出される自燃温度より低温の排出流体とを該第2燃焼室入り口で混合し、自燃温度以上に昇温せしめて、未燃焼の燃料を完全燃焼させて高温高圧流体として熱出力を得るものであることを特徴とする上記〔1〕〜〔5〕のいずれか一に記載の燃焼ボイラー装置。
〔7〕燃焼ボイラー装置のスタートアップ用ヒータを備えていることを特徴とする上記〔1〕〜〔6〕のいずれか一に記載の燃焼ボイラー装置。
〔8〕SCWO反応器の定常燃焼を終了後、当該SCWO反応器内に残存する高温・高圧流体に水を圧入し、降圧する配管ラインを有し、且つ、該降圧された高温水を利用して熱エネルギーを回収する装置を備え、必要に応じて、当該SCWO反応器内に残存する二酸化炭素等の燃焼ガスを回収する装置を備えることを特徴とする上記〔1〕〜〔7〕のいずれか一に記載の燃焼ボイラー装置。
〔9〕熱伝導率の小さなセラミックス等で反応器内面に断熱層を施したSCWO反応器。
The present invention provides the following.
[1] Applying supercritical water oxidation (SCWO) to generate high-temperature and high-pressure combustion fluids that contain at least biomass and use organic matter with a high water content as fuel and mainly contain supercritical water. A combustion boiler device characterized by being.
[2] At least two or more SCWO reactors and a combustion chamber for receiving a high-temperature and high-pressure combustion fluid mainly composed of supercritical water discharged from the SCWO reactor and generated by the organic SCWO. The combustion boiler device according to the above [1], wherein
[3] Operation of the combustion boiler apparatus is at least “sealing / pressure increase”, “constant pressure / temperature increase”, “combustion / temperature increase” or “constant pressure / combustion / temperature increase”, “steady combustion”, and “discharge / filling”. The operation element is divided into the operation elements, and the pipes and valve systems that enable each of the operations to be performed, continuously generating a stable heat output and continuously supplying a solid fuel such as biomass to a high-temperature, high-pressure system. The combustion boiler device according to the above [1] or [2], wherein supply is not required and batch supply is possible at a temperature and pressure that are easy to supply.
[4] A combustion chamber is provided at the rear stage of the reactor to join all the fluids flowing out from the SCWO reactor and completely burn unburned organic substances (organic substances mainly dissolved in hot water) contained in the flowing fluid. The combustion boiler device according to any one of the above [1] to [3], wherein the high-temperature and high-pressure fluid is continuously generated.
[5] A heat exchanger is provided downstream of the combustion chamber at the rear stage of the SCWO reactor, and high temperature / high pressure steam can be generated through the heat exchanger. The combustion boiler device according to any one of 1] to [4].
[6] A first combustion chamber and a second combustion chamber are provided as combustion chambers downstream of the SCWO reactor, and when the SCWO reactor performs “combustion / temperature increase” and “steady combustion” operations, A piping line for introducing the unburned product-containing exhaust fluid from the SCWO reactor in the operating state and the SCWO reactor in the “steady combustion” operating state into the first combustion chamber; The first combustion chamber is capable of combusting unburned matter and a part of the generated high-temperature / high-pressure fluid is used in the SCWO reactor in the “sealing / pressurizing” operation state and the SCWO reaction in the “constant pressure / temperature raising” operation state. And a piping line for introducing the remainder of the high-temperature / high-pressure fluid generated in the first combustion chamber into the second combustion chamber. The remainder of the high pressure fluid and the lower temperature than the self-combustion temperature discharged from the SCWO reactor in the “constant pressure / pressure increase” operation The exhaust fluid is mixed at the entrance of the second combustion chamber, heated to a temperature higher than the self-combustion temperature, and unburned fuel is completely burned to obtain a heat output as a high-temperature high-pressure fluid. The combustion boiler device according to any one of 1] to [5].
[7] The combustion boiler device according to any one of [1] to [6], further including a start-up heater for the combustion boiler device.
[8] After the steady combustion of the SCWO reactor is completed, water is injected into the high-temperature / high-pressure fluid remaining in the SCWO reactor, and a pipe line for reducing the pressure is used. Any of the above-mentioned [1] to [7], comprising a device for recovering thermal energy and, if necessary, a device for recovering combustion gas such as carbon dioxide remaining in the SCWO reactor. A combustion boiler device according to claim 1.
[9] SCWO reactor in which a heat insulating layer is provided on the inner surface of the reactor with ceramics having low thermal conductivity.

〔10〕超臨界水酸化反応(SCWO)を応用し、少なくともバイオマスを包含しており且つ高含水率の有機物を燃料とし、超臨界水を主成分とする高温・高圧燃焼流体を発生させ、該SCWOより得られる流体に含まれる未燃焼有機物を完全燃焼させて、高温・高圧流体を発生させることを特徴とする該有機物からの熱の発生取得法。
〔11〕SCWO反応器及びその下流に位置する燃焼室を備える有機物燃焼ボイラー装置を操作し、該SCWO反応器を
(1) SCWO反応器に超臨界水を密閉状態で圧入し、原料の充填されているSCWO反応器を燃焼圧力まで昇圧する(「密閉・昇圧」)、
(2) SCWO反応器に超臨界水を流通せしめると共に、SCWO反応器内温度を定圧下に、充填された原料の自燃温度にまで上昇せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水を燃焼室へ流出せしめる(「定圧・昇温」)、
(3) SCWO反応器に酸素を供給せしめると共に、SCWO反応器内の充填された原料を定圧下に燃焼せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を燃焼室へ流出せしめる(「定圧・燃焼・昇温」)又はSCWO反応器に
酸素を供給せしめると共に、SCWO反応器内の充填された原料を燃焼せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を特定の燃焼室へ流出せしめる(「燃焼・昇温」)、
(4) SCWO反応器での充填された原料の燃焼が維持されるように、その燃焼温度を維持するよう、冷却水がSCWO反応器に供給され、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を燃焼室へ流出せしめる(「定常燃焼」)、
(5) SCWO反応器へ冷却水を圧入して、降温降圧せしめ、所定の温度にした後、冷却水の供給を停止して、温水と二酸化炭素を排出・回収せしめ、次に、原料充填圧にした後、有機物原料を供給し、SCWO反応器に充填する(「排出・充填」)
の各操作要素に付して、安定した熱出力を連続して発生し、かつ、高温、高圧系へのバイオマスを包含する固体燃料の連続供給を不要にし、供給容易な温度、圧力で回分供給を可能にすることを特徴とする上記〔10〕に記載の有機物からの熱の発生取得法。
〔12〕複数のSCWO反応器を備える有機物燃焼ボイラー装置を操作し、該SCWO反応器から流出する全ての流体を合流させ、その流出流体に含まれる未燃焼有機物(主として熱水に溶解する有機物)を一括して完全燃焼させる燃焼室を反応器後段に設け、高温・高圧流体を連続的に発生させることを特徴とする上記〔10〕又は〔11〕に記載の有機物からの熱の発生取得法。
〔13〕SCWO反応器の後段の燃焼室の下流の熱交換器により、高温・高圧スチームを発生させることを特徴とする上記〔10〕〜〔12〕のいずれか一に記載の有機物からの熱の発生取得法。
〔14〕SCWO反応器の後段の燃焼室として第1燃焼室及び第2燃焼室を備える有機物燃焼ボイラー装置を操作し、「燃焼・昇温」操作状態のSCWO反応器及び「定常燃焼」操作状態のSCWO反応器からの未燃焼物含有排出流体を第1燃焼室に導入せしめて、第1燃焼室で必要に応じて未燃焼物を燃焼させ、発生した高温・高圧流体の一部を「密閉・昇圧」操作状態のSCWO反応器及び「定圧・昇温」操作状態のSCWO反応器に送出し、一方、該第1燃焼室で発生した高温・高圧流体の残部を第2燃焼室に導入せしめ、この流れと「定圧・昇圧」操作状態のSCWO反応器で排出される自燃温度より低温の排出流体とを第2燃焼室入り口で混合し、自燃温度以上に昇温せしめ、第2燃焼室で未燃焼の燃料を完全燃焼させ、高温高圧流体として熱出力を得ることを特徴とする上記〔10〕〜〔13〕のいずれか一に記載の有機物からの熱の発生取得法。
〔15〕有機物燃焼ボイラー装置のスタートアップの場合に、第1の「密閉・昇圧」操作状態のSCWO反応器をヒータでもって加熱して所定圧力にまで昇圧することを特徴とする上記〔10〕〜〔14〕のいずれか一に記載の有機物からの熱の発生取得法。
〔16〕SCWO反応器の「定常燃焼」操作状態を終了せしめた後、当該SCWO反応器内に残存する高温・高圧流体に水を圧入し、降圧せしめ、得られた降圧された高温水を利用して熱エネルギーを回収し、必要に応じて、当該SCWO反応器内に残存する二酸化炭素等の燃焼ガスを回収することを特徴とする上記〔10〕〜〔15〕のいずれか一に記載の有機物からの熱の発生取得法。
[10] Applying a supercritical water oxidation reaction (SCWO) to generate a high-temperature and high-pressure combustion fluid containing at least biomass and using organic matter with a high water content as a fuel and containing supercritical water as a main component, A method for obtaining and generating heat from an organic material, comprising completely burning unburned organic material contained in a fluid obtained from SCWO to generate a high-temperature and high-pressure fluid.
[11] Operating an SCWO reactor and an organic combustion boiler device having a combustion chamber located downstream thereof,
(1) Press-fit supercritical water into the SCWO reactor in a sealed state, and pressurize the SCWO reactor filled with the raw material to the combustion pressure (“sealed / pressurized”).
(2) Supercritical water is allowed to flow through the SCWO reactor, the temperature in the SCWO reactor is raised to the self-combustion temperature of the charged raw material under a constant pressure, and the supercritical water from the SCWO reactor is the main component. And let the hot water containing unburned organic matter flow out into the combustion chamber ("constant pressure / temperature rise"),
(3) Supply oxygen to the SCWO reactor, burn the charged raw material in the SCWO reactor under a constant pressure, and heat from the SCWO reactor mainly containing supercritical water and containing unburned organic matter. Causing water and carbon dioxide to flow into the combustion chamber (“constant pressure, combustion, temperature rise”) or supply oxygen to the SCWO reactor, and combust the charged material in the SCWO reactor, and from the SCWO reactor Causing hot water and carbon dioxide containing supercritical water and unburned organic matter to flow into a specific combustion chamber ("combustion / heating"),
(4) Cooling water is supplied to the SCWO reactor to maintain its combustion temperature so that combustion of the charged raw material in the SCWO reactor is maintained, and supercritical water is mainly supplied from the SCWO reactor. Causing hot water and carbon dioxide as components and containing unburned organic matter to flow into the combustion chamber ("steady combustion"),
(5) Cooling water is injected into the SCWO reactor, the temperature is lowered and lowered, and after reaching a predetermined temperature, the cooling water supply is stopped, and the hot water and carbon dioxide are discharged and recovered. After that, the organic raw material is supplied and charged into the SCWO reactor (“discharge / fill”)
It is attached to each of the operating elements of the above, generating stable heat output continuously, eliminating the need for continuous supply of solid fuel including biomass to high temperature and high pressure systems, batch supply at a temperature and pressure that is easy to supply The method for obtaining and generating heat from an organic material as described in [10] above, wherein
[12] An organic combustion boiler apparatus equipped with a plurality of SCWO reactors is operated to combine all fluids flowing out from the SCWO reactors, and unburned organic substances (organic substances mainly dissolved in hot water) contained in the outflowing fluid The method for obtaining and generating heat from organic matter according to [10] or [11] above, wherein a combustion chamber is provided in the latter stage of the reactor for complete combustion in a batch, and a high-temperature and high-pressure fluid is continuously generated .
[13] The heat from the organic matter according to any one of [10] to [12], wherein high-temperature and high-pressure steam is generated by a heat exchanger downstream of the combustion chamber downstream of the SCWO reactor. How to get out.
[14] Operating an organic combustion boiler apparatus having a first combustion chamber and a second combustion chamber as a combustion chamber downstream of the SCWO reactor, and operating the SCWO reactor in a “burning / heating” operating state and a “steady combustion” operating state The unburned matter-containing exhaust fluid from the SCWO reactor is introduced into the first combustion chamber, the unburned matter is combusted as necessary in the first combustion chamber, and a part of the generated high-temperature / high-pressure fluid is “sealed”・ Send to SCWO reactor in “pressurization” operation state and SCWO reactor in “constant pressure / temperature increase” operation state, while introducing the remainder of the high temperature and high pressure fluid generated in the first combustion chamber into the second combustion chamber This flow is mixed with the exhaust fluid at a temperature lower than the self-combustion temperature discharged from the SCWO reactor in the “constant pressure / pressure increase” operation state, and the temperature is raised to the self-combustion temperature or more at the second combustion chamber. It is characterized by completely burning unburned fuel and obtaining heat output as a high-temperature and high-pressure fluid. That generates the acquisition method of heat from organic matter according to any of the above [10] to [13].
[15] In the start-up of the organic combustion boiler apparatus, the SCWO reactor in the first “sealed / pressure-increasing” operation state is heated with a heater to increase the pressure to a predetermined pressure. [14] The method for obtaining and generating heat from the organic material according to any one of [14].
[16] After completing the “steady combustion” operation state of the SCWO reactor, water is injected into the high-temperature / high-pressure fluid remaining in the SCWO reactor, the pressure is reduced, and the resulting reduced-pressure high-temperature water is used. The thermal energy is recovered, and if necessary, the combustion gas such as carbon dioxide remaining in the SCWO reactor is recovered as described in any one of the above [10] to [15] A method for obtaining heat from organic substances.

本発明では、SCWO反応を利用して高含水率のバイオマスを燃料化することに成功しており、回分的な原料供給の採用により、種々の形態、形状のバイオマスを原料化することができて、複数の反応器を各操作に対応して用いることにより、安定した連続的な出力を可能にしており、しかも装置構造を簡略化できて、小規模分散型バイオマス燃焼ボイラーにおける装置コストの大幅な削減に資するものである。
本発明のバイオマスボイラープラント並びにその操作技術により、形状、形態を選ばず、含水率90%程度までのあらゆる種類のバイオマスを燃料として使用できる、高温・高圧の燃焼ガスを連続的に生成し、発電用のガスタービンを直接駆動するか、熱交換により超臨界水を発生させ、発電用スチームタービンの駆動に供することを可能にし、装置構成を
簡素化し、さらに廃熱の回収、有効利用も可能であり、分散型パワープラント用としての経済性も実現できるものである。
本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当業者にとっては明白であろう。しかしながら、以下の記載及び具体的な実施例等の記載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のためにのみ示されているものであることを理解されたい。本明細書に開示した本発明の意図及び範囲内で、種々の変化及び/又は改変(あるいは修飾)をなすことは、以下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明らかであろう。本明細書で引用されている全ての特許文献及び参考文献は、説明の目的で引用されているもので、それらは本明細書の一部としてその内容はここに含めて解釈されるべきものである。
In the present invention, it has succeeded in fueling biomass with a high water content using the SCWO reaction, and by adopting batch raw material supply, biomass of various forms and shapes can be used as raw materials. By using a plurality of reactors corresponding to each operation, stable and continuous output is possible, and the structure of the apparatus can be simplified, and the apparatus cost in a small-scale distributed biomass combustion boiler is greatly increased. Contributes to reduction.
The biomass boiler plant of the present invention and its operation technology continuously generate high-temperature and high-pressure combustion gas that can use any type of biomass up to about 90% moisture as fuel, regardless of shape and form, and generate electricity. It is possible to directly drive a gas turbine for industrial use or generate supercritical water by heat exchange and use it to drive a steam turbine for power generation, simplify the system configuration, and also recover and effectively use waste heat. Yes, it can also be economical for distributed power plants.
Other objects, features, excellence and aspects of the present invention will be apparent to those skilled in the art from the following description. However, it is understood that the description of the present specification, including the following description and the description of specific examples and the like, show preferred embodiments of the present invention and are presented only for explanation. I want. Various changes and / or modifications (or modifications) within the spirit and scope of the present invention disclosed herein will occur to those skilled in the art based on the following description and knowledge from other parts of the present specification. Will be readily apparent. All patent documents and references cited herein are cited for illustrative purposes and are not to be construed as a part of this specification. is there.

バイオマスとは、生態学で特定の時点においてある空間に存在する生物の量を、物質の量として表現したものであるが、産業資源として使用した場合は、バイオマスとは、化石資源でない、現生生物体構成物質起源の産業資源を指している。本明細書では、「バイオマス」は、好適には生物由来の有機性資源で化石資源を除いたものを意味してよい。バイオマスは、カーボンニユートラルとか、再生可能である資源を意味してもよい。バイオマスとしては、例えば、農林水産業からの畜産廃棄物(家畜糞尿を含む)、木材(廃材を含む)、藁、資源作物(トウモロコシ、サトウキビ、イネ、コムギなどの植物)及びその廃棄物(廃植物油を含む)、食品産業から発生する廃棄物、製紙パルプ製造工程で生ずる廃棄物(黒液を含む)などが包含される。本発明では、山林、原野、ゴルフ場、果樹園や田畑等の農耕地、淡水や海水域で発生する全てのバイオマス(1次産品に直接関わる穀物の
茎、剪定枝等の未利用バイオマスのみならず、下草、落葉、雑草や、さらには休作期間中の栽培による光合成効率の高い植物等)、あるいは飲料、食品加工工場等での搾りかすや
抽出残渣等のバイオマス廃棄物、生ごみ(プラスチック等有機物製品を含有も可)等の可燃系都市ごみ等を燃料とする。
本発明で使用される資源のバイオマス等の有機物は、高含水率のものであってよい。該含水率としては、0.950以上のもの、あるいは0.925以上のもの、さらには0.9以上のもの
が挙げられる。また、該含水率が、0.875以上のもの、あるいは0.85以上のもの、さらに
は0.833以上のものであってもよい。本発明で使用可能なバイオマス等の有機物は、こう
した含水率のものを含有するものであってよく、その一部あるいは全部が当該含水率のものも包含されてよい。
Biomass is the expression of the amount of organisms that exist in a space at a specific point in time as a quantity of material, but when used as an industrial resource, biomass is not a fossil resource, but a living organism. It refers to industrial resources originating from material constituent materials. In the present specification, “biomass” may mean a biologically derived organic resource excluding fossil resources. Biomass may mean carbon neutral or a renewable resource. Biomass includes, for example, livestock waste from agriculture, forestry and fisheries (including livestock manure), wood (including waste materials), firewood, resource crops (plants such as corn, sugarcane, rice, wheat) and waste (waste) (Including vegetable oils), waste generated from the food industry, and waste (including black liquor) generated in the paper pulp manufacturing process. In the present invention, all biomass generated in forests, wilderness, golf courses, farmland such as orchards and fields, freshwater and seawater (only unused biomass such as grain stems and pruned branches directly related to primary products) , Undergrowth, fallen leaves, weeds, and plants with high photosynthesis efficiency during cultivation, etc.), biomass waste such as squeezed residue and extraction residue in beverages, food processing plants, etc. Combustible municipal waste such as organic products may also be used as fuel.
The organic matter such as biomass used in the present invention may have a high water content. Examples of the water content include 0.950 or more, 0.925 or more, and 0.9 or more. Further, the water content may be 0.875 or more, 0.85 or more, and further 0.833 or more. Organic substances such as biomass that can be used in the present invention may contain those having such a moisture content, and some or all of them may include those having such a moisture content.

従来のSCWO操作は、主として高圧ポンプ等で供給可能な液体、あるいは固液スラリーを対象とし、SCWO反応器(SCWOリアクター)に処理物、水(あるいは超臨界水、または水と
必要に応じて補助燃料)と酸素あるいは空気を連続的に導入する連続反応操作が一般的で
ある。また、有害物で汚染された固体の処理に関しては、安全性のため可能な限り複雑な前処理を避け、固体をSCWO反応器に回分的に仕込み、その後、超臨界水と空気(あるいは酸素を)を流通させ、燃焼させる半回分操作が提案されている。
パワープラント用ボイラーとしては安定した出力が得られる連続操作が望ましいが、多様な形態を有する固体を高圧系に供給する汎用的で、安価で、信頼性の高い装置、方法は存在しない。多くのバイオマスは既存のスラリーポンプが使用可能な程度に原料を微粉砕することは可能であるが、原料の形態に応じ多様な粉砕法が求められ、さらには繊維質の多いバイオマスの微粉砕は特殊な装置を必要とし、それに要するエネルギーもかなり大きくなる等、バイオマスの高圧系への連続供給の安価で、汎用的な方法は存在しない。
Conventional SCWO operations are mainly for liquids that can be supplied by high-pressure pumps, etc., or solid-liquid slurries, and the SCWO reactor (SCWO reactor) is treated with processed material, water (or supercritical water, or water as needed. A continuous reaction operation in which fuel) and oxygen or air are continuously introduced is common. In addition, for the treatment of solids contaminated with harmful substances, avoid pretreatment as complicated as possible for safety, charge the solids into the SCWO reactor batchwise, and then supercritical water and air (or oxygen ) Is circulated and burned for half-batch operation.
As a boiler for a power plant, it is desirable to operate continuously so that a stable output can be obtained. However, there is no general-purpose, inexpensive and highly reliable apparatus and method for supplying solids having various forms to a high-pressure system. Although it is possible to pulverize raw materials to such an extent that existing slurry pumps can be used for many biomasses, various pulverization methods are required depending on the form of the raw materials. There is no inexpensive and versatile method for continuous supply of biomass to a high-pressure system, such as requiring special equipment and enormous energy requirements.

本発明の技術では、次のような態様が提供されている。
(1)超臨界水酸化反応を応用し、バイオマス等の高含水率の有機物を燃料とし、超臨界水
を主成分とする高温・高圧燃焼流体を発生させる燃焼ボイラー装置。
(2)(1)に記したバイオマス燃焼ボイラー装置の操作を、下記で説明する「密閉・昇圧」、
「定圧・昇温」、「燃焼・昇温」、「定常燃焼」、「排出・充填」等の操作要素に分け、安定した熱出力を連続して発生し、かつ、高温、高圧系へのバイオマス等の固体燃料の連続供給を不要にし、供給容易な温度、圧力で回分供給を可能にする装置構成と操作法。
(3) SCWO反応器から流出する全ての流体を合流させ、その流出流体に含まれる未燃焼有機物(主として熱水に溶解する有機物)を一括して完全燃焼させる燃焼室を反応器後段に設け、高温・高圧流体を連続的に発生させる装置とその操作方法。
(4)後段の燃焼室の後流に熱交換器を設け、高温・高圧スチームを発生させるときの装置
構成と操作法(図2、図3参照)。
(5)後段の燃焼室を意図した流路が構成されるように2つに分割し、任意の圧力が設定で
きる「燃焼・昇温」と「定常燃焼」操作の排出流体が導入される第1燃焼室で必要に応じて未燃焼物を燃焼させ、発生した高温・高圧流体の一部を「密閉・昇圧」、「定圧・昇温」操作に使用し、残りは第2燃焼室に導入される。この流れと「定圧・昇圧」操作で排出される自燃温度より低温の排出流体と第2燃焼室入り口で混合し、自燃温度以上に昇温され、第2燃焼室で未燃焼の燃料を完全燃焼させ、高温高圧流体として熱出力を得る装置と操作方法。
(6)(5)に述べた装置のスタートアップに必要なヒーターの構成とその操作の方法。
(7)定常燃焼終了後のSCWO反応器内に残存する高温・高圧流体に水を圧入し、降圧と同時
に、高温水として熱回収し、必要であれば二酸化炭素等の燃焼ガスも回収する装置構成とその操作方法。
(8)非定常の超臨界水酸化反応の操作性、熱効率の向上を図るために熱伝導率の小さなセ
ラミックス等で反応器内面に断熱層を施したSCWO反応器。
The following aspects are provided in the technology of the present invention.
(1) A combustion boiler device that uses supercritical water oxidation to generate high-temperature, high-pressure combustion fluids that contain supercritical water as the main component, using high-water content organic matter such as biomass as fuel.
(2) The operation of the biomass combustion boiler device described in (1) is described below as “sealing / pressurizing”,
It is divided into operating elements such as “constant pressure / temperature rise”, “combustion / temperature rise”, “steady combustion”, “discharge / filling”, etc., and stable heat output is continuously generated, A system configuration and operation method that eliminates the need for continuous supply of solid fuel such as biomass and enables batch supply at an easy temperature and pressure.
(3) A combustion chamber in which all the fluids flowing out from the SCWO reactor are merged and unburned organic substances (organic substances mainly dissolved in hot water) contained in the flowing fluid are completely burned is provided at the rear stage of the reactor. A device that continuously generates high-temperature and high-pressure fluid and its operation method.
(4) Equipment configuration and operation method when a heat exchanger is installed in the downstream of the combustion chamber at the rear stage to generate high temperature / high pressure steam (see FIGS. 2 and 3).
(5) The latter combustion chamber is divided into two so that the intended flow path is configured, and the discharge fluid of “combustion / temperature rise” and “steady combustion” operation that can set any pressure is introduced. Unburned material is combusted as needed in one combustion chamber, and part of the generated high-temperature / high-pressure fluid is used for “sealing / pressure-increasing” and “constant-pressure / temperature-raising” operations, and the rest is introduced into the second combustion chamber. Is done. This flow and the fluid discharged at a lower temperature than the self-combustion temperature discharged by the “constant pressure / pressure-increase” operation are mixed at the entrance of the second combustion chamber, the temperature is raised above the self-combustion temperature, and unburned fuel is completely combusted in the second combustion chamber. Apparatus and operation method for obtaining heat output as a high-temperature and high-pressure fluid.
(6) The heater configuration and operation method required for the startup of the equipment described in (5).
(7) A device that injects water into the high-temperature and high-pressure fluid remaining in the SCWO reactor after completion of steady combustion, recovers heat as high-temperature water at the same time as pressure reduction, and collects combustion gases such as carbon dioxide if necessary Configuration and how to operate it.
(8) An SCWO reactor in which a heat insulating layer is provided on the inner surface of the reactor with ceramics having a low thermal conductivity in order to improve the operability and thermal efficiency of the unsteady supercritical water oxidation reaction.

典型的な態様では、本発明の有機物(例えば、バイオマス)燃焼ボイラー(又は燃焼ボイラープラントあるいは燃焼ボイラーシステム)は、2以上のSCWO反応器とその後段(下流)に燃焼室を備えていることを特徴としている。該燃焼ボイラーは、少なくとも、SCWO反応器を、下記で説明する「密閉・昇圧」、「定圧・昇温」、「定圧・燃焼・昇温」又は「燃焼・昇温」、「定常燃焼」及び「排出・充填」からなる群から選択された操作に付すことができ、好ましくは、ある一つのSCWO反応器を、SCWO反応器を、「密閉・昇圧」→「定圧・昇温」→「定圧・燃焼・昇温」又は「燃焼・昇温」→「定常燃焼」→「排出・充填」からなる操作サイクルに付すことが可能となるように構成されていることを特徴とし、したがって、該操作が可能なように該燃焼ボイラーに備える配管系のバルブ(弁)及び流体送出ポンプが制御可能なように構成されている。かくして、該燃焼ボイラーは、酸素導入用配管系(バルブ、配管(導管)、ポンプ、場合によっては流量計、制御装置などを包含していてよい)、燃焼室からSCWO反応器へ高温高圧水蒸気(超臨界水)を導入するための配管系(バルブ、配管(導管)、任意にポンプ、場合によっては流量計、制御装置などを包含していてよい)、燃焼室及び/又はSCWO反応器へ冷却水を導入するための配管系(バルブ、配管(導管)、ポンプ、場合によっては流量計、制御装置などを包含していてよい)、SCWO反応器からの流出流体を後段(下流)の燃焼室に導入するための配管系(バルブ、配管(導管)、任意にポンプ、場合によっては流量計、制御装置などを包含していてよい)、SCWO反応器より熱回収用温水を排出するドレイン配管系(バルブ、配管(導管)、任意にポンプ、場合によっては流量計、制御装置などを包含していてよい)、任意に、スチームアキュムレータ、タービン、タービンよりの温水を排出するドレイン配管系(バルブ、配管(導管)、任意にポンプ、場合によっては流量計、制御装置などを包含していてよい)、気液分離装置、気液混合物を排出するドレイン配管系(バルブ、配管(導管)、任意にポンプ、場合によっては流量計、制御装置などを包含していてよい)などを備えていてよいし、ある場合にはそれが好ましい。
該燃焼ボイラーは、例えば、少なくとも5つのSCWO反応器を備えて、定常運転時には、各SCWO反応器が各操作状態をとるようにして操作可能とされている。別の態様では、反応器の数を減らすように操作される前提で、例えば、少なくとも4つのSCWO反応器を備えているもの、あるいは、少なくとも3つのSCWO反応器を備えているものとして構成されてい
てもよい。該燃焼ボイラーにおいては、燃焼室を複数に分割して設けたもの、例えば、第一燃焼室と第二燃焼室とを有するものであってよいし、及び/又は、スタートアップ時のための着脱可能な加熱装置(ヒータ)が備えられているものであってよい。当該ヒータは、複数であってもよく、燃焼室の一方に常設されたものであってもよい。ヒータを燃焼室に付設する場合、例えば、SCWO反応器の後段の燃焼室で、SCWO反応器よりの未燃焼有機物を含有する熱水を受容する燃焼室にヒータをを設ける構成とすることは好適である。
In a typical embodiment, the organic (eg, biomass) combustion boiler (or combustion boiler plant or combustion boiler system) of the present invention comprises two or more SCWO reactors and a combustion chamber downstream (downstream). It is a feature. The combustion boiler includes at least SCWO reactors, which are described below, “sealing / pressure increase”, “constant pressure / temperature increase”, “constant pressure / combustion / temperature increase” or “combustion / temperature increase”, “steady combustion”, and It can be subjected to an operation selected from the group consisting of “discharge / fill”. Preferably, one SCWO reactor is connected to an SCWO reactor, which is “sealed / pressurized” → “constant pressure / temperature rise” → “constant pressure”. · It is characterized by being configured to be able to be subjected to an operation cycle consisting of “combustion / temperature rise” or “combustion / temperature rise” → “steady combustion” → “discharge / filling”, and therefore the operation The piping system valve (valve) and the fluid delivery pump provided in the combustion boiler are configured to be controllable. Thus, the combustion boiler includes an oxygen introduction piping system (which may include valves, piping (conduit), pumps, and in some cases flow meters, control devices, etc.), high-temperature high-pressure steam (from the combustion chamber to the SCWO reactor). Cooling to piping system (valve, piping (conduit), optionally pump, optionally flow meter, controller etc.), combustion chamber and / or SCWO reactor for introducing supercritical water) Piping system for introducing water (valve, piping (conduit), pump, and in some cases may include a flow meter, control device, etc.), effluent fluid from SCWO reactor is downstream (downstream) combustion chamber Piping system (valve, piping (conduit), optionally pump, optionally including a flow meter, control device, etc.), drain piping system for discharging hot water for heat recovery from SCWO reactor (Valve, piping (conduit ), Optionally a pump, optionally including a flow meter, controller, etc.), optionally a steam accumulator, turbine, drain piping system for discharging hot water from the turbine (valve, piping (conduit), optional) A pump, which may include a flow meter, a control device, etc.), a gas-liquid separator, a drain piping system (valve, piping (conduit), optionally a pump, optionally a flow rate) A meter, a control device, etc. may be included, and in some cases it is preferred.
The combustion boiler includes, for example, at least five SCWO reactors, and can be operated so that each SCWO reactor takes each operation state during steady operation. In another embodiment, it is configured on the premise that it is operated to reduce the number of reactors, for example, having at least four SCWO reactors, or having at least three SCWO reactors. May be. The combustion boiler may have a combustion chamber divided into a plurality of parts, for example, a combustion chamber having a first combustion chamber and a second combustion chamber, and / or removable for start-up. A simple heating device (heater) may be provided. A plurality of the heaters may be provided, or the heater may be provided permanently in one of the combustion chambers. When the heater is attached to the combustion chamber, for example, it is preferable that the heater is provided in the combustion chamber that receives hot water containing unburned organic matter from the SCWO reactor in the combustion chamber at the rear stage of the SCWO reactor. It is.

以下に具体例(すなわち、実施例)を掲げ、本発明を具体的に説明するが、この例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。
全ての例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なものである。
本発明の一つの具体的な態様では、図2に示すような複数のSCWO反応器を順次サイクル操作することにより、大気圧下でのバイオマス燃料の回分供給を可能にし、かつ、連続的な出力を安定に得るボイラープラントが提供される。
図2は5つの操作に対応し、5つの反応器を使用した場合を示す(必ずしも各操作に一
つ以上の反応器を割り当てる必要は無く、連続する操作を操作時間に応じて合併することも可能であり、例えば「排出・充填」と「密閉・昇圧」操作を「排出・充填・密閉・昇圧」操作に、「定圧・燃焼・昇温」と「定常燃焼」操作を「燃焼・昇温・定常燃焼」操作にして、他の操作と同期させると反応器の数を減らすことができる)。
各反応器は全て等価の関係にあり、(A)で示した酸素の導入ライン、(B)で示した高温高圧水蒸気(超臨界水)の導入ライン、(C)で示した冷却水の導入ライン、(D)で示した反応器からの流出流体を後段の燃焼室に導くライン、及び、(E)茶色で示した熱回収の温水を排
出するドレインラインが接続されている。
それぞれの太線ラインは流通状態、細線ラインは停止状態を示し、バルブは白抜きが開、灰色が閉の状態を示す。室温、大気圧下でのバイオマス燃料の充填が終了した図2の左端の状態から各操作を順に説明する。
Specific examples (that is, examples) are given below to specifically describe the present invention, but these examples are merely provided for the purpose of describing the present invention and for reference to specific embodiments thereof. is there. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application. In the present invention, it should be understood that various embodiments based on the idea of the present specification are possible.
All examples were performed or can be performed using standard techniques, except as otherwise described in detail, and are well known and routine to those skilled in the art.
In one specific embodiment of the present invention, a plurality of SCWO reactors as shown in FIG. 2 are sequentially cycled to enable batch supply of biomass fuel at atmospheric pressure and continuous output. A boiler plant that stably obtains the above is provided.
FIG. 2 corresponds to five operations and shows the case where five reactors are used. (It is not always necessary to assign one or more reactors to each operation, and consecutive operations may be merged according to the operation time. For example, “discharge / filling” and “sealing / pressurization” operations are changed to “discharge / filling / sealing / pressure-raising” operations, and “constant pressure / combustion / temperature rise” and “steady combustion” operations are set to “combustion / temperature rise”. • The number of reactors can be reduced if the “steady combustion” operation is synchronized with other operations.
All reactors are in an equivalent relationship, the oxygen introduction line shown in (A), the high-temperature high-pressure steam (supercritical water) introduction line shown in (B), and the cooling water introduction shown in (C). A line, a line for guiding the effluent fluid from the reactor shown in (D) to the subsequent combustion chamber, and a drain line (E) for discharging hot water for heat recovery shown in brown are connected.
Each thick line indicates a distribution state, a thin line indicates a stop state, and a valve indicates an open state and a gray state is closed. Each operation will be described in order from the state of the left end of FIG. 2 where the filling of the biomass fuel at room temperature and atmospheric pressure is completed.

先ず原料の充填直後に始まる操作を「密閉・昇圧操作」と称し、図2に示したように超臨界水導入ラインのバルブを開にし、それ以外のバルブは閉じて、超臨界水を密閉状態で圧入し、燃焼圧力まで昇圧する(図2では「密閉昇圧」の反応器として示されている)。かくして、SCWO反応器を「密閉・昇圧」操作に付すとは、SCWO反応器に超臨界水を密閉状態で圧入し、原料の充填されているSCWO反応器を燃焼圧力まで昇圧することを意味する。本操作は反応器内圧力が所定の燃焼圧力になった時点で終了し、次の「定圧・昇温操作」に移行する。   First, the operation that starts immediately after filling the raw material is called “sealing / pressurizing operation”. As shown in FIG. 2, the valves of the supercritical water introduction line are opened, the other valves are closed, and the supercritical water is sealed. To increase the combustion pressure (shown in FIG. 2 as a “closed pressure increase” reactor). Thus, subjecting the SCWO reactor to a “sealing / pressurizing” operation means pressurizing supercritical water into the SCWO reactor in a sealed state, and boosting the SCWO reactor filled with the raw material to the combustion pressure. . This operation ends when the pressure in the reactor reaches a predetermined combustion pressure, and the process proceeds to the next “constant pressure / temperature increase operation”.

この「定圧・昇温操作」は図2では左から2番目の反応器の状態を示し、超臨界水導入
ラインと反応器と燃焼室を結ぶラインのバルブが開の状態で、高温の超臨界水を反応器内に流通させることにより、定圧下で反応器内温度を自燃温度まで上昇させる(図2では「定圧昇温」の反応器として示されている)。この際、超臨界水の流入量と昇温による熱膨張に応じて熱水が流出する。大方の固体バイオマスは反応器出口に設けたメッシュにより反応器内に保持されるが、一方、糖分は勿論のこと、常温の水に不溶なヘミセルロース、セルロースやリグニンで構成されるバイオマス成分の多くが熱水に溶解する。そのため、バイオマスの種類によって量的関係は変化するが、この操作中において溶解温度に到達したバイオマス成分は溶解流出する。かくして、SCWO反応器を「定圧・昇温」操作に付すとは、SCWO反応器に超臨界水を流通せしめると共に、SCWO反応器内温度を定圧下に、充填された原料の自燃温度にまで上昇せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水を燃焼室へ流出せしめることを意味する。本「定圧・昇温
操作」は自燃温度に到達した時点で終了し、次の「定圧・燃焼・昇温操作」に移行する。
This “constant pressure / temperature raising operation” shows the state of the second reactor from the left in FIG. 2, with the supercritical water introduction line and the valve of the line connecting the reactor and the combustion chamber being open, By circulating water in the reactor, the temperature in the reactor is raised to the self-combustion temperature under a constant pressure (shown as a “constant pressure rise” reactor in FIG. 2). At this time, hot water flows out according to the inflow amount of supercritical water and the thermal expansion due to the temperature rise. Most of the solid biomass is held in the reactor by a mesh provided at the reactor outlet. On the other hand, many of the biomass components composed of hemicellulose, cellulose and lignin insoluble in water at room temperature, as well as sugar, are included. Dissolve in hot water. Therefore, although the quantitative relationship varies depending on the type of biomass, the biomass component that has reached the dissolution temperature during this operation is dissolved and discharged. Thus, when the SCWO reactor is subjected to a "constant pressure / temperature increase" operation, supercritical water is circulated through the SCWO reactor, and the temperature in the SCWO reactor is increased to the self-combustion temperature of the charged raw material under a constant pressure. And hot water containing supercritical water as a main component and containing unburned organic matter is discharged from the SCWO reactor to the combustion chamber. This “constant pressure / temperature raising operation” is terminated when the self-combustion temperature is reached, and the process proceeds to the next “constant pressure / combustion / temperature raising operation”.

この「定圧・燃焼・昇温操作」は図2では左から3番目の反応器の状態を示し、超臨界
水の導入バルブを閉じ、酸素の供給バルブを開いて、反応器内のバイオマスの燃焼を開始する(図2では「定圧燃焼昇温」の反応器として示されている)。反応器内の温度は燃焼熱により上昇し、本操作は所定の定常燃焼温度に到達したら終了する。この操作の間、燃焼反応と昇温による熱膨張に対応してバイオマス成分を一部溶解した熱水と二酸化炭素が流出する。かくして、SCWO反応器を「定圧・燃焼・昇温」操作に付すとは、SCWO反応器に酸素を供給せしめると共に、SCWO反応器内の充填された原料を定圧下に燃焼せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を燃焼室へ流出せしめることを意味する。本操作の終了後、「定常燃焼操作」に移行する。
This “constant pressure / combustion / heating operation” shows the state of the third reactor from the left in FIG. 2, and closes the supercritical water introduction valve and opens the oxygen supply valve to burn the biomass in the reactor. (Shown as a “constant pressure combustion temperature rise” reactor in FIG. 2). The temperature in the reactor rises due to the heat of combustion, and this operation ends when a predetermined steady combustion temperature is reached. During this operation, hot water and carbon dioxide, in which the biomass components are partially dissolved, flow out corresponding to the thermal expansion due to the combustion reaction and the temperature rise. Thus, subjecting the SCWO reactor to a “constant pressure / combustion / temperature raising” operation means that oxygen is supplied to the SCWO reactor, the charged raw material in the SCWO reactor is combusted under constant pressure, and the SCWO reaction is performed. This means that hot water and carbon dioxide containing supercritical water as a main component and containing unburned organic substances are discharged from the vessel to the combustion chamber. After this operation is completed, the routine proceeds to “steady combustion operation”.

この「定常燃焼操作」は図2では右から2番目の反応器の状態を示し、燃焼温度を維持
するために、冷却水のライン(本図ではボイラー水ラインと共通しているが、別に設けても良い)のバルブが作動する(図2では「定常燃焼」の反応器として示されている)。本操作では燃焼反応に応じて、バイオマス成分の一部を溶解した熱水と二酸化炭素が流出する。かくして、SCWO反応器を「定常燃焼」操作に付すとは、SCWO反応器での充填された原料の燃焼が維持されるように、その燃焼温度を維持するよう、冷却水がSCWO反応器に供給され、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を燃焼室へ流出せしめることを意味する。本操作は全てのバイオマスが燃焼した時点で終了し、次の「排出・充填操作」に移行する。
This “steady combustion operation” shows the state of the second reactor from the right in FIG. 2 and is shared with the cooling water line (in this figure, the boiler water line to maintain the combustion temperature. May be actuated) (shown as a “steady combustion” reactor in FIG. 2). In this operation, hot water and carbon dioxide, in which part of the biomass components are dissolved, flow out according to the combustion reaction. Thus, subjecting the SCWO reactor to a “steady combustion” operation means that cooling water is supplied to the SCWO reactor so as to maintain its combustion temperature so that combustion of the charged raw material in the SCWO reactor is maintained. And means that hot water and carbon dioxide containing supercritical water as a main component and containing unburned organic substances are discharged from the SCWO reactor into the combustion chamber. This operation ends when all the biomass is burned, and proceeds to the next “discharge / fill operation”.

この「排出・充填操作」は図2では右端の反応器の状態を示し、冷却水導入バルブ以外は全て閉にし、冷却水を圧入して、回収温水温度まで降温し、同時に降圧する(図2では「排出充填」の反応器として示されている)。所定の温度に到達したら、冷却水バルブを閉じ、ドレインバルブ(Eのライン)を開き、二酸化炭素主成分とする気体圧力を利用し
、温水と二酸化炭素を排出・回収する。原料充填圧(通常は大気圧)に到達したら、バイオマス原料を原料供給ノズル(図には示していないが祖粉砕程度のバイオマスの供給を前提)から充填する。かくして、SCWO反応器を「排出・充填」操作に付すとは、SCWO反応器へ冷却水を圧入して、降温降圧せしめ、所定の温度にした後、冷却水の供給を停止して、温水と二酸化炭素を排出・回収せしめ、次に、原料充填圧にした後、有機物原料を供給し、SCWO反応器に充填することを意味し、より具体的には、SCWO反応器へ冷却水を圧入して、回収温水温度まで降温し、同時に降圧せしめ、所定の温度にした後、冷却水の供給を停止して、温水と二酸化炭素を排出・回収せしめ、次に、原料充填圧(通常は大気圧)にした後、バイオマス原料を供給し、SCWO反応器に充填することを意味する。
本操作終了で1サイクル(5つの操作)が各反応器で同時に終了し、全ての反応器は順に次の操作に移行し、上記の操作を繰り返す。
This “discharge / fill operation” shows the state of the rightmost reactor in FIG. 2, all except the cooling water introduction valve are closed, the cooling water is injected, the temperature is lowered to the recovered hot water temperature, and the pressure is lowered simultaneously (FIG. 2). Is shown as a “discharge-fill” reactor). When the predetermined temperature is reached, the cooling water valve is closed, the drain valve (E line) is opened, and the gas pressure mainly composed of carbon dioxide is used to discharge and collect hot water and carbon dioxide. When the raw material filling pressure (usually atmospheric pressure) is reached, the biomass raw material is filled from a raw material supply nozzle (not shown in the figure, but premised on the supply of biomass at the level of ground grinding). Thus, when the SCWO reactor is subjected to the “discharge / fill” operation, the cooling water is press-fitted into the SCWO reactor, the temperature is lowered, the temperature is lowered to a predetermined temperature, and then the cooling water supply is stopped. It means that carbon dioxide is discharged and recovered, and then the raw material filling pressure is set, and then the organic raw material is supplied and charged into the SCWO reactor. More specifically, cooling water is injected into the SCWO reactor. Then, the temperature is lowered to the recovered hot water temperature, and the pressure is lowered at the same time. After the predetermined temperature is reached, the supply of cooling water is stopped, the hot water and carbon dioxide are discharged and recovered, and then the raw material filling pressure (usually atmospheric pressure) ), The biomass raw material is supplied and the SCWO reactor is charged.
At the end of this operation, one cycle (five operations) is completed simultaneously in each reactor, and all the reactors sequentially move to the next operation, and the above operations are repeated.

「定圧・昇温」、「定圧・燃焼・昇温」、「定常燃焼」の3つの操作の反応器からの流出流体は図2に示したように合流したのち、バイオマス燃焼ボイラーにおいて導入酸素と混合し、流出バイオマスを完全燃焼させる。定常燃焼温度を超えないように必要に応じて冷却水を導入する。
図2では、高温・高圧の燃焼ガスと熱交換し、超臨界水を発生し、パワープラントの動力源とする。一部は「密閉・昇圧」と「定圧・昇温」操作の超臨界水として用いる。熱交換された燃焼流体は気液分離器に導かれ、高圧二酸化炭素と排水に分離される。
The effluent fluid from the reactor of the three operations of “constant pressure / temperature rise”, “constant pressure / combustion / temperature rise”, and “steady combustion” merges as shown in FIG. Mix and completely burn out spilled biomass. Cooling water is introduced as necessary so as not to exceed the steady combustion temperature.
In FIG. 2, heat exchange is performed with high-temperature and high-pressure combustion gas to generate supercritical water, which is used as a power source for the power plant. Some are used as supercritical water for “sealing / pressurizing” and “constant pressure / heating” operations. The heat exchanged combustion fluid is guided to a gas-liquid separator and separated into high-pressure carbon dioxide and waste water.

次に、図2で示したボイラープラントのシミュレーションの1例を、図3に示す。
5つの反応器を使用した場合、燃焼操作全体に関して、「排出・充填操作」はオフラインとして取り扱い、1つの反応器が残り4つの操作を終了する時間を1周期として取り扱
う。
図3は、1時間あたり絶乾基準でバイオマス100kgを、当該図中で示した計算条件で燃
焼させたときのシミュレーション結果である。各反応器は含水率85%の原料166.7kg(絶
乾基準バイオマス25kg)を「排出・充填操作」を除いて1時間で処理することになる。全体の操作で見れば1/4周期ごとに反応器は異なるが、同じ操作が繰り返されるので、15分
で各操作が終了するように操作速度を設定する。「密閉・昇圧」と「定圧・昇温」の操作速度は超臨界水導入速度で、「定圧・燃焼・昇温」と「定常燃焼」操作の速度は酸素導入速度で制御され、本シミュレーションは超臨界水及び酸素導入量を時間等分して行っている。
「排出・充填」の操作速度は冷却水の導入速度で制御されるが、他の操作時間に同期させる必要は無く、15分以内に処理すればよい。各操作の時間経過は省略するが、各操作、後段のバイオマス燃焼ボイラーにおける混合ゾーンと燃焼ゾーン及び総括の物質収支とエネルギー収支の1例を示す。25℃、大気圧を基準にしたときの正味出力は474kWが得られる。
Next, FIG. 3 shows an example of the simulation of the boiler plant shown in FIG.
When five reactors are used, the “discharge / fill operation” is treated as offline for the entire combustion operation, and the time for one reactor to finish the remaining four operations is treated as one cycle.
FIG. 3 shows a simulation result when 100 kg of biomass is burned under the calculation conditions shown in the figure on the basis of absolutely dryness per hour. Each reactor will process 166.7 kg of raw material with a moisture content of 85% (absolutely dry standard biomass 25 kg) in one hour, excluding the “discharge / fill operation”. Although the reactor is different every quarter cycle in the whole operation, the same operation is repeated, so the operation speed is set so that each operation is completed in 15 minutes. The operation speed of “sealing / pressurization” and “constant pressure / temperature rise” is controlled by supercritical water introduction speed, and the speed of “constant pressure / combustion / temperature rise” and “steady combustion” operations are controlled by oxygen introduction speed. The amount of supercritical water and oxygen introduced is divided equally over time.
The operation speed of “discharge / fill” is controlled by the introduction speed of the cooling water, but it is not necessary to synchronize with other operation time, and it can be processed within 15 minutes. Although the time lapse of each operation is omitted, an example of each operation, a mixing zone and a combustion zone in a subsequent biomass combustion boiler, and a general mass balance and energy balance is shown. A net output of 474 kW is obtained based on 25 ° C and atmospheric pressure.

以上は高温、高圧の燃焼ガスとの熱交換で超臨界水(高温・高圧スチーム)を発生させ、その超臨界水の一部を原料の昇温昇圧に使用するものであるが、本発明のボイラーでは本来高温・高圧の燃焼排流体を直接発生させるため、その流体を直接膨張タービンの駆動に使用するものであってよい。
本構成によれば、熱交換によるエネルギー損失を省略でき、かつボイラーの心臓部である熱交換器を不要とすることから装置コストを削減できる。
また、上記で、「密閉・昇圧」、「定圧・昇温」操作における超臨界水の使用に対しては、それ専用のボイラーを付帯設備として備えることができる。
In the above, supercritical water (high temperature / high pressure steam) is generated by heat exchange with high-temperature and high-pressure combustion gas, and a part of the supercritical water is used for raising the temperature of the raw material. Since the boiler inherently directly generates high-temperature and high-pressure combustion exhaust fluid, it may be used directly for driving the expansion turbine.
According to this configuration, energy loss due to heat exchange can be omitted, and the heat exchanger that is the heart of the boiler is not necessary, so that the apparatus cost can be reduced.
In addition, for the use of supercritical water in the “sealing / pressure increase” and “constant pressure / temperature increase” operations, a dedicated boiler can be provided as ancillary equipment.

本発明の別の態様では、図4に示したように、SCWO反応器の後段の燃焼室を二つに分割し、第1燃焼室は「定圧・燃焼・昇温」及び「定常燃焼」操作から排出される未燃バイオマスを燃焼させ、かつ、第2燃焼室の圧力よりも大きく設定する。第1燃焼室の高温排流体は図4に示したように「密閉・昇圧」、「定圧・昇温」操作の駆動熱源として使用され、「定圧・昇温」操作から流出する流体は第2燃焼室に導入される。
SCWO反応器が「定圧・燃焼・昇温」及び「定常燃焼」操作の場合、任意の圧力が設定できるので、以下、その操作を「燃焼・昇温」及び「定常燃焼」操作と称する。
この自燃温度以下の排出流体は第2燃焼室入り口で第2燃焼室からの高温流体と混合され、自燃温度以上に昇温し、流出溶解バイオマスを第2燃焼室で完全燃焼させる。本プラントでは付帯的な熱源を定常運転時には必要とせず、装置コストの削減が図られる。
本プラント構成の好適な態様の一つでは、スタートアップに際して原料を自燃温度まで昇温させる工夫を適用する。当該工夫は次のようなものである。
In another embodiment of the present invention, as shown in FIG. 4, the downstream combustion chamber of the SCWO reactor is divided into two, and the first combustion chamber is operated with “constant pressure / combustion / temperature rise” and “steady combustion” operations. Is set to be larger than the pressure in the second combustion chamber. As shown in FIG. 4, the high-temperature exhaust fluid in the first combustion chamber is used as a driving heat source for the “sealing / pressure-increasing” and “constant pressure / temperature-raising” operations. Introduced into the combustion chamber.
When the SCWO reactor is in a “constant pressure / combustion / temperature rise” and “steady combustion” operation, an arbitrary pressure can be set. Therefore, this operation is hereinafter referred to as “combustion / temperature rise” and “steady combustion” operations.
The discharged fluid below the self-combustion temperature is mixed with the high-temperature fluid from the second combustion chamber at the entrance of the second combustion chamber, the temperature is raised above the self-combustion temperature, and the outflow dissolved biomass is completely combusted in the second combustion chamber. In this plant, an incidental heat source is not required during steady operation, and the cost of the apparatus can be reduced.
In a preferred embodiment of the present plant configuration, a device for raising the temperature of the raw material to the self-combustion temperature at the start-up is applied. The device is as follows.

図5に示したようにスタートアップ時にヒータH-1とH-2を使用する。
I〜Vの反応器に原料を充填する。Iの反応器にヒータH-1を取り付け、必要であれば水を添加し、水量を調節する。H-1のヒーターはカートリッジ式が望ましく、スタートアップ
操作時のみ使用し、次の原料充填時に取り外す。第1燃焼室にも適量水を添加する。H-1
と、第1燃焼室に取り付けられているヒータH-2をオンにし、反応器Iの「密閉・昇圧操作」を開始する。この際、反応器Iと第1燃焼室間はバルブを開にし、導通状態にある。所
定圧力に到達したら、図6のOP-2に移行する。
OP-2は反応器Iが「定圧・昇温操作」状態でその排出流体は第1燃焼室に導入される。
反応器IIは「密閉・昇圧操作」の状態である。これら操作の駆動熱源はH-1,H-2のヒータ
である。OP-2は反応器Iが自燃温度、反応器IIが所定圧力に到達したら終了し、OP-3に移
行する。
As shown in FIG. 5, heaters H-1 and H-2 are used at start-up.
Charge raw materials into reactors IV. Attach heater H-1 to reactor I, add water if necessary, and adjust water volume. The H-1 heater is preferably a cartridge type and should be used only during start-up operations and removed during the next filling of raw materials. An appropriate amount of water is also added to the first combustion chamber. H-1
Then, the heater H-2 attached to the first combustion chamber is turned on, and the “sealing / pressurizing operation” of the reactor I is started. At this time, the valve is opened between the reactor I and the first combustion chamber and is in a conductive state. When the predetermined pressure is reached, the process proceeds to OP-2 in FIG.
In OP-2, the discharged fluid is introduced into the first combustion chamber while the reactor I is in the “constant pressure / temperature raising operation” state.
The reactor II is in a “sealing / pressurizing operation” state. The driving heat sources for these operations are H-1 and H-2 heaters. OP-2 ends when Reactor I reaches the self-combustion temperature and Reactor II reaches the predetermined pressure, and proceeds to OP-3.

OP-3では反応器Iは「燃焼・昇温操作」に移行し、反応器IIは「定圧・昇温操作」、反
応器IIIは「密閉・昇圧操作」に移行する。SCWO反応器を「燃焼・昇温」操作に付すとは
、SCWO反応器に酸素を供給せしめると共に、SCWO反応器内の充填された原料を燃焼せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を第1燃焼室へ流出せしめることを意味する。これらの操作の駆動は反応器Iと
第1燃焼室での燃焼熱で、H-1、H-2はこれ以降原則的には使用しないが、H-2は必要に応
じて使用する。反応器IIから排出される流体は第2燃焼室に送られるが、この時点では第2燃焼室は「密閉・昇圧操作」に対応している。反応器Iが定常燃焼温度に到達し、反応
器II、IIIが所定条件に到達したら、OP-4に移行する。
この時点で全ての操作が出現するので、第1燃焼室と第2燃焼室を繋ぐラインのバルブを開にし、第2燃焼室も自燃温度以上昇温し、燃焼操作が開始され、プラントの自立運転が始まる。反応器Iは、ラインから切り離され、冷却水を導入して、温水と二酸化炭素を回
収し、原料を充填する「排出・充填操作」を経て、開始時の状態に復元する。この際、H-1ヒータは取り外す。
以降、本操作を繰り返すことにより、周期的な定常操作に移行する。
In OP-3, reactor I shifts to “combustion / temperature increase operation”, reactor II shifts to “constant pressure / temperature increase operation”, and reactor III shifts to “sealing / pressure increase operation”. When the SCWO reactor is subjected to a "burning / heating" operation, oxygen is supplied to the SCWO reactor, the charged raw material in the SCWO reactor is burned, and supercritical water is mainly used from the SCWO reactor. It means that hot water and carbon dioxide containing components and unburned organic substances are discharged to the first combustion chamber. The driving of these operations is the combustion heat in the reactor I and the first combustion chamber. H-1 and H-2 are not used in principle thereafter, but H-2 is used as necessary. The fluid discharged from the reactor II is sent to the second combustion chamber. At this time, the second combustion chamber corresponds to the “sealing / pressurizing operation”. When the reactor I reaches the steady combustion temperature and the reactors II and III reach the predetermined conditions, the process proceeds to OP-4.
Since all operations appear at this point, the valve of the line connecting the first combustion chamber and the second combustion chamber is opened, the second combustion chamber is heated to a temperature higher than the self-combustion temperature, the combustion operation is started, and the plant becomes independent. Driving begins. Reactor I is disconnected from the line, introduced with cooling water, recovered with hot water and carbon dioxide, and restored to the initial state through a “discharge / fill operation” of filling the raw materials. At this time, remove the H-1 heater.
Thereafter, by repeating this operation, the routine shifts to a periodic steady operation.

本明細書中、「酸素」としては、当該分野で酸化剤として知られているものから選択されたもの、あるいは、酸素源として知られたものから選択されたものであってよく、例えば、オゾン、液体又は気体の酸素、過酸化水素、空気、圧縮空気、酸素を富化された空気、それらの混合物などが挙げられ、好ましくは、空気、圧縮空気、酸素を富化された空気、それらの混合物などが挙げられる。
以上本発明の装置、及び操作法を述べ、本発明がSCWO反応の採用により高含水率のバイオマスの燃料化を達成し、回分的な原料供給の採用により、種々の形態、形状のバイオマスの原料化を行い、複数の反応器を各操作に対応して用いることにより、安定した連続的な出力を可能にし、しかも装置構造を出きるだけ簡略化し、小規模分散型バイオマス燃焼ボイラーの不可欠な装置コストの削減に資することを示した。
In the present specification, “oxygen” may be selected from those known in the art as oxidants, or selected from those known as oxygen sources, for example, ozone. Liquid or gaseous oxygen, hydrogen peroxide, air, compressed air, oxygen-enriched air, mixtures thereof, etc., preferably air, compressed air, oxygen-enriched air, A mixture etc. are mentioned.
The apparatus and operation method of the present invention are described above, and the present invention achieves the conversion of biomass with high water content by adopting SCWO reaction, and the raw material of biomass in various forms and shapes by adopting batch raw material supply By using multiple reactors corresponding to each operation, stable and continuous output is possible, and the system structure is simplified as much as possible, making it an indispensable device for small-scale distributed biomass combustion boilers. It was shown that it contributes to cost reduction.

本発明の技術は、85%程度の高含水率のバイオマスも含めて、その種類や形態を選ばず、殆どの未利用バイオマスを燃焼させ、高温高圧の超臨界水と二酸化炭素を直接発生させる高温高圧バイオマスボイラーを可能にし、バイオマスの発生箇所で、発生量に応じて対応できる分散型パワープラントへの利用に役立つ。
本発明は、山林、原野、ゴルフ場、果樹園や田畑等の農耕地、淡水や海水域で発生する全てのバイオマス(1次産品に直接関わる穀物の茎、剪定枝等の未利用バイオマスのみな
らず、下草、落葉、雑草や、さらには休作期間中の栽培による光合成効率の高い植物等)
、あるいは飲料、食品加工工場等での搾りかすや抽出残渣等のバイオマス廃棄物、生ごみ(プラスチック等有機物製品を含有も可)等の可燃系都市ごみ等を燃料とするバイオマスボイラープラント及びその利用を実現する。
本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らかである。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従ってそれらも本件添付の請求の範囲の範囲内のものである。
The technology of the present invention is not limited to any type or form, including biomass with a high water content of about 85%. It enables high-pressure biomass boilers and is useful for use in distributed power plants that can respond to the amount of biomass generated depending on the amount generated.
The present invention covers all biomass generated in forests, wilderness, golf courses, farmland such as orchards and fields, freshwater and seawater (only unused biomass such as grain stems and pruned branches directly related to primary products) , Undergrowth, defoliation, weeds, and plants with high photosynthetic efficiency by cultivation during the rest period)
Biomass boiler plant that uses flammable municipal waste such as biomass waste such as squeezed residue and extraction residue in beverages and food processing factories, and garbage (including organic products such as plastics) as fuel Is realized.
It will be apparent that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Many modifications and variations of the present invention are possible in light of the above teachings, and thus are within the scope of the claims appended hereto.

様々な含水率を有する原料物質を、純酸素中、理論酸素量で完全燃焼させた場合の、含水率と断熱火炎温度との関係を示すグラフである。燃焼圧力0.1014MPa(大気圧)、10 MPa、20MPa、25MPa、30MPaについて曲線が示されている。原料:セルロース、初期温度:25℃、酸化剤:純酸素、過剰酸素率:0.0の条件下での断熱火炎温度である。It is a graph which shows the relationship between the moisture content and the adiabatic flame temperature when the raw material having various moisture contents is completely burned with the theoretical oxygen amount in pure oxygen. Curves are shown for combustion pressures of 0.1014 MPa (atmospheric pressure), 10 MPa, 20 MPa, 25 MPa, and 30 MPa. Raw material: cellulose, initial temperature: 25 ° C., oxidizing agent: pure oxygen, excess oxygen ratio: adiabatic flame temperature under conditions of 0.0. 本発明に基づく5つの操作に対応し、5つの反応器と燃焼室を備えた超臨界水バイオマス燃焼ボイラープラントを示す。超臨界水を生成させル場合。1 shows a supercritical water biomass fired boiler plant with five reactors and combustion chambers corresponding to five operations according to the present invention. When supercritical water is generated. 図2のボイラープラントの物質・エネルギー収支の一例を示す。An example of the material and energy balance of the boiler plant of FIG. 2 is shown. 本発明に基づく5つの操作に対応し、5つの反応器と2つの燃焼室を備えた超臨界水バイオマス燃焼ボイラープラントを示す。高圧水蒸気の発生無しの場合。1 shows a supercritical water biomass fired boiler plant with five reactors and two combustion chambers corresponding to five operations according to the present invention. When high-pressure steam is not generated. 図4のボイラープラントのスタートアップの状況を示す。反応器Iは、OP-1の操作状態にありヒータH-1及びH-2共にオン(On)の状態である。FIG. 5 shows the startup situation of the boiler plant in FIG. 4. Reactor I is in the operational state of OP-1, and both heaters H-1 and H-2 are on. 図4のボイラープラントのスタートアップの状況を示す。図5に続く操作状態を左上の図(OP-2)、右上の図(OP-3)、左下の図(OP-4)、右上の図(OP-5)の順に操作されていくことを示す。FIG. 5 shows the startup situation of the boiler plant in FIG. 4. The operation states following Fig. 5 are to be operated in the order of upper left figure (OP-2), upper right figure (OP-3), lower left figure (OP-4), upper right figure (OP-5). Show.

Claims (16)

超臨界水酸化反応(SCWO)を応用し、少なくともバイオマスを包含しており且つ高含水率の有機物を燃料とし、超臨界水を主成分とする高温・高圧燃焼流体を発生させるものであることを特徴とする燃焼ボイラー装置。 Applying supercritical water oxidation (SCWO) to generate high-temperature and high-pressure combustion fluids that contain at least biomass and use organic substances with a high water content as fuel and mainly contain supercritical water. A featured combustion boiler device. 少なくとも2以上のSCWO反応器と、当該SCWO反応器から流出され且つ当該有機物のSCWOにより発生された超臨界水を主成分とする高温・高圧燃焼流体を受容する燃焼室を備えていることを特徴とする請求項1に記載の燃焼ボイラー装置。 It comprises at least two or more SCWO reactors and a combustion chamber for receiving a high-temperature and high-pressure combustion fluid mainly composed of supercritical water discharged from the SCWO reactor and generated by the organic SCWO. The combustion boiler device according to claim 1. 燃焼ボイラー装置の操作を、少なくとも「密閉・昇圧」、「定圧・昇温」、「燃焼・昇温」又は「定圧・燃焼・昇温」、「定常燃焼」、及び「排出・充填」の操作要素に分け、該各操作を実施可能にする配管及びバルブ系を備えている、安定した熱出力を連続して発生し、かつ、高温、高圧系へのバイオマス等の固体燃料の連続供給を不要にし、供給容易な温度、圧力で回分供給を可能にするものであることを特徴とする請求項1又は2に記載の燃焼ボイラー装置。 The operation of the combustion boiler apparatus is at least “sealing / pressure increase”, “constant pressure / temperature increase”, “combustion / temperature increase” or “constant pressure / combustion / temperature increase”, “steady combustion”, and “discharge / fill” operations. It is divided into elements and equipped with piping and valve systems that enable each of these operations to generate stable heat output continuously and eliminate the need for continuous supply of solid fuel such as biomass to high temperature and high pressure systems The combustion boiler apparatus according to claim 1 or 2, wherein batch supply is possible at a temperature and pressure that are easy to supply. SCWO反応器から流出する全ての流体を合流させ、その流出流体に含まれる未燃焼有機物(主として熱水に溶解する有機物)を一括して完全燃焼させる燃焼室を該反応器後段に設け、高温・高圧流体を連続的に発生させるものであることを特徴とする請求項1〜3のいずれか一に記載の燃焼ボイラー装置。 A combustion chamber is provided at the rear stage of the reactor to combine all the fluids flowing out from the SCWO reactor and complete combustion of unburned organic substances (mainly organic substances dissolved in hot water) contained in the flowing fluid. The combustion boiler apparatus according to any one of claims 1 to 3, wherein the high-pressure fluid is continuously generated. SCWO反応器の後段の燃焼室の下流に熱交換器が設けられており、該熱交換器を介して高温・高圧スチームを発生させることができるものであることを特徴とする請求項1〜4のいずれか一に記載の燃焼ボイラー装置。 A heat exchanger is provided downstream of the combustion chamber at the rear stage of the SCWO reactor, and high-temperature and high-pressure steam can be generated through the heat exchanger. A combustion boiler device according to any one of the above. SCWO反応器の後段の燃焼室として第1燃焼室及び第2燃焼室を備え、SCWO反応器が「燃焼・昇温」と「定常燃焼」操作の場合、該「燃焼・昇温」操作状態のSCWO反応器及び「定常燃焼」操作状態のSCWO反応器からの未燃焼物含有排出流体を第1燃焼室に導入せしめる配管ラインを有し、当該未燃焼物含有排出流体を受容している時に第1燃焼室は未燃焼物を燃焼可能であり且つ発生した高温・高圧流体の一部を、「密閉・昇圧」操作状態のSCWO反応器及び「定圧・昇温」操作状態のSCWO反応器に送出する配管ラインを有し、一方、該第1燃焼室で発生した高温・高圧流体の残部を第2燃焼室に導入せしめる配管ラインを有し、該第2燃焼室は、上記高温・高圧流体の残部と「定圧・昇圧」操作状態のSCWO反応器より排出される自燃温度より低温の排出流体とを該第2燃焼室入り口で混合し、自燃温度以上に昇温せしめて、未燃焼の燃料を完全燃焼させて高温高圧流体として熱出力を得るものであることを特徴とする請求項1〜5のいずれか一に記載の燃焼ボイラー装置。 When the SCWO reactor is provided with a first combustion chamber and a second combustion chamber as the subsequent combustion chamber of the SCWO reactor, and the SCWO reactor is in the “combustion / temperature rise” and “steady combustion” operation, A piping line for introducing the unburned product-containing exhaust fluid from the SCWO reactor and the SCWO reactor in the “steady combustion” operation state into the first combustion chamber, and receiving the unburned product-containing exhaust fluid. One combustion chamber is capable of burning unburned material, and a part of the generated high-temperature / high-pressure fluid is sent to the SCWO reactor in the “sealing / pressure-increasing” operation state and the SCWO reactor in the “constant pressure / temperature-increasing” operation state. And a piping line for introducing the remainder of the high-temperature / high-pressure fluid generated in the first combustion chamber into the second combustion chamber. Exhaust flow lower than the self-combustion temperature discharged from the remainder and the SCWO reactor in the "constant pressure / pressure increase" operating state The body is mixed at the entrance of the second combustion chamber, heated to a temperature higher than the self-combustion temperature, and unburned fuel is completely burned to obtain heat output as a high-temperature and high-pressure fluid. The combustion boiler apparatus as described in any one of -5. 燃焼ボイラー装置のスタートアップ用ヒータを備えていることを特徴とする請求項1〜6のいずれか一に記載の燃焼ボイラー装置。 The combustion boiler device according to any one of claims 1 to 6, further comprising a start-up heater for the combustion boiler device. SCWO反応器の定常燃焼を終了後、当該SCWO反応器内に残存する高温・高圧流体に水を圧入し、降圧する配管ラインを有し、且つ、該降圧された高温水を利用して熱エネルギーを回収する装置を備え、必要に応じて、当該SCWO反応器内に残存する二酸化炭素等の燃焼ガスを回収する装置を備えることを特徴とする請求項1〜7のいずれか一に記載の燃焼ボイラー装置。 After completion of steady combustion in the SCWO reactor, water is injected into the high-temperature / high-pressure fluid remaining in the SCWO reactor, and has a piping line for reducing the pressure. Combustion according to any one of claims 1 to 7, further comprising a device for recovering combustion gas such as carbon dioxide remaining in the SCWO reactor, if necessary. Boiler equipment. 熱伝導率の小さなセラミックス等で反応器内面に断熱層を施したSCWO反応器。 SCWO reactor with a heat insulating layer on the inner surface of the reactor made of ceramics with low thermal conductivity. 超臨界水酸化反応(SCWO)を応用し、少なくともバイオマスを包含しており且つ高含水率の
有機物を燃料とし、超臨界水を主成分とする高温・高圧燃焼流体を発生させ、該SCWOより得られる流体に含まれる未燃焼有機物を完全燃焼させて、高温・高圧流体を発生させることを特徴とする該有機物からの熱の発生取得法。
Supercritical water oxidation (SCWO) is applied to generate high-temperature and high-pressure combustion fluids that contain at least biomass and use organic matter with a high water content as fuel and mainly contain supercritical water. A method for generating and acquiring heat from the organic material, wherein unburned organic material contained in the fluid is completely burned to generate a high-temperature and high-pressure fluid.
SCWO反応器及びその下流に位置する燃焼室を備える有機物燃焼ボイラー装置を操作し、該SCWO反応器を
(1) SCWO反応器に超臨界水を密閉状態で圧入し、原料の充填されているSCWO反応器を燃焼圧力まで昇圧する(「密閉・昇圧」)、
(2) SCWO反応器に超臨界水を流通せしめると共に、SCWO反応器内温度を定圧下に、充填された原料の自燃温度にまで上昇せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水を燃焼室へ流出せしめる(「定圧・昇温」)、
(3) SCWO反応器に酸素を供給せしめると共に、SCWO反応器内の充填された原料を定圧下に燃焼せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を燃焼室へ流出せしめる(「定圧・燃焼・昇温」)又はSCWO反応器に酸素を供給せしめると共に、SCWO反応器内の充填された原料を燃焼せしめ、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を特定の燃焼室へ流出せしめる(「燃焼・昇温」)、
(4) SCWO反応器での充填された原料の燃焼が維持されるように、その燃焼温度を維持するよう、冷却水がSCWO反応器に供給され、そして該SCWO反応器から超臨界水を主成分とし且つ未燃焼有機物を含有する熱水及び二酸化炭素を燃焼室へ流出せしめる(「定常燃焼」)、
(5) SCWO反応器へ冷却水を圧入して、降温降圧せしめ、所定の温度にした後、冷却水の供給を停止して、温水と二酸化炭素を排出・回収せしめ、次に、原料充填圧にした後、有機物原料を供給し、SCWO反応器に充填する(「排出・充填」)
の各操作要素に付して、安定した熱出力を連続して発生し、かつ、高温、高圧系へのバイオマスを包含する固体燃料の連続供給を不要にし、供給容易な温度、圧力で回分供給を可能にすることを特徴とする請求項10に記載の有機物からの熱の発生取得法。
Operating an SCWO reactor and an organic combustion boiler device having a combustion chamber located downstream thereof, the SCWO reactor
(1) Press-fit supercritical water into the SCWO reactor in a sealed state, and pressurize the SCWO reactor filled with the raw material to the combustion pressure (“sealed / pressurized”).
(2) The supercritical water is allowed to flow through the SCWO reactor, the temperature inside the SCWO reactor is raised to the self-combustion temperature of the charged raw material under a constant pressure, and the supercritical water is mainly contained from the SCWO reactor. And let the hot water containing unburned organic matter flow out into the combustion chamber ("constant pressure / temperature rise"),
(3) Supply oxygen to the SCWO reactor, burn the charged raw material in the SCWO reactor under a constant pressure, and heat from the SCWO reactor mainly containing supercritical water and containing unburned organic matter. Causing water and carbon dioxide to flow into the combustion chamber (“constant pressure, combustion, temperature rise”) or supply oxygen to the SCWO reactor, and combust the charged material in the SCWO reactor, and from the SCWO reactor Causing hot water and carbon dioxide containing supercritical water and unburned organic matter to flow into a specific combustion chamber ("combustion / heating"),
(4) Cooling water is supplied to the SCWO reactor to maintain its combustion temperature so that combustion of the charged raw material in the SCWO reactor is maintained, and supercritical water is mainly supplied from the SCWO reactor. Causing hot water and carbon dioxide as components and containing unburned organic matter to flow into the combustion chamber ("steady combustion"),
(5) Cooling water is injected into the SCWO reactor, the temperature is lowered and lowered, and after reaching a predetermined temperature, the cooling water supply is stopped, and the hot water and carbon dioxide are discharged and recovered. After that, the organic raw material is supplied and charged into the SCWO reactor (“discharge / fill”)
It is attached to each of the operating elements of the above, generating stable heat output continuously, eliminating the need for continuous supply of solid fuel including biomass to high temperature and high pressure systems, batch supply at a temperature and pressure that is easy to supply The method for obtaining and generating heat from an organic substance according to claim 10, wherein
複数のSCWO反応器を備える有機物燃焼ボイラー装置を操作し、該SCWO反応器から流出する全ての流体を合流させ、その流出流体に含まれる未燃焼有機物(主として熱水に溶解する有機物)を一括して完全燃焼させる燃焼室を反応器後段に設け、高温・高圧流体を連続的に発生させることを特徴とする請求項10又は11に記載の有機物からの熱の発生取得法。 Operate an organic combustion boiler device equipped with a plurality of SCWO reactors, merge all fluids flowing out from the SCWO reactors, and batch unburned organic matter (organic matter mainly dissolved in hot water) contained in the effluent fluid The method for obtaining and generating heat from an organic substance according to claim 10 or 11, wherein a combustion chamber for complete combustion is provided at the rear stage of the reactor, and a high-temperature and high-pressure fluid is continuously generated. SCWO反応器の後段の燃焼室の下流の熱交換器により、高温・高圧スチームを発生させることを特徴とする請求項10〜12のいずれか一に記載の有機物からの熱の発生取得法。 The method for generating and acquiring heat from an organic substance according to any one of claims 10 to 12, wherein high-temperature and high-pressure steam is generated by a heat exchanger downstream of the combustion chamber downstream of the SCWO reactor. SCWO反応器の後段の燃焼室として第1燃焼室及び第2燃焼室を備える有機物燃焼ボイラー装置を操作し、「燃焼・昇温」操作状態のSCWO反応器及び「定常燃焼」操作状態のSCWO反応器からの未燃焼物含有排出流体を第1燃焼室に導入せしめて、第1燃焼室で必要に応じて未燃焼物を燃焼させ、発生した高温・高圧流体の一部を「密閉・昇圧」操作状態のSCWO反応器及び「定圧・昇温」操作状態のSCWO反応器に送出し、一方、該第1燃焼室で発生した高温・高圧流体の残部を第2燃焼室に導入せしめ、この流れと「定圧・昇圧」操作状態のSCWO反応器で排出される自燃温度より低温の排出流体とを第2燃焼室入り口で混合し、自燃温度以上に昇温せしめ、第2燃焼室で未燃焼の燃料を完全燃焼させ、高温高圧流体として熱出力を得ることを特徴とする請求項10〜13のいずれか一に記載の有機物からの熱の発生取得法。 Operate an organic combustion boiler device that has a first combustion chamber and a second combustion chamber as the combustion chamber at the rear stage of the SCWO reactor, and operate the SCWO reactor in the “burning / heating” operation state and the SCWO reaction in the “steady combustion” operation state. The exhaust fluid containing unburned material from the vessel is introduced into the first combustion chamber, the unburned material is combusted as necessary in the first combustion chamber, and a part of the generated high-temperature / high-pressure fluid is “sealed / pressurized”. This is sent to the SCWO reactor in the operating state and the SCWO reactor in the “constant pressure / temperature rising” operating state, while the remainder of the high temperature / high pressure fluid generated in the first combustion chamber is introduced into the second combustion chamber. And the exhaust fluid at a temperature lower than the self-combustion temperature discharged from the SCWO reactor in the “constant pressure / pressure increase” operating state are mixed at the entrance of the second combustion chamber, and the temperature is raised to the self-combustion temperature or higher. The fuel is burned completely, and heat output is obtained as a high-temperature and high-pressure fluid. Generation acquisition method of heat from organic matter according to any one of claim 10-13. 有機物燃焼ボイラー装置のスタートアップの場合に、第1の「密閉・昇圧」操作状態のSCWO反応器をヒータでもって加熱して所定圧力にまで昇圧することを特徴とする請求項10
〜14のいずれか一に記載の有機物からの熱の発生取得法。
The SCWO reactor in the first "sealing and pressure-increasing" operation state is heated with a heater to increase the pressure to a predetermined pressure in the case of start-up of the organic combustion boiler device.
The generation | occurrence | production acquisition method of the heat | fever from the organic substance as described in any one of -14.
SCWO反応器の「定常燃焼」操作状態を終了せしめた後、当該SCWO反応器内に残存する高温・高圧流体に水を圧入し、降圧せしめ、得られた降圧された高温水を利用して熱エネルギーを回収し、必要に応じて、当該SCWO反応器内に残存する二酸化炭素等の燃焼ガスを回収することを特徴とする請求項10〜15のいずれか一に記載の有機物からの熱の発生取得法。
After completing the “steady combustion” operation state of the SCWO reactor, water is injected into the high-temperature / high-pressure fluid remaining in the SCWO reactor, the pressure is reduced, and heat is obtained using the resulting reduced-pressure hot water. Energy is recovered, and combustion gas such as carbon dioxide remaining in the SCWO reactor is recovered as necessary, and heat generation from organic matter according to any one of claims 10 to 15 Acquisition method.
JP2007135728A 2007-05-22 2007-05-22 Supercritical water biomass fired boiler Expired - Fee Related JP4284471B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007135728A JP4284471B2 (en) 2007-05-22 2007-05-22 Supercritical water biomass fired boiler
PCT/JP2008/058819 WO2008143078A1 (en) 2007-05-22 2008-05-14 Supercritical water biomass combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135728A JP4284471B2 (en) 2007-05-22 2007-05-22 Supercritical water biomass fired boiler

Publications (2)

Publication Number Publication Date
JP2008292018A true JP2008292018A (en) 2008-12-04
JP4284471B2 JP4284471B2 (en) 2009-06-24

Family

ID=40031787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135728A Expired - Fee Related JP4284471B2 (en) 2007-05-22 2007-05-22 Supercritical water biomass fired boiler

Country Status (2)

Country Link
JP (1) JP4284471B2 (en)
WO (1) WO2008143078A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
WO2013148209A1 (en) * 2012-03-26 2013-10-03 Parfitt Andrew System, method and device for use of a carbonaceous material as a fuel for the direct generation of electrical and thermal energy
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
WO2019203173A1 (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Method for manufacturing bacterium-produced cellulose carbon
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2994056C (en) * 2015-07-30 2018-06-12 Chiyoda Corporation Method and system for carbon dioxide gas dehydration
CN109266396B (en) * 2018-11-15 2024-01-19 中国华能集团清洁能源技术研究院有限公司 Supercritical CO 2 Bottom-circulation integrated coal gasification fuel cell power generation system and method
CN114717026B (en) * 2022-04-27 2023-02-07 西安交通大学 Hydrogen supercritical hydrothermal combustion reaction device and application method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274280B2 (en) * 1994-03-30 2002-04-15 株式会社神戸製鋼所 High pressure reaction vessel equipment
JP2000282064A (en) * 1999-03-31 2000-10-10 Mitsubishi Materials Corp Utilization of synthetic gas and generator by using the synthetic gas
JP2001062424A (en) * 1999-08-27 2001-03-13 Shinko Pantec Co Ltd Process and equipment for chemical recycling treatment
JP2002011339A (en) * 2000-06-29 2002-01-15 Kawasaki Heavy Ind Ltd High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
WO2013148209A1 (en) * 2012-03-26 2013-10-03 Parfitt Andrew System, method and device for use of a carbonaceous material as a fuel for the direct generation of electrical and thermal energy
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
JP2019182723A (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Method for manufacturing bacteria-produced cellulose carbon
CN111989290A (en) * 2018-04-16 2020-11-24 日本电信电话株式会社 Method for producing cellulose carbon by bacteria
WO2019203173A1 (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Method for manufacturing bacterium-produced cellulose carbon
JP7048889B2 (en) 2018-04-16 2022-04-06 日本電信電話株式会社 Method for producing bacterially produced cellulose carbon

Also Published As

Publication number Publication date
WO2008143078A1 (en) 2008-11-27
JP4284471B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4284471B2 (en) Supercritical water biomass fired boiler
Toklu Biomass energy potential and utilization in Turkey
Wegener et al. Biomass-fired combined cooling, heating and power for small scale applications–A review
JP7034907B2 (en) Biomass breeding methods and systems and treatment plants
Ciubota-Rosie et al. BIOMASS--AN IMPORTANT RENEWABLE SOURCE OF ENERGY IN ROMANIA.
US20100227368A1 (en) Renewable energy system
Khan et al. Biomass as renewable energy
Rad et al. Introducing a novel optimized Dual Fuel Gas Turbine (DFGT) based on a 4E objective function
Demirbas The importance of biomass
CN103570207A (en) sludge thermohydrolysis-anhydration integrated technology
Taufer et al. Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products
US20090031698A1 (en) Liquid and Solid Biofueled Combined Heat and Renewable Power Plants
Hani et al. Oil palm biomass utilization as an energy source and its possibility use for polygeneration scenarios in Langsa City, Aceh Province, Indonesia
David et al. Biomass-alternative renewable energy source and its conversion for hydrogen rich gas production
WO2017214749A1 (en) Biomass power generation system
KR101181834B1 (en) Pre-thermal treatment of microalgae and high temperature and high efficiency hydrogen/methane fermentation process using waste heat of power-plant effluent gas
Zabot et al. Power the future with bioenergy from organic wastes
CN216130974U (en) Device for combining gas-carbon co-production and combined heat and power co-production based on biomass energy
Verma An analysis of biomass technology and its impact on multi-fuel fired biomass boiler
CN206112976U (en) Adopt combusting biomass fuel&#39;s biological new forms of energy combustion system
CN206112905U (en) Adopt biomass fuel combustion system of two fuel supply designs
Rogdakis et al. Applications of bioenergy—modeling of anaerobic digestion
CN211394377U (en) Thermal power plant pyrolysis hydrogen production system
Mukhtar Manure to energy: understanding processes, principles and jargon
CN106761961A (en) A kind of biomass energy steam electric power generator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees