JP2008291885A - Natural gas storage tank - Google Patents

Natural gas storage tank Download PDF

Info

Publication number
JP2008291885A
JP2008291885A JP2007136471A JP2007136471A JP2008291885A JP 2008291885 A JP2008291885 A JP 2008291885A JP 2007136471 A JP2007136471 A JP 2007136471A JP 2007136471 A JP2007136471 A JP 2007136471A JP 2008291885 A JP2008291885 A JP 2008291885A
Authority
JP
Japan
Prior art keywords
natural gas
gas
storage container
gas storage
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007136471A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007136471A priority Critical patent/JP2008291885A/en
Publication of JP2008291885A publication Critical patent/JP2008291885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform excellent storage of natural gas by suppressing separation/coagulation of components of the natural gas. <P>SOLUTION: A ratio (p:q), an area p of an inner cross section of a connection part of an NG flow pipe 11 connected to a gas reservoir for storing the natural gas and the largest area q of an inner cross section of the NG gas reservoir 12, is set to be 1:255-1:64. A natural gas adsorbent for adsorbing the natural gas is stored in the gas reservoir. Further, the reservoir is provided with a temperature-raising means for preventing decrease in temperature at the time of supplying the gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、天然ガスを貯蔵し、排出するのに好適な天然ガス貯蔵タンクに関する。   The present invention relates to a natural gas storage tank suitable for storing and discharging natural gas.

従来より、天然ガスを貯蔵する場合、天然ガスを圧縮してボンベに充填したり、天然ガスを吸着等する材料などを用いる方法が広く利用されている。   Conventionally, when storing natural gas, a method of compressing natural gas and filling it in a cylinder or using a material that adsorbs natural gas or the like has been widely used.

ところが、ボンベでは容積が大きい割りに壁厚が大きいために内容量が小さく、重量も大きいことから、特に吸着などの化学的もしくは物理的な方法による貯蔵技術に関する検討が盛んに行なわれている。このような貯蔵技術は、貯蔵タンクや装置のコンパクト化、軽量化が可能であり、配置空間に制限を受ける例えば車載用等の用途において期待されている。   However, since the cylinder has a large wall thickness for a large volume, its internal capacity is small and its weight is large. Therefore, studies on storage techniques using chemical or physical methods such as adsorption have been actively conducted. Such a storage technique can reduce the size and weight of storage tanks and devices, and is expected in applications such as in-vehicle use that are limited by the arrangement space.

上記に関連して、側壁の長手方向軸線が形成する平面に垂直な中心軸線周りに単一の平面内で巻かれた細長い管状部材よりなる車両用圧縮天然ガスタンクが開示されている(例えば、特許文献1参照)。
実登第3036588号
In connection with the above, a vehicular compressed natural gas tank is disclosed comprising an elongate tubular member wound in a single plane about a central axis perpendicular to the plane formed by the longitudinal axis of the side wall (e.g., a patent). Reference 1).
Mito No. 3036588

しかし、天然ガスは一般に、主成分であるメタン以外にプロパン、ブタン等の重成分を含んでおり、これらの重成分は通常はメタンと混合ガスの状態にあるが、何らかの原因で分離してしまうと、再び混合ガスの状態には戻りにくく、天然ガスを貯蔵する材料の貯蔵性能を損なう。例えば、天然ガスの吸着する吸着サイトとなる細孔を有する吸着材では、細孔中で分離後の重成分が凝集しやすくなり、凝集してしまうと細孔を塞いで本来の貯蔵性能を得ることができない。   However, natural gas generally contains heavy components such as propane and butane in addition to methane, which is the main component, and these heavy components are usually in a mixed gas state with methane, but they are separated for some reason. Then, it is difficult to return to the mixed gas state again, and the storage performance of the material for storing natural gas is impaired. For example, in an adsorbent having pores that serve as adsorption sites for natural gas adsorption, heavy components after separation tend to aggregate in the pores, and when aggregated, the pores are blocked to obtain the original storage performance. I can't.

例えば天然ガスを高圧タンク等に充填する際、天然ガスがこれを流通するガス管より容積の大きい高圧タンク等に導入されると、急激な断熱膨張によりガス温度が急激に低下して、ブタン等の重成分が混合ガス中から分離し、凝集する。この凝集は、吸着材などの内部で生じやすく、例えば吸着材の化学もしくは物理吸着に寄与する細孔で凝集が起きると、細孔を塞ぎ、吸着材中へのガス流入の妨げとなる。一旦凝集が生ずると、これに伴なって凝集が起こりやすくなり、この繰り返しにより悪化する。そのため、天然ガスの充填・放出を繰り返すにしたがって次第に貯蔵量は低下し、一回の充填で使用可能なガス量(放出量)も低下する。   For example, when natural gas is filled into a high-pressure tank or the like, if the natural gas is introduced into a high-pressure tank or the like having a larger volume than the gas pipe that circulates the natural gas, the gas temperature rapidly decreases due to rapid adiabatic expansion. Heavy components are separated from the mixed gas and agglomerated. This agglomeration is likely to occur inside the adsorbent and the like. For example, if agglomeration occurs in pores that contribute to the chemical or physical adsorption of the adsorbent, the pores are blocked and gas inflow into the adsorbent is hindered. Once agglomeration occurs, agglomeration is likely to occur along with this and is aggravated by this repetition. Therefore, as the filling and releasing of natural gas are repeated, the storage amount gradually decreases, and the amount of gas that can be used in one filling (release amount) also decreases.

このように、吸着などの化学的もしくは物理的な方法は有用とされているものの、かかる方法により貯蔵を行なうメリットが得られていないのが実状である。   Thus, although chemical or physical methods such as adsorption are considered useful, it is the actual situation that the merit of storing by such a method is not obtained.

本発明は、上記に鑑みなされたものであり、天然ガスからの成分分離・凝集を抑制して天然ガスを良好に貯蔵することができる天然ガス貯蔵タンクを提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a natural gas storage tank capable of satisfactorily storing natural gas while suppressing component separation and aggregation from natural gas. The challenge is to achieve.

本発明は、配管から容積の大きい容器内に天然ガスが供給される等、急激な断熱膨張を伴なう供給系では、断熱膨張による冷却が大きいために天然ガス中に混在するプロパンやブタン等の重成分が分離し、ひいては凝集を起こすことにより、貯蔵材料の細孔等の貯蔵サイトを減少させ、貯蔵/放出効率および貯蔵/放出量を低下させるとの知見を得、かかる知見に基づいて達成されたものである。   In the present invention, natural gas is supplied from a pipe into a container with a large volume, such as propane, butane, etc. mixed in natural gas because cooling by adiabatic expansion is large in a supply system with rapid adiabatic expansion. Based on this knowledge, we have obtained the knowledge that the heavy components of the material are separated, and thus cause aggregation, thereby reducing the storage sites such as the pores of the storage material and reducing the storage / release efficiency and the storage / release amount. It has been achieved.

上記目的を達成するために、本発明の第1の発明である天然ガス貯蔵タンクは、天然ガスを貯蔵するガス貯蔵容器に接続されたガス流通管の接続部における内断面の面積pと、前記ガス貯蔵容器の前記接続部からガス流通方向において拡大した該ガス流通方向と直交する内断面の最大面積qとの比率(p:q)が1:225〜1:64の範囲になるように構成したものである。   In order to achieve the above object, a natural gas storage tank according to the first aspect of the present invention includes an area p of an inner cross section at a connection portion of a gas flow pipe connected to a gas storage container for storing natural gas, The ratio (p: q) with the maximum area q of the inner cross section orthogonal to the gas flow direction expanded in the gas flow direction from the connecting portion of the gas storage container is in the range of 1: 225 to 1:64. It is a thing.

第1の発明においては、天然ガスを流通するガス流通管とこのガス流通管から天然ガスが供給されるガス貯蔵容器との間の、ガス流通方向と直交する各内断面の断面積の比率(p:q)に着目し、ガス貯蔵容器に接続されたガス流通管の接続部における内断面の面積pに対し、ガス貯蔵容器の、ガス流通管との接続部からガス流通方向において拡大した該ガス流通方向と直交する内断面の最大面積qが大きくなりすぎないように、両内断面の面積比率(p:q)を1:225〜1:64の範囲内にすることで、天然ガスがガス流通管からガス貯蔵容器に流入した際の断熱膨張による温度低下が抑えられ、天然ガスからのプロパンやブタン等の重成分の分離、凝集を抑制し、ガス貯蔵容器へのガス貯蔵特性(特に天然ガスの貯蔵/放出量および貯蔵/放出効率)の劣化を低減することができる。   In the first invention, the ratio of the cross-sectional area of each inner cross section perpendicular to the gas flow direction between the gas flow tube for flowing natural gas and the gas storage container to which natural gas is supplied from the gas flow tube ( p: q), the area p of the inner cross section at the connection portion of the gas flow pipe connected to the gas storage container is expanded in the gas flow direction from the connection portion with the gas flow pipe of the gas storage container. By setting the area ratio (p: q) of both inner cross sections within the range of 1: 225 to 1:64 so that the maximum area q of the inner cross section orthogonal to the gas flow direction does not become too large, The temperature drop due to adiabatic expansion when flowing into the gas storage container from the gas distribution pipe is suppressed, the separation and aggregation of heavy components such as propane and butane from natural gas are suppressed, and the gas storage characteristics in the gas storage container (especially Natural gas storage / release and It is possible to reduce the deterioration of the warehouse / emission efficiency).

特に、ガス貯蔵容器内に、天然ガスの吸着サイトになる細孔を有する吸着材(カーボンナノチューブなどの炭素材料等)が収容されている場合に有効である。上記のように、天然ガス中のブタン等の重成分が凝集することで吸着サイトである細孔が閉塞されることによる吸着サイトの減少を回避することができるので、短期間に所期のガス貯蔵/放出量が大幅に低下することなく、長期間ガス貯蔵/放出性能を保持することができる。   This is particularly effective when an adsorbent (such as a carbon material such as carbon nanotube) having pores serving as natural gas adsorption sites is accommodated in the gas storage container. As described above, it is possible to avoid a decrease in adsorption sites due to the blockage of pores that are adsorption sites due to agglomeration of heavy components such as butane in natural gas. The gas storage / release performance can be maintained for a long time without significantly reducing the storage / release amount.

第2の発明である天然ガス貯蔵タンクは、ガス貯蔵容器に器壁から器内方向に一端を突出させて接続されたガス流通管の接続部と前記一端との間の管壁に少なくとも1つの孔を有し、前記孔の総面積rと、前記ガス貯蔵容器の前記接続部からガス流通方向において拡大した該ガス流通方向と直交する内断面の最大面積sとの比率(r:s)が1:225〜1:64となるように構成したものである。   The natural gas storage tank according to the second aspect of the present invention has at least one pipe wall between the one end of the gas flow pipe connected to the gas storage container with one end projecting inward from the container wall to the gas storage container. A ratio (r: s) between the total area r of the holes and the maximum area s of the inner cross section orthogonal to the gas flow direction expanded from the connection part of the gas storage container in the gas flow direction. It is configured to be 1: 225 to 1:64.

第2の発明においては、天然ガスを放出する孔の開口サイズとこの孔から天然ガスが供給されるガス貯蔵容器のサイズとの間の比率に着目し、天然ガスを流通するガス流通管に設けられた孔の総面積rに対し、ガス貯蔵容器の、ガス流通管との接続部からガス流通方向において拡大した該ガス流通方向と直交する内断面の最大面積sが大きくなりすぎないように、総面積rおよび最大面積sの面積比率(r:s)を1:225〜1:64の範囲内にすることで、天然ガスがガス流通管からガス貯蔵容器に流入した際の断熱膨張による温度低下を抑えることが可能であり、天然ガスからのプロパンやブタン等の重成分の分離、凝集を抑制し、ガス貯蔵容器へのガス貯蔵特性(特に天然ガスの貯蔵/放出量および貯蔵/放出効率)の劣化を低減することができる。   In the second invention, paying attention to the ratio between the opening size of the hole for discharging the natural gas and the size of the gas storage container to which the natural gas is supplied from this hole, the gas distribution pipe for circulating the natural gas is provided. The maximum area s of the inner cross section perpendicular to the gas flow direction expanded in the gas flow direction from the connecting portion of the gas storage container to the gas flow pipe with respect to the total area r of the holes formed is not too large. By setting the area ratio (r: s) of the total area r and the maximum area s within the range of 1: 225 to 1:64, the temperature due to adiabatic expansion when natural gas flows into the gas storage container from the gas circulation pipe It is possible to suppress the degradation, suppress the separation and agglomeration of heavy components such as propane and butane from natural gas, and the characteristics of gas storage in gas storage containers (especially the storage / release amount and storage / release efficiency of natural gas) ) It is possible.

また、第2の発明におけるガス流通管には、複数の孔を設けることができ、複数の孔を設ける場合は、ガス貯蔵容器の器壁から器内方向に突出した突出端である一端に最も近い孔の面積sと最も遠い孔、つまり器壁(接続部)に最も近い孔の面積s(n>2)との間の比率(s:s)が2:1〜3:1であることが、天然ガスがガス貯蔵容器に流入した際の断熱膨張による温度低下をより効果的に抑制することができる。
第1の発明と同様に、ガス貯蔵容器内に、天然ガスの吸着サイトになる細孔を有する吸着材(カーボンナノチューブなどの炭素材料等)が収容されている場合に特に有効である。
Further, the gas flow pipe in the second invention can be provided with a plurality of holes, and in the case of providing a plurality of holes, it is most at one end which is a protruding end protruding inward from the wall of the gas storage container. The ratio (s 1 : s n ) between the area s 1 of the near hole and the area s n (n> 2) of the furthest hole, that is, the hole closest to the vessel wall (connection portion) is 2: 1 to 3: It can suppress more effectively the temperature fall by adiabatic expansion when natural gas flows in into a gas storage container that it is 1.
Similar to the first invention, this is particularly effective when an adsorbent (carbon material such as carbon nanotube) having pores that become natural gas adsorption sites is accommodated in the gas storage container.

第1および第2の発明である天然ガス貯蔵タンクには、ガス流通管からガス貯蔵容器に供給された天然ガスの温度を上昇させる昇温手段を設けることができる。ガス貯蔵容器に天然ガスを供給する場合に、供給された天然ガスの温度が供給時の断熱膨張により大きく低下しないように、昇温手段により加熱されるので、供給時の断熱膨張が原因で天然ガス中の重成分が分離、凝集するのを抑えることができる。凝集の抑制により、カーボンナノチューブなどの炭素材料等吸着材など、吸着サイトになる細孔を有する場合などのガス貯蔵特性(特に天然ガスの貯蔵/放出量および貯蔵/放出効率)の低下を低減することができる。   The natural gas storage tank according to the first and second inventions can be provided with a temperature raising means for raising the temperature of the natural gas supplied from the gas distribution pipe to the gas storage container. When supplying natural gas to the gas storage container, the temperature of the supplied natural gas is heated by the temperature raising means so as not to be greatly reduced by adiabatic expansion at the time of supply. Separation and aggregation of heavy components in the gas can be suppressed. Suppression of aggregation reduces reduction in gas storage characteristics (especially natural gas storage / release amount and storage / release efficiency) such as adsorbents such as carbon nanotubes and other adsorbents, which have pores that become adsorption sites. be able to.

昇温手段による天然ガスの加熱は、断熱膨張に伴なう冷却で生じる重成分の分離、凝集をより効果的に防止する観点から、50℃以上の温度に上昇されるように行なわれるのが望ましい。   The heating of the natural gas by the temperature raising means is performed so as to be raised to a temperature of 50 ° C. or more from the viewpoint of more effectively preventing separation and aggregation of heavy components generated by cooling accompanying adiabatic expansion. desirable.

本発明の天然ガス貯蔵タンクは、ガスの供給が行なわれるときには一般に細長い管がこれより内容積の大きい容器に接続された構造に構成されるが、このような構造のまま天然ガスを供給して充填する場合における、充填/放出効率および充填/放出量の安定したシステムを構築することができる。   The natural gas storage tank of the present invention is generally constructed to have a structure in which an elongated tube is connected to a container having a larger internal volume when gas is supplied. In the case of filling, it is possible to construct a system with stable filling / release efficiency and filling / release amount.

本発明によれば、天然ガスから成分分離・凝集を抑制して天然ガスを良好に貯蔵することができる天然ガス貯蔵タンクを提供することができる。特に、天然ガスの貯蔵/放出量および貯蔵/放出効率の良好な天然ガス貯蔵タンクを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the natural gas storage tank which can suppress a component separation and aggregation from natural gas and can store a natural gas favorably can be provided. In particular, it is possible to provide a natural gas storage tank with good natural gas storage / release amount and storage / release efficiency.

以下、図面を参照して、本発明の天然ガス貯蔵タンクの実施形態について詳細に説明する。   Hereinafter, an embodiment of a natural gas storage tank of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本発明の天然ガス貯蔵タンクの第1実施形態を図1〜図3を参照して説明する。本実施形態の天然ガス貯蔵タンクは、天然ガス(以下、NGと略記することがある。)が流通するNG流通管の内断面の面積(面積pという)と、NGが供給されるNG貯蔵容器の内断面の断面積(最大面積qという)との比(p:q)を1:100とし、供給された天然ガスの分離、凝集が起きない構成としたものである。
(First embodiment)
1st Embodiment of the natural gas storage tank of this invention is described with reference to FIGS. The natural gas storage tank of the present embodiment includes an area of an inner cross section (referred to as area p) of an NG distribution pipe through which natural gas (hereinafter sometimes abbreviated as NG) flows, and an NG storage container to which NG is supplied. The ratio (p: q) to the cross-sectional area of the inner cross-section (referred to as the maximum area q) is 1: 100, and the supplied natural gas is not separated or aggregated.

本実施形態では、NG貯蔵タンク内に天然ガス吸着材として「やしがら炭」を収容した場合を例に説明する。但し、本発明においては、下記実施形態に制限されるものではない。   In the present embodiment, a case where “yashigara charcoal” is accommodated as a natural gas adsorbent in the NG storage tank will be described as an example. However, the present invention is not limited to the following embodiment.

図1に示すように、本実施形態の天然ガス貯蔵タンクは、NG(天然ガス)が流通するガス流通管であるNG流通管11と、天然ガス吸着材である「やしがら炭」を収容し、NG流通管11から供給されたNGを貯蔵するガス貯蔵容器であるNG貯蔵容器12と、を備えている。   As shown in FIG. 1, the natural gas storage tank of the present embodiment accommodates an NG distribution pipe 11 that is a gas distribution pipe through which NG (natural gas) circulates and “Yashigara Charcoal” that is a natural gas adsorbent. And an NG storage container 12 which is a gas storage container for storing NG supplied from the NG circulation pipe 11.

NG流通管11は、天然ガス(NG)が流通し、流通するNGの流通方向下流側となる一端でNG貯蔵タンク12と接続されている。また、他端は、天然ガス貯蔵タンクとは別に外部に設置された図示しない天然ガス供給装置と接続できるようになっている。   The NG circulation pipe 11 is connected to the NG storage tank 12 at one end on the downstream side in the circulation direction of NG through which natural gas (NG) circulates. The other end can be connected to a natural gas supply device (not shown) installed outside the natural gas storage tank.

このNG流通管11は、図1のように、内径Aが4mmであるSUS316(またはSUS310等)製の筒状構造を有しており、NG流通方向と直交する断面は略一様な円形状になっている。ここで、内径4mmの円形断面がNG流通管の内断面であり、内断面の面積pは4πmmである。 As shown in FIG. 1, the NG distribution pipe 11 has a cylindrical structure made of SUS316 (or SUS310 or the like) having an inner diameter A of 4 mm, and the cross section orthogonal to the NG distribution direction is a substantially uniform circular shape. It has become. Here, the circular cross section with an inner diameter of 4 mm is the inner cross section of the NG flow pipe, and the area p of the inner cross section is 4π mm 2 .

NG貯蔵容器12は、内径B40mm、長さ3.0m、内容積3.7LであるSUS316(またはSUS310等)製の筒状体の、長手方向の両端が曲面で閉塞された構造になっており、その一方の曲面(閉塞端)にはNG給排口13が形成され、このNG給排口13においてNG流通管11の一端が接続されている。NGの充填は、NGの供給開始から5分間で行なえるようになっている。なお、材質として、自動車用などでは軽量化が重要であるため、アルミニウムのライナーの周囲がカーボンファイバーやグラスファイバー等で補強されたCFRP、FRP耐圧容器も用いられる。   The NG storage container 12 has a structure in which both ends in the longitudinal direction of a cylindrical body made of SUS316 (or SUS310, etc.) having an inner diameter B of 40 mm, a length of 3.0 m, and an internal volume of 3.7 L are closed by curved surfaces. The NG supply / exhaust port 13 is formed on one curved surface (closed end), and one end of the NG circulation pipe 11 is connected to the NG supply / exhaust port 13. The filling of NG can be performed in 5 minutes from the start of the supply of NG. In addition, since weight reduction is important as a material for automobiles, CFRP and FRP pressure-resistant containers in which the periphery of an aluminum liner is reinforced with carbon fiber, glass fiber, or the like are also used.

NGは、図1に示すように、NG流通管11からNG貯蔵容器12中を他方の曲面(閉塞端)の方向に向かって流通していくが、このNGの流通方向と直交するNG貯蔵容器12の断面、すなわち内径40mmの円形断面がNG貯蔵容器の内断面であり、この内断面は両閉塞端の一方から他方に至るまで略一様な円形に構成されている。したがって、NG貯蔵容器12の内断面の最大面積qは、400πmmである。 As shown in FIG. 1, NG circulates in the NG storage container 12 from the NG distribution pipe 11 toward the other curved surface (closed end), but the NG storage container orthogonal to the NG distribution direction. Twelve cross sections, that is, a circular cross section with an inner diameter of 40 mm is the inner cross section of the NG storage container, and this inner cross section is formed in a substantially uniform circular shape from one end of both closed ends to the other. Therefore, the maximum area q of the inner cross section of the NG storage container 12 is 400πmm 2 .

NG貯蔵容器12の内部には、天然ガスを吸着して貯蔵する天然ガス吸着材である「やしがら炭」14が収容されており、NG流通管11を流通してNG貯蔵容器12内にNGが供給されたときには、供給されたNGをNG貯蔵容器12内のやしがら炭14に吸着させて貯蔵する。また、外部に設置された天然ガスで動作する不図示のNG使用装置(例えば、エンジン、NG改質器)からNG排出要求があったときには、NG流通管11に設置されているバルブ(レギュレータバルブ)を開放する等により貯蔵されているNGをNG使用装置に供給できるようになっている。   Inside the NG storage container 12, “Yashigara Charcoal” 14, which is a natural gas adsorbent for adsorbing and storing natural gas, is accommodated, and circulates through the NG distribution pipe 11 to enter the NG storage container 12. When NG is supplied, the supplied NG is adsorbed by the coconut charcoal 14 in the NG storage container 12 and stored. Further, when there is an NG discharge request from an NG using device (not shown) that operates with natural gas installed outside (for example, an engine or an NG reformer), a valve (regulator valve) installed in the NG distribution pipe 11 NG stored for example by opening the) is supplied to the NG using device.

天然ガス吸着材には、やしがら炭以外に、例えば、カーボンナノチューブ等のカーボン繊維や、活性炭、フラーレン等の炭素材料、FSM(SiO系)、MOF(金属錯体系)等のメソ多孔体などを用いることができる。
なお、天然ガス吸着材の種類やNG貯蔵容器内への収容量については、特に制限はなく、フル充填した際の充填量や充填時間など場合に応じて適宜選択することができる。
Natural gas adsorbents include, for example, carbon fibers such as carbon nanotubes, carbon materials such as activated carbon and fullerene, mesoporous materials such as FSM (SiO 2 ), MOF (metal complex), etc. Etc. can be used.
In addition, there is no restriction | limiting in particular about the kind of natural gas adsorbent, and the accommodation amount in an NG storage container, It can select suitably according to cases, such as the filling amount at the time of full filling, and filling time.

また、NG貯蔵容器12内には、内部の雰囲気温度を昇温するため、熱媒体(加熱された水等)を流通させるための熱媒体通路15が設けられており、連続的にあるいは必要に応じて、断熱膨張によるNGの大きな温度低下を抑制できるようになっている。熱媒体の流通を開始し、供給されたNGの温度を、天然ガス中の重成分の分離、凝集が起きない温度域に保つことが可能である。なお、加熱手段としては、熱媒体に限らずヒータ等でもよい。   In addition, in the NG storage container 12, a heating medium passage 15 for circulating a heating medium (heated water or the like) is provided in order to raise the temperature of the internal atmosphere. Accordingly, a large temperature drop of NG due to adiabatic expansion can be suppressed. The circulation of the heat medium can be started, and the temperature of the supplied NG can be maintained in a temperature range where separation and aggregation of heavy components in natural gas do not occur. Note that the heating means is not limited to a heat medium, and may be a heater or the like.

熱媒体通路15によるNGの昇温は、NG温度が50℃以上になるように行なうことが好ましい。NGの供給を行なう場合に、断熱膨張で温度が低下した際にNG温度が凝集を起こす温度低下幅(温度差15℃以上)より大きくなるおそれを回避することができる。
中でも、50℃〜70℃の範囲に加熱するのが、天然ガス中の成分分離、凝集防止の点で望ましい。熱し過ぎると、ガス自体の膨張のため、本来の高密度貯蔵に反する。
It is preferable to raise the temperature of NG through the heat medium passage 15 so that the NG temperature becomes 50 ° C. or higher. In the case of supplying NG, it is possible to avoid the possibility that the NG temperature becomes larger than the temperature decrease range (temperature difference of 15 ° C. or more) that causes aggregation when the temperature decreases due to adiabatic expansion.
Among these, heating in the range of 50 ° C. to 70 ° C. is desirable in terms of component separation in natural gas and prevention of aggregation. Excessive heating is contrary to the original high density storage due to the expansion of the gas itself.

本実施形態では、NG流通管11の内断面の面積pと、NG貯蔵容器12の内断面の最大面積qとの比(p:q)は1:100であるが、比率(p:q)は1:225〜1:64の範囲であればよく、NG供給時における断熱膨張によるNGの分離、凝集を防止して、長期間にわたり良好なNGの吸着/放出効率を保持し、所期の吸着/放出量を確保することができる。   In this embodiment, the ratio (p: q) of the area p of the inner cross section of the NG circulation pipe 11 to the maximum area q of the inner cross section of the NG storage container 12 is 1: 100, but the ratio (p: q) May be in the range of 1: 225 to 1:64, preventing NG separation and aggregation due to adiabatic expansion during NG supply, and maintaining good NG adsorption / release efficiency over a long period of time. Adsorption / release amount can be secured.

ここで、NGの貯蔵量(貯蔵率)の低下は1%以内であることが望ましい。例えば、フル充填時にV/V(V:NG充填量、V:タンク内容積)が300であるNG貯蔵タンクを想定した場合、貯蔵量は、図2に示すように、NG流通管の内断面の面積pに対するNG貯蔵容器の内断面の最大面積qの比がより低下し、pのqに対する比率が1:64より大きくなると貯蔵効率の低下が1%より大きく低下してしまう。
一方、NG供給時の温度低下は、図3に示すように、NG流通管の内断面の面積pに対するNG貯蔵容器の内断面の最大面積qの比が小さくなるにつれ小さくなるため、pのqに対する比率が1:225よりさらに小さくなると、天然ガス中のプロパンやブタン等の重成分が分離、凝集を起こす温度幅ΔTが15(deg)を超えてしまう。
Here, it is desirable that the decrease in the storage amount (storage rate) of NG is within 1%. For example, assuming an NG storage tank where V / V 0 (V: NG filling amount, V 0 : tank internal volume) is 300 at the time of full filling, the storage amount is as shown in FIG. When the ratio of the maximum area q of the inner cross section of the NG storage container to the area p of the inner cross section is further reduced, and the ratio of p to q is greater than 1:64, the reduction in storage efficiency is reduced by more than 1%.
On the other hand, as shown in FIG. 3, the temperature drop during the supply of NG decreases as the ratio of the maximum area q of the inner cross section of the NG storage container to the area p of the inner cross section of the NG distribution pipe decreases. When the ratio to is further smaller than 1: 225, the temperature range ΔT at which heavy components such as propane and butane in the natural gas are separated and aggregated exceeds 15 (deg).

すなわち、NG流通管の内断面の面積pとNG貯蔵容器の内断面の最大面積qとの比(p:q)を1:225〜1:64とすることにより、NG供給時の大幅な温度低下を抑えることができ、これによりNG中の重成分の分離、凝集が防止される。その結果、NGの吸着サイトが減少するのを回避し、長期間にわたり良好なNGの吸着/放出効率を保持し、所期の吸着/放出量を確保することができる。   That is, by setting the ratio (p: q) of the area p of the inner cross section of the NG flow pipe to the maximum area q of the inner cross section of the NG storage container to 1: 225 to 1:64, a significant temperature at the time of supplying NG The decrease can be suppressed, thereby preventing separation and aggregation of heavy components in NG. As a result, a decrease in the number of NG adsorption sites can be avoided, good NG adsorption / release efficiency can be maintained over a long period of time, and a desired amount of adsorption / release can be ensured.

上記の理由から、前記比(p:q)の中でも、1:144〜1:100の範囲がより好ましい。   For the above reasons, the ratio (p: q) is more preferably in the range of 1: 144 to 1: 100.

本実施形態のように、加熱器として熱媒体通路をNG貯蔵容器に取り付けて必要に応じて熱媒体を流通して供給されたNG温度を高く保持するようにすることによって、例えば、供給時のNG温度、充填速度、NG貯蔵容器の材質や内部構造などの影響でNGが分離、凝集しやすくなるのを解消することができ、既述の比(p:q)の範囲(1:225〜1:64)ではより安定的にNGの供給(充填)を行なうことが可能である。   As in this embodiment, by attaching a heat medium passage to the NG storage container as a heater and maintaining the NG temperature supplied by circulating the heat medium as necessary, for example, at the time of supply It is possible to eliminate the tendency of NG to separate and aggregate due to the influence of NG temperature, filling speed, material of the NG storage container, internal structure, etc., and the ratio (p: q) range (1: 225 to the above) 1:64) makes it possible to supply (fill) NG more stably.

天然ガスの温度を上昇させる熱媒体通路や加熱器等の加熱手段は、ガス貯蔵容器および/またはガス流通管に設けることができ、ガス貯蔵容器に設ける場合は容器内部もしくは外部のいずれに設けられてもよい。具体的には、例えばガス貯蔵容器のNG供給側(ここでは、例えばNG流通管の接続部(NG給排口)から容器本体の一部領域)や、NG流通管の管外壁などに例えば電気ヒータを取り付けることができる。
さらに、加熱器をNG吸着材(ここでは、やしがら炭)の温度を上げて、やしがら炭から熱を与えるように構成されてもよい。
Heating means such as a heat medium passage and a heater for raising the temperature of the natural gas can be provided in the gas storage container and / or the gas distribution pipe. When provided in the gas storage container, the heating means is provided either inside or outside the container. May be. Specifically, for example, an electrical supply is made on the NG supply side of the gas storage container (in this case, for example, from the connection part (NG supply / exhaust port) of the NG distribution pipe to a partial region of the container body), the outer wall of the NG distribution pipe, etc. A heater can be attached.
Further, the heater may be configured to increase the temperature of the NG adsorbent (here, coconut charcoal) and apply heat from the coconut charcoal.

(第2実施形態)
本発明の天然ガス貯蔵タンクの第2実施形態を図4〜図5を参照して説明する。本実施形態は、ガス貯蔵容器に器壁から器内方向に一端を突出させて接続されたガス流通管の接続部とこの一端との間の管壁に異径の孔を6個設け、全ての孔の合計面積rと、NGが供給されるガス貯蔵容器の内断面の断面積(最大面積sという)との比(r:s)を1:100とし、供給された天然ガスの分離、凝集が起きない構成としたものである。
(Second Embodiment)
A second embodiment of the natural gas storage tank of the present invention will be described with reference to FIGS. In the present embodiment, the gas storage container is provided with six holes of different diameters on the pipe wall between the gas flow pipe connecting portion connected to the gas storage container with one end protruding inward from the container wall. The ratio (r: s) of the total area r of the pores of the gas and the cross-sectional area (referred to as the maximum area s) of the inner cross section of the gas storage container supplied with NG is 1: 100, and separation of the supplied natural gas; The composition does not cause aggregation.

なお、天然ガス吸着材は、第1実施形態で使用した「やしがら炭」並びに第1実施形態に記載した他の天然ガス吸着材を用いることができ、また、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。   As the natural gas adsorbent, “Yashigara Charcoal” used in the first embodiment and other natural gas adsorbents described in the first embodiment can be used, and the same as in the first embodiment. Constituent elements are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、本実施形態の天然ガス貯蔵タンクは、NG(天然ガス)が流通するガス流通管であるNG流通管21と、天然ガス吸着材である「やしがら炭」を収容し、NG流通管21から供給されたNGを貯蔵するガス貯蔵容器であるNG貯蔵容器22と、を備えている。   As shown in FIG. 4, the natural gas storage tank of the present embodiment accommodates an NG distribution pipe 21 that is a gas distribution pipe through which NG (natural gas) circulates and “Yashigara Charcoal” that is a natural gas adsorbent. And an NG storage container 22 which is a gas storage container for storing NG supplied from the NG circulation pipe 21.

NG流通管21は、NG流通方向と直交する断面が内径4mmの略一様な円形状であるSUS316(またはSUS310等)製の筒状構造を有しており、管内を天然ガス(NG)が流通し、流通するNGの流通方向下流側となる一端がNG貯蔵容器12の器壁から器内方向に突出するようにして設けられている。他端は、天然ガス貯蔵タンクとは別に外部に設置された図示しない天然ガス供給装置と接続できるようになっている。
NG流通管21は、NG貯蔵容器22と器壁を貫通する貫通部分で固定されている。
The NG flow pipe 21 has a cylindrical structure made of SUS316 (or SUS310 or the like) having a substantially uniform circular shape with a cross section perpendicular to the NG flow direction having an inner diameter of 4 mm, and natural gas (NG) is contained in the pipe. One end, which is the downstream side in the circulation direction of the NG that circulates, is provided so as to protrude inward from the vessel wall of the NG storage container 12. The other end can be connected to a natural gas supply device (not shown) installed outside the natural gas storage tank.
The NG distribution pipe 21 is fixed at a penetrating portion that penetrates the NG storage container 22 and the vessel wall.

このNG流通管21の管壁には、NG貯蔵容器22との接続部とこの接続部から器内に突出した一端(以下、突出端ともいう)との間に、6個の孔(S1,S2,S3,S4,S5,S6)が開口されており、各孔からNG流通管21を流通してきたNGが放出され、NG貯蔵容器22に供給される構成となっている。   The pipe wall of the NG circulation pipe 21 has six holes (S1, S1) between a connection portion with the NG storage container 22 and one end (hereinafter also referred to as a protruding end) protruding from the connection portion into the container. S2, S3, S4, S5, S6) are opened, and NG that has flowed through the NG flow pipe 21 is discharged from each hole and supplied to the NG storage container 22.

孔S1,S2,S3,S4,S5およびS6は、図4のように、NG流通管21の器内の突出端からNG貯蔵容器22との接続部(貫通部)に向かって開口面積が小さくなるように設けられており、孔S1の面積sは0.94πmmであり、孔S2〜孔S4の面積s、sおよびsは各々、面積s:0.82πmm、面積s:0.71πmm、面積s:0.60πmmであり、孔S5および孔S6の面積s、sは各々、面積s:0.51πmm、面積s:0.41πmmである。 As shown in FIG. 4, the holes S1, S2, S3, S4, S5 and S6 have a small opening area from the projecting end in the vessel of the NG circulation pipe 21 toward the connection portion (through portion) with the NG storage container 22. The area s 1 of the hole S1 is 0.94πmm 2 , and the areas s 2 , s 3, and s 4 of the hole S2 to the hole S4 are each an area s 2 : 0.82πmm 2 . s 3 : 0.71πmm 2 , area s 4 : 0.60πmm 2 , and areas s 5 and s 6 of hole S5 and hole S6 are area s 5 : 0.51πmm 2 and area s 6 : 0.41πmm, respectively. 2 .

孔S1,S2,S3,S4,S5およびS6は、突出端である器内の一端に最も近い孔S1の面積sと最も遠い孔S6の面積sとの比率(s:s)が2.29:1であり、NGが供給されたときの断熱膨張による冷却が抑制され、ひいてはNGの成分分離、凝集を回避できるようになっている。 Holes S1, S2, S3, S4, S5 and S6, the ratio of the area s 6 of the area s 1 farthest hole S6 in closest hole S1 to the one end of the vessel is a protruding end (s 1: s 6) 2.29: 1, cooling due to adiabatic expansion when NG is supplied is suppressed, so that NG component separation and aggregation can be avoided.

NG流通管12に複数の孔を設ける場合、全ての孔が同一面積で開口されたものでもよいし、孔の一部もしくは全部が異なる面積で開口されたものでもよい。
後者のように、一部もしくは全部の面積が異なる複数の孔が設けられるのが望ましく、この場合には、供給されたNGの断熱膨張による冷却を抑制し、NG中のプロパンやブタン等の重成分の分離、凝集を防止してNGの貯蔵、放出を良好に行なえる点で、NG流通管の突出端である器内の一端(突出端)に最も近い孔S1の面積sと最も遠い孔S6の面積s(n>2)の比率(s:s)が2:1〜3:1の範囲であるのが、均一な流速を得る点で望ましい。より好ましくは、2.25:1〜2.56:1の範囲内である。
In the case where a plurality of holes are provided in the NG circulation pipe 12, all the holes may be opened with the same area, or some or all of the holes may be opened with different areas.
As in the latter case, it is desirable to provide a plurality of holes having a part or all of different areas. In this case, cooling due to adiabatic expansion of the supplied NG is suppressed, and heavy propane, butane, etc. in the NG is suppressed. It is farthest from the area s 1 of the hole S1 closest to one end (protruding end) in the vessel, which is the protruding end of the NG flow pipe, in that the separation and aggregation of the components can be prevented and NG can be stored and released satisfactorily. The ratio (s 1 : s n ) of the area s n (n> 2) of the hole S6 is preferably in the range of 2: 1 to 3: 1 from the viewpoint of obtaining a uniform flow rate. More preferably, it is in the range of 2.25: 1 to 2.56: 1.

孔の間隔は、特に制限なく選択することができるが、図5に示すように、孔を断面に対して螺旋状に設ける方が「タンク全体のへのガス拡散」という観点から、より均一なガス流となり望ましい。   The interval between the holes can be selected without any particular limitation. However, as shown in FIG. 5, it is more uniform from the viewpoint of “gas diffusion into the entire tank” when the holes are provided spirally with respect to the cross section. A gas flow is desirable.

また、形成する孔の数には、特に制限はなく、NGの充填速度、NG流通管の内径や長さ、各孔の面積、面積の異なる孔の組合せ、NG貯蔵容器の内断面の最大面積s、などを考慮して適宜選択することができる。   The number of holes to be formed is not particularly limited, and the NG filling speed, the inner diameter and length of the NG flow pipe, the area of each hole, a combination of holes having different areas, and the maximum area of the inner cross section of the NG storage container s, etc. can be selected as appropriate.

NG貯蔵容器22は、図4のように、内径Bが40mm、内容積3.7LであるSUS316(またはSUS310等)製の筒状体の、長手方向の両端が曲面で閉塞された構造になっており、その一方の曲面(閉塞端)にはNG給排口13が形成され、このNG給排口13においてNG流通管21の一端が接続されている。また、NGの流通方向と直交するNG貯蔵容器22の断面、すなわち内径40mmの円形断面がNG貯蔵容器の内断面であり、この内断面は両閉塞端の一方から他方に至るまで略一様な円形の構造になっている。すなわち、NG貯蔵容器22の内断面の最大面積sは、400πmmである。 As shown in FIG. 4, the NG storage container 22 has a structure in which both ends in the longitudinal direction of a cylindrical body made of SUS316 (or SUS310, etc.) having an inner diameter B of 40 mm and an internal volume of 3.7 L are closed by curved surfaces. An NG supply / exhaust port 13 is formed on one curved surface (closed end), and one end of the NG flow pipe 21 is connected to the NG supply / exhaust port 13. Further, a cross section of the NG storage container 22 orthogonal to the NG flow direction, that is, a circular cross section with an inner diameter of 40 mm is the inner cross section of the NG storage container, and this inner cross section is substantially uniform from one end to the other of the closed ends. It has a circular structure. That is, the maximum area s of the inner cross section of the NG storage container 22 is 400πmm 2 .

本実施形態では、孔S1,S2,S3,S4,S5およびS6の合計面積rと、NG貯蔵容器22の内断面の最大面積sとの比(r:s)は、1:100となっており、供給されたNGの断熱膨張による冷却が抑制され、NG中のプロパンやブタン等の重成分の分離、凝集を防止してNGの貯蔵、放出を良好に行なえるように構成されている。   In this embodiment, the ratio (r: s) of the total area r of the holes S1, S2, S3, S4, S5 and S6 to the maximum area s of the inner cross section of the NG storage container 22 is 1: 100. In addition, cooling due to adiabatic expansion of supplied NG is suppressed, and separation and aggregation of heavy components such as propane and butane in NG are prevented, and NG can be stored and released satisfactorily.

本実施形態では、前記比(r:s)は1:100であるが、比率(r:s)は1:225〜1:64の範囲であればよく、NG供給時の大幅な温度低下を抑えることができ、これによりNG中の重成分の分離、凝集が防止される。その結果、NGの吸着サイトが減少するのを回避し、長期間にわたり良好なNGの吸着/放出効率を保持し、所期の吸着/放出量を確保することができる。
前記比(r:s)の中でも、1:144〜1:100の範囲がより好ましい。
In the present embodiment, the ratio (r: s) is 1: 100, but the ratio (r: s) may be in the range of 1: 225 to 1:64, and a significant temperature drop during NG supply can be achieved. This can prevent the separation and aggregation of heavy components in NG. As a result, a decrease in the number of NG adsorption sites can be avoided, good NG adsorption / release efficiency can be maintained over a long period of time, and a desired amount of adsorption / release can be ensured.
Among the ratio (r: s), the range of 1: 1144 to 1: 100 is more preferable.

本実施形態においても、第1実施形態と同様に熱媒体通路(または加熱器等)を取り付け、必要に応じて熱媒体を流通(または加熱器をオン)して供給されたNG温度を高く保持するようにすることによって、例えば、供給時のNG温度、充填速度、NG貯蔵容器の材質や内部構造などの影響でNGが分離、凝集しやすくなるのをより解消することができ、既述の比(r:s)の範囲(1:225〜1:64)ではより安定的にNGの供給(充填)を行なうことが可能である。   Also in the present embodiment, a heat medium passage (or a heater or the like) is attached as in the first embodiment, and the supplied NG temperature is kept high by circulating the heat medium (or turning on the heater) as necessary. By doing so, for example, NG can be more easily separated and aggregated due to the influence of the NG temperature at the time of supply, the filling rate, the material of the NG storage container, the internal structure, etc. In the range of the ratio (r: s) (1: 225 to 1:64), NG can be supplied (filled) more stably.

本実施形態では、1本のNG流通管のNG貯蔵容器の内部に位置する管壁に複数の孔を開口して設けた場合を説明したが、1本の管に孔を形成するのではなく、1本のNG流通管がNG貯蔵容器内で複数本に分岐し、上記した比(r:s)を満たすように複数の分岐端(すなわち分岐端の端面の面積)が設けられた構造に構成された場合も同様である。分岐は、例えば1本のNG流通管がまず内径の同じまたは異なる2本(または3本以上)の管に分岐し、分岐された2本の管がさらに各々内径の同じまたは異なる3本(または2本もしくは4本以上)に分岐し、合計6本またはそれ以上の分岐端が形成されるように構成することができる。また更に、分岐させた構造にしてもよい。
このような分岐構造に構成した場合も、上記した比(r:s)を満たす様に構成することにより、本実施形態の複数の孔を設けた場合と同様の効果を得ることができる。
In the present embodiment, the case where a plurality of holes are provided in the tube wall located inside the NG storage container of one NG circulation pipe has been described, but instead of forming a hole in one pipe. In a structure in which one NG distribution pipe branches into a plurality of NG storage containers, and a plurality of branch ends (that is, the area of the end face of the branch end) are provided so as to satisfy the above-described ratio (r: s). The same applies when configured. For example, for example, one NG flow pipe first branches into two (or three or more) pipes having the same or different inner diameters, and the two branched pipes are further divided into three pipes having the same or different inner diameters (or 2 or 4 or more), and a total of 6 or more branch ends can be formed. Furthermore, a branched structure may be used.
Even when configured in such a branched structure, by configuring so as to satisfy the above-described ratio (r: s), it is possible to obtain the same effect as when a plurality of holes of the present embodiment are provided.

以下、実施例によって本発明をより具体的に説明する。但し、本発明はこれらの実施例に限定されるものではない。なお、天然ガスは「NG」と略記する。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Natural gas is abbreviated as “NG”.

(実施例1)
まず、図1と同様の構造に構成されたNG貯蔵タンクを用意した。
このNG貯蔵タンクは、天然ガス吸着材として「やしがら炭」14を収容し、供給された天然ガス(NG)をやしがら炭に吸着して貯蔵するNG貯蔵容器(内径40mm、内容積3.7LのSUS310製)12と、NG貯蔵容器12のNG給排口13に接続され、内径4mmの管内を流通してNG貯蔵容器12にNGを供給するNG流通管11とを設けて構成されたものである。また、NG流通方向におけるNG給排口13のやや下流側に位置するNG貯蔵容器12内には、NG貯蔵容器の器内に入ってきたNGの温度を検出するための温度センサ(不図示)が取り付けられており、NG温度を所定のタイミングで検出できるようになっている。
Example 1
First, an NG storage tank having a structure similar to that shown in FIG. 1 was prepared.
This NG storage tank contains “Yashigara Charcoal” 14 as a natural gas adsorbent, and NG storage container (inner diameter 40 mm, inner volume) that adsorbs and stores the supplied natural gas (NG) on the Yagiga Charcoal. 3.7L made of SUS310) 12 and an NG distribution pipe 11 that is connected to the NG supply / exhaust port 13 of the NG storage container 12 and circulates through a pipe having an inner diameter of 4 mm to supply NG to the NG storage container 12. It has been done. Further, a temperature sensor (not shown) for detecting the temperature of NG entering the container of the NG storage container is located in the NG storage container 12 located slightly downstream of the NG supply / exhaust port 13 in the NG distribution direction. Is attached so that the NG temperature can be detected at a predetermined timing.

本実施例におけるNG流通管の内断面の面積p(4πmm)とNG貯蔵容器の内断面の最大面積q(400πmm)との比p:qは、1:100となっている。
また、フル充填時のNG貯蔵率V/V(V:NG充填量、V:タンク内容積)は300とし、NGの充填時間は5分間とした。
The ratio p: q of the area p (4πmm 2 ) of the inner cross section of the NG flow pipe and the maximum area q (400πmm 2 ) of the inner cross section of the NG storage container in this example is 1: 100.
Further, the NG storage rate V / V 0 (V: NG filling amount, V 0 : tank internal volume) at the time of full filling was 300, and the filling time of NG was 5 minutes.

このNG貯蔵タンクに室温(15℃)下、20MPaのNG(13A組成)をNG流通管11を流通してNG貯蔵容器12に吹き込んだところ、NG流通管およびNG貯蔵容器の接続部であるNG給排口13近傍でNGが断熱膨張し、NG温度は5℃まで低下した。このとき、NG温度の低下幅は10degであり、天然ガスが凝集を起こす温度低下幅(ΔT≧15deg)には達しておらず、フル充填時のNG貯蔵率V/Vに変化はみられなかった。また、NG中のブタン等の分離を、放出ガスのマススペクトル分析により観察したが、ブタン等の分離も認められなかった。この操作を10回繰り返し行なったが、NG成分の分離はなく、NG貯蔵率V/Vの低下は1%未満であった。 When 20 MPa of NG (composition of 13A) was passed through the NG distribution pipe 11 and blown into the NG storage container 12 at room temperature (15 ° C.), the NG storage tank was connected to the NG distribution pipe and the NG storage container. NG adiabatically expanded in the vicinity of the supply / discharge port 13, and the NG temperature decreased to 5 ° C. At this time, the decrease range of the NG temperature is 10 deg, the temperature decrease range (ΔT ≧ 15 deg) at which natural gas agglomerates is not reached, and there is a change in the NG storage rate V / V 0 at the time of full filling. There wasn't. Further, separation of butane and the like in NG was observed by mass spectrum analysis of the released gas, but separation of butane and the like was not observed. This operation was repeated 10 times, but no NG component was separated, and the decrease in the NG storage rate V / V 0 was less than 1%.

(比較例1)
実施例1において、NG貯蔵容器の内断面の最大面積qを22500πmm(内径300mm、内容積80LのSUS310製)に代え、比p:qを1:5625とした以外は(フル充填時のNG貯蔵率V/V=300、充填時間=5分間)、実施例1と同様にして、NGを充填し、さらにNG温度を測定した。
(Comparative Example 1)
In Example 1, the maximum area q of the inner cross section of the NG storage container was changed to 22500πmm 2 (made of SUS310 having an inner diameter of 300 mm and an inner volume of 80 L), and the ratio p: q was set to 1: 5625 (NG at full filling) (Storage rate V / V 0 = 300, filling time = 5 minutes) In the same manner as in Example 1, NG was filled and the NG temperature was measured.

その結果、NG温度は−20℃まで低下した。このとき、NG温度の低下幅は35degであり、天然ガスが凝集を起こす温度低下幅(ΔT≧15deg)を超えており、NG中のブタンの分離が確認された。また、NG貯蔵率V/Vの低下が見られ、その低下幅は15deg程度もあった。 As a result, the NG temperature decreased to -20 ° C. At this time, the decrease width of the NG temperature was 35 deg, which exceeded the temperature decrease width (ΔT ≧ 15 deg) at which the natural gas causes aggregation, and separation of butane in NG was confirmed. A decrease in the NG storage rate V / V 0 is seen, the decline was also about 15 deg.

(比較例2〜3)
実施例1において、NG貯蔵容器の内断面の最大面積qを、960πmm(内径62mm、内容積8.9L;比較例2)、225πmm(内径30mm、内容積2.1L;比較例3)に代え、比p:qをそれぞれ1:240、1:56とした以外は(フル充填時のNG貯蔵率V/V=300、充填時間=5分間)、実施例1と同様にして、NGを充填し、さらにNG温度を測定した。
(Comparative Examples 2-3)
In Example 1, the maximum area q of the inner cross section of the NG storage container was 960πmm 2 (inner diameter 62 mm, inner volume 8.9 L; Comparative Example 2), 225πmm 2 (inner diameter 30 mm, inner volume 2.1 L; Comparative Example 3) In the same manner as in Example 1 except that the ratio p: q was set to 1: 240 and 1:56, respectively (NG storage rate V / V 0 at full filling = 300, filling time = 5 minutes), NG was filled and the NG temperature was measured.

その結果、NG温度は比較例2では−3℃まで低下し、NG温度の低下幅は18degであった。また、比較例3では10℃まで低下し、NG温度の低下幅は5degであった。比較例2では、天然ガスが凝集を起こす温度低下幅(ΔT≧15deg)を超えており、NG中のブタンの分離が確認され、NG貯蔵率V/Vの低下も見られ、低下幅は5deg程度であった。比較例3では、ブタンの分離は見られなかったが、タンクの肉部の割合が増大することに基づき、NG貯蔵率V/Vにて1%以上の低下が生じる(図2)。 As a result, the NG temperature decreased to −3 ° C. in Comparative Example 2, and the decrease width of the NG temperature was 18 deg. Moreover, in the comparative example 3, it fell to 10 degreeC and the fall width | variety of NG temperature was 5 deg. In Comparative Example 2, the temperature decrease range (ΔT ≧ 15 deg) at which natural gas causes aggregation is confirmed, butane separation in NG is confirmed, and a decrease in NG storage rate V / V 0 is also observed. It was about 5 deg. In Comparative Example 3, no butane separation was observed, but a decrease of 1% or more occurred at the NG storage rate V / V 0 based on the increase in the proportion of the meat part of the tank (FIG. 2).

本発明の第1実施形態に係るNG貯蔵タンクの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the NG storage tank which concerns on 1st Embodiment of this invention. NG流通管の内断面積p/NG貯蔵容器の内断面の最大面積qとV/Vとの関係を示す関係図である。It is a relationship diagram showing the relationship between the maximum area q and V / V 0 the inner cross section of the inner cross-sectional area p / NG storage container NG flow pipe. NG流通管の内断面積p/NG貯蔵容器の内断面の最大面積qとΔTとの関係を示す関係図である。It is a related figure which shows the relationship between the internal cross-sectional area p / NG storage container of the NG distribution | circulation pipe | tube, and the largest area q of the inner cross section of NG storage container, and (DELTA) T. 本発明の第2実施形態に係るNG貯蔵タンクの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the NG storage tank which concerns on 2nd Embodiment of this invention. (A)はNG流通管を一端からみた概略構成図であり、(B)はNG流通管を側方からみた概略構成図である。(A) is the schematic block diagram which looked at the NG distribution pipe from one end, (B) is the schematic block diagram which looked at the NG distribution pipe from the side.

符号の説明Explanation of symbols

11,21…NG流通管
12,22…NG貯蔵容器
14…やしがら炭
15…熱媒体通路
S1〜S6…孔
11, 21 ... NG flow pipes 12, 22 ... NG storage container 14 ... coconut charcoal 15 ... heat medium passages S1 to S6 ... holes

Claims (6)

天然ガスを貯蔵するガス貯蔵容器に接続されたガス流通管の接続部における内断面の面積pと、前記ガス貯蔵容器の前記接続部からガス流通方向において拡大した該ガス流通方向と直交する内断面の最大面積qとの比率(p:q)が1:225〜1:64である天然ガス貯蔵タンク。   The area p of the inner cross section at the connection portion of the gas flow pipe connected to the gas storage container for storing natural gas, and the inner cross section orthogonal to the gas flow direction expanded in the gas flow direction from the connection portion of the gas storage container. A natural gas storage tank having a ratio (p: q) of 1: 225 to 1:64 with respect to the maximum area q. ガス貯蔵容器に器壁から器内方向に一端を突出させて接続されたガス流通管の接続部と前記一端との間の管壁に少なくとも1つの孔を有し、前記孔の総面積rと、前記ガス貯蔵容器の前記接続部からガス流通方向において拡大した該ガス流通方向と直交する内断面の最大面積sとの比率(r:s)が1:225〜1:64である天然ガス貯蔵タンク。   The gas storage container has at least one hole in the tube wall between the one end of the gas flow pipe connected to the gas storage container with one end projecting inward from the container wall, and the total area r of the holes The natural gas storage in which the ratio (r: s) of the inner cross section orthogonal to the gas flow direction expanded in the gas flow direction from the connection part of the gas storage container (r: s) is 1: 225 to 1:64 tank. 前記ガス流通管は、複数の孔を有し、突出端である前記一端に最も近い孔の面積sと最も遠い孔の面積s(n>2)との比率(s:s)が2:1〜3:1であることを特徴とする請求項2に記載の天然ガス貯蔵タンク。 The gas flow pipe has a plurality of holes, and the ratio (s 1 : s n ) between the area s 1 of the hole closest to the one end that is the protruding end and the area s n (n> 2) of the furthest hole. The natural gas storage tank according to claim 2, wherein the ratio is 2: 1 to 3: 1. 前記ガス貯蔵容器は、器内に天然ガスを吸着する天然ガス吸着材が収容されている請求項1〜請求項3のいずれか1項に記載の天然ガス貯蔵タンク。   The natural gas storage tank according to any one of claims 1 to 3, wherein the gas storage container contains a natural gas adsorbent that adsorbs natural gas in the vessel. 前記ガス流通管から前記ガス貯蔵容器に供給された天然ガスの温度を上昇させる昇温手段を備えたことを特徴とする請求項1〜請求項4のいずれか1項に記載の天然ガス貯蔵タンク。   The natural gas storage tank according to any one of claims 1 to 4, further comprising a temperature raising means for raising the temperature of the natural gas supplied from the gas distribution pipe to the gas storage container. . 前記昇温手段は、50℃以上の温度に上昇させる請求項5に記載の天然ガス貯蔵タンク。   The natural gas storage tank according to claim 5, wherein the temperature raising means raises the temperature to 50 ° C. or higher.
JP2007136471A 2007-05-23 2007-05-23 Natural gas storage tank Pending JP2008291885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136471A JP2008291885A (en) 2007-05-23 2007-05-23 Natural gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136471A JP2008291885A (en) 2007-05-23 2007-05-23 Natural gas storage tank

Publications (1)

Publication Number Publication Date
JP2008291885A true JP2008291885A (en) 2008-12-04

Family

ID=40166829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136471A Pending JP2008291885A (en) 2007-05-23 2007-05-23 Natural gas storage tank

Country Status (1)

Country Link
JP (1) JP2008291885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022617A1 (en) * 2013-08-15 2015-02-19 Basf Se Filling device for a sorption store and sorption store
JP2019183910A (en) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 Fuel gas filling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022617A1 (en) * 2013-08-15 2015-02-19 Basf Se Filling device for a sorption store and sorption store
JP2019183910A (en) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 Fuel gas filling system

Similar Documents

Publication Publication Date Title
CN104075110B (en) Increase the method for the memory capacity of natural gas tank
JP2006298371A (en) Gas cooling method for high pressure fuel storage tank on vehicle operated compressed natural gas or hydrogen
US20160201853A1 (en) Filling device for a sorption store and sorption store
KR20150067183A (en) Method of charging a sorption store with a gas
JP2007170670A (en) Hydrogen storage and release device
US20150345708A1 (en) Vortex fill
US20160186932A1 (en) Process for filling a sorption store with gas
US20160201854A1 (en) Device and method for indicating a fill level of a sorption store
JP2004108570A (en) Hydrogen storage container
US20140205529A1 (en) Method for storing a gas by chemisorption on a porous material comprising expanded graphite
WO2015022623A2 (en) Sorption store with improved heat transfer
WO2015169939A1 (en) Method and device for filling a storage tank by recirculation of gas
JP2008291885A (en) Natural gas storage tank
US20070261552A1 (en) Direct gas recirculation heater for optimal desorption of gases in cryogenic gas storage containers
US9243754B2 (en) Method of charging a sorption store with a gas
JP2010255670A (en) Air temperature type liquefied gas vaporizer
JP2007309456A (en) Hydrogen storage device and hydrogen storage method
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
WO2016019316A1 (en) Hydrogen gas storage tank with supporting filter tube(s)
US7318520B2 (en) Flexible and semi-permeable means of hydrogen delivery in storage and recovery systems
JP2006300207A (en) Gas bottle
JP2008045648A (en) High pressure hydrogen storage container
JP6757613B2 (en) Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device
JP2007315474A (en) Hydrogen storage tank
RU2222749C2 (en) Gas storage vessel