JP2008291872A - Low-temperature liquefied gas flow rate measuring system - Google Patents

Low-temperature liquefied gas flow rate measuring system Download PDF

Info

Publication number
JP2008291872A
JP2008291872A JP2007136073A JP2007136073A JP2008291872A JP 2008291872 A JP2008291872 A JP 2008291872A JP 2007136073 A JP2007136073 A JP 2007136073A JP 2007136073 A JP2007136073 A JP 2007136073A JP 2008291872 A JP2008291872 A JP 2008291872A
Authority
JP
Japan
Prior art keywords
low
liquefied gas
temperature liquefied
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007136073A
Other languages
Japanese (ja)
Inventor
Tetsuji Nakamura
哲治 仲村
Shuji Kamemoto
修司 亀本
Shigeru Sakurai
茂 櫻井
Minoru Tanabe
稔 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Tokico System Solutions Co Ltd
Original Assignee
Iwatani International Corp
Tokico Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp, Tokico Technology Ltd filed Critical Iwatani International Corp
Priority to JP2007136073A priority Critical patent/JP2008291872A/en
Publication of JP2008291872A publication Critical patent/JP2008291872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate measuring system easy in maintenance or correction of its instruments while keeping a heat insulation performance necessary for flow measuring equipment. <P>SOLUTION: The flow rate measuring system is interposed in a low-temperature liquified gas transfer path (2) for transferring low-temperature liquified gas in a liquid status from a supply storage tank (1) of the low-temperature liquified gas into a liquid-receiving reservoir. The system is stored in a cold chamber (7) of a vacuum heat insulation structure composed of a supercooling processing device (4) for performing supercooling processing the low-temperature liquified gas during transfer, a flow meter (5), and a flow control unit (6) together with pipes to be able to open/close. The supercooling processing device (4) is composed of an immersion vessel (8) and a heat-exchanging part (9) housed inside the immersion vessel (8). A branching path (10) branching from the low-temperature liquified gas transfer path (2) in the cold chamber (7) is communicated inside the immersion vessel (8) of the supercooling processing device (4). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低温液化ガスの流量計測技術に関し、特に、圧力容器などの液化ガス貯留部から払出される加圧・低温保持下の液化ガスの払出し流動中において高精度に流量計測する技術に関する。   The present invention relates to a low-temperature liquefied gas flow measurement technique, and more particularly to a technique for measuring a flow rate with high accuracy during a discharge flow of a liquefied gas under pressure and low-temperature holding discharged from a liquefied gas storage section such as a pressure vessel.

低温で保持される液化ガスの流量を計測する場合、重量による計測が一般的である。それは、液化ガスの場合高い精度で計測できる流量計測手法がなかったからであり、そのために重量計測に頼っていたが、重量計測機器は設備上大掛かりとなり、また流量計測されていない場合が多々あった。このため、精度の高い流量計で液化ガスを計測することが望まれている。しかしながら、低温で保持される液化ガスの流量計測は、液化ガス供給路内を流れる間での気化に起因する気液混相流の影響で大きな測定誤差を生じるため実用化されていなかった。   When measuring the flow rate of the liquefied gas held at a low temperature, measurement by weight is common. This is because there was no flow measurement method that could measure with high accuracy in the case of liquefied gas, and for that reason, it relied on weight measurement, but the weight measurement equipment was large in terms of equipment, and there were many cases where flow measurement was not performed. . For this reason, it is desired to measure liquefied gas with a highly accurate flow meter. However, the measurement of the flow rate of the liquefied gas held at a low temperature has not been put into practical use because a large measurement error occurs due to the influence of the gas-liquid mixed phase flow caused by vaporization while flowing in the liquefied gas supply path.

即ち、低温保持を求められる液化ガスは、貯蔵容器の払出し口から使用個所までの供給配管を流すだけで、外部からの入熱や圧力降下により気泡が発生し、供給配管内を流れる流体が気液混相流の状態で流量計測を行うと、その計測メカニズム上大きな測定誤差を生じる。また、ポンプやガス等を用いて液化ガスを急速加圧することにより、気泡の発生を防止する手段も考えられるが、その場合でも、ポンプの駆動エネルギーの問題や、貯蔵槽での内圧を調整することなど、実情にそぐわない面があり、実用化はされていなかった。   In other words, the liquefied gas that is required to be kept at a low temperature simply flows through the supply pipe from the outlet of the storage container to the place of use, and bubbles are generated due to heat input or pressure drop from the outside. When the flow rate is measured in a liquid mixed phase flow, a large measurement error occurs due to the measurement mechanism. In addition, a means to prevent the generation of bubbles by rapidly pressurizing the liquefied gas using a pump or gas can be considered, but even in that case, the problem of the driving energy of the pump and the internal pressure in the storage tank are adjusted. There were some aspects that were not suitable for the actual situation, and it was not put to practical use.

そこで本出願人は、圧力による物性の違いを利用した熱交換による過冷却効果と流量計測部の入熱を抑える構造を併せ持ち、大気圧状態に保った当該液化ガスにより被測定液化ガスを過冷却し、かつ、計測部を入熱より保護することにより、計測機器内の気泡の発生を抑えて流量を計測するシステムを提案した。(特許文献1)
特開2006−200553号公報
Therefore, the present applicant has a structure that suppresses the heat input of the flow rate measurement unit and the supercooling effect by heat exchange using the difference in physical properties due to pressure, and supercools the liquefied gas to be measured with the liquefied gas kept at atmospheric pressure. In addition, we have proposed a system that measures the flow rate by suppressing the generation of bubbles in the measuring device by protecting the measuring unit from heat input. (Patent Document 1)
JP 2006-200553 A

ところが、前記従来提案したのものでは、断熱処理した浸漬容器に液払出路の熱交換部と流量計とを配置し、液化ガス貯蔵容器から払出した直後の液化ガスを低温保持下で前記浸漬容器内に供給して、浸漬容器内を大気圧状態に保持し、この浸漬容器内での液化ガス気化に伴う過冷却で、液払出路内及び流量計内を流れる液化ガスを冷却して気泡の発生を抑えるようにしている。このような設備においては、外気からの熱浸入を抑制するために真空断熱を施しているが、このような設備での真空断熱は真空二重配管を溶接固定構造で行なうのが一般的である。この為、施工後の取り外しは困難な構造となる。   However, in the conventional proposal, the heat exchange part of the liquid discharge path and the flow meter are arranged in the heat-insulated dip container, and the liquefied gas immediately after being discharged from the liquefied gas storage container is kept at a low temperature while the dip container is kept at a low temperature. The inside of the immersion container is maintained at atmospheric pressure, and the liquefied gas flowing in the liquid discharge path and the flowmeter is cooled by supercooling accompanying the vaporization of the liquefied gas in the immersion container, thereby I try to suppress the occurrence. In such equipment, vacuum insulation is applied to suppress heat intrusion from the outside air, but vacuum insulation in such equipment is generally performed by a vacuum double pipe with a welded fixing structure. . For this reason, it becomes a structure difficult to remove after construction.

ところが、流量計の使用に際しては、一定期間ごとのメンテナンス・校正が必要であるが、前記従来提案したのものでは、前述のように溶接固定構造であることから、流量計のメンテナンスや校正を行いにくいという問題があるうえ、配管構造の改造も面倒であるという問題があった。   However, when using the flow meter, maintenance and calibration at regular intervals are necessary. However, the previously proposed one has a welded fixed structure as described above, so the flow meter is maintained and calibrated. There was a problem that it was difficult, and the modification of the piping structure was troublesome.

本発明はこのような点に着目してなされたもので、流量計測用の各機器に必要な断熱性能を保持しながらも、計器類のメンテナンスや校正を行い易い流量計測システムを提供することを目的とする。   The present invention has been made paying attention to such points, and it is intended to provide a flow measurement system that facilitates maintenance and calibration of instruments while maintaining necessary heat insulation performance for each device for flow measurement. Objective.

上述の目的を達成するために請求項1に記載した本発明は、低温液化ガスの供給用貯蔵槽から受液容器に低温液化ガスを液体の状態で移送する低温液化ガス移送路内に介装される流量計測システムであって、移送中の低温液化ガスを過冷却処理する過冷却処理装置と流量計及び流量制御ユニットとをこれらの機器類を連通接続している配管類とともに開閉可能に構成された真空断熱構造のコールドチャンバー内に収納し、低温液化ガスの供給用貯蔵槽からコールドチャンバーまでの低温液化ガス移送路及びコールドチャンバーから受液容器までの低温液化ガス移送路を断熱配管し、前記過冷却処理装置を浸漬容器とその浸漬容器の内部に収容される熱交換部とで構成し、コールドチャンバー内で低温液化ガス移送路から分岐した分岐路を過冷却処理装置の浸漬容器内に連通することを特徴としている。   In order to achieve the above object, the present invention described in claim 1 is provided in a low-temperature liquefied gas transfer path for transferring low-temperature liquefied gas from a storage tank for supplying low-temperature liquefied gas to a liquid receiving container in a liquid state. The flow measurement system is configured to be able to open and close the supercooling processing device that supercools the low-temperature liquefied gas being transferred, the flow meter, and the flow control unit together with the piping that connects these devices in communication. Stored in a cold chamber having a vacuum insulation structure, and a low temperature liquefied gas transfer path from the low temperature liquefied gas supply storage tank to the cold chamber and a low temperature liquefied gas transfer path from the cold chamber to the liquid receiving container are insulated. The supercooling treatment device is composed of an immersion container and a heat exchange unit accommodated in the immersion container, and the branch path branched from the low-temperature liquefied gas transfer path in the cold chamber is supercooled. It is characterized by communicating with the immersion container processing apparatus.

また、請求項2に記載した本発明は請求項1に記載した発明の低温液化ガスを液体水素としたものであり、請求項3に記載した本発明は請求項2に記載した発明の受液容器を自動車に搭載されている燃料用ガス貯蔵容器としたものである。   Further, in the present invention described in claim 2, the low-temperature liquefied gas of the invention described in claim 1 is liquid hydrogen, and in the present invention described in claim 3, the liquid receiver of the invention described in claim 2 is used. The container is a fuel gas storage container mounted on an automobile.

本発明では、移送中の低温液化ガスを過冷却処理する過冷却処理装置と流量計及び流量制御ユニットとをコールドチャンバー内に収納し、過冷却処理装置内で被移送液化ガスの一部を沸点差を利用して過冷却状態にして液相流とした状態でコールドチャンバー内に配置されて低温状態を維持している流量計により移送路を流れる低温液化ガスの流量を計測するようにしているので、液相状態での流量を測定でき、精度の高い流量検出を行うことができる。   In the present invention, a supercooling processing device for supercooling the low-temperature liquefied gas being transferred, a flow meter and a flow rate control unit are housed in a cold chamber, and a part of the liquefied gas to be transferred is boiled in the supercooling processing device. The flow rate of the low-temperature liquefied gas flowing through the transfer path is measured by a flow meter that is placed in the cold chamber and maintained in a low-temperature state in a supercooled state using the difference and in a liquid phase flow. Therefore, the flow rate in the liquid phase state can be measured, and the flow rate can be detected with high accuracy.

また、過冷却処理装置と流量計及び流量制御ユニットなどの機器類をコールドチャンバーに収容し、このコールドチャンバーを開閉可能な構造としていることから、コールドチャンバー内に収容されている流量計などの機器類を断熱構造にしておかなくてもよく、流量計などの機器類のメンテナンス作業や校正作業を容易に行うことができるうえ、配管変更等も容易に行うことができる。   In addition, the devices such as the supercooling processing device, the flow meter and the flow control unit are accommodated in the cold chamber, and the cold chamber can be opened and closed, so the devices such as the flow meter accommodated in the cold chamber. It is not necessary to have a heat insulating structure, and maintenance work and calibration work for equipment such as a flow meter can be easily performed, and piping can be easily changed.

図は本発明の一実施形態を示す低温液化ガスの流量計測システムの概略構成図であり、この低温液化ガスの流量計測システムは、低温液化ガスの供給用貯蔵槽(1)と低温液化ガスの受液容器(図示略)とを断熱仕様の低温液化ガス移送路(2)で連通接続し、この低温液化ガス移送路(2)の途中に液化ガスディスペンサー(3)が配置してある。   FIG. 1 is a schematic configuration diagram of a low-temperature liquefied gas flow measurement system showing an embodiment of the present invention. This low-temperature liquefied gas flow measurement system includes a low-temperature liquefied gas supply storage tank (1) and a low-temperature liquefied gas supply system. A liquid receiving container (not shown) is connected in communication with a low-temperature liquefied gas transfer path (2) having an adiabatic specification, and a liquefied gas dispenser (3) is disposed in the middle of the low-temperature liquefied gas transfer path (2).

液化ガスディスペンサー(3)は、移送中の低温液化ガスを過冷却処理する過冷却処理装置(4)、流量計(5)、流量制御ユニット(6)と、これら機器類を配管群とともに真空断熱構造のコールドチャンバー(7)内に収容することで構成してある。   The liquefied gas dispenser (3) has a supercooling treatment device (4) for supercooling the low-temperature liquefied gas being transferred, a flow meter (5), a flow control unit (6), and these devices together with a group of vacuum insulation. It is comprised by accommodating in the cold chamber (7) of a structure.

過冷却処理装置(4)は、浸漬容器(8)とその浸漬容器(8)内にコイル状に配管した熱交換部(9)とで構成してあり、該熱交換部(9)の両端部を低温液化ガス移送路(2)に連通接続するとともに、コールドチャンバー(7)内で低温液化ガス移送路(2)から分岐導出した分岐路(10)を浸漬容器(8)内に開放している。このため、浸漬容器(8)内は液化ガスの液相部分と気相部分とが形成され、液相部分に熱交換部(9)が浸漬するとともに、気相部分が連通路(11)でコールドチャンバー外に連通している。また、コールドチャンバー内空間(12)は真空状態に保持されている。   The supercooling treatment device (4) is composed of an immersion vessel (8) and a heat exchange part (9) piped in the immersion vessel (8), and both ends of the heat exchange part (9). Is connected to the low temperature liquefied gas transfer path (2), and the branch path (10) branched from the low temperature liquefied gas transfer path (2) in the cold chamber (7) is opened in the immersion container (8). ing. For this reason, the liquid phase part and the gas phase part of the liquefied gas are formed in the immersion container (8), the heat exchange part (9) is immersed in the liquid phase part, and the gas phase part is communicated with the communication path (11). It communicates outside the cold chamber. Further, the cold chamber inner space (12) is maintained in a vacuum state.

したがって、浸漬容器(8)の内部圧力は大気圧に保持されることになるから、浸漬容器(8)内での液温は大気圧下での沸点温度になっている。一方、熱交換部(9)内を流れる低温液化ガスの温度は、低温液化ガス貯蔵槽(1)での気液平衡圧に応じた温度であることから、熱交換部(9)内を流れる間に浸漬容器内での液相部分と熱交換して低温液化ガスが過冷却状態となり、コールドチャンバー内の低温液化ガス移送路(2)では液相流となって、液相流を測定する流量計(5)でその流量を高精度に検出することができることになる。   Therefore, since the internal pressure of the immersion container (8) is maintained at atmospheric pressure, the liquid temperature in the immersion container (8) is the boiling point temperature under atmospheric pressure. On the other hand, the temperature of the low-temperature liquefied gas flowing in the heat exchange section (9) is a temperature corresponding to the vapor-liquid equilibrium pressure in the low-temperature liquefied gas storage tank (1), and therefore flows in the heat exchange section (9). In the meantime, the low-temperature liquefied gas is supercooled by exchanging heat with the liquid phase in the immersion container, and the liquid-phase flow is measured in the low-temperature liquefied gas transfer path (2) in the cold chamber. The flow meter (5) can detect the flow rate with high accuracy.

これにより、コールドチャンバー(7)の内部に収容されているこれらの機器類や配管類を断熱構造にする必要がなくなり、機器類や配管類に対して外部からの入熱を充分抑制することができることになるから、機器類や配管類の内部で液化ガスを過冷却の状態で流通させることができ、流量計で液体単一流として計測することができるから、高い精度でその流量を測定することができる。   This eliminates the need for these devices and pipes housed in the cold chamber (7) to have a heat insulating structure, and sufficiently suppresses heat input from the outside to the devices and pipes. Because it will be possible, the liquefied gas can be circulated in the supercooled state inside equipment and piping, and it can be measured as a single liquid flow with a flow meter, so the flow rate must be measured with high accuracy. Can do.

なお、低温液化ガスの流し始めは、配管・流量計・流量制御ユニットの温度が高く液化ガスが気化し気液混相流となり正確な流量が測定できないので、この気液混相状態の液化ガスをガス返送路(14)を通して浸漬容器(8)に返送する。流量制御ユニット(6)にて温度・圧力のモニターを行い、低温液化ガスの圧力に対応する沸点より低温液化ガスの温度が低下したら、浸漬容器(8)への返送を中止する。   At the beginning of the low-temperature liquefied gas flow, the temperature of the piping, flow meter, and flow rate control unit is high, and the liquefied gas vaporizes and becomes a gas-liquid mixed phase flow. Return to the immersion container (8) through the return path (14). The flow rate control unit (6) monitors the temperature and pressure, and when the temperature of the low-temperature liquefied gas falls below the boiling point corresponding to the pressure of the low-temperature liquefied gas, the return to the immersion vessel (8) is stopped.

前記コールドチャンバー(7)は胴部(7a)と蓋体(7b)とで構成してあり、この蓋体(7b)と胴部(7a)との結合を解除することで、コールドチャンバー(7)内を開放できるように構成してある。このように構成することで、流量計(5)のメンテナンスや校正作業あるいは配管換え作業を容易に行うことができる。   The cold chamber (7) is composed of a body (7a) and a lid (7b), and the cold chamber (7a) is released by releasing the connection between the lid (7b) and the body (7a). ) Is configured to open. With this configuration, maintenance, calibration work, or pipe replacement work of the flow meter (5) can be easily performed.

上述の構成からなる流量計測システムは、液体水素を液体状態で供給する液体水素供給配管系に使用することができ、特に、液体水素を燃料源としている水素エンジン自動車の燃料供給設備での流量計測システムとして好適である。   The flow rate measurement system having the above-described configuration can be used for a liquid hydrogen supply piping system that supplies liquid hydrogen in a liquid state, and in particular, the flow rate measurement in a fuel supply facility of a hydrogen engine automobile that uses liquid hydrogen as a fuel source. It is suitable as a system.

本発明は、液化ガスを液体単一流として、その流量を計測するものに使用することができ、特に、自動車燃料としての液体水素を供給するステーションでの流量計測システムとして利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for measuring the flow rate of a liquefied gas as a single liquid flow, and in particular, can be used as a flow rate measurement system in a station that supplies liquid hydrogen as an automobile fuel.

本発明の一実施形態を示す低温液化ガスの流量計測システムの概略構成図である。It is a schematic block diagram of the flow measurement system of the low-temperature liquefied gas which shows one Embodiment of this invention.

符号の説明Explanation of symbols

1…低温液化ガス供給用貯蔵槽、2…低温液化ガス移送路、4…過冷却処理装置、5…流量計、6…流量制御ユニット、7…コールドチャンバー(7a…胴部、7b…蓋体)、8…浸漬容器、9…熱交換部、10…分岐路。   DESCRIPTION OF SYMBOLS 1 ... Storage tank for low temperature liquefied gas supply, 2 ... Low temperature liquefied gas transfer path, 4 ... Supercooling processing device, 5 ... Flow meter, 6 ... Flow control unit, 7 ... Cold chamber (7a ... trunk | drum, 7b ... Lid ), 8 ... immersion container, 9 ... heat exchange part, 10 ... branching path.

Claims (3)

低温液化ガスの供給用貯蔵槽(1)から受液容器に低温液化ガスを液体の状態で移送する低温液化ガス移送路(2)内に介装される流量計測システムであって、
移送中の低温液化ガスを過冷却処理する過冷却処理装置(4)と、流量計(5)、及び流量制御ユニット(6)とをこれらの機器類を連通接続している配管類とともに開閉可能に構成された真空断熱構造のコールドチャンバー(7)内に収納し、低温液化ガスの供給用貯蔵槽(1)からコールドチャンバー(7)までの低温液化ガス移送路(2)及びコールドチャンバー(7)から受液容器までの低温液化ガス移送路(2)を断熱配管し、前記過冷却処理装置(4)を浸漬容器(8)とその浸漬容器(8)の内部に収容される熱交換部(9)とで構成し、コールドチャンバー(7)内で低温液化ガス移送路(2)から分岐した分岐路(10)を過冷却処理装置(4)の浸漬容器(8)内に連通することを特徴とする低温液化ガスの流量計測システム。
A flow rate measurement system interposed in a low-temperature liquefied gas transfer path (2) for transferring low-temperature liquefied gas in a liquid state from a storage tank (1) for supplying low-temperature liquefied gas to a liquid receiving container,
The supercooling treatment device (4) that supercools the low-temperature liquefied gas being transferred, the flow meter (5), and the flow control unit (6) can be opened and closed together with the pipes that connect these devices. The low-temperature liquefied gas transfer path (2) from the storage tank (1) for supplying the low-temperature liquefied gas to the cold chamber (7) and the cold chamber (7) ) To the receiver vessel, the low-temperature liquefied gas transfer path (2) is insulated, and the supercooling device (4) is accommodated in the immersion vessel (8) and the immersion vessel (8). (9), and the branch passage (10) branched from the low-temperature liquefied gas transfer passage (2) in the cold chamber (7) is communicated with the immersion container (8) of the supercooling treatment device (4). Low temperature liquefied gas flow measurement system characterized by
低温液化ガスが液体水素である請求項1に記載した低温液化ガスの流量計測システム。   The low-temperature liquefied gas flow rate measuring system according to claim 1, wherein the low-temperature liquefied gas is liquid hydrogen. 受液容器が自動車に搭載されている燃料用ガス貯蔵容器である請求項2に記載した低温液化ガスの流量計測システム。   The low-temperature liquefied gas flow measurement system according to claim 2, wherein the liquid receiving container is a fuel gas storage container mounted on an automobile.
JP2007136073A 2007-05-23 2007-05-23 Low-temperature liquefied gas flow rate measuring system Pending JP2008291872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136073A JP2008291872A (en) 2007-05-23 2007-05-23 Low-temperature liquefied gas flow rate measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136073A JP2008291872A (en) 2007-05-23 2007-05-23 Low-temperature liquefied gas flow rate measuring system

Publications (1)

Publication Number Publication Date
JP2008291872A true JP2008291872A (en) 2008-12-04

Family

ID=40166816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136073A Pending JP2008291872A (en) 2007-05-23 2007-05-23 Low-temperature liquefied gas flow rate measuring system

Country Status (1)

Country Link
JP (1) JP2008291872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989802A (en) * 2017-05-22 2017-07-28 中国测试技术研究院流量研究所 A kind of device for improving the cryogenic liquid gauge check degree of accuracy
CN107132037A (en) * 2017-06-14 2017-09-05 杭州杭氧工装泵阀有限公司 A kind of experimental rig for testing low-temperature spray nozzle flow
CN113776606A (en) * 2021-08-18 2021-12-10 夏罗登工业科技(上海)股份有限公司 High-bearing type cold-resistant heat-resistant electromagnetic flowmeter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140615A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Method for measuring quantity of liquid nitrogen
JP2002131110A (en) * 2000-10-24 2002-05-09 Euzefuroo Kk Heat insulation cover for instantaneous flowmeter
JP2002130598A (en) * 2000-08-04 2002-05-09 Chart Inc Accurate cryogenic liquid dispenser
JP2003065939A (en) * 2001-08-28 2003-03-05 Nippon Denshoku Kogyo Kk Number-of-fine-particle and turbidity measuring instrument
JP2006200553A (en) * 2005-01-18 2006-08-03 Iwatani Internatl Corp Liquefied gas flow measuring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140615A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Method for measuring quantity of liquid nitrogen
JP2002130598A (en) * 2000-08-04 2002-05-09 Chart Inc Accurate cryogenic liquid dispenser
JP2002131110A (en) * 2000-10-24 2002-05-09 Euzefuroo Kk Heat insulation cover for instantaneous flowmeter
JP2003065939A (en) * 2001-08-28 2003-03-05 Nippon Denshoku Kogyo Kk Number-of-fine-particle and turbidity measuring instrument
JP2006200553A (en) * 2005-01-18 2006-08-03 Iwatani Internatl Corp Liquefied gas flow measuring system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989802A (en) * 2017-05-22 2017-07-28 中国测试技术研究院流量研究所 A kind of device for improving the cryogenic liquid gauge check degree of accuracy
CN106989802B (en) * 2017-05-22 2023-08-11 中国测试技术研究院流量研究所 Device for improving metering and detecting accuracy of low-temperature liquid
CN107132037A (en) * 2017-06-14 2017-09-05 杭州杭氧工装泵阀有限公司 A kind of experimental rig for testing low-temperature spray nozzle flow
CN107132037B (en) * 2017-06-14 2023-08-04 杭州杭氧工装泵阀有限公司 Test device for testing flow of low-temperature nozzle
CN113776606A (en) * 2021-08-18 2021-12-10 夏罗登工业科技(上海)股份有限公司 High-bearing type cold-resistant heat-resistant electromagnetic flowmeter
CN113776606B (en) * 2021-08-18 2024-02-09 夏罗登工业科技(上海)股份有限公司 High-bearing type cold-resistant and heat-resistant electromagnetic flowmeter

Similar Documents

Publication Publication Date Title
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
US9261238B2 (en) Method for dispensing a gas
US20100044020A1 (en) Hydrogen gas-cooling device
DK2896872T3 (en) Station and method for supplying cryogenic, flammable liquid fuel
JP2011174528A (en) Method for filling hydrogen gas in hydrogen gas packing equipment
JP2008291872A (en) Low-temperature liquefied gas flow rate measuring system
KR101950347B1 (en) Device for measuring liquid level of low temperature liquefied gas and pressurized vessel for low temperature liquefied gas equipped with the same
KR102050789B1 (en) Apparatus and Method for Regasification of Liquefied Gas
KR20100126289A (en) System for heating pressurized liquefied gas stores
SK12362003A3 (en) Method for discharging liquefied gas between a storage tank and a service tank and apparatus for making the same
CN108956089A (en) A kind of tank leak Flash tank behavioral trait experiment test device and method
WO2019210226A1 (en) Method and device for helium storage and supply
KR20120023406A (en) Apparatus and method for regasification of liquefied natural gas
JP2007071266A (en) Supply of liquefied hydrogen gas to hydrogen automobile, gas filling method and its supply equipment
JP5978092B2 (en) Cooling gas supply device and NMR equipment equipped with such a device
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
JP2006200553A (en) Liquefied gas flow measuring system
JP4964462B2 (en) High pressure gas supply apparatus and high pressure gas supply method
JP2021116869A (en) Liquefied gas measuring device, liquefied gas measuring method, gas supply device and gas supply method
KR102136007B1 (en) Liquid nitrogen auto supply device using mass sensor
KR20150042085A (en) A Heat System of Liquefied Natural Gas
RU2528657C2 (en) Device for simultaneous evaporation and proportioning of evaporated fluid and method to this method
JP2018051454A (en) Liquid nitrogen feed system
WO2017067984A1 (en) Handling liquefied natural gas
JP2004324862A (en) Gas storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703