JP2008291799A - Pumping device for hydraulic power generation in plain land - Google Patents

Pumping device for hydraulic power generation in plain land Download PDF

Info

Publication number
JP2008291799A
JP2008291799A JP2007139973A JP2007139973A JP2008291799A JP 2008291799 A JP2008291799 A JP 2008291799A JP 2007139973 A JP2007139973 A JP 2007139973A JP 2007139973 A JP2007139973 A JP 2007139973A JP 2008291799 A JP2008291799 A JP 2008291799A
Authority
JP
Japan
Prior art keywords
water
chamber
box
rubber bag
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007139973A
Other languages
Japanese (ja)
Inventor
Osamu Murayama
修 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NPO NIHON HOMEPAGE KYOKAI
Original Assignee
NPO NIHON HOMEPAGE KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NPO NIHON HOMEPAGE KYOKAI filed Critical NPO NIHON HOMEPAGE KYOKAI
Priority to JP2007139973A priority Critical patent/JP2008291799A/en
Publication of JP2008291799A publication Critical patent/JP2008291799A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To install an inexpensive pumping device for hydraulic power generation in a plain land. <P>SOLUTION: Water for power generation after use is stored in a primary water tank shown in the figure, the water is flowed into chambers F, G through a suction water pipe, and an inlet port of the chamber F is closed to seal the chambers F, G. Compressed air in a rubber bag A1 including lead of the chamber H is discharged by a vacuum pump, so that total volume of volume of A1 under water in the chamber H and volume of a box K under water in the chamber G is made to be smaller than total weight of weight of the box K connected with the rubber bag A1 and weight of the rubber bag A1. The box K is pulled down, and the water in the chamber G overflows through an inlet 9 shown in the figure into a water passage 2 intermittently once every two minutes by 420 m<SP>3</SP>for each time, so that the water of 3.5 m<SP>3</SP>per second required for generating power of approximately 1,440 KW is circulated to solve the problem. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は平坦地の水力発電の揚水装置に関するものである。 The present invention relates to a pumping device for hydroelectric power generation on a flat ground.

揚水式発電は、ポンプ水車式揚水発電方法が知られているが、揚水している時には発電出来ないので、効率面から問題がある。
平坦地の水力発電では、発電量が増大すると、揚水する水も増大する。
揚水ポンプやその他の機械は、省電力化や効率化がみられるが、前記の増大する膨大な水を、短時間に、かつ低コストで揚水することは、困難である。
A pump-turbine type pumped-storage power generation method is known as a pumped-storage type power generation, but there is a problem in terms of efficiency because it cannot generate power when pumping up.
In flat land hydropower generation, the amount of pumped water increases as the amount of power generation increases.
Pumping pumps and other machines can save power and increase efficiency, but it is difficult to pump the enormous amount of water that increases in a short time and at low cost.

そこでこの発明は、平坦地の水力発電のために、低コストの揚水装置を設置することを課題とする。 Then, this invention makes it a subject to install a low cost pumping device for the hydroelectric power generation of a flat ground.

図1に示すように、貯水路2乃至5に貯水した水を、導水管を経由して、図2に示すように、52.5m下の水車へ導水し、1セットの水車と発電機で構成される発電ユニットを一ユニットとしてあり、一ユニットで、約1,440KWを発電させる。
図3に示す第一次貯水槽に貯水した発電使用後の水を、吸入水管を経由して室F,Gに流入し、室Fの流入口を閉じて室F,Gを気密状態とし、鉛を内包している室Hのゴム袋A1の圧縮空気を真空ポンプで排出して、室H内の水中にあるA1の体積+室G内の水中にある函Kの体積を、ゴム袋A1と連結してある函Kの重量+ゴム袋A1の重量より、小さくすることにより、函Kを引き下げ、室G内の水を、図7に示す注入口9を経由して水路2へ間歇的に2分間に1回、1回当り420m3の水を溢れ出させて、約1,440KWの発電に必要な毎秒当り3.5m3の水を循環させて、課題を解決している。
As shown in FIG. 1, the water stored in the reservoirs 2 to 5 is guided to a water turbine 52.5 m below through a water conduit, as shown in FIG. 2, and one set of water turbine and generator are used. The power generation unit configured is one unit, and one unit generates about 1,440 KW.
The water after power generation stored in the primary water tank shown in FIG. 3 flows into the rooms F and G through the suction water pipes, closes the inlet of the room F and makes the rooms F and G airtight, The compressed air in the rubber bag A1 in the chamber H containing lead is discharged by a vacuum pump, and the volume of the A1 in the water in the chamber H + the volume of the box K in the water in the chamber G is changed to the rubber bag A1. The box K is pulled down by making it smaller than the weight of the box K and the weight of the rubber bag A1, and the water in the chamber G is intermittently supplied to the water channel 2 via the inlet 9 shown in FIG. Once every two minutes, 420m 3 of water is overflowed once, and 3.5m 3 of water per second required for generating power of about 1,440KW is circulated to solve the problem.

本発明の運営コストは、空気圧の費用と、電動モーターの電力料である。

電力は本発明で生成する電力を使用し、空気は無限に存在するので、運営コストは、火力発電に比較して安価であることは勿論、発生する電力はクリーンエネルギーなのでCO2は発生せず環境浄化に役立つ。
The operating costs of the present invention are the cost of air pressure and the power charge of the electric motor.

Since the electric power uses the electric power generated in the present invention and air exists infinitely, the operation cost is low compared to thermal power generation, and the generated electric power is clean energy, so CO 2 is not generated. Useful for environmental purification.

地下建物の容積が、東西、南北方向とも100m、地上建物の容積は、東西、南北方向とも80mで、地上20階、地下4階の高層ビルの屋上と地下に、10,000KWの発電所を併設する場合を、図面に基づいて説明する。
図10に示すように、函Kが、室Gの天井に接していて、室G内の水位が天井からの深さ2.53mの位置で、水面より2.53m突出し、水面より0.18m沈み、ゴム袋A1は、室Hの天井からの深さ、9.14mの位置で、8.79m突出し、8.79m沈んでいる状態を基準水位としてある。
基準水位から、函Kの引き下げを開始し、室G内の水を水路2へ押し出した後、室Gへの水の補給を行い、再度、基準水位に戻る循環運動のメカニズムを説明する。
発電ユニットは8セット設営するが、ユニット8は、ユニット1乃至7の補修等の時の代換台であり、発電量の計算は7セットで行っている。
発電ユニット1乃至8は、全く同じ装置を、同じ構成で設置してあり、同じ番号を付してある。
それゆえ、説明は、発電ユニット1だけで行い、残りの発電ユニットの説明は省略するものとする。尚、導水管、 水管、集水管、第一次貯水槽室、逆止弁、吸入水管、揚水装置室、函K,円筒、揚水管は、炭素繊維強化プラスチック製が望ましく、建物内の各室の寸法は、(0007)以下で設計されている通りであるが、強度不足等が判明した場合、適正な寸法に設計が変更され、操業に支障はないものとする。
The underground building has a volume of 100m in the east-west and north-south direction, the volume of the ground building is 80m in both the east-west and north-south direction, and a 10,000KW power plant is installed on the roof and basement of the 20th floor and 4th floor high-rise buildings. The case where it is installed will be described with reference to the drawings.
As shown in FIG. 10, the box K is in contact with the ceiling of the room G, the water level in the room G protrudes 2.53 m from the water surface at a depth of 2.53 m from the ceiling, and 0.18 m from the water surface. Sinking, the rubber bag A1 has a depth from the ceiling of the chamber H at a position of 9.14 m, protrudes 8.79 m, and is in a state where it sinks 8.79 m is the reference water level.
The mechanism of the circulatory movement in which the lowering of the box K is started from the reference water level, the water in the chamber G is pushed out to the water channel 2, the water is supplied to the chamber G, and the water is returned to the reference water level again will be described.
Eight power generation units are set up, but the unit 8 is a replacement table for repairing the units 1 to 7, and the power generation amount is calculated in seven sets.
The power generation units 1 to 8 have the same devices installed with the same configuration, and are given the same numbers.
Therefore, the description will be made only with the power generation unit 1, and the description of the remaining power generation units will be omitted. The water conduit, water pipe, water collection pipe, primary water tank room, check valve, suction water pipe, pumping device room, box K, cylinder, pumping pipe are preferably made of carbon fiber reinforced plastic, and each room in the building The dimensions are as designed in (0007) and below. However, when it is found that the strength is insufficient, the design is changed to an appropriate dimension, and there is no problem in operation.

(水路の構成)
地下建物の容積は、東西、南北方向とも100m、地上建物の容積は、東西、南北方向とも80mで、地上建物の各階の高さは2.5m、地下1階は7m、地下2階は11m、地下3階は22m、地下4階は2.5mの地上20階、地下4階の高層ビルがあり、図1に示す通りビルの屋上の縁から、中心方向へ幅10m、深さ2.5mの水路があり、北に位置する水路を水路2、西に位置する水路を水路3、南に位置する水路を水路4、東に位置する水路を水路5とし、水路には深さ0.5mの位置まで10m×2m×280m=5600m3の水が貯水され、水は水路2乃至5の間を連通している。
(Composition of waterway)
The volume of the underground building is 100 m in both east-west and north-south directions, the volume of the ground building is 80 m in both east-west and north-south directions, the height of each floor of the above-ground building is 2.5 m, the first basement floor is 7 m, and the second basement floor is 11 m. The 3rd basement floor is 22m, the 4th basement floor is 20m above the ground and the 4th floor is a high-rise building. As shown in FIG. There is a water channel of 5 m, the water channel located in the north is the water channel 2, the water channel located in the west is the water channel 3, the water channel located in the south is the water channel 4, the water channel located in the east is the water channel 5, and the depth of the water channel is 0. Water of 10 m × 2 m × 280 m = 5600 m 3 is stored up to a position of 5 m, and the water communicates between the water channels 2 to 5.

(導水管の構成)
円環状の導水管と揚水管が、ビルの屋上の外側から建物の壁に沿って、図4に示す通り水路2の北東から西方への距離30mの位置までと、水路2の北西から東方への距離30mの位置までに2セット設営されている。
導水管は、水路2と、水路2の52.5m下の地下1階に設置されている水車に連結され、揚水管は、地下2階に設置されている室Gから上方へ伸びている。
(Configuration of water conduit)
Annular conduits and pumping pipes run from the outside of the building along the walls of the building to the 30m distance from the northeast to the west of the canal 2 as shown in Fig. 4 and from the northwest to the east of the canal 2 Two sets have been set up to a distance of 30m.
The water guide pipe is connected to the water channel 2 and a water wheel installed on the first basement floor 52.5 m below the water channel 2, and the pumping pipe extends upward from the room G installed on the second basement floor.

(導水管の直径)
導水管の直径は、下記のような計算によって決定している。
1440KWの発電を行うに必要な導水管を通過する毎秒当りの水をXm3 とすると、導水管から水車の中心部までの距離を52.5m、ロス率の合計を20%として計算すると、式 9.8G×52.5m×Xm3/s×80%=1、440より X≒3.4985m3≒3.5m3 である。
水が、水路2から、水車に落下する所要時間は、所要落下時間をTとして、式、52.5m =9.8T/2より、T≒3.27327秒であり、水路2からの落下速度は、52.5m÷3.27327秒≒16.039m/秒、約16m/秒である。
水車に3.5m3/秒の水が落下可能な導水管の内径Dは、式、Dm×Dm×3.14×16×1/4=3.5m3より、D≒0.5279m、約53cmである。
以上より、導水管の直径は、管の肉厚7cm、内径は、約53cmとしてある。
(Diameter of water conduit)
The diameter of the conduit is determined by the following calculation.
When water per second passing through the conduit required to perform power generation 1440KW and Xm 3, the distance to the center of the water turbine from conduit 52.5M, when calculating the sum of the loss rate of 20% formula From 9.8 G × 52.5 m × Xm 3 / s × 80% = 1, 440, X≈3.4985m 3 ≈3.5 m 3 .
Water, from the waterway 2, the time required to fall in the water wheel, the required fall time as T, wherein from 52.5m = 9.8T 2/2, a T ≒ 3.27327 seconds, falling from waterway 2 The speed is 52.5 m ÷ 3.27327 sec≈16.039 m / sec, about 16 m / sec.
The inner diameter D of the water guide pipe capable of dropping 3.5 m 3 / sec of water into the water wheel is D≈0.5279 m, about Dm × Dm × 3.14 × 16 × 1/4 = 3.5 m 3 53 cm.
From the above, the diameter of the water conduit is 7 cm, and the inner diameter is about 53 cm.

(発電の構成)
水路2の水は、導水管を経由して、図2に示す通り、地下1階の床面より3.5mの高さがある架台の上に据え付けてある水車に導水され、架台の上にあって、水車と連結されている発電機により発電する。
(Configuration of power generation)
As shown in FIG. 2, the water in the water channel 2 is led to a water turbine installed on a base with a height of 3.5 m from the floor of the first basement floor, as shown in FIG. Therefore, it is generated by a generator connected to the turbine.

(発電量の推定値)
この時の発電量は、導水管から水車の中心部までの距離を52.5m、ロス率の合計を20%として計算すると、9.8G×52.5m×3.5m3/s×80%×7台=10,084KWであり、10、000KWの発電は可能である。
(Estimated power generation)
The amount of power generated at this time is calculated as 9.8G x 52.5m x 3.5m 3 / s x 80% x when the distance from the conduit to the center of the water turbine is 52.5m and the total loss rate is 20%. 7 units = 10,084 KW, and 10,000 KW power generation is possible.

(地下1階乃至4階の構成)
図3に示すように地下1階には、水車が設置してあり、水車は、地下1階の中央方向に配置された発電機と連結され、地下1階の中央部には発電のための諸設備が設置されている。
地上建物の外側、北方地下2階には、第一次貯水槽、その東に、吸入水菅、室E,F、室Gで構成される揚水装置室と、揚水管が設置され、地下3階には室H, 地下4階には、室Iがある。
(Composition of the 1st to 4th basement)
As shown in FIG. 3, a water wheel is installed on the first basement floor, and the water wheel is connected to a generator arranged in the central direction of the first basement floor, and the central part of the first basement floor is used for power generation. Various facilities are installed.
The first water storage tank is located on the second basement floor on the north side of the ground building, and on the east side is a pumping device room composed of a suction water tank, rooms E, F, and room G. Room H is on the floor and Room I is on the 4th basement.

(水車に落下した水の流れ)
水車に落下した水は、図5で示すように水車の下部に設けられた前述の架台の内部に収納されている水管を通って、下方へ1m伸長した位置1で方向を垂直から北方へ変更して、集水管を経由して、地下2階の第一次貯水槽へ流れる。
(Flow of water falling on the water wheel)
As shown in FIG. 5, the water falling on the water turbine passes through the water pipe housed in the above-mentioned frame provided at the bottom of the water turbine and changes the direction from vertical to north at position 1 extended 1 m downward. Then, it flows to the first water storage tank on the second basement floor via the water collecting pipe.

(第一次貯水槽の構成)
第一次貯水槽は、地下2階にあり、四方及び下方を5cmの壁で囲まれていて、深さ11m、一辺15mで、上方は開放されている四角形の水槽である。
第一次貯水槽の最大貯水量は、室Gへの放水直前時で、天井からの深さ1mの位置までの、14.9m×14.9m×10m=2220.01m約2220mであり、最小貯水量は、室Gへ420m放水した直後で、天井からの深さは2.88m以上で、14.9m×14.9m×8.12m=1802.72m約1800m以上である。
(Configuration of primary water tank)
The primary water tank is a quadrangular water tank located on the second basement floor, surrounded by 5 cm walls on all sides and below, with a depth of 11 m, a side of 15 m, and an open top.
Maximum water amount of the primary reservoir is a when water discharge immediately prior to the chamber G, to the position of the depth 1m from the ceiling, be 14.9m × 14.9m × 10m = 2220.01m 3 about 2220M 3 , the minimum water amount, at immediately after the 420 m 3 water discharge to chamber G, the depth from the ceiling above 2.88M, is 14.9m × 14.9m × 8.12m = 1802.72m 3 to about 1800 m 3 or more .

(揚水装置室の構成)
揚水装置室は、地下2階にあり、図3に示すように、第一次貯水槽の東に設置され、天井の位置は第一次貯水槽の天井より、2.5m低く、深さ8.5m、南北方向19m、東西方向21mの直方体で、内部は、室E、吸入水管、室F、室Gで構成されている。
(Configuration of pumping equipment room)
The pumping equipment room is located on the second basement floor, and is installed east of the primary water tank, as shown in FIG. 3. The ceiling position is 2.5 m lower than the ceiling of the primary water tank, and the depth is 8 .5m, north-south direction 19m, east-west direction 21m rectangular parallelepiped, interior is composed of chamber E, suction water pipe, chamber F, and chamber G.

(室E、及び吸入水管の構成)
室Eは室Iの上部にあり、西方は第一次貯水槽、上方は天井で、深さ8.5m、南北方向19m、東西方向2m、壁の肉厚5cmの四角形の室である。
室Eは4分割されており、図6に示すように、室Eの床上3m乃至4mの位置には、壁の肉厚5cm、一辺1mの正方形状の吸入水管が東西方向に2mの長さの距離に設けられ、逆止弁がある室Fを仲介して第一次貯水槽と室Gを連結している。
吸入水管の上部の室Eは空白で、吸入水管の下部は2分割され、第一次貯水槽に接している左側は空白で、室Gと接している右側は逆止弁を収納してある室Fである。
吸入水管から室Fへは流入口があり、吸入水管に面している上辺は、直径80cm、逆止弁に面している下辺は、直径90cmのラッパ状の穴で、図6に示すような、円錐状の先端が水平に切断されている台形状の頭部を持つ逆止弁が、流入口の下方に設けられ、シリンダーが逆止弁を押し上げて、流入口を密封したり、逆止弁を引き下げて、第一次貯水槽と室Gを連通させる。
(Composition of room E and suction water pipe)
Room E is located in the upper part of room I, the west is the primary water tank, the top is the ceiling, the depth is 8.5m, the north-south direction is 19m, the east-west direction is 2m, and the wall thickness is 5cm.
The room E is divided into four, and as shown in FIG. 6, a square suction water pipe with a wall thickness of 5 cm and a side of 1 m is 2 m in the east-west direction at a position 3 m to 4 m above the floor of the room E. The primary water tank and the chamber G are connected to each other through a chamber F having a check valve.
The upper chamber E of the suction water pipe is blank, the lower part of the suction water pipe is divided into two parts, the left side in contact with the primary water tank is blank, and the right side in contact with the chamber G houses a check valve. Room F.
There is an inlet from the suction water pipe to the chamber F, the upper side facing the suction water pipe is a diameter of 80 cm, and the lower side facing the check valve is a trumpet-shaped hole having a diameter of 90 cm, as shown in FIG. A check valve with a trapezoidal head with a conical tip cut horizontally is provided below the inlet, and the cylinder pushes the check valve up to seal the inlet or reverse. Pull down the stop valve to make the primary water tank and chamber G communicate.

(逆止弁の構成)
逆止弁の頭部は円錐状の先端が水平に切断されている台形状で、台形状の下辺の長さは、98cm、上辺の長さは80cmに設定されている。
台形状の脚部は、直径50cmの円筒で構成され、逆止弁の内部は空気が充填され、台形状の頭部を上にして室Fの水中にある。
円筒形の脚部の下端には、天然飴製ゴム膜2が設置され、ゴム膜2は室Fの床面と繋がれ、内部は完全に気密化されている。
ゴム膜の内部にはシリンダーが入っていて、シリンダーは、図6に示すように室Hの西側の空間を貫通して、室Iの空気圧モーター4に接続されている。
函Kを引き下げない時は、逆止弁は、流入口の下方に固定され、流入口と逆止弁の頭部との間には空間があり、第一次貯水槽の水面は、流入口及び、室Gの水面より常に高い位置にあるので、室Gへは、室Fを経由して、第一次貯水槽の水が流入する。
函Kが引き下げられる直前には、空気圧モーター4のスイッチがオンになり、コンピューターでシリンダーを小刻みに制御しながら、逆止弁が上方へ移動し、台形状の頭部先端が流入口の切り込みに嵌まり込み、流入口は封鎖される。
函Kが引き下げられると、函Kによって、押し出された室Gの水が室Fへ押し寄せ、逆止弁を流入口へ押し上げる水圧による力と、シリンダーの力で、流入口は密封され、室Fと室Gは気密化される。
(Check valve configuration)
The head of the check valve has a trapezoidal shape with a conical tip cut horizontally, and the lower side of the trapezoid has a length of 98 cm and an upper side of 80 cm.
The trapezoidal leg portion is formed of a cylinder having a diameter of 50 cm, and the check valve is filled with air and is in the water of the chamber F with the trapezoidal head portion facing up.
A natural rubber rubber film 2 is installed at the lower end of the cylindrical leg. The rubber film 2 is connected to the floor surface of the chamber F, and the inside is completely hermetically sealed.
A cylinder is contained inside the rubber film, and the cylinder penetrates the space on the west side of the chamber H and is connected to the pneumatic motor 4 of the chamber I as shown in FIG.
When the box K is not pulled down, the check valve is fixed below the inlet, there is a space between the inlet and the head of the check valve, and the water surface of the primary water tank is the inlet And since it is always higher than the water surface of the chamber G, the water in the primary water tank flows into the chamber G via the chamber F.
Immediately before the box K is pulled down, the pneumatic motor 4 is turned on, the computer controls the cylinder in small increments, the check valve moves upward, and the trapezoidal head tip is used to cut the inlet. The inlet is closed.
When the box K is lowered, the water in the chamber G pushed out by the box K is pushed to the room F, and the inlet is sealed by the force of the water pressure that pushes the check valve to the inlet and the force of the cylinder. And chamber G is airtight.

(室Gの構成)
室Gは、西方を室F、天井の厚みは図7に示すように59cm、床の厚みは2mで、床面から天井まで5.91m、四方を10cmの壁に囲まれている、深さ8.5m、東西方向17m、南北方向17mの密閉可能な直方体で、天井の北東隅には、超音波式レベルメーター5が設置され、室Gの西方は床面より1m乃至2m上方の位置で室Fに連結され、南方下方は揚水管に連結されていて、室Gは常時、水が貯水されている。
(Composition of room G)
Room G has room F in the west, the thickness of the ceiling is 59 cm, the thickness of the floor is 2 m, as shown in FIG. 7, 5.91 m from the floor to the ceiling, and is surrounded by walls of 10 cm on all sides. 8.5m, east-west direction 17m, north-south direction 17m can be sealed, the ultrasonic level meter 5 is installed in the northeast corner of the ceiling, the west of the room G is 1m to 2m above the floor It is connected to the room F, and the south lower part is connected to the pumping pipe, and the room G always stores water.

(函Kの構成)
室Gの内部には室Gの水を水路2に押し出すために、内部が空洞で完全に気密化されていると共に、壁の肉厚10cm、外径がそれぞれ、高さ2.71m、東西方向16m、南北方向16mの函Kが、図7に示すように、室Gの垂直方向の四方の壁からそれぞれ0.4m離れて、浮いている。
この時の室G内の水の量は、16.8×16.8×3.2-3.61728+0.4×0.18×4×(16+0.4)=904.274m3であり、流入口の封鎖は、レベルメーター5で、室G内の水位が、室Gの天井からの深さが2.53mになった時、実施される。
室F,室Gが気密化されると、ゴム袋A1の圧縮空気が真空ポンプによって排出され、ゴム袋A1と連結されている函Kが沈下し、室Gの水面より浮いていた函Kの体積分だけ、水が押し出される。
その時の函Kの押し出し体積は、16m×16m×2.53m=647.68mであり、函Kが引き下げられると、647.68m3の水のうち、まず66.393の水が図7の(1)の空間に押し寄せ、同時に、(2)の空間は6.43m3の水で充満され、次いで、(3)の空間152.6m3も充満され、それらを差し引いた、422.26m3≒420m3の水が、揚水管の流出口9から水路2へ注入する。

室Gから水路2へ流出する水は約420m3であり、1回の流出2分間に、水路2から第一次貯水槽へ流入する水は、3.5m3×120=420m3である。
(Structure of box K)
Inside the chamber G, the water inside the chamber G is pushed out into the water channel 2, and the inside is hollow and completely airtight. The wall thickness is 10cm and the outer diameter is 2.71m in height, east-west direction. As shown in FIG. 7, the boxes K of 16 m and the north-south direction 16 m float from the four walls in the vertical direction of the chamber G by 0.4 m from each other.
The amount of water in the chamber G at this time is 16.8 × 16.8 × 3.2-3.617728 + 0.4 × 0.18 × 4 × (16 + 0.4) = 904.274 m 3 The inlet is blocked when the water level in the chamber G is 2.53 m deep from the ceiling of the chamber G with the level meter 5.
When the chamber F and the chamber G are airtight, the compressed air in the rubber bag A1 is discharged by the vacuum pump, the box K connected to the rubber bag A1 sinks, and the box K floating above the water surface of the room G Water is pushed out only by volume.
Extruding the volume of a box K at that time, a 16m × 16m × 2.53m = 647.68m 3 , when a box K is pulled out of water 647.68M 3, first 66.39 3 water 7 The space of (1) is pushed into the space of (1) at the same time, the space of (2) is filled with 6.43 m 3 of water, and then the space of (3) 152.6 m 3 is also filled and subtracted, 422.26 m 3 ≒ 420 m 3 of water, injected from the outlet 9 of the riser pipe into the waterway 2.

The water flowing out from the chamber G to the water channel 2 is about 420 m 3 , and the water flowing from the water channel 2 into the primary water tank in one outflow 2 minutes is 3.5 m 3 × 120 = 420 m 3 .

(函Kとゴム袋A1の連結)
室Gの気密状態を維持したまま函Kを下方へ引き下げるために、図7に示すように函Kの垂直方向の中心軸上で、函Kの下端6と、膜の厚み10cm、長さ67cm、半径60cmの円筒形の天然飴製ゴム膜7が室Gの床面と繋がれている。
ゴム膜内は完全に気密化され、上下方向に伸縮自在であり、内部に、長さ20.73m、半径50cmの円筒形の鉄柱が入っていて、鉄柱は、室H 内の天井から吊り下げてある、筒の肉厚10cm、長さ35cm、半径60cmの円筒の中を通って、図8に示すように函Kとゴム袋A1内の鉛とを連結し、函Kは、ゴム袋A1の沈下、浮上と連動して上下する。
尚、円筒の下部にはゴム袋A1が取り付けられ、ゴム袋A1内は気密化されている。
(Connection of box K and rubber bag A1)
In order to pull the box K downward while maintaining the airtight state of the chamber G, the lower end 6 of the box K, the thickness of the film 10 cm, and the length 67 cm on the central axis in the vertical direction of the box K as shown in FIG. A cylindrical natural rubber film 7 having a radius of 60 cm is connected to the floor of the chamber G.
The inside of the rubber membrane is completely airtight and can be expanded and contracted in the vertical direction. A cylindrical iron pillar with a length of 20.73 m and a radius of 50 cm is contained inside, and the iron pillar is suspended from the ceiling in the room H. As shown in FIG. 8, the box K and lead in the rubber bag A1 are connected through a cylinder having a wall thickness of 10 cm, a length of 35 cm, and a radius of 60 cm. It moves up and down in conjunction with the sinking and ascent of the sea.
A rubber bag A1 is attached to the bottom of the cylinder, and the inside of the rubber bag A1 is airtight.

(室Hとゴム袋A1の構成)
室Hは室Gの下の地下3階にあり、上方は室G、下方を室Iに囲まれている深さ22m、東西方向17m、南北方向17mの直方体で、壁の厚みは、四方が1mで、床の厚みは、1.47mである。
室Hの内部には、北東、北西、南西、南東の四隅から1m離れた地点の4箇所に、図10に示すように、ゴム袋A1の横方向への膨らみを押さえるために、垂直方向にロープが張られていて、15×15×2.6+4×1×8.79×(13+1)=1077.24m3の水を貯水し、天井の北東隅には、超音波式レベルメーター8が設置され、室内には、ゴム袋A1が設けられている。
ゴム袋A1は、縦0.5m、横0.5m、高さ0.5m、重さ1.4125Tの鉛960個が、縦10m、横10m、高さ1.2mに積まれ、それを厚み0.1mのゴム袋A2で覆い、ゴム袋A2の外側から、更に、縦11.2m、横11.2m、高さ4m、厚み0.1mの天然飴ゴム製のゴムで覆っている二重構造になっている。
ゴム袋A2には、鉛の沈下による室Hの床面の衝撃を緩和するためのクッションとして内部に圧縮空気が注入され、ゴム袋A2の底部とゴム袋A1は縫合してある。
(Composition of chamber H and rubber bag A1)
Room H is on the 3rd basement floor below room G. The upper part is room G and the lower part is surrounded by room I. The depth is 22m, the east-west direction is 17m, and the north-south direction is 17m. At 1 m, the floor thickness is 1.47 m.
Inside the room H, in order to suppress the lateral expansion of the rubber bag A1, as shown in FIG. 10, at four points 1m away from the four corners of northeast, northwest, southwest, and southeast, in the vertical direction. The rope is stretched, 15 × 15 × 2.6 + 4 × 1 × 8.79 × (13 + 1) = 1077.24 m 3 of water is stored, and the ultrasonic level is in the northeast corner of the ceiling. A meter 8 is installed, and a rubber bag A1 is provided in the room.
The rubber bag A1 has a height of 0.5m, a width of 0.5m, a height of 0.5m, a weight of 1.4125T, 960 pieces of lead stacked in a length of 10m, width of 10m, and height of 1.2m. Double covered with 0.1m rubber bag A2 and further covered with rubber made from natural rubber with 11.2m length, 11.2m width, 4m height and 0.1m thickness from the outside of the rubber bag A2. It has a structure.
Compressed air is injected into the rubber bag A2 as a cushion for reducing the impact of the floor surface of the chamber H due to the sinking of lead, and the bottom of the rubber bag A2 and the rubber bag A1 are stitched.

(圧縮空気の構成)
室Iは室Hと室Fの下方の地下4階にあり、室内には、図9に示す通り電動モーターの出力軸が、5MPAの圧空気を生成する2台の二段空気圧縮機と連結され、それぞれで生成された5MPAの圧空気は1台の空気タンクに4MPAの圧空気として貯蔵されている。
空気タンクから、室Hの床面を貫通して、ゴム袋A1に内部が空洞の天然飴ゴム製の圧縮空気注入口と、その左方には、空気圧モーター3から、真空ポンプを経由して、ゴム袋A1に連結されている天然飴ゴム製の圧縮空気排出口が設置され、更にその左方には、空気圧モーター4と、室Fの逆止弁脚部の下端に接続されているシリンダーがある。
(Composition of compressed air)
Room I is on the fourth basement floor below rooms H and F. In the room, as shown in Fig. 9, the output shaft of the electric motor is connected to two two-stage air compressors that generate 5MPA of compressed air. The compressed air of 5MPA generated by each is stored as compressed air of 4MPA in one air tank.
From the air tank, the compressed air inlet made of natural rubber with a hollow inside the rubber bag A1, passing through the floor of the chamber H, and on the left side from the pneumatic motor 3 via the vacuum pump A compressed air discharge port made of natural rubber connected to the rubber bag A1 is installed, and further to the left is a cylinder connected to the pneumatic motor 4 and the lower end of the check valve leg of the chamber F There is.

(基準水位時のゴム袋A1の浮力と重力)
函Kとゴム袋A1は、鉄柱によって連結され、連動して浮上、沈下するが、函Kとゴム袋A1には、函Kの重量+ゴム膜と円筒と鉄柱の重量+ゴム袋A1の重量、、、(1)が重力として下向きに働き、函Kの水面下の体積+ゴム膜と円筒の体積+ゴム袋A1の水面下の体積、、、(2)が浮力として上向きに働く。
ゴム袋A1の室H内の水中にある体積は、圧縮空気によって増加し、(2)が(1)より大きくなると、早晩、ゴム袋A1及び函Kは浮上し始める。
基準水位の状態の(1)は、鉛の比重を11.3、鉄の比重を7.86、炭素繊維強化プラスチックの比重を1.62、ゴムの比重を1.2として計算すると、
室G内の函K及び、ゴム膜、鉄柱の重量は、函Kの重量は、
15.8×0.1×(2.71)×4×1.62 (1)
(2.71)×0.1×0.1×4×1.62 (2)
(1)+(2)=1.62×0.1×4×2.71×(15.8+0.1)=27.922T≒27.92Tであり、

室G内のゴム膜、鉄柱の重量は、
ゴム膜の重量 (3.2m×3.14×2×0.6×0.1m)×1.2=1.446912T≒1.45T
鉄柱の重量(3.2m×3.14×0.5m×0.5m)×7.86=19.74432T≒19.74T
室G内の函K及び、ゴム膜、鉄柱の合計重量は、49.11Tである。
室H内の円筒及び、鉄柱、ゴム袋A1の重量は、
円筒の重量(0.35m×3.14×2×0.6×0.1m)×1.62=0.2136456T≒0.21T
鉄柱の重量は、(17.53m×3.14×0.5m×0.5m)×7.86=108.162T≒108.16T
ゴム袋A1の重量は内部のゴム袋A2と外側のゴム袋A1の重量と鉛の重量であるから、
ゴム袋A2の重量は、
((10m×0.1m×0.1m×4)+(0.1m×0.1m×0.1m ×4))×1.2=4×0.1m×0.1m×(10+0.1)×1.2=0.04×10.1×1.2=0.4848T≒0・48T
ゴム袋A1の重量は、
((11m×0.1m×4m×4)+(0.1m×0.1m×4m ×4))×1.2=4×0.1m×4m×(11+0.1)×1.2=1.6×11.1×1.2=21.312T≒21.31T
鉛の重量は、0.5m×0.5m×0.5m×960×11.3=1356T である。
ゆえに、ゴム袋A1の重量は1377.79Tであり、室H内の円筒及び、鉄柱、ゴム袋A1の重量は、1486.16T である。
以上より、ゴム袋A1には、49.11T+1486.16T=1535.27Tの重量が重力として下向きに働いている。
基準水位の状態の(2)は、
室G内の(2)は、函Kの水面下の体積とゴム膜の体積である。
函Kの水面下の体積は、16×16×0.18=46.08mであり、
ゴム膜の体積=3.14×0.6×0.6×3.2=3.61728≒3.62mであり、合計46.08m+3.62m=49.7mである。
室H内の(2)は、円筒の体積とゴム袋A1の水面下の体積である。
円筒の体積=3.14×0.6×0.6×1.35=1.52604≒1.53mであり、ゴム袋A1の水面下の体積は、ゴム袋A1の縦、横の長さは、13mに伸びているので、13×13×8.79=1485.51mであり、1.53mを加えると、1487.04mである。
この時の(2)の合計は、1487.04m+49.7m=1536.74m3であり、(1)の合計は1535.27Tなので、(2)の合計が(1)の合計を上回っており、函Kと、ゴム袋A1は、水面より半分顔を出している基準水位の状態にある。
(Buoyancy and gravity of rubber bag A1 at the reference water level)
Box K and rubber bag A1 are connected by iron pillars and move up and down in conjunction with each other. Box K and rubber bag A1 have weight of box K + weight of rubber film, cylinder and iron pillar + weight of rubber bag A1. (1) works downward as gravity, volume under water surface of box K + volume of rubber film and cylinder + volume under water surface of rubber bag A1, (2) works upward as buoyancy.
The volume of the rubber bag A1 in the water in the chamber H is increased by the compressed air, and when (2) becomes larger than (1), the rubber bag A1 and the box K begin to rise as soon as possible.
(1) in the state of the reference water level is calculated assuming that the specific gravity of lead is 11.3, the specific gravity of iron is 7.86, the specific gravity of carbon fiber reinforced plastic is 1.62, and the specific gravity of rubber is 1.2.
The weight of the box K in the room G and the weight of the rubber film and iron pillar are as follows:
15.8 × 0.1 × (2.71) × 4 × 1.62 (1)
(2.71) × 0.1 × 0.1 × 4 × 1.62 (2)
(1) + (2) = 1.62 × 0.1 × 4 × 2.71 × (15.8 + 0.1) = 27.922T≈27.92T,

The weight of rubber film and iron pillar in chamber G is
Weight of rubber film (3.2 m × 3.14 × 2 × 0.6 × 0.1 m) × 1.2 = 1.446912T≈1.45T
Weight of iron pillar (3.2 m × 3.14 × 0.5 m × 0.5 m) × 7.86 = 19.77442T≈19.74T
The total weight of the box K, the rubber film, and the iron pillar in the chamber G is 49.11T.
The weight of the cylinder in chamber H, the iron pillar, and rubber bag A1 is
Weight of cylinder (0.35 m × 3.14 × 2 × 0.6 × 0.1 m) × 1.62 = 0.316456T≈0.21T
The weight of the iron pillar is (17.53 m × 3.14 × 0.5 m × 0.5 m) × 7.86 = 108.162T≈108.16T
Since the weight of the rubber bag A1 is the weight of the inner rubber bag A2, the outer rubber bag A1, and the lead weight,
The weight of rubber bag A2 is
((10 m × 0.1 m × 0.1 m × 4) + (0.1 m × 0.1 m × 0.1 m × 4)) × 1.2 = 4 × 0.1 m × 0.1 m × (10 + 0 0.1) × 1.2 = 0.04 × 10.1 × 1.2 = 0.4848T≈0 · 48T
The weight of the rubber bag A1 is
((11 m × 0.1 m × 4 m × 4) + (0.1 m × 0.1 m × 4 m × 4)) × 1.2 = 4 × 0.1 m × 4 m × (11 + 0.1) × 1. 2 = 1.6 × 11.1 × 1.2 = 21.312T≈21.31T
The weight of lead is 0.5 m × 0.5 m × 0.5 m × 960 × 11.3 = 1356T.
Therefore, the weight of the rubber bag A1 is 1377.79T, and the weight of the cylinder in the chamber H, the iron pillar, and the rubber bag A1 is 1486.16T.
From the above, the weight of 49.11T + 1486.16T = 1535.27T works downward as gravity on the rubber bag A1.
(2) of the reference water level is
(2) in the chamber G is the volume below the water surface of the box K and the volume of the rubber film.
The volume under the water surface of the box K is 16 × 16 × 0.18 = 46.08 m 3 ,
The volume of the rubber film = 3.14 × 0.6 × 0.6 × 3.2 = 3.61728 ≒ 3.62m is 3, the sum 46.08m 3 + 3.62m 3 = 49.7m 3 .
(2) in the chamber H is the volume of the cylinder and the volume under the water surface of the rubber bag A1.
The volume of the cylinder = 3.14 × 0.6 × 0.6 × 1.35 = 1.52604≈1.53 m 3 , and the volume under the water surface of the rubber bag A1 is the longitudinal and horizontal length of the rubber bag A1. it is, since extends 13m, a 13 × 13 × 8.79 = 1485.51m 3 , the addition of 1.53 M 3, is 1487.04m 3.
The sum of (2) at this time is 1487.04 m 3 +49.7 m 3 = 1536.74 m 3 and the sum of (1) is 15535.27 T, so the sum of (2) is the sum of (1). The box K and the rubber bag A1 are in a state of a reference water level that has a half face from the water surface.

(函Kの引き下げ終了時のゴム袋A1の浮力と重力)
ゴム袋A1の水面下の体積は、圧縮空気の排出量で変化し、前記(2)が(1)以下になると、早晩、ゴム袋A1と函Kは沈み始める。
圧縮空気が排出されてからは、時間が経てば、経つほど、圧縮空気の排出量の増大と、落下距離の増大が重なって、ゴム袋A1と函Kの沈下速度は速くなり、早晩、ゴム袋A1は、2.53m以上沈下し、函Kも、2.53m以上引き下げられる。
函Kが、2.53m引き下げられると、超音波式レベルメーター5が、室Gの天井からの水位0mを表示するので、逆支弁を一旦下方へ引き下げて室Gの気密化を開放すると共に、圧縮空気の排出をストップし、水圧により水路2への注入を終了させる。
ゴム袋A1の内部の圧縮空気が、完全に排出された時の重力を計算すると、室G内の函K、ゴム膜、鉄柱の重量は、
函K=27.92T
ゴム膜=2×3.14×0.6×0.67×0.1×1.2=0.3029472T≒0.3T
鉄柱=3.14×0.5×0.5×0.67×7.86=4.133967T≒4.13T
函K、ゴム膜、鉄柱の合計重量は、32.35T
室H内の円筒、鉄柱、ゴム袋A1、A2、鉛の重量は、
円筒=2×3.14×0.6×0.1×0.35×1.62=0.213645T≒0.21T
鉄柱3.14×0.5×0.5×20.06×7.86=123.772T≒123.77T
ゴム袋A1=21.312T≒21.31T
ゴム袋A2=0.4848T≒0.48T
鉛=1356T
室H内の円筒、鉄柱、ゴム袋A1、A2、鉛の合計重量は、1501.77Tであり、
ゴム袋A1の圧縮空気が完全に排出された時の合計重量は、1534.12Tである。
この時の浮力を計算すると、
室G内の函K、ゴム膜の体積は、
函K=16×16×2.71=693.76m3
ゴム膜=3.14×0.6×0.6×0.67=0.757368m3≒0.76m3
室G内の函K、ゴム膜の合計体積は、694.52m3であり、
室H内の円筒、鉄柱、ゴム袋A1の体積は、
円筒=3.14×0.6×0.6×1.35=1.52604m3≒1.53m3
鉄柱=3.14×0.5×0.5×18.71=14.68735m3≒14.69m3
ゴム袋A1=11.2×11.2×0.1+10.4×10.4×1.5−3.14×0.5×0.5×0.2=12.544+162.24−0.157=174.627m3≒174.63m3
室H内の円筒、鉄柱、ゴム袋A1の合計体積は、190.85m3であり、
ゴム袋A1の圧縮空気が完全に排出された時の合計体積は、885.37m3である。
浮力は、885.37m3で、重力は1534.12Tなので、重力は浮力の1.7倍強となり、函Kは急速に下方に引き下げられることになる。
(The buoyancy and gravity of rubber bag A1 at the end of pulling down box K)
The volume under the water surface of the rubber bag A1 changes depending on the amount of compressed air discharged. When the above (2) falls below (1), the rubber bag A1 and the box K begin to sink sooner or later.
As time passes, the amount of compressed air discharged increases and the fall distance overlaps, and the settling speed of the rubber bag A1 and the box K increases, and sooner and later, the rubber is discharged. The bag A1 sinks for 2.53 m or more, and the box K is also lowered for 2.53 m or more.
When the box K is lowered by 2.53 m, the ultrasonic level meter 5 displays the water level 0 m from the ceiling of the chamber G, so that the reverse valve is once lowered downward to release the airtightness of the chamber G. The discharge of the compressed air is stopped, and the injection into the water channel 2 is terminated by the water pressure.
When calculating the gravity when the compressed air inside the rubber bag A1 is completely discharged, the weight of the box K, the rubber film, and the iron pillar in the chamber G is
Box K = 27.92T
Rubber film = 2 × 3.14 × 0.6 × 0.67 × 0.1 × 1.2 = 0.3029472T≈0.3T
Iron pillar = 3.14 × 0.5 × 0.5 × 0.67 × 7.86 = 4.1133967T≈4.13T
The total weight of box K, rubber film, and steel pillar is 32.35T
The weight of cylinder, steel pillar, rubber bag A1, A2, lead in chamber H is
Cylinder = 2 × 3.14 × 0.6 × 0.1 × 0.35 × 1.62 = 0.213645T≈0.21T
Iron pillar 3.14 × 0.5 × 0.5 × 20.06 × 7.86 = 123.772T≈123.77T
Rubber bag A1 = 21.312T ≒ 21.31T
Rubber bag A2 = 0.4848T ≒ 0.48T
Lead = 1356T
The total weight of the cylinder, iron pillar, rubber bags A1, A2 and lead in the chamber H is 1501.77T,
The total weight when the compressed air of the rubber bag A1 is completely discharged is 1534.12T.
When calculating the buoyancy at this time,
The volume of the box K and the rubber film in the room G is
Box K = 16 × 16 × 2.71 = 693.76 m 3
Rubber membrane = 3.14 × 0.6 × 0.6 × 0.67 = 0.757368m 3 ≒ 0.76m 3
The total volume of the box K and the rubber film in the chamber G is 694.52 m 3 ,
The volume of cylinder, steel pillar, rubber bag A1 in chamber H is
Cylinder = 3.14 × 0.6 × 0.6 × 1.35 = 1.52604m 3 ≒ 1.53m 3
Iron pillar = 3.14 × 0.5 × 0.5 × 18.71 = 14.668735 m 3 ≈14.69 m 3
Rubber bag A1 = 11.2 × 11.2 × 0.1 + 10.4 × 10.4 × 1.5-3.14 × 0.5 × 0.5 × 0.2 = 12.5544 + 162. 24-0.157 = 174.627m 3 ≒ 174.63m 3
The total volume of the cylinder, the steel pillar, and the rubber bag A1 in the chamber H is 190.85 m 3 ,
The total volume when the compressed air of the rubber bag A1 is completely discharged is 885.37 m 3 .
Since the buoyancy is 885.37 m 3 and the gravity is 1534.12 T, the gravity is 1.7 times the buoyancy and the box K is rapidly pulled downward.

(函Kの引き下げと浮上のメカニズム及び各装置の作動関係)
A, 室Gの水の補給について、
・ 下記の ト、より1分経過後、逆支弁の下方への引き下げ。
・ 逆支弁の頭部先端は、流入口の下方に固定され、室Gの気密化が開放されて、第一次貯水槽と、揚水管の水は水圧により、室Gへ流入する。
・ イ、より2秒経過したら、ゴム袋A1への圧縮空気の注入の開始。
・ ゴム袋A1の上向きに働く浮力が、下向きに働く重量を上回ると、早晩、室Hの水位、及び、室Gの水位が上昇するので、その上昇の確認。
ホ、超音波式レベルメーター5で、室Gの水位の上昇を監視しつつ、室Gの天井からの水位が、2.59mになったら、逆支弁を徐々に上昇させ、2.57mの時、逆支弁の頭部と流入口壁との隙間を2cmにし、2.55mの時、その隙間を1cmにし、基準時水位である2.53mの時点で隙間をゼロにして、室F,室Gを気密化する。
へ、室G及び室Hが基準水位の状態にあることの確認、及び、函Kの引き下げ準備完了確認。
B, 函Kの引き下げについて、
・ 上記イより1分経過後、真空ポンプによるゴム袋A1の圧縮空気の排出。
・ ゴム袋A1の下向きに働く重量が、上向きに働く浮力を上回ると、早晩、ゴム袋A1が沈み始め、室Hの水位は下がり始め、室Gの水位は上昇し始める。
・ 室G、室Hの超音波式レベルメーター5,8の監視。
・ 室G、の超音波式レベルメーター5が、室Gの天井からの水位0mを表示する時、函Kは完全に水中に没しており、水路2への注入量は420m3になるので、逆支弁を一旦下方へ引き下げて室Gの気密化を開放すると共に、圧縮空気の排出をストップし、水圧により水路2への注入を終了させ、第一次貯水槽と、室Gを連通させる。
・ 逆支弁を再度流入口に嵌め込む。
・ 室G、室Hの水位の確認、及び、室Gへの水の補給準備完了確認。
ワ、前述 イ、の開始。
(Reduction mechanism of box K and levitation mechanism and operation relation of each device)
A, About replenishing the water in room G
・ After 1 minute from the following, pull down the reverse valve.
-The tip of the head of the reverse support valve is fixed below the inflow port, the airtightness of the chamber G is released, and the water in the primary water storage tank and the pumping pipe flows into the chamber G due to water pressure.
・ After 2 seconds, start injecting compressed air into the rubber bag A1.
・ If the buoyancy that works upward of the rubber bag A1 exceeds the weight that works downward, the water level in the chamber H and the water level in the chamber G will rise as soon as possible.
E. While monitoring the rise of the water level in the room G with the ultrasonic level meter 5, when the water level from the ceiling of the room G reaches 2.59 m, gradually raise the back valve and at 2.57 m , The gap between the head of the back valve and the inlet wall is 2 cm, and when it is 2.55 m, the gap is 1 cm, and when the reference water level is 2.53 m, the gap is zero. G is airtight.
Confirm that room G and room H are at the reference water level, and that preparation for lowering box K is complete.
B, About the reduction of box K
-After 1 minute from the above, the compressed air in the rubber bag A1 is discharged by the vacuum pump.
-When the weight of the rubber bag A1 that works downward exceeds the buoyancy that works upward, the rubber bag A1 begins to sink sooner, the water level in the chamber H begins to fall, and the water level in the chamber G begins to rise.
・ Monitoring of ultrasonic level meters 5 and 8 in room G and room H.
・ When the ultrasonic level meter 5 in the room G displays the water level 0 m from the ceiling of the room G, the box K is completely submerged, and the amount injected into the channel 2 is 420 m 3 . The reverse support valve is once lowered to release the airtightness of the chamber G, and the discharge of the compressed air is stopped, the injection into the water channel 2 is terminated by the water pressure, and the primary water storage tank and the chamber G are communicated. .
・ Refit the reverse valve into the inlet.
・ Confirmation of water levels in room G and room H and confirmation of completion of water supply to room G.
Wa, start of a.

(揚水管の構成)
室Gの南方下方は、外径2m、管の肉厚0.1mの円環状の揚水管に連結され、揚水管は南方に伸びた後、図7に示すように水路2の上方へ延伸し、逆U字状の形状に設営されている。
揚水管からの出水が停止し2分経過すると、再度揚水管から出水が始まることで、間歇的に2分間に1回、1回当り420m3という膨大な水量の循環が達成される。
(Configuration of pumping pipe)
The south lower part of the chamber G is connected to an annular pumping pipe having an outer diameter of 2 m and a pipe wall thickness of 0.1 m. The pumping pipe extends to the south and then extends upward to the water channel 2 as shown in FIG. It is set up in an inverted U-shape.
When water discharge from the pumping pipe stops and 2 minutes elapses, water discharge from the pumping pipe starts again, so that a huge amount of water circulation of 420 m 3 is achieved once every two minutes.

(屋上への貯水)
水路2乃至5の導水管への流入口を仮設の柵で塞ぎ、第一次貯水槽に外部より水を注入し、逆止弁で室Gを気密化し、ゴム袋A1を沈下させて函Kを引き下げ、揚水管から水路2乃至5へ、水を貯水する。
水路2乃至5の貯水量が所定の水位に達すると、仮設の柵を撤去する。
(Water storage on the roof)
The inlet to the water conduits of the water channels 2 to 5 is closed with a temporary fence, water is poured into the primary water tank from the outside, the chamber G is sealed with a check valve, and the rubber bag A1 is sunk to make the box K To store water from the pumped pipe to the water channels 2 to 5.
When the amount of water stored in channels 2 to 5 reaches a predetermined water level, the temporary fence is removed.

〔実施形態の効果〕地球温暖化の対策として、節電が叫ばれているが、CO2発生源の火力発電よりも、コストが安価で、CO2を発生させない発電方式に切り替えないと、根本的な解決策にはならない。
CO2を発生させない発電の一つに水力発電であるが、この水力発電も、ダムによる自然破壊という別な環境問題を発生させているし、コスト的にも火力発電よりも安価ではない。
水力発電は、高い場所にある水を低い場所に落下させて電気を生成するが、落下した水を揚水する手法があれば、従来のダム式水力発電に捉われる必要はない。
一方、電力需要の中心は、都市部の人間活動にあるが、活動の拠点として都市部には高層ビルが林立している。

高層ビルは、高さそのものが水力発電のための位置エネルギーを所有している資源であるのに、落下させた水を効率よく揚水する手法が無いため、この資源を利用した水力発電所は設置されていない。
本発明は、水の浮力を利用して揚水するので、高層ビルの位置エネルギーを活用出来る上に、ビル全体を水で包んでいるので、ビル冷房の役目も果たし、地球温暖化の対策として二重に役立つうえ、ビル火災発生時の消火設備としての機能も果たすし、高層ビル毎の電力需要量には発電ユニットを増減しての対応が可能なので、都市部のビルに設置して、そのビルの電力需要量に対応出来る利点がある。
[Effects of the embodiment] As a measure against global warming, power saving has been screamed, but it is fundamentally necessary to switch to a power generation method that does not generate CO 2 at a lower cost than CO 2 source thermal power generation. Is not a good solution.
Hydropower generation is one of the power generation that does not generate CO 2 , but this hydropower generation also causes another environmental problem of natural destruction caused by dams, and is not cheaper than thermal power generation.
Hydroelectric power generation generates electricity by dropping water in a high place to a low place, but if there is a method of pumping the dropped water, there is no need to be caught by conventional dam type hydroelectric power generation.
On the other hand, the center of electric power demand is in human activities in urban areas, but high-rise buildings stand in urban areas as the base of activities.

A high-rise building is a resource that possesses potential energy for hydropower generation, but there is no method for efficiently pumping the dropped water, so a hydropower plant that uses this resource is installed. It has not been.
In the present invention, water is pumped using the buoyancy of water, so that the potential energy of a high-rise building can be used and the entire building is wrapped in water. In addition to being useful, it also functions as a fire extinguishing facility in the event of a building fire, and the power demand for each high-rise building can be increased or decreased, so it can be installed in urban buildings. There is an advantage that can meet the power demand of the building.

は、水路2乃至5の平面図である。These are top views of waterways 2-5. は、導水管設置の側面図である。These are side views of water pipe installation. は、地下1階、地下2階の概念図である。Is a conceptual diagram of the first basement and the second basement. は、導水管設営の俯瞰図である。These are the bird's-eye views of water pipe construction. は、水車の架台、架台に収納されている水管、集水管の俯瞰図である。These are the bird's-eye views of a water turbine base, a water pipe stored in the base, and a water collecting pipe. は、揚水装置室の概念図である。These are the conceptual diagrams of a pumping device room. は、室Gの正面図である。FIG. 3 is a front view of the chamber G. は、 鉄柱による函Kとゴム袋A1の連結の概念図である。Fig. 4 is a conceptual diagram of the connection between the box K and the rubber bag A1 by an iron pillar. は、室Iの概念図である。These are the conceptual diagrams of the room I. FIG. は、基準水位の状態の概念図である。These are the conceptual diagrams of the state of a reference water level.

符号の説明Explanation of symbols

1=水車の下部に設けられた水管が、北方へ方向を変える位置
2=室F内の天然飴製ゴム膜
3=真空ポンプに連結してある空気圧モーター
4=シリンダーに連結してある空気圧モーター
5=室G内の超音波式レベルメーター
6=函Kの垂直方向の中心軸上の下端
7=室G内の天然飴製ゴム膜
8=室H内の超音波式レベルメーター
9=揚水管より水路2への注入口
1 = Position where the water pipe provided in the lower part of the water turbine changes direction to the north 2 = Natural rubber film in the chamber F 3 = Pneumatic motor connected to the vacuum pump 4 = Pneumatic motor connected to the cylinder 5 = Ultrasonic level meter in the chamber G 6 = Lower end on the vertical central axis of the box K 7 = Natural rubber film in the chamber G 8 = Ultrasonic level meter in the chamber H 9 = Pump More inlet to channel 2

Claims (1)

周囲全てを壁に囲まれ内部に水を蓄えている室1と、発電使用後の貯水槽との間を封鎖したり、連通させる逆支弁と、
逆支弁を上下させるシリンダーと、
空気タンクと、シリンダーとに連結してある空気圧モーターと、
前記室1の垂直方向の四方の壁から、適当に離れて水に浮いていて、内部が空洞であると共に、気密化されていて、適当な容積を有する直方体の函と、
前記函の垂直方向の中心軸上で、上端は函の底面、下端は室1の床面と繋がれていると共に、内部に、前記函と、室2の内部に設置された、ゴム袋A1内の鉛とを連結している鉄柱を内包している、上下方向に伸縮自在の天然飴製ゴム膜と、
室1の気密化状態を維持したまま、前記函を引き下げるために、鉛を内包している前記室1の下方に設けられ、水を蓄えている室2の内部に設置されたゴム袋A1と、
室2の下方にある室3に設置された、電動モーターを出力軸とする圧空気を生成する2台の二段空気圧縮機と、
2台の二段空気圧縮機と連結され、それぞれで生成された圧空気が貯蔵してある1台の空気タンクと、
ゴム袋A1に、圧縮空気を注入する前記空気タンクから延伸されている圧縮空気注入口と、
ゴム袋A1の圧縮空気を、排出する真空ポンプと連結されている圧縮空気排出口と、
空気タンクと、真空ポンプとを連結している空気圧モーターと、
室1の水を揚水するために、室1から上方へ伸びている揚水管が設置されていることを特徴とする平坦地の水力発電の揚水装置。
A reverse support valve that seals or communicates between the chamber 1 surrounded by walls and storing water inside and the water storage tank after power generation,
A cylinder that raises and lowers the reverse valve,
A pneumatic motor connected to the air tank and the cylinder;
A rectangular parallelepiped box that floats in the water at an appropriate distance from the four vertical walls of the chamber 1, is hollow, and is airtight and has an appropriate volume;
On the vertical center axis of the box, the upper end is connected to the bottom surface of the box, the lower end is connected to the floor of the chamber 1, and the rubber bag A1 installed inside the box and the chamber 2 inside. A natural rubber rubber membrane that stretches in the vertical direction and contains a steel pillar that connects the lead in the inside,
In order to pull down the box while maintaining the airtight state of the chamber 1, a rubber bag A1 is provided below the chamber 1 containing lead, and is installed in the chamber 2 storing water. ,
Two two-stage air compressors that are installed in a chamber 3 below the chamber 2 and generate compressed air using an electric motor as an output shaft;
One air tank connected to two two-stage air compressors and storing the compressed air produced by each;
A compressed air inlet extending from the air tank for injecting compressed air into the rubber bag A1, and
A compressed air discharge port connected to a vacuum pump for discharging the compressed air of the rubber bag A1,
A pneumatic motor connecting an air tank and a vacuum pump;
In order to pump up the water of the chamber 1, a pumping pipe extending upward from the chamber 1 is installed.
JP2007139973A 2007-05-28 2007-05-28 Pumping device for hydraulic power generation in plain land Withdrawn JP2008291799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139973A JP2008291799A (en) 2007-05-28 2007-05-28 Pumping device for hydraulic power generation in plain land

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139973A JP2008291799A (en) 2007-05-28 2007-05-28 Pumping device for hydraulic power generation in plain land

Publications (1)

Publication Number Publication Date
JP2008291799A true JP2008291799A (en) 2008-12-04

Family

ID=40166766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139973A Withdrawn JP2008291799A (en) 2007-05-28 2007-05-28 Pumping device for hydraulic power generation in plain land

Country Status (1)

Country Link
JP (1) JP2008291799A (en)

Similar Documents

Publication Publication Date Title
US7656050B2 (en) Hydroelectric pumped-storage
KR20130139245A (en) Method and facility for producing backup electrical power
DK177031B1 (en) An energy storage system
JP2012237301A (en) Recirculating hydraulic power generation device using free-falling of sucked and raised water
KR100916761B1 (en) Ground source heat exchange system with thermal storage well
JP2009236109A (en) Decompression generator
CN106013013B (en) Tubular power station separate combination type factory building system
KR20120003791A (en) Pumping-up power generation system
CN105020088A (en) Atmospheric pressure and earth gravity power generation device
JP2008291799A (en) Pumping device for hydraulic power generation in plain land
JP2017078354A (en) Power generation system
KR20150090794A (en) Non dam hydroelectric power
JP2010138879A (en) Seawater pumping device for hydraulic power generation
JP3242153U (en) hydraulic energy storage system
KR100940302B1 (en) Ground source heat exchange method with thermal storage well
JP5513672B1 (en) Underground hydroelectric generator
JP2020007957A (en) Power generation plant using buoyancy body and its power generation method
KR101314763B1 (en) Offshore structure and construction method thereof
KR20110050573A (en) Stand type small-hydroelectric complex powergeneration plant and electric-generation area
TWI840179B (en) Pumped storage hydroelectric well
KR20130047227A (en) The power system for improving energy efficiency
JP2008169741A (en) Hydraulic power plant on flat land
JP2016089599A (en) Hydraulic power generation device requiring no storage dam
JP2001040645A (en) Fish pass for dam, fish feeder for going-down stream of river, and integral fish pass system
CN103939266A (en) Stereoscopic seawater power generating system

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090410