JP2008290889A - DEVICE AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL - Google Patents

DEVICE AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL Download PDF

Info

Publication number
JP2008290889A
JP2008290889A JP2007135492A JP2007135492A JP2008290889A JP 2008290889 A JP2008290889 A JP 2008290889A JP 2007135492 A JP2007135492 A JP 2007135492A JP 2007135492 A JP2007135492 A JP 2007135492A JP 2008290889 A JP2008290889 A JP 2008290889A
Authority
JP
Japan
Prior art keywords
seed crystal
end surface
melt
single crystal
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007135492A
Other languages
Japanese (ja)
Other versions
JP4924200B2 (en
Inventor
Yasuyuki Fujiwara
▲靖▼幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007135492A priority Critical patent/JP4924200B2/en
Publication of JP2008290889A publication Critical patent/JP2008290889A/en
Application granted granted Critical
Publication of JP4924200B2 publication Critical patent/JP4924200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for manufacturing an SiC single crystal by a solution method capable of growing the SiC single crystal without causing cracks, peeling or dropping even when a large diameter seed crystal is used. <P>SOLUTION: In the device, the lower end surface D of a pulling shaft X has a flat part P to be adhered with a seed crystal S and recessed parts E provided in the flat part P. In the manufacturing of the SiC single crystal, the device is used in following way: (1) the flat part P is adhered to the seed crystal and each recessed part E serves as a cavity; or (2) SiC is crystallized from a melt of Si or a Si-based alloy by cooling the melt under such conditions that the seed crystal is brought into contact with the lower end surface D and the melt is arranged in the recessed parts E of the lower end surface D, and the seed crystal is adhered to the lower end surface D by using the crystallized SiC. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶液法によりSiC単結晶の製造装置および製造方法に関し、特にSiC種結晶の保持方法の改良に関する。   The present invention relates to an apparatus and a method for producing an SiC single crystal by a solution method, and more particularly to an improvement in a method for holding an SiC seed crystal.

SiCはSiに比べてエネルギーバンドギャップが大きいため、半導体材料等として適した高品位のSiC単結晶の製造技術が種々提案されている。SiC単結晶の製造方法としてはこれまでに多種多様な方法が試行されているが、昇華法と溶液法が現在最も一般的である。昇華法は成長速度は大きいがマイクロパイプ等の欠陥や結晶多形の変態が生じ易いという欠点があり、これに対して成長速度は比較的遅いがこれらの欠点の無い溶液法が有望視されている。   Since SiC has a larger energy band gap than Si, various techniques for producing high-quality SiC single crystals suitable as semiconductor materials have been proposed. A wide variety of SiC single crystal production methods have been tried so far, but the sublimation method and the solution method are currently most common. Although the sublimation method has a high growth rate, it has a defect that defects such as micropipes and transformation of crystal polymorphism are likely to occur. On the other hand, a solution method without these defects is considered promising, although the growth rate is relatively slow. Yes.

溶液法によるSiC単結晶の製造方法は、黒鉛るつぼ内のSi融液内に内部から融液面へ向けて温度低下する温度勾配を維持する。下方の高温部で黒鉛るつぼからSi融液内に溶解したCは主として融液の対流に乗って上昇し融液面近傍の低温部に達して過飽和になる。融液面の直下には黒鉛軸の下端にSiC種結晶が保持されており、過飽和となったCがSiC種結晶上でエピタキシャル成長によりSiC単結晶として結晶化する。   The manufacturing method of the SiC single crystal by the solution method maintains a temperature gradient in which the temperature decreases from the inside toward the melt surface in the Si melt in the graphite crucible. C dissolved in the Si melt from the graphite crucible in the lower high temperature part rises mainly by the convection of the melt, reaches the low temperature part near the melt surface, and becomes supersaturated. An SiC seed crystal is held at the lower end of the graphite shaft immediately below the melt surface, and supersaturated C is crystallized as an SiC single crystal by epitaxial growth on the SiC seed crystal.

黒鉛軸の下端に種結晶を保持する方法としては、機械的な保持か接着による保持が考えられる。機械的な保持は、黒鉛軸の下端に設けた溝などに種結晶を嵌め込み機械的に締め付けて固定するので、種結晶の落下を確実に防止することができる。しかし、黒鉛軸と種結晶との位置関係が限定され、単結晶成長時に黒鉛軸上に成長した多結晶などの影響を受けて、正常な成長が阻害されるという問題がある。そのため一般に、黒鉛軸の下端面に接着剤により固定する方法が行なわれている。接着剤による保持を行なう例としては、特許文献1に、遷移金属を添加した融液に種結晶を接触させ結晶成長を行なう方法が開示されている。しかし成長結晶の大径化に際して新たな問題が浮上した。   As a method for holding the seed crystal at the lower end of the graphite shaft, mechanical holding or holding by adhesion can be considered. The mechanical holding is performed by fitting the seed crystal in a groove or the like provided at the lower end of the graphite shaft and mechanically tightening and fixing it, so that the seed crystal can be reliably prevented from falling. However, the positional relationship between the graphite axis and the seed crystal is limited, and there is a problem that normal growth is hindered due to the influence of polycrystals grown on the graphite axis during single crystal growth. Therefore, generally, a method of fixing to the lower end surface of the graphite shaft with an adhesive is performed. As an example of holding with an adhesive, Patent Document 1 discloses a method of crystal growth by bringing a seed crystal into contact with a melt added with a transition metal. However, a new problem emerged when the diameter of the grown crystal was increased.

すなわち、従来は直径20mm以下の比較的小径の種結晶を用いてきたが、成長結晶の大径化を進める上で、大径の種結晶により成長結晶が得られれば、小径の種結晶を用いた場合に必要であった口径拡大の成長過程が短縮可能となる。   That is, conventionally, a relatively small-diameter seed crystal having a diameter of 20 mm or less has been used. However, in order to increase the diameter of a growth crystal, if a growth crystal can be obtained with a large-diameter seed crystal, a small-diameter seed crystal is used. This makes it possible to shorten the growth process required for the diameter expansion.

そこで直径20mm以上の大径の種結晶を、従来と同様に種結晶表面の面積に対して50〜80%程度の面積の黒鉛軸下端面の全体に一様に接着したところ、結晶成長を開始するための前段階である溶液との接触時に、種結晶の割れ、黒鉛軸からの剥離・脱落が発生し、実際の結晶成長段階に進むことができないことが判明した。   Therefore, when a large-diameter seed crystal having a diameter of 20 mm or more is uniformly bonded to the entire lower surface of the graphite shaft having an area of about 50 to 80% of the area of the seed crystal surface as in the conventional case, crystal growth starts. At the time of contact with the solution, which was the previous step for the purpose of the test, cracking of the seed crystal and peeling / dropping from the graphite shaft occurred, and it was found that it was not possible to proceed to the actual crystal growth stage.

これは、1600℃以上の高温の溶液に種結晶を接触させた際に発生する、種結晶内の温度差による内部応力と、種結晶と黒鉛軸との熱膨張差による界面応力とが原因であろうと考えられる。内部応力も界面応力も、従来のように種結晶が直径20mm以下の比較的小径の場合には余り大きな値にならなかったが、種結晶が直径20mmを越える大径になると大きな値となり、種結晶自体の強度や種結晶と黒鉛軸との接着強度を超えるため、種結晶の割れや黒鉛軸からの剥離・脱落が発生すると考えられる。   This is due to the internal stress due to the temperature difference in the seed crystal and the interfacial stress due to the difference in thermal expansion between the seed crystal and the graphite axis, which occurs when the seed crystal is brought into contact with a high-temperature solution of 1600 ° C. or higher. It is thought to be. Both the internal stress and the interfacial stress were not so large when the seed crystal had a relatively small diameter of 20 mm or less as in the prior art, but became large when the seed crystal had a large diameter exceeding 20 mm in diameter. Since it exceeds the strength of the crystal itself and the adhesive strength between the seed crystal and the graphite shaft, it is considered that the seed crystal is cracked or peeled off or dropped off from the graphite shaft.

溶液法における種結晶の保持に関連する技術ついては、特許文献2にSiC単結晶用接着剤および接着方法が、特許文献3に種結晶固定装置および固定方法、特許文献4に種結晶固定方法が開示されているが、種結晶の大径化に伴う上記特有の問題については何ら考慮されていない。   Regarding techniques related to seed crystal retention in the solution method, Patent Document 2 discloses an SiC single crystal adhesive and bonding method, Patent Document 3 discloses a seed crystal fixing device and fixing method, and Patent Document 4 discloses a seed crystal fixing method. However, no consideration is given to the above-mentioned specific problems associated with the increase in the diameter of the seed crystal.

特開2000−264790JP 2000-264790 A 特開2005−263540JP 2005-263540 A 特開2006−347867JP 2006-347867 A 特開2005−263539JP 2005-263539 A

本発明は、大径の種結晶でも割れや剥離・脱落を発生させずに結晶成長を可能とした溶液法によるSiC単結晶の製造装置および製造方法を提供することを目的とする。   An object of the present invention is to provide an apparatus and a method for producing an SiC single crystal by a solution method that enables crystal growth without causing cracking, peeling, or dropping even with a large-diameter seed crystal.

上記の目的を達成するために、本発明によるSiC単結晶の製造装置は、黒鉛るつぼ内のSi融液内に内部から融液面に向けて温度低下する温度勾配を維持しつつ、引き上げ軸の下端面に接着したSiC種結晶の下面を上記融液に接触させ、上記下面を起点としてSiC単結晶を成長させる装置において、
上記引上げ軸の下端面は、上記種結晶と接着される平坦部と、該平坦部内の窪みとを有することを特徴とする。
In order to achieve the above object, the SiC single crystal manufacturing apparatus according to the present invention maintains a temperature gradient in the Si melt in the graphite crucible that decreases in temperature from the inside toward the melt surface. In the apparatus for growing the SiC single crystal starting from the lower surface, the lower surface of the SiC seed crystal bonded to the lower end surface is brought into contact with the melt.
The lower end surface of the pulling shaft has a flat part bonded to the seed crystal and a recess in the flat part.

また、本発明のSiC単結晶の製造方法は、下記(1)または(2)を特徴とする。   Moreover, the manufacturing method of the SiC single crystal of this invention is characterized by the following (1) or (2).

(1) 本発明の装置を用いてSiC単結晶を製造する方法であって、上記平坦部を上記種結晶に接着し、上記窪みは空洞として用いる。   (1) A method for producing a SiC single crystal using the apparatus of the present invention, wherein the flat portion is bonded to the seed crystal, and the depression is used as a cavity.

(2) 本発明の装置を用いてSiC単結晶を製造する方法であって、上記下端面に上記種結晶が当接し且つ上記下端面の窪み内にSiまたはSi基合金の融液を配した状態にして冷却することにより上記融液からSiCを晶出させ、上記晶出したSiCにより上記下端面と上記種結晶とを接着する。   (2) A method for producing a SiC single crystal using the apparatus of the present invention, wherein the seed crystal is in contact with the lower end surface, and a Si or Si-based alloy melt is disposed in the recess of the lower end surface. By cooling in a state, SiC is crystallized from the melt, and the lower end surface and the seed crystal are bonded by the crystallized SiC.

本発明によるSiC単結晶の製造装置は、引上げ軸の下端面が、種結晶と接着される平坦部と、該平坦部内の窪みとを有する構成としたことにより、本発明によるSiC単結晶の製造方法を介して、下記の作用効果が得られる。   The SiC single crystal manufacturing apparatus according to the present invention has a configuration in which the lower end surface of the pulling shaft has a flat portion bonded to the seed crystal and a recess in the flat portion, thereby manufacturing the SiC single crystal according to the present invention. The following effects can be obtained through the method.

(1)引上げ軸下端面の平坦部を種結晶に接着し、窪みは空洞として用いる構成の方法においては、窪みの部分では種結晶は拘束されていないので、溶液との接触時に発生する内部応力および界面応力が緩和されるため、大径の種結晶であっても割れや剥離・脱落が防止される。   (1) In the method in which the flat portion of the lower end surface of the pulling shaft is bonded to the seed crystal and the dent is used as a cavity, the seed crystal is not constrained in the dent portion, so internal stress generated upon contact with the solution Further, since the interfacial stress is relaxed, cracking, peeling and dropping are prevented even with a large-diameter seed crystal.

すなわち、この方法の場合は、種結晶と引き上げ軸下端面が接触していない窪み部分での「応力緩和作用」により、内部応力および界面応力が種結晶強度および接着強度に到達しないレベルに低減されることにより、種結晶の割れ、剥離・脱落が防止される。   That is, in this method, the internal stress and interfacial stress are reduced to a level that does not reach the seed crystal strength and adhesive strength due to the “stress relaxation effect” in the recessed portion where the seed crystal and the lower end surface of the pulling shaft are not in contact. This prevents the seed crystal from cracking, peeling and dropping.

(2)引上げ軸下端面に種結晶が当接し且つ下端面の窪み内にSiまたはSi基合金の融液を配した状態にして冷却することにより融液からSiCを晶出させ、晶出したSiCにより下端面と種結晶とを接着する構成の方法においては、種結晶と引上げ軸下端面との接着は、接着剤によるよりも遥かに強固に行なわれるので、種結晶の変形が拘束されるため(=種結晶が引上げ軸下端部により補強されるため)、溶液との接触時に発生する内部応力および界面応力に打ち勝つことができ、大径の種結晶であっても割れや剥離・脱落が防止される。   (2) The seed crystal is in contact with the lower end surface of the pulling shaft, and Si or Si-based alloy melt is placed in the recess on the lower end surface, and cooling is performed to crystallize SiC from the melt. In the method in which the lower end surface and the seed crystal are bonded with SiC, the bonding between the seed crystal and the lower end surface of the pulling shaft is performed much more strongly than with the adhesive, so that the deformation of the seed crystal is constrained. Therefore (= because the seed crystal is reinforced by the lower end of the pulling shaft), it can overcome internal stress and interface stress generated when contacting with the solution. Is prevented.

すなわち、この方法の場合は、変形拘束による「強化作用」により、溶液との接触時に発生する内部応力および界面応力よりも実効的な結晶強度および接着強度が高められ、種結晶の割れ、剥離・脱落が防止される。   That is, in the case of this method, the “strengthening effect” due to deformation restraint increases the effective crystal strength and adhesive strength over the internal stress and interface stress generated when contacting with the solution, and the seed crystal cracks, peels Dropping is prevented.

本発明のSiC単結晶の製造装置においては、引上げ軸の下端面は、種結晶と接着される平坦部と、平坦部内の窪みとから成る。   In the SiC single crystal manufacturing apparatus of the present invention, the lower end surface of the pulling shaft is composed of a flat portion bonded to the seed crystal and a recess in the flat portion.

一つの望ましい実施形態においては、種結晶を保持する引上げ軸下端面は、平坦部が複数の溝状の窪みにより複数に分割されている形態である。   In one desirable embodiment, the lower end surface of the pulling shaft that holds the seed crystal has a flat portion divided into a plurality of groove-shaped depressions.

図1に(A)写真、(B)スケッチ(平面図)、(C)断面図で示した例では、平坦な円形の下端面Dに、互いに60°の傾角で交差する3方向の溝Eを各方向4本ずつ掘り込んで多数の平坦面Pに分割してある。また、図2に(A)写真、(B)スケッチ(平面図)、(C)断面図で示した例では、平坦な円形の下端面Dに、互いに直交する2方向の溝Eを各方向4本ずつ掘り込んで多数の平坦面Pに分割してある。   In the examples shown in FIGS. 1A, 1B, 1B, 1C, and 1C, the three-direction grooves E intersecting the flat circular lower end surface D at an inclination angle of 60 °. Are digged in four in each direction and divided into a large number of flat surfaces P. Further, in the example shown in FIG. 2 (A) photograph, (B) sketch (plan view), and (C) cross-sectional view, two directions of grooves E perpendicular to each other are formed in the flat circular lower end surface D in each direction. Four pieces are dug up and divided into a large number of flat surfaces P.

この下端面には下記の各使用形態が可能である。   The following usage patterns are possible on the lower end surface.

(1)第一の使用形態においては、種結晶Sの平坦な上面S1を引上げ軸Xの下端面Dの分割平坦面Pに接着剤にて接着して固定する。V字断面を持つ溝Eは、種結晶Sの平坦な上面S1で開口部を塞がれて空洞として存在する。   (1) In the first usage pattern, the flat upper surface S1 of the seed crystal S is bonded and fixed to the divided flat surface P of the lower end surface D of the pulling shaft X with an adhesive. The groove E having a V-shaped cross section exists as a cavity with the opening being closed by the flat upper surface S1 of the seed crystal S.

この状態で保持された種結晶SをSi溶液面に接触させると、種結晶Sは1600℃以上の高温のSi溶液によって急熱される。種結晶Sは1800℃程度には予熱されているが、Si溶液と温度差により、種結晶S内に内部応力および下端面Dとの接着部に界面応力が発生する。その際に、種結晶Sと接触していない溝Eすなわち空洞の部分で内部応力および界面応力が緩和され、これにより種結晶S全体あるいは接着面全体に作用する応力が、結晶強度および接着強度を超えないレベルに低下する。   When the seed crystal S held in this state is brought into contact with the Si solution surface, the seed crystal S is rapidly heated by a high-temperature Si solution at 1600 ° C. or higher. The seed crystal S is preheated to about 1800 ° C., but due to a temperature difference with the Si solution, internal stress is generated in the seed crystal S and interfacial stress is generated at the bonded portion with the lower end surface D. At that time, the internal stress and the interface stress are relieved in the groove E that is not in contact with the seed crystal S, that is, in the hollow portion. Decrease to a level not exceeding.

(2)第二の使用形態においては、引上げ軸Xの下端面Dに種結晶Sの平坦な上面S1が当接し且つ下端面Dの溝E内にSiまたはSi基合金の融液を配した状態にして冷却することにより融液からSiCを晶出させ、この晶出したSiCにより下端面Dと種結晶Sとを接着する。   (2) In the second usage pattern, the flat upper surface S1 of the seed crystal S is in contact with the lower end surface D of the pulling shaft X, and a Si or Si-based alloy melt is disposed in the groove E of the lower end surface D. By cooling in a state, SiC is crystallized from the melt, and the lower end face D and the seed crystal S are bonded together by the crystallized SiC.

この使用形態は、溝E内にSiまたはSi基合金の融液を配する具体的な方法により、更に下記の2態様に分けられる。   This usage pattern is further divided into the following two modes according to a specific method of arranging a melt of Si or a Si-based alloy in the groove E.

(2−1)第1の態様においては、下端面Dの溝E内にSiまたはSi基合金を配し、下端面Dに種結晶Sの平坦な上面S1を当接させ、SiまたはSi基合金の融点以上に加熱する。   (2-1) In the first aspect, Si or Si base alloy is arranged in the groove E of the lower end face D, the flat upper surface S1 of the seed crystal S is brought into contact with the lower end face D, and Si or Si base Heat above the melting point of the alloy.

(2−2)第2の態様においては、溝Eを図1、図2の例のように下端面Dの外周まで連通した形態とし、下端面Dに種結晶Sを仮接着し、SiまたはSi基合金の融液中に浸漬する。   (2-2) In the second mode, the groove E is in a form communicating to the outer periphery of the lower end surface D as in the examples of FIGS. 1 and 2, and the seed crystal S is temporarily bonded to the lower end surface D, and Si or Immerse in the melt of Si-based alloy.

いずれの態様でも、融液を配した後に冷却することにより、融液から晶出したSiCにより、引上げ軸Xの下端面Dに種結晶Sが極めて強固に接着される。   In any embodiment, the seed crystal S is extremely strongly bonded to the lower end surface D of the pulling shaft X by SiC crystallized from the melt by cooling after the melt is disposed.

この状態で保持された種結晶SをSi溶液面に接触させると、種結晶Sは1600℃以上の高温のSi溶液によって急熱される。種結晶Sは1800℃程度には予熱されているが、Si溶液と温度差により、種結晶S内に内部応力および下端面Dとの接着部に界面応力が発生する。種結晶Sは引き上げ軸Xの下端面Dに強固に接着されて変形を拘束されることにより補強されており、上記の内部応力および界面応力に耐え得る。   When the seed crystal S held in this state is brought into contact with the Si solution surface, the seed crystal S is rapidly heated by a high-temperature Si solution at 1600 ° C. or higher. The seed crystal S is preheated to about 1800 ° C., but due to a temperature difference with the Si solution, internal stress is generated in the seed crystal S and interfacial stress is generated at the bonded portion with the lower end surface D. The seed crystal S is reinforced by being firmly bonded to the lower end surface D of the pulling shaft X and restraining deformation, and can withstand the internal stress and the interface stress.

なお、引上げ軸Xの下端面Dに設ける窪みは、図1、図2に示したような下端面Dの外周まで連通した溝Eに限定する必要はなく、下端面D内の窪みであればよい。幾つかの例を図3に示す。なお、窪みは平坦部P内だけでなく、平坦部P外にあってもよい。   The recess provided in the lower end surface D of the pulling shaft X is not necessarily limited to the groove E communicated to the outer periphery of the lower end surface D as shown in FIGS. Good. Some examples are shown in FIG. The recess may be located not only in the flat part P but also outside the flat part P.

図3(A)は、図1の例と同様に互いにほぼ60°で交差する3方向の溝Eを設けた例であるが、図1の例とは異なり下端面Dの外周には達していない。下端面Dは溝Eにより多数の平坦面Pに分割されている。   FIG. 3A is an example in which grooves E in three directions intersecting each other at approximately 60 ° are provided as in the example of FIG. 1, but, unlike the example of FIG. Absent. The lower end surface D is divided into a number of flat surfaces P by grooves E.

図3(B)は、図2と同様に互いにほぼ直交する2方向の溝Eを設けた例であるが、図2の例とは異なり下端面Dの外周には達していない。下端面Dは溝Eにより多数の平坦面Pに分割されている。   FIG. 3B shows an example in which grooves E in two directions substantially orthogonal to each other are provided as in FIG. 2, but does not reach the outer periphery of the lower end surface D unlike the example of FIG. 2. The lower end surface D is divided into a number of flat surfaces P by grooves E.

図3(C)は、同心円状に多数の溝Eを設けた例である。下端面Dは溝Eにより多数の平坦面Pに分割されている。   FIG. 3C shows an example in which a number of grooves E are provided concentrically. The lower end surface D is divided into a number of flat surfaces P by grooves E.

図3(D)は、蛇行上の1本の溝Eを設けた例である。下端面Dは溝Eにより分割されず一つの平坦面である。   FIG. 3D shows an example in which one groove E on a meander is provided. The lower end surface D is not divided by the groove E and is a single flat surface.

図3(E)は、多数の短い溝Eを一本の長い溝Eで串刺し状に配列し、これを3串分設けた例であり、この場合も下端面Dは溝Eにより分割されず一つの平坦面である。   FIG. 3 (E) is an example in which a number of short grooves E are arranged in a skewered manner with one long groove E, and this is provided for three skewers. In this case as well, the lower end surface D is not divided by the grooves E. One flat surface.

図3(F)は、1本の螺旋状の溝Eを設けた例であり、この場合も下端面Dは溝Eにより分割されず一つの平坦面である。   FIG. 3F is an example in which one spiral groove E is provided. In this case, the lower end surface D is not divided by the groove E and is a single flat surface.

図3(G)は、多数のディンプル状の窪みEを設けた例であり、この場合も下端面Dは溝Eにより分割されず一つの平坦面である。   FIG. 3G shows an example in which a large number of dimples E are provided. In this case as well, the lower end surface D is not divided by the groove E and is a single flat surface.

〔実施例1〕
本発明による引上げ軸下端面Dの第一の使用形態により、窪みとして図1、図2に示した形態の溝Eを設け、多数の平坦面Pに接着剤でSiC種結晶を接着して保持し、SiC単結晶を成長させる実験を行なった。種結晶サイズは、φ25mmおよびφ50mmであった。
[Example 1]
According to the first usage pattern of the lower end surface D of the pulling shaft according to the present invention, the groove E having the configuration shown in FIGS. 1 and 2 is provided as a recess, and the SiC seed crystal is adhered and held on a large number of flat surfaces P with an adhesive. Then, an experiment for growing a SiC single crystal was conducted. The seed crystal sizes were φ25 mm and φ50 mm.

<接着方法>
表1に示す組成A、Bの2種類の接着剤を用いた。
<Adhesion method>
Two types of adhesives of compositions A and B shown in Table 1 were used.

接着手順は下記のとおりであった。   The adhesion procedure was as follows.

1)黒鉛製引き上げ軸の下端面の表面温度を80〜100℃に加熱し、表1のAまたはBの接着剤を下端面の平坦部に均一に塗布する。   1) The surface temperature of the lower end surface of the graphite lifting shaft is heated to 80 to 100 ° C., and the A or B adhesive in Table 1 is uniformly applied to the flat portion of the lower end surface.

2)接着剤を塗布した下端面に種結晶を貼り付け、その接着面に対して0.05〜0.5kgf程度の荷重を負荷し、常温まで抜熱する。   2) A seed crystal is affixed to the lower end surface to which the adhesive is applied, a load of about 0.05 to 0.5 kgf is applied to the adhesive surface, and the heat is removed to room temperature.

3)加熱雰囲気炉(脱脂炉および焼成炉)を用いて、下記の条件で接着剤の熱硬化処理を行った。   3) Using a heated atmosphere furnace (a degreasing furnace and a firing furnace), the adhesive was thermoset under the following conditions.

200℃×1hr+700℃×2hrの加熱保持後、室温まで炉冷。       After heating and holding at 200 ° C. × 1 hr + 700 ° C. × 2 hr, the furnace is cooled to room temperature.

上記のようにして接着した種結晶を用い、図4に示す装置にてSiC単結晶の成長を行なった。   Using the seed crystal bonded as described above, an SiC single crystal was grown using the apparatus shown in FIG.

図4に示したSiC単結晶成長装置100は、黒鉛坩堝10を断熱材12で覆い、高周波コイル14で加熱して内部にSi溶液16を形成し、上方から挿入した黒鉛軸18の下端にSiC種結晶20を保持する。SiC種結晶20の温度をW−Re熱電対22でモニターし、Si溶液16の液面温度を放射温度計(パイロメータ)24でモニターする。放射温度計24は、溶液面を直接観察可能な溶液面上方の観察窓26に設置し、種結晶20を溶液に接触させる前後の溶液温度を測定できる。また、W−Re熱電対22は、種結晶20が接着される黒鉛軸内側(種結晶から2mmの位置)に設置し、溶液16と種結晶20との接触直後からの温度を測定した。   An SiC single crystal growth apparatus 100 shown in FIG. 4 covers a graphite crucible 10 with a heat insulating material 12, heats it with a high-frequency coil 14, forms an Si solution 16 therein, and places SiC at the lower end of a graphite shaft 18 inserted from above. The seed crystal 20 is held. The temperature of the SiC seed crystal 20 is monitored by a W-Re thermocouple 22, and the liquid surface temperature of the Si solution 16 is monitored by a radiation thermometer (pyrometer) 24. The radiation thermometer 24 is installed in an observation window 26 above the solution surface where the solution surface can be directly observed, and can measure the solution temperature before and after contacting the seed crystal 20 with the solution. Moreover, the W-Re thermocouple 22 was installed inside the graphite axis (position of 2 mm from the seed crystal) to which the seed crystal 20 is bonded, and the temperature immediately after the contact between the solution 16 and the seed crystal 20 was measured.

成長条件は下記のとおりであった。   The growth conditions were as follows.

種結晶予熱温度:1835℃
Si溶液表面温度:1917℃
炉内雰囲気:Ar(101℃)
成長時間:10時間
〔実施例2〕
本発明による引上げ軸下端面Dの第二の使用形態により、窪みとして図1、図2に示した形態の溝Eを設け、多数の平坦面Pに接着剤でSiC種結晶を仮接着して保持し、溝E内にSiを配し、その融解および冷却により晶出させたSiCにより種結晶を接着して、SiC単結晶を成長させる実験を行なった。
Seed crystal preheating temperature: 1835 ° C
Si solution surface temperature: 1917 ° C
Furnace atmosphere: Ar (101 ° C)
Growth time: 10 hours [Example 2]
According to the second usage pattern of the lower end surface D of the pulling shaft according to the present invention, a groove E having the configuration shown in FIGS. 1 and 2 is provided as a depression, and a SiC seed crystal is temporarily bonded to many flat surfaces P with an adhesive. An experiment was conducted in which Si was grown by depositing Si in the groove E and bonding the seed crystal with SiC crystallized by melting and cooling.

仮接着方法は、実施例1の接着方法と同様であり、同じ接着剤A、Bおよび同じ接着手順により行なった。   The temporary bonding method was the same as the bonding method of Example 1, and was performed using the same adhesives A and B and the same bonding procedure.

次に下記の手順により溝内にSi融液を配した。   Next, Si melt was arranged in the groove by the following procedure.

1)種結晶を仮接着した黒鉛軸下端を1600℃に加熱保持したSi溶液内に浸漬する。   1) The graphite shaft lower end to which the seed crystal is temporarily bonded is immersed in a Si solution heated and held at 1600 ° C.

2)5分間浸漬させ、黒鉛軸下端面Dの外周から溝E内にSi溶液を進入させる。   2) Immerse for 5 minutes and allow the Si solution to enter the groove E from the outer periphery of the lower end surface D of the graphite shaft.

溝内に進入したSi溶液は、黒鉛および種結晶の裏面に接触しつつ、黒鉛から炭素を溶かし込む。       The Si solution that has entered the groove dissolves carbon from the graphite while in contact with the back surface of the graphite and the seed crystal.

3)黒鉛軸下端をSi溶液から引き上げ、徐冷する。これにより、溝内に進入して炭素を溶解しているSi溶液中から、溝内壁の黒鉛上および種結晶裏面上にSiCの微細結晶が無数に晶出し、黒鉛軸下端面と種結晶裏面とを強固に接着する。   3) The lower end of the graphite shaft is pulled up from the Si solution and slowly cooled. As a result, an infinite number of SiC fine crystals crystallize on the graphite and the seed crystal back surface of the groove inner wall from the Si solution that has entered the groove and dissolved carbon, and the graphite axis lower end surface and the seed crystal back surface Glue firmly.

また、溝内にSi融液を配する方法として、下記の方法も行なった。   Moreover, the following method was also performed as a method of arranging the Si melt in the groove.

1)溝内に粒状、粉末状のSiを配する。   1) Disperse granular and powdery Si in the groove.

2)種結晶を接着剤により仮接着する。   2) The seed crystal is temporarily bonded with an adhesive.

3)焼成炉で1600℃以上の熱処理を行ない、溝内のSiを融解した後、冷却する。   3) Heat treatment at 1600 ° C. or higher is performed in a firing furnace to melt Si in the groove and then cool.

これにより上記の方法と同様に、溝内で融解して炭素を溶解しているSi溶液中から、溝内壁の黒鉛上および種結晶裏面上にSiCの微細結晶が無数に晶出し、黒鉛軸下端面と種結晶裏面とを強固に接着する。図5に、SiCが晶出して黒鉛軸と種結晶を接着している一例について、断面の写真を示す。   As in the above method, an infinite number of SiC fine crystals crystallize on the graphite on the inner wall of the groove and on the back surface of the seed crystal from the Si solution in which carbon is melted by melting in the groove. The end face and the seed crystal back face are firmly bonded. FIG. 5 shows a cross-sectional photograph of an example in which SiC is crystallized to bond the graphite shaft and the seed crystal.

〔従来例〕
なお、比較のために、従来のように黒鉛軸下端面Dを平坦なままとして前面に種結晶を貼り付けた従来例についても、上記と同様の成長条件でSiC単結晶の成長実験を行なった。
[Conventional example]
For comparison, a SiC single crystal growth experiment was performed under the same growth conditions as above for the conventional example in which a seed crystal was pasted on the front surface with the graphite shaft lower end surface D kept flat as in the past. .

実施例1、実施例2、従来例による実験の結果をまとめて表2に示す。   Table 2 summarizes the results of experiments according to Example 1, Example 2, and the conventional example.

表2に示したように、実施例1、実施例2により種結晶を保持した場合には、種結晶サイズφ25mm、φ50mmのいずれについても種結晶の割れ、剥離・脱落による欠損を生ずることなくSiC単結晶を成長させることができた。   As shown in Table 2, when the seed crystals were held according to Example 1 and Example 2, SiC was not caused by cracking of the seed crystals, and no defects due to peeling / dropping in any of the seed crystal sizes of φ25 mm and φ50 mm. A single crystal could be grown.

図6に、黒鉛軸下端の種結晶からSiC単結晶が成長した状態を(A)側面および(B)下面からの写真で示す。同図に示したように、円形の種結晶からそれよりも一回り大きい正六角形の単結晶が成長している。   FIG. 6 shows a state in which the SiC single crystal has grown from the seed crystal at the lower end of the graphite shaft, with photographs taken from (A) the side and (B) the bottom. As shown in the figure, a regular hexagonal single crystal is grown from a circular seed crystal.

これに対して、従来例により種結晶を保持した場合には、種結晶の割れ、剥離・脱落が発生して、正常な結晶成長が行なわれなかった。   On the other hand, when the seed crystal was held by the conventional example, the seed crystal was cracked, peeled off, and dropped off, and normal crystal growth was not performed.

図7に、その一例を下面からの写真で示す。種結晶は写真上の上部1/3ほどを残して下部2/3ほどが欠損している。直線的な欠損界面はSiC種結晶のへき開面に対応すると考えられる。この場合、種結晶の欠損に気付かずに成長を継続したために、上部に残った種結晶上にのみ結晶成長が行なわれた。   FIG. 7 shows an example of the photograph from the bottom. The seed crystal is deficient in the lower 2/3 while leaving the upper 1/3 in the photograph. The linear defect interface is considered to correspond to the cleavage plane of the SiC seed crystal. In this case, since the growth was continued without noticing the defect of the seed crystal, the crystal growth was performed only on the seed crystal remaining on the upper part.

本発明によれば、φ20mmを超えるような大径の種結晶でも、割れや剥離・脱落を発生させずに結晶成長を可能とした溶液法によるSiC単結晶の製造装置および製造方法が提供される。   According to the present invention, there is provided an apparatus and a method for producing an SiC single crystal by a solution method that enables crystal growth without causing cracks, peeling or dropping even with a large-diameter seed crystal exceeding φ20 mm. .

図1は、本発明により、平坦な円形の下端面Dに、互いに60°の傾角で交差する3方向の溝Eを各方向4本ずつ掘り込んで多数の平坦面Pに分割してある実施形態を示す(A)写真、(B)スケッチ(平面図)、(C)断面図である。FIG. 1 shows an embodiment in which a flat circular lower end surface D is divided into a plurality of flat surfaces P by digging four grooves in each direction, four in each direction, at an inclination angle of 60 °. It is (A) photograph which shows a form, (B) sketch (plan view), (C) sectional drawing. 図2は、本発明により、平坦な円形の下端面Dに、互いに直交する2方向の溝Eを各方向4本ずつ掘り込んで多数の平坦面Pに分割してある実施形態を示す(A)写真、(B)スケッチ(平面図)、(C)断面図である。FIG. 2 shows an embodiment in which two perpendicular grooves E are dug into each flat circular lower end surface D and divided into a large number of flat surfaces P according to the present invention (A). ) A photograph, (B) a sketch (plan view), and (C) a sectional view. 図3は、本発明により引上げ軸下端面に設ける窪みの種々の形態を模式的に示す平面図である。FIG. 3 is a plan view schematically showing various forms of recesses provided in the lower end surface of the pulling shaft according to the present invention. 図4は、実施例1、2および従来例により、SiC単結晶の成長に用いた装置を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an apparatus used for growing a SiC single crystal according to Examples 1 and 2 and the conventional example. 図5は、実施例2において、Cを溶解したSi溶液の冷却により晶出したSiCを示す写真である。FIG. 5 is a photograph showing SiC crystallized by cooling the Si solution in which C was dissolved in Example 2. 図6は、実施例において、本発明の種結晶保持方法を用いてSiC単結晶が正常に成長した状態を示す(A)側面および(B)下面からの写真である。FIG. 6 is a photograph from (A) the side surface and (B) the bottom surface showing a state in which the SiC single crystal has grown normally using the seed crystal holding method of the present invention in the examples. 図7は、従来例において、種結晶が割れ、剥離・脱落により正常な結晶成長が行なわれなかった状態を示す下面からの写真である。FIG. 7 is a photograph from the bottom showing a state in which the seed crystal was broken and normal crystal growth was not performed due to peeling and dropping in the conventional example.

符号の説明Explanation of symbols

X 引き上げ軸
D 引き上げ軸の下端面
E 下端面に掘り込んだ溝(窪み)
P 溝により分割された多数の平坦面
S 種結晶
X Lifting shaft D Lower end surface of lifting shaft E Groove (dent) dug in the lower end surface
P Many flat surfaces divided by grooves S seed crystals

Claims (6)

黒鉛るつぼ内のSi融液内に内部から融液面に向けて温度低下する温度勾配を維持しつつ、引き上げ軸の下端面に接着したSiC種結晶の下面を上記融液に接触させ、上記下面を起点としてSiC単結晶を成長させる装置において、
上記引上げ軸の下端面は、上記種結晶と接着される平坦部と、該平坦部内の窪みとを有することを特徴とするSiC単結晶の製造装置。
The lower surface of the SiC seed crystal adhered to the lower end surface of the pulling shaft is brought into contact with the melt while maintaining a temperature gradient in the Si melt in the graphite crucible that decreases in temperature from the inside toward the melt surface. In an apparatus for growing a SiC single crystal starting from
The SiC single crystal manufacturing apparatus, wherein a lower end surface of the pulling shaft has a flat portion bonded to the seed crystal and a recess in the flat portion.
請求項1において、上記平坦部が複数の溝状の上記窪みにより複数に分割されていることを特徴とするSiC単結晶の製造装置。   The SiC single crystal manufacturing apparatus according to claim 1, wherein the flat portion is divided into a plurality of grooves by the recesses. 請求項1または2に記載の装置を用いてSiC単結晶を製造する方法であって、
上記平坦部を上記種結晶に接着し、上記窪みは空洞として用いることを特徴とするSiC単結晶の製造方法。
A method for producing a SiC single crystal using the apparatus according to claim 1,
A method for producing a SiC single crystal, wherein the flat portion is bonded to the seed crystal, and the depression is used as a cavity.
請求項1または2に記載の装置を用いてSiC単結晶を製造する方法であって、
上記下端面に上記種結晶が当接し且つ上記下端面の窪み内にSiまたはSi基合金の融液を配した状態にして冷却することにより上記融液からSiCを晶出させ、上記晶出したSiCにより上記下端面と上記種結晶とを接着することを特徴とするSiC単結晶の製造方法。
A method for producing a SiC single crystal using the apparatus according to claim 1,
The seed crystal is in contact with the lower end surface, and Si or Si-based alloy melt is arranged in the recess of the lower end surface, and then cooled to crystallize SiC from the melt and crystallize. A method for producing a SiC single crystal, comprising bonding the lower end surface and the seed crystal with SiC.
請求項4記載の方法において、
上記窪み内に上記融液を配するために、
上記下端面の窪み内に上記SiまたはSi基合金を配し、上記下端面に上記種結晶を当接させ、上記SiまたはSi基合金の融点以上に加熱することを特徴とするSiC単結晶の製造方法。
The method of claim 4, wherein
In order to place the melt in the recess,
The SiC single crystal is characterized in that the Si or Si-based alloy is disposed in the recess of the lower end surface, the seed crystal is brought into contact with the lower end surface, and heated to the melting point or higher of the Si or Si-based alloy. Production method.
請求項4記載の方法において、
上記窪み内に上記融液を配するために、
上記窪みを上記下端面の外周まで連通した形態とし、上記下端面に上記種結晶を仮接着し、上記SiまたはSi基合金の融液中に浸漬することを特徴とするSiC単結晶の製造方法。
The method of claim 4, wherein
In order to place the melt in the recess,
A method for producing a SiC single crystal, characterized in that the recess is communicated to the outer periphery of the lower end surface, the seed crystal is temporarily bonded to the lower end surface, and immersed in a melt of the Si or Si-based alloy. .
JP2007135492A 2007-05-22 2007-05-22 SiC single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP4924200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135492A JP4924200B2 (en) 2007-05-22 2007-05-22 SiC single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135492A JP4924200B2 (en) 2007-05-22 2007-05-22 SiC single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2008290889A true JP2008290889A (en) 2008-12-04
JP4924200B2 JP4924200B2 (en) 2012-04-25

Family

ID=40166018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135492A Expired - Fee Related JP4924200B2 (en) 2007-05-22 2007-05-22 SiC single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP4924200B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184849A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp METHOD FOR COMPOSITE BONDING OF SEED CRYSTAL FOR GROWING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
EP2455515A4 (en) * 2009-07-17 2013-03-27 Toyota Motor Co Ltd Process for producing sic single crystal
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal
JP2013112543A (en) * 2011-11-25 2013-06-10 Kyocera Corp Method for producing seed crystal holder, seed crystal holder, crystal growing apparatus and crystal growing method
JP2015151278A (en) * 2014-02-10 2015-08-24 新日鐵住金株式会社 Method for manufacturing single crystal, seed shaft and apparatus for manufacturing single crystal
JP2016020306A (en) * 2015-11-05 2016-02-04 京セラ株式会社 Seed crystal holder
JP2016044115A (en) * 2014-08-27 2016-04-04 三菱電機株式会社 Silicon carbide epitaxial wafer, silicon carbide semiconductor device, and production method of silicon carbide epitaxial wafer
JPWO2015118888A1 (en) * 2014-02-10 2017-03-23 新日鐵住金株式会社 Seed shaft, single crystal manufacturing apparatus, and single crystal manufacturing method
CN106958039A (en) * 2016-01-12 2017-07-18 丰田自动车株式会社 The manufacture method and manufacture device of SiC single crystal
WO2017138516A1 (en) * 2016-02-10 2017-08-17 新日鐵住金株式会社 METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US10094044B2 (en) 2015-12-15 2018-10-09 Toyota Jidosha Kabushiki Kaisha SiC single crystal and method for producing same
JP2020011864A (en) * 2018-07-18 2020-01-23 昭和電工株式会社 PEDESTAL, AND MANUFACTURING APPARATUS AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213680A (en) * 1983-04-12 1984-12-03 テンマット リミテッド Method of bonding silicon carbide article
JP2000264794A (en) * 1999-03-23 2000-09-26 Denso Corp Production of silicon carbide single crystal
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP2004338971A (en) * 2003-05-13 2004-12-02 Denso Corp METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2005263540A (en) * 2004-03-17 2005-09-29 Toyota Motor Corp ADHESIVE FOR SiC SINGLE CRYSTAL AND ADHESION METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213680A (en) * 1983-04-12 1984-12-03 テンマット リミテッド Method of bonding silicon carbide article
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP2000264794A (en) * 1999-03-23 2000-09-26 Denso Corp Production of silicon carbide single crystal
JP2004338971A (en) * 2003-05-13 2004-12-02 Denso Corp METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2005263540A (en) * 2004-03-17 2005-09-29 Toyota Motor Corp ADHESIVE FOR SiC SINGLE CRYSTAL AND ADHESION METHOD

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184849A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp METHOD FOR COMPOSITE BONDING OF SEED CRYSTAL FOR GROWING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
EP2455515A4 (en) * 2009-07-17 2013-03-27 Toyota Motor Co Ltd Process for producing sic single crystal
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal
JP2013112543A (en) * 2011-11-25 2013-06-10 Kyocera Corp Method for producing seed crystal holder, seed crystal holder, crystal growing apparatus and crystal growing method
JP2015151278A (en) * 2014-02-10 2015-08-24 新日鐵住金株式会社 Method for manufacturing single crystal, seed shaft and apparatus for manufacturing single crystal
JPWO2015118888A1 (en) * 2014-02-10 2017-03-23 新日鐵住金株式会社 Seed shaft, single crystal manufacturing apparatus, and single crystal manufacturing method
JP2016044115A (en) * 2014-08-27 2016-04-04 三菱電機株式会社 Silicon carbide epitaxial wafer, silicon carbide semiconductor device, and production method of silicon carbide epitaxial wafer
JP2016020306A (en) * 2015-11-05 2016-02-04 京セラ株式会社 Seed crystal holder
US10094044B2 (en) 2015-12-15 2018-10-09 Toyota Jidosha Kabushiki Kaisha SiC single crystal and method for producing same
CN106958039A (en) * 2016-01-12 2017-07-18 丰田自动车株式会社 The manufacture method and manufacture device of SiC single crystal
US10081883B2 (en) 2016-01-12 2018-09-25 Toyota Jidosha Kabushiki Kaisha SiC single crystal production method and production apparatus
CN106958039B (en) * 2016-01-12 2019-09-03 丰田自动车株式会社 The manufacturing method and manufacturing device of SiC single crystal
WO2017138516A1 (en) * 2016-02-10 2017-08-17 新日鐵住金株式会社 METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2020011864A (en) * 2018-07-18 2020-01-23 昭和電工株式会社 PEDESTAL, AND MANUFACTURING APPARATUS AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
JP7094171B2 (en) 2018-07-18 2022-07-01 昭和電工株式会社 Method for manufacturing SiC single crystal
US11519096B2 (en) 2018-07-18 2022-12-06 Showa Denko K.K. Pedestal for supporting a seed for SiC single crystal growth which includes a gas-permeable region of reduced thickness

Also Published As

Publication number Publication date
JP4924200B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924200B2 (en) SiC single crystal manufacturing apparatus and manufacturing method
JP5821958B2 (en) SiC single crystal and method for producing the same
CN101542014B (en) Silicon shelf towers
JP5234184B2 (en) Method for producing SiC single crystal
JP5429288B2 (en) Method for producing SiC single crystal
JP2012516572A (en) SEED LAYER AND SEED LAYER MANUFACTURING METHOD
JP5801730B2 (en) Seed crystal holding shaft used in single crystal manufacturing apparatus and single crystal manufacturing method
JP2011042560A (en) Method and equipment for producing sapphire single crystal
JP5071406B2 (en) Composite bonding method of seed crystal for SiC single crystal growth by solution method
JP2015182944A (en) Production method of sapphire single crystal
JP2016033102A (en) Sapphire single crystal and method for manufacturing the same
JP6344374B2 (en) SiC single crystal and method for producing the same
JP6060755B2 (en) Crucible for growing sapphire single crystal and method for producing the same
JP7155968B2 (en) Single crystal growth crucible and single crystal manufacturing method
JP2008222481A (en) Manufacturing method and device of compound semiconductor
JP6785698B2 (en) Method for Manufacturing Silicon Carbide Single Crystal Ingot
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP5651480B2 (en) Method for producing group 3B nitride crystals
JP2015140291A (en) Crucible for sapphire single crystal growth and method for manufacturing sapphire single crystal using the same
EP3243935A1 (en) Sic single crystal and method for producing same
KR101683646B1 (en) Crucible for sapphire growing single crystal and single crystal grower using it
JP2013256424A (en) Apparatus for growing sapphire single crystal
JP7476890B2 (en) Method for manufacturing SiC single crystal ingot
JP2017226583A (en) Production method for sic single crystal
JP2006232605A (en) Method of and apparatus for producing single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees