JP2006232605A - Method of and apparatus for producing single crystal - Google Patents

Method of and apparatus for producing single crystal Download PDF

Info

Publication number
JP2006232605A
JP2006232605A JP2005048853A JP2005048853A JP2006232605A JP 2006232605 A JP2006232605 A JP 2006232605A JP 2005048853 A JP2005048853 A JP 2005048853A JP 2005048853 A JP2005048853 A JP 2005048853A JP 2006232605 A JP2006232605 A JP 2006232605A
Authority
JP
Japan
Prior art keywords
crystal
melt
single crystal
heating
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005048853A
Other languages
Japanese (ja)
Other versions
JP4400479B2 (en
Inventor
Tsutomu Tanaka
努 田中
Masanari Yashiro
将斉 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005048853A priority Critical patent/JP4400479B2/en
Publication of JP2006232605A publication Critical patent/JP2006232605A/en
Application granted granted Critical
Publication of JP4400479B2 publication Critical patent/JP4400479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently producing a bulk single crystal by a liquid phase epitaxial method for bringing a seed crystal into contact with the melt of a single-crystal raw material heated in a crucible and pulling up the seed crystal from the melt to grow a single crystal. <P>SOLUTION: While uplifting and induction-heating the melt 4 by applying thereto, the Lorentz force induced by energization of AC current to a normal conductive coil 5, the seed crystal 7 is brought into contact with the vicinity of top of the uplifted melt to grow the single crystal 15 on the seed one. The rapid thermal-flux amount change of the crystal is prevented by auxiliary-heating the vicinity of the crystal 5 or 15 in the non-steady processes in the vicinity of crystal growth start and/or completion to obtain the good quality crystal having no crack. The auxiliary heating is performed by induction heating with the lifted coil 5 or another coil and/or immersion of a tool 13 in the melt. If the tool 13 is meltable in the melt, it also achieves the adjustability of melt composition necessary for heteroepitaxial growth. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、半導体材料等として用いられる炭化珪素(SiC)その他の単結晶の液相エピタキシャル成長(LPE法)による製造方法および製造装置に関する。本発明の単結晶の製造方法および製造装置は、高品質かつ実用的な大きさの単結晶の成長を可能にするものである。   The present invention relates to a manufacturing method and a manufacturing apparatus by liquid phase epitaxial growth (LPE method) of silicon carbide (SiC) or other single crystal used as a semiconductor material or the like. The method and apparatus for producing a single crystal of the present invention enables the growth of a single crystal having a high quality and a practical size.

炭化珪素は、熱的および化学的に安定な化合物半導体の一種であり、珪素に比べて、約3倍のバンドギャップ、約10倍の絶縁破壊電圧、約2倍の電子飽和速度、約3倍の熱伝導係数などの有利な特性を示す。そのため、炭化珪素は新しい電子デバイスの基板材料としての応用が期待されている。   Silicon carbide is a kind of thermally and chemically stable compound semiconductor. Compared to silicon, silicon carbide is about three times the band gap, about ten times the dielectric breakdown voltage, about twice the electron saturation speed, and about three times. It exhibits advantageous properties such as thermal conductivity coefficient. Therefore, silicon carbide is expected to be used as a substrate material for new electronic devices.

炭化珪素、さらには砒化ガリウム、窒化ガリウム、窒化アルミニウム、ダイヤモンドといった、シリコンよりバンドギャップの大きいワイドバンドギャップ半導体の基板材料となる単結晶の製造技術は、気相成長法である昇華法や化学気相成長法(CVD法)と、液相エピタキシャル法(LPE法)とに大別される。しかし、工業規模で適用する場合、これらのどの手法にも大きな問題点がある。   The manufacturing technology of single crystal, which is a substrate material for wide band gap semiconductors with a larger band gap than silicon, such as silicon carbide, gallium arsenide, gallium nitride, aluminum nitride, and diamond, is a vapor phase growth method such as sublimation or chemical vapor deposition. It is roughly classified into a phase growth method (CVD method) and a liquid phase epitaxial method (LPE method). However, when applied on an industrial scale, all of these methods have significant problems.

一般に、昇華法により製造された単結晶には、多数の格子欠陥が存在することが知られている。例えば、SiCの場合、昇華の際にはSiCが一旦分解して、Si、SiC2、Si2Cなどとなって気化すると同時に、黒鉛も昇華するが、温度によって単結晶基板表面に到達するガス種が異なる。これらの分圧を化学量論的に正確に制御することは困難である。このため、結晶内で特定の元素や分子が過剰に析出して欠陥と成りやすい。また、昇華法には、結晶の多形転位を生じやすいという欠点もある。 In general, it is known that a single crystal produced by a sublimation method has a large number of lattice defects. For example, in the case of SiC, at the time of sublimation, SiC is once decomposed and vaporized into Si, SiC 2 , Si 2 C, etc., and at the same time, graphite is sublimated, but the gas that reaches the surface of the single crystal substrate depending on the temperature The species is different. It is difficult to control these partial pressures stoichiometrically accurately. For this reason, a specific element or molecule is excessively precipitated in the crystal and easily becomes a defect. In addition, the sublimation method has a drawback that polymorphic dislocations are easily generated.

CVD法は、ガスで原料を供給するため、原料の供給量を増加させることが難しく、バルク(大型)単結晶の成長法としては実用的でない。
LPE法では、例えばSiCの場合、その構成元素である炭素を含む坩堝(例えば、黒鉛坩堝)にSi融液を収容し、このSi融液に、Siが坩堝の炭素と反応して生成したSiCを溶解させて、融液をSiC溶液(即ち、液体原料)にすると共に、温度勾配を生じさせ、結晶保持具の先端に付けた単結晶基板を、過冷却(過飽和溶液)状態になっているSiC溶液の低温部に浸漬して、基板上にSiC単結晶を成長させるのが一般的である。通常は、SiC溶液に上部が下部より低温となるような温度勾配を形成して、結晶保持具の先端の単結晶基板をSi融液の液面と接触させ、SiC単結晶の成長につれて結晶保持具を引き上げていく。
Since the CVD method supplies the raw material by gas, it is difficult to increase the supply amount of the raw material, and is not practical as a bulk (large-size) single crystal growth method.
In the LPE method, for example, in the case of SiC, a Si melt is accommodated in a crucible (for example, a graphite crucible) containing carbon as a constituent element, and SiC is produced by reacting Si with carbon in the crucible. The melt is turned into a SiC solution (ie, liquid raw material) and a temperature gradient is generated, and the single crystal substrate attached to the tip of the crystal holder is in a supercooled (supersaturated solution) state. In general, a SiC single crystal is grown on a substrate by dipping in a low temperature portion of a SiC solution. Normally, a temperature gradient is formed in the SiC solution so that the upper part is cooler than the lower part, the single crystal substrate at the tip of the crystal holder is brought into contact with the liquid surface of the Si melt, and the crystal is retained as the SiC single crystal grows. Pull up the ingredients.

LPE法で得られるSiC単結晶は、一般に、欠陥が少なく、多形転移を生ずる欠点も少ないという特長を有する。しかし、LPE法でバルク単結晶を得るために長時間の単結晶成長を行うと、坩堝の低温部分、SiC溶液の低温部に浸漬された結晶保持具の周辺、あるいはSiC溶液の表面近傍などが、抜熱によって単結晶成長部より低温になり、そこに多くの多結晶が成長する。多結晶が成長すると単結晶の成長が阻害されるため、バルク単結晶は得られ難い。そのため、LPE法によるSiC単結晶の成長では、現状では、単結晶基板上に薄いSiC単結晶を形成することしかできない。また、LPE法では、SiC単結晶の成長温度がSiの融点より約300℃高温であるため、Siの気化によりSiC溶液中のSiC濃度が増加して過飽和になりやすく、多結晶が生じやすいという問題もある。   The SiC single crystal obtained by the LPE method generally has the features that there are few defects and few defects that cause polymorphic transition. However, when a single crystal growth is performed for a long time in order to obtain a bulk single crystal by the LPE method, the vicinity of the crystal holder immersed in the low temperature part of the crucible, the low temperature part of the SiC solution, or the surface of the SiC solution, etc. As a result of heat removal, the temperature becomes lower than that of the single crystal growth portion, and many polycrystals grow there. When the polycrystal grows, the growth of the single crystal is hindered, so that it is difficult to obtain a bulk single crystal. Therefore, in the present situation, only a thin SiC single crystal can be formed on a single crystal substrate in the growth of an SiC single crystal by the LPE method. In addition, in the LPE method, the growth temperature of the SiC single crystal is about 300 ° C. higher than the melting point of Si, so that the SiC concentration in the SiC solution increases due to the vaporization of Si and is easily oversaturated, and polycrystals are likely to be formed. There is also a problem.

バルクSiC単結晶を成長させるためのLPE法の改良として、下記の技術が提案されている。
下記特許文献1には、炭素を含む坩堝の周囲を断熱して均温化した状態で坩堝の炭素をSi融液に溶解させ、生成したSiC溶液面に接触させた種結晶にSiC単結晶を成長させる方法が開示されている。SiC溶液の上方に設置された誘導加熱された炭素塊あるいは抵抗加熱ヒータなどの加熱手段を用いて融液面の温度を調整する点に特徴があるが、輻射加熱で融液面の温度を調整することは難しいと思われる。仮にこの手法で断熱化に成功した場合、SiC溶液内には温度勾配が存在しないことになるので、単結晶の成長は期待できないか、成長したとしても成長速度の増加は期待できない。
The following technique has been proposed as an improvement of the LPE method for growing a bulk SiC single crystal.
In the following Patent Document 1, the carbon of the crucible is dissolved in the Si melt in a state where the periphery of the crucible containing carbon is insulated and soaked, and the SiC single crystal is applied to the seed crystal brought into contact with the surface of the generated SiC solution. A method of growing is disclosed. It is characterized in that the temperature of the melt surface is adjusted using heating means such as an induction heated carbon block or resistance heater installed above the SiC solution, but the temperature of the melt surface is adjusted by radiant heating. It seems difficult to do. If the heat insulation is successfully achieved by this method, there is no temperature gradient in the SiC solution, and therefore growth of a single crystal cannot be expected or even if it grows, an increase in growth rate cannot be expected.

下記特許文献2には、少なくとも一種の遷移金属と珪素と炭素を含む原料を炭素質坩堝内で加熱溶融してSiC溶液を形成し、このSiC溶液を冷却するか、あるいはSiC溶液に温度勾配を形成することによって、種結晶にSiC単結晶を析出成長させる方法が開示されている。適切な遷移金属を選択することによりSiC溶液の蒸気圧を下げることができるので、種結晶以外の場所でのSiC多結晶の成長が抑制できると説明されているが、現実には蒸気圧を顕著に下げることが難しく、SiC濃度の過飽和を抑制して多結晶の成長を抑制することは難しいと考えられる。また、坩堝の低温部分、結晶保持具、SiC溶液の表面近傍などの低温部での多結晶発生に対する特別な技術が開示されていないので、温度管理の面からも多結晶の成長を抑制することは難しい。
特開平7−172998号公報 特開2000−264790号公報
In Patent Document 2 below, a raw material containing at least one transition metal, silicon, and carbon is heated and melted in a carbonaceous crucible to form a SiC solution, and the SiC solution is cooled, or a temperature gradient is applied to the SiC solution. A method is disclosed in which a SiC single crystal is deposited and grown on a seed crystal by forming. It has been explained that the growth of SiC polycrystals in places other than the seed crystal can be suppressed because the vapor pressure of the SiC solution can be lowered by selecting an appropriate transition metal. It is difficult to suppress the growth of polycrystals by suppressing the supersaturation of the SiC concentration. In addition, there is no disclosure of a special technique for the generation of polycrystals in a low-temperature part such as a low-temperature part of a crucible, a crystal holder, or the vicinity of the surface of a SiC solution. Is difficult.
JP-A-7-172998 JP 2000-264790 A

本発明は、上述した多結晶の成長や結晶欠陥の増加といった問題を伴わずに、LPE法によってバルク単結晶を効率よく製造することができる単結晶製造方法および製造装置を提供することを課題とする。   An object of the present invention is to provide a single crystal manufacturing method and a manufacturing apparatus capable of efficiently manufacturing a bulk single crystal by the LPE method without the above-mentioned problems such as growth of polycrystals and increase in crystal defects. To do.

本発明者らは、常伝導コイルに交流電流を通電することにより誘起されるローレンツ力を利用して融液を隆起させ、隆起した融液の頂点付近に種結晶を接触させて種結晶上に液相エピタキシャル成長によりバルクの単結晶を成長させる単結晶の製造方法を開発した。この方法では、側面から高周波誘導加熱を受けた融液が隆起するため、加熱を受ける融液側面の面積が増え、加熱が促進されると同時に、融液内における不均一なローレンツ力の分布に起因して融液が電磁攪拌される。また、常伝導コイルを隆起した融液の頂点より下側に配置すると共に融液表層に結晶保持具を浸漬することにより、融液に隆起部の頂点が低温となる上下方向の温度勾配が形成される。そのため、多結晶の成長を抑制して、実用的な成長速度で、単結晶を成長させることが可能となる。   The present inventors raised the melt by utilizing the Lorentz force induced by passing an alternating current through the normal coil, and brought the seed crystal into contact with the apex of the raised melt on the seed crystal. A single crystal manufacturing method has been developed to grow bulk single crystals by liquid phase epitaxial growth. In this method, the melt subjected to high-frequency induction heating rises from the side surface, so that the area of the melt side surface subjected to heating increases, heating is promoted, and at the same time, the distribution of non-uniform Lorentz force in the melt is increased. As a result, the melt is electromagnetically stirred. In addition, by placing the normal coil below the top of the raised melt and immersing the crystal holder in the melt surface layer, a vertical temperature gradient is formed in the melt so that the top of the raised portion is at a low temperature. Is done. Therefore, it becomes possible to grow a single crystal at a practical growth rate while suppressing the growth of the polycrystal.

しかし、融液を側面から誘導加熱し、かつ坩堝の一部が冷却される特殊な炉を使用するため、この炉の構造に起因して、上記特許文献1、2に記載の技術と比較すると、結晶保持具近傍、すなわち、結晶成長部位近傍の雰囲気温度が低くなる。このため、特に、種結晶を融液と接触させて単結晶成長を開始する際や、エピタキシャル成長が完了して単結晶が成長した種結晶を融液から回収する時に、結晶が受ける熱流束量が短時間の間に大きく変化して、結晶に亀裂が発生し易いという欠点があることが判明した。   However, in order to use a special furnace in which the melt is induction-heated from the side and a part of the crucible is cooled, compared to the techniques described in Patent Documents 1 and 2, due to the structure of this furnace. The ambient temperature in the vicinity of the crystal holder, that is, in the vicinity of the crystal growth site is lowered. For this reason, especially when the seed crystal is brought into contact with the melt to start single crystal growth, or when the seed crystal on which the single crystal has grown after the epitaxial growth is completed is recovered from the melt, the amount of heat flux received by the crystal is reduced. It has been found that there is a disadvantage that the crystal changes greatly in a short time and cracks are likely to occur in the crystal.

また、種結晶として使用できる単結晶基板が得られていない場合には、目的とする結晶と格子配列が類似した単結晶基板を用いたヘテロエピタキシャル成長が必要となる。その場合、亀裂発生を抑制すると同時に、融液組成を適切に制御して、目的とする結晶のヘテロエピタキシャル成長を促進することが求められる。   Further, when a single crystal substrate that can be used as a seed crystal has not been obtained, heteroepitaxial growth using a single crystal substrate having a lattice arrangement similar to the target crystal is required. In that case, it is required to suppress the generation of cracks and to appropriately control the melt composition to promote heteroepitaxial growth of the target crystal.

本発明は、上記のローレンツ力を利用して融液を隆起させる単結晶の製造方法において、単結晶の成長開始時や完了時の結晶内部の亀裂発生を防止し、かつ必要に応じてヘテロエピタキシャル成長を促進することができる、単結晶の製造方法および製造装置を提供するものである。   The present invention provides a method for producing a single crystal in which a melt is raised using the Lorentz force described above, and prevents the occurrence of cracks inside the crystal at the start or completion of the growth of the single crystal and, if necessary, heteroepitaxial growth. A method for manufacturing a single crystal and a manufacturing apparatus are provided.

本発明の単結晶の製造方法は、坩堝内で加熱された単結晶原料が溶解している融液に種結晶を接触させ、前記融液から種結晶を引き上げることにより単結晶を成長させる単結晶製造方法において、
常伝導コイルへの交流電流の通電により誘起されるローレンツ力を融液に作用させることにより融液の隆起と誘導加熱を行いながら、隆起した融液の頂点付近に種結晶を接触させて種結晶上に単結晶を成長させ、
さらに、結晶成長の開始前後の非定常過程において種結晶の近傍を補助加熱するか、および/または結晶成長の終了前後の非定常過程において成長結晶の近傍を補助加熱することにより、種結晶および/または成長結晶の熱流束量の急激な変化を防止する、
ことを特徴とする方法である。
The method for producing a single crystal according to the present invention comprises a single crystal grown by bringing a seed crystal into contact with a melt in which a single crystal raw material heated in a crucible is dissolved, and pulling the seed crystal from the melt. In the manufacturing method,
The seed crystal is brought into contact with the apex of the raised melt while the Lorentz force induced by the application of alternating current to the normal conducting coil is applied to the melt to cause the rise and induction heating of the melt. Grow a single crystal on top,
Further, by auxiliary heating in the vicinity of the seed crystal in the unsteady process before and after the start of crystal growth and / or in the vicinity of the growth crystal in the unsteady process before and after the end of crystal growth, the seed crystal and / or Or prevent rapid changes in the heat flux of the growing crystal,
It is the method characterized by this.

本発明はまた、単結晶製造装置にも関する。本発明の単結晶製造装置は、単結晶原料の融液を保持する坩堝と、先端に種結晶を保持することができる昇降可能な結晶保持具とを備え、さらに、融液にローレンツ力を発生させて融液を隆起させると同時に誘導加熱することができる常伝導コイルと、結晶成長の開始前後および終了前後の非定常過程において、それぞれ種結晶および成長結晶の近傍を補助加熱することができる手段とを備えることを特徴とする。   The present invention also relates to a single crystal manufacturing apparatus. The single crystal production apparatus of the present invention includes a crucible for holding a melt of a single crystal raw material, a crystal holder that can be raised and lowered that can hold a seed crystal at the tip, and generates Lorentz force in the melt. A normal coil that can heat up the melt at the same time and induction heating, and a means that can auxiliaryly heat the vicinity of the seed crystal and the grown crystal in the unsteady process before and after the start and end of crystal growth, respectively. It is characterized by providing.

以下では、補助加熱される結晶成長開始時の種結晶近傍および結晶成長終了時の成長結晶近傍の部位を、結晶成長部位と総称する。
本発明の単結晶製造方法および製造装置において、結晶成長部位近傍の補助加熱は、(1)融液の加熱部位に対して非接触の加熱手段、例えば、電磁誘導加熱により行われるか、もしくは(2)融液を構成する組成の一部を材質とする治具を融液と接触させることにより行われる(この場合は、加熱と同時に、融液と接触した治具の一部が融液中に溶解して融液組成を変化させることを伴う)(以下では、この治具を補助加熱・成分調整治具という)か、または(1)と(2)の組み合わせにより行うことができる。
Hereinafter, the vicinity of the seed crystal at the start of the auxiliary crystal growth and the vicinity of the grown crystal at the end of the crystal growth are collectively referred to as a crystal growth portion.
In the single crystal production method and production apparatus of the present invention, the auxiliary heating in the vicinity of the crystal growth site is performed by (1) non-contact heating means with respect to the melt heating site, for example, electromagnetic induction heating, or ( 2) It is performed by bringing a jig made of a part of the composition constituting the melt into contact with the melt (in this case, a part of the jig in contact with the melt simultaneously with the heating is in the melt). (In the following, this jig is referred to as an auxiliary heating / component adjustment jig) or a combination of (1) and (2).

電磁誘導加熱による補助加熱は、前記常伝導コイルを、適当な昇降治具によって結晶成長部位近傍を加熱するように位置を変動させることによって行うか、あるいは結晶成長部位近傍を加熱する位置に設置した、前記常伝導コイルとは別の常伝導コイルにより行うことができる。   Auxiliary heating by electromagnetic induction heating is performed by changing the position of the normal conductive coil so that the vicinity of the crystal growth site is heated by an appropriate lifting jig, or is installed at a position for heating the vicinity of the crystal growth site. The normal conducting coil may be different from the normal conducting coil.

本発明の単結晶製造装置における坩堝は、融液と接する第一の坩堝部材と、融液の側周面を包囲する導電性材質からなる第2の坩堝部材とから構成されることができる。その場合、第2の坩堝部材の周囲に前記常伝導コイルが配置され、かつ第2の坩堝部材は常伝導コイルの巻き方向と略直交方向に複数のスリットを有し、さらに第2の坩堝部材を冷却する手段を有することができる。第一の坩堝部材の上面は、第2の坩堝部材から距離をおいて凹部を有することができる。   The crucible in the single crystal production apparatus of the present invention can be composed of a first crucible member that comes into contact with the melt and a second crucible member made of a conductive material that surrounds the side peripheral surface of the melt. In that case, the normal conducting coil is arranged around the second crucible member, and the second crucible member has a plurality of slits in a direction substantially orthogonal to the winding direction of the normal conducting coil, and further the second crucible member. There may be means for cooling. The top surface of the first crucible member can have a recess at a distance from the second crucible member.

以下の説明において、本発明で採用される「ローレンツ力を利用して融液を隆起させ、誘導加熱を促進すると共に、隆起した融液の頂点付近に種結晶を接触させて種結晶上に液相エピタキシャル成長によりバルクの単結晶を成長させる方法」を、坩堝の一部が冷却されることから、「冷却坩堝液相エピタキシャル成長(CC−LPE, Liquid Phase Epitaxy by Cold Crucible)」法と呼ぶ。   In the following description, “the Lorentz force is used to elevate the melt and promote induction heating, and the seed crystal is brought into contact with the apex of the raised melt and the liquid is applied on the seed crystal. The method of growing a bulk single crystal by phase epitaxial growth is called a “cooled crucible liquid phase epitaxy (CC-LPE) method” because a part of the crucible is cooled.

一方、上記特許文献1、2で採用される液相エピタキシャル成長法を、加熱された坩堝を用いることから「加熱坩堝法液相エピタキシャル成長(HC−LPE, Liquid Phase Epitaxy by Hot Crucible)法」と呼ぶ。   On the other hand, the liquid phase epitaxial growth method employed in Patent Documents 1 and 2 is called a “heated crucible liquid phase epitaxy (HC-LPE) method” because a heated crucible is used.

CC−LPE法は、HC−LPE法に比べて、種結晶である単結晶基板を保持する結晶保持具が低温になり、したがって、その先端に取り付けられた単結晶基板(種結晶)の周囲や成長結晶の周囲(つまり、結晶成長部位近傍)が低温になる。図1はCC−LPE法の単結晶の製造の様子を示す縦断面図であり、図2はその際の坩堝構造例を示す部分破断斜視図である。   Compared with the HC-LPE method, the CC-LPE method has a lower temperature for the crystal holder that holds the single crystal substrate that is the seed crystal. The temperature around the growth crystal (that is, the vicinity of the crystal growth site) is low. FIG. 1 is a longitudinal sectional view showing a state of manufacturing a single crystal of the CC-LPE method, and FIG. 2 is a partially broken perspective view showing an example of a crucible structure at that time.

CC−LPE法において、結晶保持具1と結晶成長部位近傍が低温になるのは、図2に示すように、種結晶の単結晶基板7を保持する結晶保持具1の周囲を坩堝の側壁部が取り囲み、この側壁部が坩堝を構成する各セグメント8に配置された二重管に冷却水を流すことにより冷却されるからである。このように結晶成長部位近傍が低温であることは、液体原料4に形成される温度勾配(結晶成長の駆動力となる)が大きくなり、大きな結晶成長速度が得られるという利点をもたらす。しかも、液体原料の表層から誘導加熱がなされるので、HC−LPE法に比べて低温条件で結晶成長が可能であり、HC−LPE法では成長できない構造の結晶が得られるという別の利点もある。   In the CC-LPE method, the temperature in the vicinity of the crystal holder 1 and the crystal growth site becomes low, as shown in FIG. 2, around the crystal holder 1 holding the seed crystal single crystal substrate 7 around the side wall of the crucible. This is because the side walls are cooled by flowing cooling water through the double pipes arranged in the segments 8 constituting the crucible. Thus, the low temperature in the vicinity of the crystal growth site has the advantage that the temperature gradient (which becomes the driving force for crystal growth) formed in the liquid raw material 4 increases, and a large crystal growth rate can be obtained. Moreover, since induction heating is performed from the surface layer of the liquid raw material, there is another advantage that crystals can be grown under low temperature conditions compared to the HC-LPE method, and crystals having a structure that cannot be grown by the HC-LPE method can be obtained. .

結晶保持具1は、常伝導コイルを構成する通電コイル5から離れた距離にあるため、通電コイル5による誘導加熱より、むしろ融液状態の液体原料4(これは通電コイル5による誘導加熱で加熱される)からの伝導伝熱により加熱される。このため、結晶保持具1の先端に取り付けられた単結晶基板7を液体原料4に接触させた直後は、単結晶基板7から結晶保持具1に向かう熱流束量が短時間で急激に増加するので、その熱衝撃により結晶に亀裂が発生しやすい。   Since the crystal holder 1 is at a distance away from the energizing coil 5 constituting the normal conducting coil, the liquid raw material 4 in a molten state rather than induction heating by the energizing coil 5 (this is heated by induction heating by the energizing coil 5). Heated by conduction heat transfer from For this reason, immediately after the single crystal substrate 7 attached to the tip of the crystal holder 1 is brought into contact with the liquid raw material 4, the amount of heat flux from the single crystal substrate 7 toward the crystal holder 1 rapidly increases in a short time. Therefore, cracks are likely to occur in the crystal due to the thermal shock.

一方、エピタキシャル成長が完了して、結晶を液体原料4から離脱させる場合は、単結晶基板7から結晶保持具1に向かう熱流束量が短時間で急激に減少し、この時も熱衝撃により結晶に亀裂が発生しがちである。特に、成長結晶は液体原料4による濡れ性に富むので、成長結晶を液体原料4から離脱させるために結晶保持具1を上昇させた時、液体原料4の自由表面は界面張力により結晶に付着したまま引き上げられて若干隆起した状態となった後、重力が界面張力より大きくなった時点で結晶は液体原料4から離脱し、自由表面は急降下する。この時に結晶が受ける熱流束の変化量(減少量)は、結晶が液体原料と接触する際の熱流束の変化量(増加量)より一般に大きいので、成長終了時の方が熱衝撃が大きく、結晶(すなわち、成長結晶)の亀裂がより発生し易い状況となる。   On the other hand, when the epitaxial growth is completed and the crystal is detached from the liquid raw material 4, the amount of heat flux from the single crystal substrate 7 toward the crystal holder 1 rapidly decreases in a short time. Cracks tend to occur. In particular, since the grown crystal is rich in wettability by the liquid raw material 4, when the crystal holder 1 is raised to detach the grown crystal from the liquid raw material 4, the free surface of the liquid raw material 4 adheres to the crystal due to interfacial tension. After being pulled up and slightly raised, the crystal is detached from the liquid raw material 4 when the gravity becomes greater than the interfacial tension, and the free surface drops rapidly. The amount of change (decrease) in the heat flux that the crystal is subjected to at this time is generally larger than the amount of change (increase) in the heat flux when the crystal is in contact with the liquid raw material, so the thermal shock is greater at the end of growth, The situation is such that cracks in the crystal (ie, the grown crystal) are more likely to occur.

本発明では、結晶成長の初期と末期に結晶に加わる急激な熱流束量の変化を緩和するため、結晶を液体原料を介した伝導伝熱により加熱するだけでなく、結晶成長の開始および/または終了段階に、制御可能な追加の補助加熱手段を利用して、結晶成長部位近傍を加熱する。   In the present invention, in order to mitigate a rapid change in heat flux applied to the crystal at the beginning and end of crystal growth, not only the crystal is heated by conduction heat transfer through the liquid raw material, but also the start of crystal growth and / or In the final stage, the vicinity of the crystal growth site is heated using an additional controllable auxiliary heating means.

この補助加熱手段としては、結晶成長部位に必要な量と時間の制御可能な非接触加熱が可能な、電磁誘導加熱などの加熱手段を採用することができる。しかし、成長結晶と異なる(格子不整合をが生ずる)種結晶を用いるヘテロエピタキシャル成長の場合には、種結晶の溶解を防止する必要があるため、このような加熱手段では十分でなく、結晶成長部位の液体原料の組成を調整できる補助加熱手段が望ましい。そのための加熱手段として、それ自体が液体原料と接触して加熱されるとともに、液体原料に接触した時に溶解して液体原料の組成を調整する機能を持つ、補助加熱・成分調整治具を結晶成長部位の周囲に配置することができる。   As this auxiliary heating means, a heating means such as electromagnetic induction heating capable of non-contact heating capable of controlling the amount and time required for the crystal growth site can be adopted. However, in the case of heteroepitaxial growth using a seed crystal different from the grown crystal (which causes lattice mismatch), it is necessary to prevent dissolution of the seed crystal. An auxiliary heating means that can adjust the composition of the liquid raw material is desirable. As a heating means for this purpose, an auxiliary heating and component adjustment jig that has the function of adjusting the composition of the liquid raw material by dissolving when it comes into contact with the liquid raw material is crystal-grown. It can be placed around the site.

(1)電磁誘導加熱
エピタキシャル成長の開始あるいは終了段階、すなわち、結晶成長が非定常状態となる段階、で結晶に対する熱流束量の急激な変化を避ける一つの方法は、加熱対象物を汚染せずに熱エネルギーを付与することが可能な非接触の加熱手段である電磁誘導を利用して、結晶あるいは結晶保持具を加熱することである。電磁誘導加熱には、用いる周波数帯によって、高周波加熱、マイクロ波加熱、誘電加熱などがある。
(1) Electromagnetic induction heating One method of avoiding a sudden change in the amount of heat flux with respect to the crystal at the start or end of epitaxial growth, i.e., when the crystal growth is in an unsteady state, is possible without contaminating the heating object. Heating a crystal or a crystal holder using electromagnetic induction, which is a non-contact heating means capable of applying thermal energy. Electromagnetic induction heating includes high-frequency heating, microwave heating, dielectric heating, and the like depending on the frequency band to be used.

定常状態にあるエピタキシャル成長の間は、液体原料に結晶成長の駆動力となる温度勾配(結晶成長面が低温となる)を実現する観点から、結晶成長部位近傍の誘導加熱を促進しない方がよい。しかし、成長開始または終了時の非定常の段階では、結晶成長部位近傍が低温のままであると熱衝撃が大きくなるので、結晶成長部位近傍の誘導加熱を促進して、この部分の温度を上昇させることが、結晶の亀裂発生防止に有利である。   During epitaxial growth in a steady state, it is better not to promote induction heating in the vicinity of the crystal growth site from the viewpoint of realizing a temperature gradient (crystal growth surface becomes a low temperature) as a driving force for crystal growth in the liquid raw material. However, in the unsteady stage at the start or end of growth, if the vicinity of the crystal growth site remains at a low temperature, the thermal shock increases, so induction heating in the vicinity of the crystal growth site is promoted to increase the temperature of this part. It is advantageous to prevent the occurrence of crystal cracks.

これを実現するため、誘導加熱は、熱量のみならす、加熱位置や時間についても制御可能でなければならない。例えば、高周波加熱の場合は、通電コイル(常伝導コイル)を複数に分割し、それぞれの通電コイルに供給する電力を制御(例、結晶成長部位に近い通電コイルは補助加熱が必要な時期だけに電力を印加)したり、あるいは通電コイルを昇降可能にして、必要な時期に結晶成長部位に通電コイルを近づけるようにすればよい。   In order to achieve this, the induction heating must be able to control the heating position and time as well as the amount of heat. For example, in the case of high-frequency heating, the energizing coils (normal conducting coils) are divided into a plurality of parts, and the power supplied to each energizing coil is controlled (for example, the energizing coils near the crystal growth site are only required when auxiliary heating is required. (Applying electric power) or raising and lowering the energizing coil so that the energizing coil is brought close to the crystal growth site at a necessary time.

一方、エピタキシャル成長が定常状態にある間は、液体原料は結晶成長部位が低温となる温度勾配を必要とするので、結晶成長部位に近い通電コイルに対する印加電力を低めるか、遮断したり、あるいは結晶成長部位から通電コイルを遠ざければよい。   On the other hand, while the epitaxial growth is in a steady state, the liquid source requires a temperature gradient in which the crystal growth site is at a low temperature, so the applied power to the energizing coil close to the crystal growth site is reduced, cut off, or crystal growth occurs. It is only necessary to keep the energizing coil away from the site.

電磁誘導加熱の制御手段として、補助加熱すべき結晶までの距離を可変にするコイル昇降治具の他に、結晶とコイルの間に誘導遮蔽板を配置する等のエネルギーの減衰の制御等の方法も利用できる。   As a means for controlling electromagnetic induction heating, in addition to a coil raising / lowering jig that makes the distance to the crystal to be auxiliary heated variable, a method for controlling energy attenuation such as placing an induction shielding plate between the crystal and the coil Can also be used.

(2)補助加熱・成分調整治具
種結晶を用いるLPE法の場合、結晶の種類によっては種結晶が得られておらず、製造する単結晶との間に格子不整合が生ずる種結晶を用いるヘテロエピタキシャル成長が必要になる場合がある。ヘテロエピタキシャル成長の場合は、しばしば、種結晶からのホモエピタキシャル成長が起こって、目的とは異なる結晶が成長することがある。このような場合には、結晶の亀裂を抑制するだけでなく、成長結晶の構造も同時に制御する必要がある。また、種結晶を液体原料に接触させてから目的とする結晶が成長を始めるまでの間に種結晶が溶解するのを防ぐ必要もある。
(2) Auxiliary heating / component adjustment jig In the case of the LPE method using a seed crystal, a seed crystal is not obtained depending on the type of crystal, and a seed crystal that causes lattice mismatch with the single crystal to be manufactured is used. Heteroepitaxial growth may be necessary. In the case of heteroepitaxial growth, homoepitaxial growth from a seed crystal often occurs, and a crystal different from the intended purpose may grow. In such a case, it is necessary not only to suppress crystal cracking but also to control the structure of the grown crystal. It is also necessary to prevent the seed crystal from dissolving after the seed crystal is brought into contact with the liquid raw material until the target crystal begins to grow.

このために、液体原料と接触して溶解する補助加熱・成分調整治具を用いることができる。治具の材料は液体原料を構成する組成に含まれる成分から構成し、治具の一部が溶解して液体原料に入ると、種結晶の溶解量が制御される。このような治具は、液体原料に接触することで加熱され、治具の近傍を加熱すると共に、液体原料の組成の一部を変えて、種結晶のホモエピタキシャル成長を抑制する。   For this purpose, an auxiliary heating / component adjustment jig that melts in contact with the liquid raw material can be used. The material of the jig is composed of components included in the composition constituting the liquid raw material. When a part of the jig is dissolved and enters the liquid raw material, the amount of seed crystal dissolved is controlled. Such a jig is heated by being in contact with the liquid raw material, heats the vicinity of the jig, and changes part of the composition of the liquid raw material to suppress homoepitaxial growth of the seed crystal.

ヘテロエピタキシャル成長を行う場合、ヘテロエピタキシャル成長が定常状態にある間は、液体原料に結晶成長部位が低温となる温度勾配を実現すると共に、結晶成長を継続する観点から、補助加熱・成分調整治具を用いない方がよい。逆に、非定常の段階、特に、結晶成長の開始の段階では、補助加熱・成分調整治具を用いて温度勾配を緩和すると共に、液体原料の成分調整を行って、ヘテロエピタキシャル成長を促進(ホモエピタキシャル成長を抑制)すると共に、種結晶の溶解を抑制することが望ましい。   When performing heteroepitaxial growth, while the heteroepitaxial growth is in a steady state, an auxiliary heating / component adjustment jig is used from the viewpoint of realizing a temperature gradient in which the crystal growth site has a low temperature in the liquid material and continuing crystal growth. It is better not to. Conversely, in the non-stationary stage, particularly at the beginning of crystal growth, the temperature gradient is relaxed using auxiliary heating and component adjustment jigs, and the liquid raw material components are adjusted to promote heteroepitaxial growth (homogeneous growth). It is desirable to suppress the growth of the seed crystal while suppressing the epitaxial growth.

補助加熱・成分調整治具は、液体原料と接触させることにより目的とする機能を発揮する。例えば、補助加熱・成分調整治具を結晶を周回する略管状の形状のものとし、これを上下方向に昇降可能にする機構を備える。それにより、この補助加熱・成分調整治具を降下させて液体原料に浸漬すると、この治具の内部に位置する結晶成長部位の雰囲気温度を高めて温度勾配を緩和すると同時に、治具の一部が液体原料に溶解し、ヘテロエピタキシャル成長が必要な時期に液体原料の組成をそれに適した組成に変更することができる。   The auxiliary heating / component adjustment jig exhibits the intended function by contacting with the liquid raw material. For example, the auxiliary heating / component adjustment jig has a substantially tubular shape that circulates around the crystal, and includes a mechanism that allows the auxiliary heating / component adjustment jig to move up and down. As a result, when the auxiliary heating / component adjustment jig is lowered and immersed in the liquid raw material, the temperature of the crystal growth site located inside the jig is raised to alleviate the temperature gradient, and at the same time a part of the jig Can be dissolved in the liquid raw material, and the composition of the liquid raw material can be changed to a composition suitable for it when heteroepitaxial growth is required.

一方、結晶成長が進行し、単結晶基板が目的とするヘテロエピタキシャル成長した結晶で覆われた定常状態にある結晶成長の段階では、補助加熱・成分調整治具を液体原料から離脱するように上昇させる。その結果、結晶成長部位近傍の雰囲気温度が下がって所定の温度勾配が得られると共に、液体原料の組成を元に戻し、目的とする結晶成長に適した液体原料の組成が実現できる。   On the other hand, at the stage of crystal growth where the crystal growth proceeds and the single crystal substrate is covered with the target heteroepitaxially grown crystal in a steady state, the auxiliary heating / component adjustment jig is raised so as to be detached from the liquid raw material. . As a result, the ambient temperature in the vicinity of the crystal growth site is lowered and a predetermined temperature gradient is obtained, and the composition of the liquid raw material is returned to the original, and a liquid raw material composition suitable for the intended crystal growth can be realized.

補助加熱・成分調整治具を用いる雰囲気温度の制御手段は、上記のように液体原料に補助加熱・成分調整治具を浸漬する以外に、治具の回転もしくは振動と組み合わせる方法、治具を直接通電加熱する方法、上述した電磁誘導加熱と組み合わせる方法などを併用し、加熱効率を高めると共に液体原料への溶解を促進することもできる。   The ambient temperature control means using the auxiliary heating / component adjustment jig is not limited to the method of immersing the auxiliary heating / component adjustment jig in the liquid material as described above. A method of conducting heating and a method of combining with the electromagnetic induction heating described above can be used together to increase heating efficiency and promote dissolution in a liquid raw material.

本発明に係る単結晶製造方法および装置によれば、多結晶を生じにくいCC−LPE法により、結晶成長の初期や末期の急激な熱流束量の変化を抑制して、内部に亀裂が認められない高品質のバルク単結晶を効率よく製造することができる。その結果、従来は困難であった、LPE法による高品質のバルク単結晶の製造が可能となる。   According to the method and apparatus for producing a single crystal according to the present invention, the CC-LPE method, which does not easily generate polycrystals, suppresses a rapid change in the amount of heat flux at the beginning or end of crystal growth, and cracks are observed inside. High-quality bulk single crystals can be produced efficiently. As a result, it is possible to produce a high-quality bulk single crystal by the LPE method, which has been difficult in the past.

以下の説明では、炭化珪素または窒化アルミニウム単結晶の製造について本発明を説明するが、本発明により製造できる単結晶はそれらに限られるものではない。従来よりLPE法が適用されてきた各種化合物、例えば、砒化ガリウム、窒化ガリウム、ダイヤモンドの単結晶の製造にも本発明を適用することができる。   In the following description, the present invention will be described with respect to the production of silicon carbide or aluminum nitride single crystals, but the single crystals that can be produced according to the present invention are not limited thereto. The present invention can also be applied to the production of single crystals of various compounds, such as gallium arsenide, gallium nitride, and diamond, to which the LPE method has conventionally been applied.

最初に、基本的な冷却坩堝液相エピタキシャル成長(CC−LPE)法の概要を、図1(装置の縦断面図)、図2(坩堝の一部破断斜視図)を参照しながら、炭化珪素単結晶の製造に関して具体例を説明する。   First, an outline of a basic cooling crucible liquid phase epitaxial growth (CC-LPE) method will be described with reference to FIG. 1 (longitudinal sectional view of the apparatus) and FIG. 2 (partially broken perspective view of the crucible). Specific examples relating to the production of crystals will be described.

坩堝は、ほぼ側壁部を構成し、液体原料(融液)4とは接触しない第一の坩堝部材2と、ほぼ底面部を構成し、液体原料4と接触する第二の坩堝部材3という2つの部材から成る。第一の坩堝部材2は、内径約100mm、高さ約300mmの略円筒状であり、銅材質から成る。図2に示すように、第一の坩堝部材2の壁は、第一の坩堝部材2の高さよりは短いが、常伝導コイルである通電コイル5の巻き高さよりは長くなる長さで鉛直方向に延びた、絶縁機能を持つスリット6を介して、互いに周方向で絶縁された、複数のセグメント8から組み立てられている。通電コイルから発生した誘導電流はスリットに遮られるため、第1の坩堝部材を周方向に流れることができずに外側から内側に向かって流れ、融液に効率よくローレンツ力を発生させることができる。通電コイル5の巻き高さおよびスリット6の長さはそれぞれ、約100mmおよび約200mmである。   The crucible substantially comprises a side wall portion, a first crucible member 2 that does not contact the liquid raw material (melt) 4, and a second crucible member 3 that substantially constitutes the bottom surface portion and contacts the liquid raw material 4. It consists of two members. The first crucible member 2 has a substantially cylindrical shape with an inner diameter of about 100 mm and a height of about 300 mm, and is made of a copper material. As shown in FIG. 2, the wall of the first crucible member 2 is shorter than the height of the first crucible member 2 but is longer than the winding height of the current-carrying coil 5 that is a normal conducting coil and has a vertical direction. It is assembled from a plurality of segments 8 that are insulated from each other in the circumferential direction through slits 6 that have an insulating function. Since the induction current generated from the energizing coil is blocked by the slit, the first crucible member cannot flow in the circumferential direction but flows from the outside to the inside, and the Lorentz force can be efficiently generated in the melt. . The winding height of the energizing coil 5 and the length of the slit 6 are about 100 mm and about 200 mm, respectively.

複数のセグメント8のそれぞれは、内部に設置された二重管に冷却水を通水して冷却することができるようになっている。運転中、第一の坩堝部材2の温度は、ほぼ冷却水の温度より100℃を越えて高くならない温度に維持される。第一の坩堝部材2の上部は内径約100mmの円形断面の開口部9となっていて、この開口部から結晶保持具1を坩堝内に挿入することができる。   Each of the plurality of segments 8 can be cooled by passing cooling water through a double pipe installed inside. During operation, the temperature of the first crucible member 2 is maintained at a temperature that does not rise above 100 ° C. above the temperature of the cooling water. The upper part of the first crucible member 2 is an opening 9 having a circular cross section with an inner diameter of about 100 mm, and the crystal holder 1 can be inserted into the crucible from this opening.

第二の坩堝部材3は、第一の坩堝部材2の内壁と一部接触する状態でその中に内装されている。第一の坩堝部材2と第二の坩堝部材3の間隙は広いところで1mm、狭いところでは0mm(両者は接触している)である。第二の坩堝部材3の主な素材は炭素(例、黒鉛)である。   The second crucible member 3 is housed therein in a state where it partially contacts the inner wall of the first crucible member 2. The gap between the first crucible member 2 and the second crucible member 3 is 1 mm in a wide area and 0 mm in a narrow area (both are in contact). The main material of the second crucible member 3 is carbon (eg, graphite).

第一の坩堝部材2の外周には、常伝導コイルである通電コイル5が、一巻きが略水平面に含まれる態様で4乃至5巻き程度の多重螺旋巻き構造に配置されている。つまり、スリット6と通電コイル5の巻き方向は互いに略直交方向の位置関係にある。通電コイル5と第一の坩堝部材2が接触して導通が可能になる点は存在せず、両者の間隔は接近しているところで約1mm、離れているところで約10mmの距離がある。通電コイル5はブスバー(図示せず)を介して高周波電源(図示せず)に接続されている。高周波電源の最大出力は300kW、周波数は5kHzから30kHzの間で可変である。   On the outer periphery of the first crucible member 2, a current-carrying coil 5, which is a normal conductive coil, is arranged in a multiple spiral winding structure of about 4 to 5 turns in such a manner that one turn is included in a substantially horizontal plane. That is, the winding direction of the slit 6 and the energizing coil 5 is in a positional relationship in a substantially orthogonal direction. There is no point at which the energization coil 5 and the first crucible member 2 come into contact with each other, and there is no point between them, and the distance between them is about 1 mm when they are close and about 10 mm when they are apart. The energizing coil 5 is connected to a high frequency power source (not shown) through a bus bar (not shown). The maximum output of the high frequency power supply is 300 kW, and the frequency is variable between 5 kHz and 30 kHz.

第二の坩堝部材3の上面は、第一の坩堝部材2に隣接するところで隆起し、第一の坩堝部材2から離れた中心付近では窪んだ、凹部形状を持つことが多いが、融液の種類によっては平坦な形状であっても構わない。第二の坩堝部材3の上面の起伏の変化は約20mmである。第二の坩堝部材3の上面と第一の坩堝部材2の側壁および開口部9で囲まれた空間は自由空間10であり、この空間内に液体原料4、気体12、単結晶基板7、結晶保持具1の一部等を収容することができる。自由空間10の体積は、ほぼ1200cm3である。 The upper surface of the second crucible member 3 has a concave shape, which is raised near the first crucible member 2 and is depressed near the center away from the first crucible member 2. Depending on the type, a flat shape may be used. The change of the undulation on the upper surface of the second crucible member 3 is about 20 mm. A space surrounded by the upper surface of the second crucible member 3, the side wall of the first crucible member 2 and the opening 9 is a free space 10, in which the liquid raw material 4, gas 12, single crystal substrate 7, crystal Part of the holder 1 can be accommodated. The volume of the free space 10 is approximately 1200 cm 3 .

開口部9から坩堝内に挿入される、昇降可能な結晶保持具1は、長さが約500mmで、直径は高さにより変動するが、先端は30mmで、根元付近は60mmである。結晶保持具1は主に炭素材質から成る。結晶保持具1の先端には約30mm直径の大きさの単結晶基板7が種結晶として取り付けられている。単結晶基板7は、液体原料中に溶解している結晶させる物質と同じもの(エピタキシャル成長)でも、結晶させる物質と異なるもの(ヘテロエピタキシャル成長)でもよい。   The crystal holder 1 that can be moved up and down and is inserted into the crucible from the opening 9 has a length of about 500 mm and a diameter that varies depending on the height, but the tip is 30 mm and the vicinity of the root is 60 mm. The crystal holder 1 is mainly made of a carbon material. A single crystal substrate 7 having a diameter of about 30 mm is attached to the tip of the crystal holder 1 as a seed crystal. The single crystal substrate 7 may be the same as the substance to be crystallized (epitaxial growth) dissolved in the liquid raw material or may be different from the substance to be crystallized (heteroepitaxial growth).

第一の坩堝部材2、第二の坩堝部材3、結晶保持具1の一部、通電コイル5の一部などは、加減圧、気体12の供給および排気が可能な、一部水冷構造のチャンバー11に収納されており、チャンバー11には気体供給装置(図示せず)、真空ポンプ(図示せず)、排ガス処理装置(図示せず)などが連結されている。チャンバー11は気密性と耐圧性を有しており、内容積は約35000cm3であり、材質はステンレス鋼である。チャンバー11には、運転に必要なバルブ、圧力計P、流量計、熱電対挿入口、輻射温度計窓、観察窓などが適宜装着されている。また、第一の坩堝部材2と第二の坩堝部材3は、略鉛直方向を回転軸として略同じ速度で、互いに同じ方向で回転させてもよい。さらに、結晶保持具1も回転させることができる。 The first crucible member 2, the second crucible member 3, a part of the crystal holder 1, a part of the energizing coil 5, etc. are partially water-cooled chambers capable of increasing / decreasing pressure, supplying and evacuating gas 12. 11, and a gas supply device (not shown), a vacuum pump (not shown), an exhaust gas treatment device (not shown), and the like are connected to the chamber 11. The chamber 11 has airtightness and pressure resistance, the internal volume is about 35000 cm 3 , and the material is stainless steel. The chamber 11 is appropriately equipped with valves, pressure gauge P, flow meter, thermocouple insertion port, radiation thermometer window, observation window, and the like necessary for operation. The first crucible member 2 and the second crucible member 3 may be rotated in the same direction at substantially the same speed with the substantially vertical direction as the rotation axis. Furthermore, the crystal holder 1 can also be rotated.

上記装置の第二の坩堝部材の上に固体原料(例、SiまたはSiと他の金属)を装入し、適宜チャンバー内を排気した後、通電コイルに高周波電源から交流電流を通電すると、固体原料が誘導加熱されて溶融し、同時に、この通電により誘起されるローレンツ力により、生成した融液が図示のようにドーム状に隆起する。この状態で誘導加熱を続けると、融液と接する第二の坩堝部材3から炭素が融液中に溶解して、融液はSiC溶液、すなわち、液体原料4となる。液体原料4は誘導加熱されると同時に、電磁攪拌されるため、そのSiC濃度は比較的均一である。通電コイル5は、その最上部が隆起した液体原料4の頂部より低くなるように配置することにより、液体原料4の頂点の温度が低くなるような上下方向の温度勾配が液体原料4に形成される。   When a solid raw material (for example, Si or Si and other metal) is charged on the second crucible member of the above apparatus, and the inside of the chamber is appropriately evacuated, an AC current is passed through the energizing coil from a high-frequency power source. The raw material is induction-heated and melted, and at the same time, the generated melt rises like a dome as shown in the figure by the Lorentz force induced by the energization. When induction heating is continued in this state, carbon is dissolved in the melt from the second crucible member 3 in contact with the melt, and the melt becomes an SiC solution, that is, the liquid raw material 4. Since the liquid raw material 4 is induction-heated and electromagnetically stirred at the same time, its SiC concentration is relatively uniform. The energizing coil 5 is arranged so that its uppermost portion is lower than the top of the raised liquid raw material 4, so that a temperature gradient in the vertical direction is formed in the liquid raw material 4 such that the temperature of the top of the liquid raw material 4 is lowered. The

融液中のSiC濃度が飽和濃度またはその近く(以下、略飽和濃度という)に近づいたら、先端に単結晶基板7を取り付けた結晶保持具1を下降させて、隆起した液体原料4の頂点と接触させる。液体原料4の頂部は低温部であり、SiC濃度が過飽和になっているため、単結晶基板7にSiC結晶がエピタキシャル成長する。結晶保持具1をSiCの成長速度に合わせて一定速度で引き上げながら、結晶成長を続ける。所定の長さの結晶が得られた後、基板7が液体原料4から離れるように結晶保持具1を引き上げて、成長結晶が付着した基板7を保持具1から回収する。液体原料4に原料を補給し、再び炭素の溶解からの工程を繰り返すことができる。   When the SiC concentration in the melt is close to or close to the saturation concentration (hereinafter referred to as “substantially saturated concentration”), the crystal holder 1 with the single crystal substrate 7 attached to the tip is lowered, and the peak of the raised liquid raw material 4 Make contact. Since the top of the liquid raw material 4 is a low temperature part and the SiC concentration is supersaturated, SiC crystals are epitaxially grown on the single crystal substrate 7. Crystal growth is continued while pulling up the crystal holder 1 at a constant rate in accordance with the growth rate of SiC. After a crystal having a predetermined length is obtained, the crystal holder 1 is pulled up so that the substrate 7 is separated from the liquid raw material 4, and the substrate 7 to which the grown crystal is attached is recovered from the holder 1. The raw material can be replenished to the liquid raw material 4, and the process from the dissolution of carbon can be repeated again.

次に、冷却坩堝液相エピタキシャル成長(CC−LPE)法における成長初期および/または末期の結晶亀裂の発生防止が可能な本発明の実施形態について説明する。
[第一の実施形態]
図3は、本発明の第一の実施形態を示す縦断面図であり、特にCC−LPE法における成長初期の結晶亀裂の発生防止に有効である。図中、A、B、Cは、それぞれ成長開始前、成長開始直後、成長中における結晶保持具1、通電コイル5、液体原料4の間の関係を示している。
Next, an embodiment of the present invention capable of preventing the occurrence of crystal cracks at the initial stage and / or the final stage of the cooling crucible liquid phase epitaxial growth (CC-LPE) method will be described.
[First embodiment]
FIG. 3 is a longitudinal sectional view showing the first embodiment of the present invention, which is particularly effective in preventing the occurrence of crystal cracks at the initial growth stage in the CC-LPE method. In the figure, A, B, and C indicate the relationship among the crystal holder 1, the energizing coil 5, and the liquid raw material 4 before starting growth, immediately after starting growth, and during growth, respectively.

図1、2に示した基本的な形態と第一の実施形態の相違は、通電コイル昇降治具14の有無にある。本発明の第一の実施形態では、モーター等の適当な駆動機構Mを備えた通電コイル昇降治具14を設置することにより、通電コイル5を上下に移動させることが可能となる。それにより、結晶成長段階に合わせて、通電コイル5の位置を、加熱を必要とする部分に移動させることができる。   The difference between the basic form shown in FIGS. 1 and 2 and the first embodiment lies in the presence or absence of the energizing coil lifting jig 14. In the first embodiment of the present invention, the energizing coil 5 can be moved up and down by installing the energizing coil raising / lowering jig 14 provided with an appropriate drive mechanism M such as a motor. Thereby, according to the crystal growth stage, the position of the energizing coil 5 can be moved to a portion requiring heating.

本発明の第一の実施形態における単結晶の製造の概略を、SiC単結晶の製造について次に説明する。
第一の坩堝部材2と第二の坩堝部材3から構成される坩堝内の自由空間10内の第二の坩堝部材3の上に珪素を含む固体原料(例、珪素のみ、または珪素とMn)を約1kg装入する。単結晶製造装置、高周波電源等の冷却を必要とする部分に冷却水を供給する。チャンバー11内を約0.13Paまで減圧した後、チャンバー11内に主にArガスから成る気体12を供給すると共に、供給分を排気し、チャンバー11内の圧力を約0.11MPaに維持する。
The outline of the production of the single crystal in the first embodiment of the present invention will be described next with respect to the production of the SiC single crystal.
Solid raw material containing silicon on the second crucible member 3 in the free space 10 in the crucible composed of the first crucible member 2 and the second crucible member 3 (for example, only silicon or silicon and Mn) About 1 kg. Cooling water is supplied to parts that require cooling, such as single crystal manufacturing equipment and high-frequency power supplies. After the pressure inside the chamber 11 is reduced to about 0.13 Pa, the gas 12 mainly composed of Ar gas is supplied into the chamber 11 and the supply is exhausted to maintain the pressure in the chamber 11 at about 0.11 MPa.

高周波電源を用いて、通電コイル5に周波数10kHz、出力100kWの交流電流を供給する。数分で固体原料は昇温して溶融し、融液となる。その際に、融液は、交流電流により誘起されるローレンツ力によってドーム状に隆起するため、その周囲は第一の坩堝部材2の内壁とは接触せずに保持され、同時に電磁攪拌の影響を受けて攪拌される。この時の通電コイル5の位置は、図3Aに示すように、コイル5の最上部は隆起した融液の頂部より下側になり、コイル5の下部は第二の坩堝部材3と同じ高さにくる位置である。それにより、融液の頂点の温度が低くなるように上下方向の温度勾配が融液に形成される。   An alternating current having a frequency of 10 kHz and an output of 100 kW is supplied to the energizing coil 5 using a high-frequency power source. In a few minutes, the solid raw material is heated to melt and becomes a melt. At that time, since the melt rises in a dome shape by the Lorentz force induced by the alternating current, the periphery thereof is held without contacting the inner wall of the first crucible member 2, and at the same time, the influence of electromagnetic stirring is exerted. Received and stirred. As shown in FIG. 3A, the position of the energizing coil 5 at this time is such that the top of the coil 5 is below the top of the raised melt and the bottom of the coil 5 is the same height as the second crucible member 3. It is a position to come to. Thereby, a temperature gradient in the vertical direction is formed in the melt so that the temperature at the top of the melt is lowered.

この状態で運転すると、融液に第二の坩堝部材の炭素が溶解して、融液はSiCの溶液、つまり、原料溶液4となる。炭素を第二の坩堝部材の溶解により供給する代わりに、固体原料に炭素も含有させて融液に溶解させることもできる。この場合も、供給した固体の炭素が完全に溶解するように加熱は十分な時間行う。この場合、第二の坩堝部材3は、加熱中に炭素が溶解しないものと、溶解するもののいずれでもよい。   When operated in this state, the carbon of the second crucible member is dissolved in the melt, and the melt becomes a SiC solution, that is, the raw material solution 4. Instead of supplying carbon by melting the second crucible member, carbon can also be contained in the solid raw material and dissolved in the melt. Also in this case, heating is performed for a sufficient time so that the supplied solid carbon is completely dissolved. In this case, the second crucible member 3 may be either one that does not dissolve carbon during heating or one that dissolves.

上記条件で運転を約5時間続けると、原料溶液4のSiC濃度が略飽和濃度に達するので、LPE法による結晶成長が可能となる。この時点で、6H−SiC単結晶の(11−20)方向が結晶保持具1の移動方向に対して平行になるように単結晶基板7を結晶保持具1の先端に取り付け、チャンバー内に挿入するが、図3Aに示すように、ドーム状に隆起した液体原料4には接触しない位置で止める。この段階では、結晶保持具1と単結晶基板7は、前述したように誘導加熱をほとんど受けないので、周囲のガス雰囲気により加熱されているだけである。   If the operation is continued for about 5 hours under the above conditions, the SiC concentration of the raw material solution 4 reaches a substantially saturated concentration, so that crystal growth by the LPE method becomes possible. At this point, the single crystal substrate 7 is attached to the tip of the crystal holder 1 so that the (11-20) direction of the 6H-SiC single crystal is parallel to the moving direction of the crystal holder 1, and is inserted into the chamber. However, as shown in FIG. 3A, it stops at a position where it does not come into contact with the liquid raw material 4 raised in a dome shape. At this stage, since the crystal holder 1 and the single crystal substrate 7 are hardly subjected to induction heating as described above, they are only heated by the surrounding gas atmosphere.

続いて、通電コイル昇降治具14を運転して、結晶保持具1の先端に取り付けた単結晶基板7が通電コイル5により効果的に誘導加熱される位置(例、通電コイル5の高さの中央付近が単結晶基板7の位置とほぼ同じ高さにくる位置)まで通電コイル4を上昇させる(図3B参照)。その結果、結晶保持具1の先端の単結晶基板7が集中的に補助加熱されて、昇温する。この部分の温度が所定温度(例えば、液体原料1の頂点と略同じ温度)に到達した後、図3Bに示すように、結晶保持具1の先端の単結晶基板7が隆起した液体原料4の頂点に接触するまで結晶保持具1を下降させる。   Subsequently, the energization coil raising / lowering jig 14 is operated so that the single crystal substrate 7 attached to the tip of the crystal holder 1 is effectively induction-heated by the energization coil 5 (for example, the height of the energization coil 5). The energizing coil 4 is raised to a position where the vicinity of the center is at the same height as the position of the single crystal substrate 7 (see FIG. 3B). As a result, the single crystal substrate 7 at the tip of the crystal holder 1 is intensively auxiliary heated to raise the temperature. After the temperature of this portion reaches a predetermined temperature (for example, substantially the same temperature as the apex of the liquid raw material 1), as shown in FIG. 3B, the liquid crystal 4 in which the single crystal substrate 7 at the tip of the crystal holder 1 is raised. The crystal holder 1 is lowered until it contacts the apex.

単結晶基板7が液体原料4に接触してから5分経過した後、通電コイル昇降治具14を運転して、通電コイル5を元の位置まで下降させる(図3C参照)。それにより、液体原料4には、再び頂点が低温となる上下方向の温度勾配が形成され、頂点が過冷却(過飽和濃度)状態になって、液体原料4の頂点(基板7との接触面)での結晶成長の駆動力が発生する。   After 5 minutes have passed since the single crystal substrate 7 contacts the liquid raw material 4, the energizing coil raising / lowering jig 14 is operated to lower the energizing coil 5 to the original position (see FIG. 3C). As a result, a temperature gradient in the vertical direction in which the apex becomes a low temperature again is formed in the liquid raw material 4, and the apex becomes supercooled (supersaturated concentration), and the apex of the liquid raw material 4 (contact surface with the substrate 7). The driving force for crystal growth at this point is generated.

この後、平均約500μm/hの速度で結晶保持具1を引き上げながら、100時間の連続運転を行って、基板7上にSiC結晶を成長させる。引き上げの初期には引き上げ速度を適宜増減する。その結果、長さが約50mm、直径が約50mmの炭化珪素の単結晶(図3Cに示す成長結晶15)が得られた。この間、液体原料4は第二の坩堝部材3および気体12とは常時接触していたが、第一の坩堝部材2と接触することは無かった。   Thereafter, a SiC crystal is grown on the substrate 7 by continuously operating for 100 hours while pulling up the crystal holder 1 at an average speed of about 500 μm / h. At the initial stage of raising, the raising speed is appropriately increased or decreased. As a result, a silicon carbide single crystal (growth crystal 15 shown in FIG. 3C) having a length of about 50 mm and a diameter of about 50 mm was obtained. During this time, the liquid raw material 4 was always in contact with the second crucible member 3 and the gas 12, but was not in contact with the first crucible member 2.

結晶成長の開始前に、通電コイル5を上昇させて単結晶基板7が位置する結晶保持具1の先端近傍、つまり結晶成長部位、を予め加熱しておくことにより、液体原料4と結晶成長部位との温度差が小さくなる。その結果、単結晶基板7が液体原料4と接触した時に基板7に加わる熱流束量の変化(すなわち、熱衝撃)が小さくなり、基板7の亀裂発生が防止される。同じ単結晶製造装置を用いた結晶成長停止時の亀裂発生防止については、次の第二の実施形態において説明する。   Prior to the start of crystal growth, the energizing coil 5 is raised to preheat the vicinity of the tip of the crystal holder 1 where the single crystal substrate 7 is located, that is, the crystal growth site, so that the liquid raw material 4 and the crystal growth site are heated. The temperature difference from As a result, a change in the amount of heat flux applied to the substrate 7 (ie, thermal shock) when the single crystal substrate 7 comes into contact with the liquid raw material 4 is reduced, and cracking of the substrate 7 is prevented. The prevention of cracking when stopping crystal growth using the same single crystal manufacturing apparatus will be described in the second embodiment below.

[第二の実施形態]
図4は、CC−LPE法における成長末期の結晶亀裂の発生防止に有効な本発明の第二の実施形態を示す縦断面図である。図中、A、B、Cは、それぞれ成長末期、成長停止直前、成長停止直後における結晶保持具1、通電コイル5、液体原料4の間の位置関係を示す。図4に示した単結晶製造装置は、図3に示したものと同じであり、通電コイル昇降治具14を備える。
[Second Embodiment]
FIG. 4 is a longitudinal sectional view showing a second embodiment of the present invention effective for preventing the occurrence of crystal cracks at the end of growth in the CC-LPE method. In the figure, A, B, and C respectively indicate the positional relationship among the crystal holder 1, the energizing coil 5, and the liquid raw material 4 at the end of growth, immediately before the growth stop, and immediately after the growth stop. The single crystal manufacturing apparatus shown in FIG. 4 is the same as that shown in FIG.

本発明の第二の実施形態における単結晶の製造の概略を、SiC単結晶の製造について次に説明する。
第一の実施形態に説明したようにして、所定の長さまで結晶15を成長させる。この結晶成長中は、図4Aに示すように、通電コイル5の位置は、隆起した液体原料4の頂点の温度が低くなるように液体原料4に上下方向の温度勾配を生ずるような位置(つまり、下降位置)にある。
The outline of the production of the single crystal in the second embodiment of the present invention will be described next with respect to the production of the SiC single crystal.
As described in the first embodiment, the crystal 15 is grown to a predetermined length. During this crystal growth, as shown in FIG. 4A, the position of the energizing coil 5 is such that a temperature gradient in the vertical direction is generated in the liquid material 4 so that the temperature at the top of the raised liquid material 4 is lowered (that is, In the lowered position).

結晶成長を停止する段階になると、まず、通電コイル昇降治具14を運転して、成長結晶15が通電コイル5により効果的に誘導加熱される位置まで、通電コイル5を上昇させる(図4B参照)。この補助加熱により、液体原料4の温度勾配が小さくなり、結晶成長の駆動力が失われるので、結晶成長は実質的に止まる。この状態で運転を続けて成長結晶15と結晶保持具1の先端付近(約1500℃)を所定の温度(約1800℃)になるまで昇温させる。その後、成長結晶15がドーム状に隆起した液体原料4の頂点から離脱するまで結晶保持具1を上昇させる。この後、通電コイル昇降治具14を運転して、通電コイル5を下降させ、元の位置まで戻す。   At the stage of stopping the crystal growth, first, the energization coil raising / lowering jig 14 is operated to raise the energization coil 5 to a position where the growth crystal 15 is effectively induction-heated by the energization coil 5 (see FIG. 4B). ). By this auxiliary heating, the temperature gradient of the liquid raw material 4 is reduced and the driving force for crystal growth is lost, so that crystal growth substantially stops. In this state, the operation is continued to raise the temperature of the growth crystal 15 and the vicinity of the tip of the crystal holder 1 (about 1500 ° C.) until a predetermined temperature (about 1800 ° C.) is reached. Thereafter, the crystal holder 1 is raised until the grown crystal 15 is detached from the apex of the liquid raw material 4 raised in a dome shape. Thereafter, the energizing coil raising / lowering jig 14 is operated to lower the energizing coil 5 and return it to the original position.

上記第一および第二の実施形態を適用して得られた炭化珪素の単結晶を研磨して、顕微鏡観察したところ、結晶に亀裂の発生は認めらず、健全であった。また、多形転位や多結晶も含んでいなかった。   When the silicon carbide single crystal obtained by applying the first and second embodiments was polished and observed with a microscope, the crystal was sound with no cracks observed. Also, polymorphic dislocations and polycrystals were not included.

[第三の実施形態]
図5は、CC−LPE法における成長初期の結晶亀裂の発生防止に有効な本発明の第三の実施形態を示す縦断面図である。図中、A、B、Cは、それぞれ、成長開始前、成長開始直後、成長中の結晶保持具1と液体原料4との位置関係を示し、Dは高周波電源G1、G2の電源出力の時間変化を示す。図1、2に示した基本的な形態との相違は、本発明の第三の実施形態では、それぞれ独立した高周波電源G1、G2に接続された複数の通電コイル5が設けられている点にある。すなわち、通電コイル5が下側コイルと上側コイルに2分割され、それぞれ独立して交流電流を通電できる。
[Third embodiment]
FIG. 5 is a longitudinal sectional view showing a third embodiment of the present invention effective for preventing the occurrence of crystal cracks at the initial growth stage in the CC-LPE method. In the figure, A, B, and C indicate the positional relationship between the crystal holder 1 and the liquid raw material 4 that are being grown before and immediately after the start of growth, respectively, and D is the power output time of the high-frequency power supplies G1 and G2. Showing change. The difference from the basic form shown in FIGS. 1 and 2 is that in the third embodiment of the present invention, a plurality of energizing coils 5 connected to independent high-frequency power supplies G1 and G2 are provided. is there. In other words, the energizing coil 5 is divided into two parts, a lower coil and an upper coil, and each can be supplied with an alternating current independently.

本発明の第三の実施形態における単結晶の製造の概略を、SiC単結晶の製造について次に説明する。
第一の坩堝部材2と第二の坩堝部材3から構成される坩堝内の自由空間10に珪素を含む固体原料を約1kg装入する。単結晶製造装置、高周波電源等の冷却を必要とする部分に冷却水を供給する。チャンバー11内を約0.13Paまで減圧した後、チャンバー1内に主にArガスから成る気体12を供給すると共に、供給分を排気し、チャンバー11内の圧力を約0.11MPaに維持する。
The outline of the production of the single crystal in the third embodiment of the present invention will be described next with respect to the production of the SiC single crystal.
About 1 kg of a solid material containing silicon is charged into the free space 10 in the crucible composed of the first crucible member 2 and the second crucible member 3. Cooling water is supplied to parts that require cooling, such as single crystal manufacturing equipment and high-frequency power supplies. After depressurizing the inside of the chamber 11 to about 0.13 Pa, the gas 12 mainly composed of Ar gas is supplied into the chamber 1 and the supply is exhausted to maintain the pressure in the chamber 11 at about 0.11 MPa.

高周波電源G1から下側の通電コイル5に周波数10kHz、出力100kWの交流電流を供給する。数分で固体原料は昇温し、溶融して融液となる。その際、通電コイル5への交流の通電により誘起されるローレンツ力により、融液の周囲が第一の坩堝部材2の側壁と接触しない状態でドーム状に隆起して保持されると共に、電磁攪拌の影響を受けて攪拌される。   An alternating current having a frequency of 10 kHz and an output of 100 kW is supplied from the high frequency power supply G1 to the lower energizing coil 5. In a few minutes, the solid raw material is heated and melted into a melt. At that time, by the Lorentz force induced by the energization of alternating current to the energizing coil 5, the periphery of the melt is raised and held in a dome shape without contacting the side wall of the first crucible member 2, and electromagnetic stirring is performed. Stirred under the influence of

この状態で運転を続けると、融液中に第二の坩堝部材から炭素が溶解し、SiCが溶解した液体原料4が生成する。通電されている下側の通電コイルは液体原料4の下側を加熱するため、液体原料4には、上部が下部より低温になる温度勾配が形成される。運転を約5時間続けて、液体原料中のSiC濃度が飽和濃度に近づいた後、6H−SiC単結晶の(11−20)方向が結晶保持具1の移動方向に対して平行になるように単結晶基板7を結晶保持具1の先端に取り付け、液体原料4とは接触しない位置まで坩堝の自由空間内に挿入する(図5A参照)。   When the operation is continued in this state, carbon is dissolved from the second crucible member in the melt, and the liquid raw material 4 in which SiC is dissolved is generated. Since the lower energization coil that is energized heats the lower side of the liquid raw material 4, a temperature gradient is formed in the liquid raw material 4 so that the upper portion has a lower temperature than the lower portion. The operation is continued for about 5 hours, and after the SiC concentration in the liquid raw material approaches the saturated concentration, the (11-20) direction of the 6H—SiC single crystal is parallel to the moving direction of the crystal holder 1. The single crystal substrate 7 is attached to the tip of the crystal holder 1 and inserted into the free space of the crucible until it does not come into contact with the liquid raw material 4 (see FIG. 5A).

続いて、図5Dに示すように、高周波電源G2の運転を開始して、上側の通電コイルの電流を供給し、単結晶基板7や液体原料4の頂点(つまり、結晶成長部位)の近傍を誘導加熱する。結晶保持具1の先端付近の温度が、第一の態様で説明したような所定の温度に到達した後、結晶保持具1の先端に取り付けてある単結晶基板7が、ドーム状に隆起した液体原料4の頂点に接触するまで結晶保持具1を下降させる(図5B参照)。基板7が装着されている結晶保持具1の先端付近が予め加熱されているため、液体原料4との接触時に基板7に加わる熱衝撃は小さく、亀裂発生が防止される。   Subsequently, as shown in FIG. 5D, the operation of the high frequency power supply G2 is started, the current of the upper energizing coil is supplied, and the vicinity of the apex (that is, the crystal growth site) of the single crystal substrate 7 or the liquid raw material 4 is observed. Induction heating. After the temperature in the vicinity of the tip of the crystal holder 1 reaches a predetermined temperature as described in the first embodiment, the single crystal substrate 7 attached to the tip of the crystal holder 1 is raised in a dome shape. The crystal holder 1 is lowered until it contacts the apex of the raw material 4 (see FIG. 5B). Since the vicinity of the tip of the crystal holder 1 on which the substrate 7 is mounted is preheated, the thermal shock applied to the substrate 7 when in contact with the liquid raw material 4 is small, and cracking is prevented.

単結晶基板7が液体原料4に接触してから5分経過した後、図5Dに示すように、高周波電源G2の運転を停止する。それにより、再び高周波電源G1だけによる運転、つまり、下側の通電コイルのみによる誘導加熱(液体原料4の下側が加熱)になり、液体原料4の隆起した頂点の温度が低くなる温度勾配が形成され、この頂点に接触した基板7上に結晶が成長する駆動力が生じ、結晶成長が起こる。   After 5 minutes have passed since the single crystal substrate 7 contacts the liquid raw material 4, the operation of the high frequency power supply G2 is stopped as shown in FIG. 5D. As a result, the operation with only the high frequency power source G1 is performed again, that is, induction heating (only the lower side of the liquid raw material 4 is heated) using only the lower energizing coil, and a temperature gradient is formed in which the temperature of the raised vertex of the liquid raw material 4 is lowered. Then, a driving force for growing a crystal is generated on the substrate 7 in contact with the apex, and crystal growth occurs.

この後、平均約500μm/hの速度で結晶保持具1を引き上げながら、100時間の連続運転を行って、基板7上にSiC結晶を成長させる。引き上げ初期には引き上げ速度を適宜増減する。その結果、長さ約50mm、直径約50mmの成長結晶15が得られた(図5C参照)。この間、液体原料4は第二の坩堝部材3および気体12とは常時接触していたが、第一の坩堝部材2と接触することは無かった。   Thereafter, a SiC crystal is grown on the substrate 7 by continuously operating for 100 hours while pulling up the crystal holder 1 at an average speed of about 500 μm / h. In the initial stage of raising, the raising speed is appropriately increased or decreased. As a result, a grown crystal 15 having a length of about 50 mm and a diameter of about 50 mm was obtained (see FIG. 5C). During this time, the liquid raw material 4 was always in contact with the second crucible member 3 and the gas 12, but was not in contact with the first crucible member 2.

所定の長さまで結晶が成長を完了し、結晶成長を停止する段階になると、図5Dに示すように、高周波電源G2の運転を再開して、結晶成長部位近傍を誘導加熱する。それにより、成長結晶15が昇温される。成長結晶15が所定の温度に到達したら、これがドーム状に隆起した液体原料4の頂点から離脱するまで結晶保持具1を上昇させる。この後、高周波電源G2の運転を停止して、下側の通電コイルのみが作動するようにして、液体原料4を溶融状態に保持する。   When the crystal completes growing to a predetermined length and stops the crystal growth, as shown in FIG. 5D, the operation of the high-frequency power source G2 is resumed to heat the vicinity of the crystal growth site. Thereby, the growth crystal 15 is heated. When the grown crystal 15 reaches a predetermined temperature, the crystal holder 1 is raised until the grown crystal 15 separates from the apex of the liquid raw material 4 raised in a dome shape. Thereafter, the operation of the high-frequency power supply G2 is stopped, and only the lower energizing coil is operated to keep the liquid raw material 4 in a molten state.

この第三の実施形態を適用して得られた炭化珪素の単結晶を研磨して、顕微鏡観察したところ、結晶に亀裂の発生は認めらず、健全であった。また、多形転位や多結晶も含んでいなかった。   When a single crystal of silicon carbide obtained by applying the third embodiment was polished and observed with a microscope, no cracks were observed in the crystal and it was sound. Also, polymorphic dislocations and polycrystals were not included.

結晶成長開始前後および/または終了前後の補助加熱を非接触加熱手段である電磁誘導加熱により行う上記第一〜第三の実施形態は、成長結晶15との間に格子不整合が生じない単結晶基板7を用いるホモエピタキシャル成長に特に好適である。   The first to third embodiments in which the auxiliary heating before and after the start of crystal growth and / or before and after the end by electromagnetic induction heating as a non-contact heating means is a single crystal in which no lattice mismatch occurs with the grown crystal 15 This is particularly suitable for homoepitaxial growth using the substrate 7.

図6は、CC−LPE法における成長初期の結晶亀裂の発生防止に有効な本発明の第四の実施形態を示す縦断面図である。図中、A、B、Cは、それぞれ成長開始前、成長開始直後、成長中における結晶保持具1、補助加熱・成分調整治具13、液体原料4の間の位置関係を示す。また、D、Eは、図6Aのa−a断面、すなわち、結晶保持具1の外周を取り囲んでいる補助加熱・成分調整治具13の断面の二つの形状例を示す。図6Dに示す形状例は、補助加熱・成分調整治具13が分割構造のため、図6Eに示す形状例に比べて、取り扱いが容易である。   FIG. 6 is a longitudinal sectional view showing a fourth embodiment of the present invention effective for preventing the occurrence of crystal cracks at the initial stage of growth in the CC-LPE method. In the figure, A, B, and C indicate the positional relationship among the crystal holder 1, auxiliary heating / component adjustment jig 13, and liquid raw material 4 before the start of growth, immediately after the start of growth, and during the growth, respectively. D and E show two shape examples of the cross section along line aa in FIG. 6A, that is, the cross section of the auxiliary heating / component adjusting jig 13 surrounding the outer periphery of the crystal holder 1. The shape example shown in FIG. 6D is easier to handle than the shape example shown in FIG. 6E because the auxiliary heating / component adjustment jig 13 has a divided structure.

図1、2に示した基本的な形態と第四の実施形態との相違は、補助加熱・成分調整治具13の有無にある。本発明の第四の実施形態では、略管状の補助加熱・成分調整治具13が結晶保持具1を包囲するように配置されている(図6A参照)。この補助加熱・成分調整治具13は、昇降(上下移動)が可能であると同時に、その材質が液体原料4の組成の一部を構成する元素を含んでいる。補助加熱・成分調整治具13を下降させて、その先端を液体原料4に浸漬すると(図6B参照)、補助加熱・成分調整治具13の先端が液体原料4からの伝熱により加熱されて昇温する。この時、治具13は、隆起している液体原料4の頂点より外側、従って、頂点が低温の温度勾配において頂点より高温になっている液体原料4と接触する。その結果、補助加熱・成分調整治具13で囲まれている液体原料4の頂点や単結晶基板7近傍の結晶保持具1の先端付近が、治具13からの輻射熱により加熱されて、昇温する。同時に、補助加熱・成分調整治具13の先端が液体原料4に溶解して、液体原料4の一部の組成を調整することが可能である。なお、補助加熱・成分調整治具13の主要な組成は炭素である。   The difference between the basic form shown in FIGS. 1 and 2 and the fourth embodiment is the presence or absence of the auxiliary heating / component adjustment jig 13. In the fourth embodiment of the present invention, a substantially tubular auxiliary heating / component adjusting jig 13 is arranged so as to surround the crystal holder 1 (see FIG. 6A). The auxiliary heating / component adjusting jig 13 can be moved up and down (moved up and down), and at the same time, the material contains an element constituting a part of the composition of the liquid raw material 4. When the auxiliary heating / component adjustment jig 13 is lowered and its tip is immersed in the liquid raw material 4 (see FIG. 6B), the tip of the auxiliary heating / component adjustment jig 13 is heated by heat transfer from the liquid raw material 4. Raise the temperature. At this time, the jig 13 comes into contact with the liquid source 4 that is outside the apex of the liquid source 4 that is raised, and thus the apex is higher than the apex in the low temperature gradient. As a result, the apex of the liquid raw material 4 surrounded by the auxiliary heating / component adjusting jig 13 and the vicinity of the tip of the crystal holder 1 near the single crystal substrate 7 are heated by the radiant heat from the jig 13 to raise the temperature. To do. At the same time, the tip of the auxiliary heating / component adjusting jig 13 can be dissolved in the liquid raw material 4 to adjust a part of the composition of the liquid raw material 4. The main composition of the auxiliary heating / component adjusting jig 13 is carbon.

本発明の第四の実施形態における単結晶の製造の概略を、窒化アルミニウム(AlN)単結晶の製造について次に説明する。
第一の坩堝部材2と第二の坩堝部材3から構成される坩堝内の自由空間10にアルミニウムを含む固体原料を約1kg装入する。単結晶製造装置、高周波電源等の冷却を必要とする部分に冷却水を供給する。チャンバー11内を約0.13Paまで減圧した後、チャンバー11内に主に窒素ガスから成る気体12を供給すると共に、供給分を排気し、チャンバー11内の圧力を約0.11MPaに維持する。
The outline of the production of the single crystal in the fourth embodiment of the present invention will be described next with respect to the production of the aluminum nitride (AlN) single crystal.
About 1 kg of a solid raw material containing aluminum is charged into the free space 10 in the crucible composed of the first crucible member 2 and the second crucible member 3. Cooling water is supplied to parts that require cooling, such as single crystal manufacturing equipment and high-frequency power supplies. After reducing the pressure in the chamber 11 to about 0.13 Pa, the gas 12 mainly composed of nitrogen gas is supplied into the chamber 11 and the supply is exhausted to maintain the pressure in the chamber 11 at about 0.11 MPa.

高周波電源を用いて、通電コイル5に周波数5kHz、出力120kWの交流電流を供給する。数分で、固体原料は昇温して溶融し、融液になる。その際、融液は、ローレンツ力により融液の周囲が第一の坩堝部材2の側壁と接触しない状態でドーム状に隆起して保持されると共に、電磁攪拌の影響を受けて攪拌される。   An AC current having a frequency of 5 kHz and an output of 120 kW is supplied to the energizing coil 5 using a high-frequency power source. In a few minutes, the solid raw material is heated to melt and become a melt. At that time, the melt is raised and held in a dome shape in a state where the periphery of the melt is not in contact with the side wall of the first crucible member 2 due to the Lorentz force, and is stirred under the influence of electromagnetic stirring.

この状態で運転を続けると、融液中に第二の坩堝部材から炭素が溶解すると共に、雰囲気ガスから窒素が融液に溶解し、AlNが溶解した液体原料4が生成する。通電コイル5が隆起した液体原料4の頂部より下側に配置されているため、液体原料4には、上部が下部より低温になる温度勾配が形成される。   When the operation is continued in this state, carbon is dissolved from the second crucible member in the melt, and nitrogen is dissolved in the melt from the atmospheric gas, so that a liquid raw material 4 in which AlN is dissolved is generated. Since the energizing coil 5 is disposed below the top of the raised liquid material 4, a temperature gradient is formed in the liquid material 4 so that the upper part has a lower temperature than the lower part.

運転を約5時間続けて、液体原料中のAlN濃度が飽和濃度に近づいた後、6H−SiC単結晶の(11−20)方向が結晶保持具1の移動方向に対して平行になるように単結晶基板7を結晶保持具1に配置し、液体原料4とは接触しない位置まで補助加熱・成分調整治具13の中に挿入する(図6A参照)。続いて、液体原料4に先端が約10mm浸漬する程度の位置に補助加熱・成分調整治具13を下降させる。この結果、補助加熱・成分調整治具13の先端が加熱、昇温され、その内部に位置する結晶保持具1の先端と基板7、さらには液体原料4の頂部付近(すなわち、結晶成長部位近傍)の温度が上昇する。同時に、治具13から炭素が液体原料4に溶解する。結晶成長部位近傍の温度(約1400℃)が所定の温度(約1900℃)に到達したら、結晶保持具1の先端に取り付けられた単結晶基板7がドーム状に隆起した液体原料4の頂点に接触するまで結晶保持具1を下降させる(図6B参照)。予め基板付近が加熱されているため、接触により基板に加わる熱衝撃が小さく、基板の亀裂発生は防止される。   The operation is continued for about 5 hours, and after the AlN concentration in the liquid raw material approaches the saturated concentration, the (11-20) direction of the 6H—SiC single crystal is parallel to the moving direction of the crystal holder 1. The single crystal substrate 7 is placed on the crystal holder 1 and inserted into the auxiliary heating / component adjustment jig 13 until it does not come into contact with the liquid raw material 4 (see FIG. 6A). Subsequently, the auxiliary heating / component adjustment jig 13 is lowered to a position where the tip is immersed in the liquid raw material 4 by about 10 mm. As a result, the tip of the auxiliary heating / component adjusting jig 13 is heated and heated, and the tip of the crystal holder 1 and the substrate 7 positioned inside the auxiliary heating / component adjusting jig 13 are near the top of the liquid raw material 4 (that is, near the crystal growth site). ) Temperature rises. At the same time, carbon is dissolved in the liquid raw material 4 from the jig 13. When the temperature in the vicinity of the crystal growth site (about 1400 ° C.) reaches a predetermined temperature (about 1900 ° C.), the single crystal substrate 7 attached to the tip of the crystal holder 1 rises to the apex of the liquid raw material 4 that rises like a dome. The crystal holder 1 is lowered until contact is made (see FIG. 6B). Since the vicinity of the substrate is heated in advance, the thermal shock applied to the substrate by the contact is small, and cracking of the substrate is prevented.

単結晶基板7が液体原料4に接触してから5分経過した後、補助加熱・成分調整治具13だけを上昇させて、この治具13を液体原料4から離脱させる。基板7の近傍において治具13からアルミニウムを含む液体原料4に適量の炭素が溶解し、この部分の炭素濃度が高まるので、ヘテロエピタキシャル基板である6H−SiC単結晶基板7がAlN溶液でである液体原料4に溶解することはない。   After 5 minutes have passed since the single crystal substrate 7 contacts the liquid raw material 4, only the auxiliary heating / component adjustment jig 13 is raised and the jig 13 is detached from the liquid raw material 4. Since an appropriate amount of carbon is dissolved from the jig 13 in the liquid raw material 4 containing aluminum in the vicinity of the substrate 7 and the carbon concentration in this portion is increased, the 6H—SiC single crystal substrate 7 which is a heteroepitaxial substrate is an AlN solution. It does not dissolve in the liquid raw material 4.

補助加熱・成分調整治具13を引き上げて液体原料4から離脱させると、液体原料4による治具13の加熱が停止し、結晶成長部位(液体原料4の頂点に接触した結晶保持具1の先端の基板7近傍の部位)は自由空間に露出される。その結果、この部分の温度が下がって、治具13を液体原料4に浸漬する前と同様に、液体原料4にはその頂点が低温となる上下方向の温度勾配が形成され、基板7へのAlN結晶成長の駆動力が発生する。   When the auxiliary heating / component adjusting jig 13 is pulled up and separated from the liquid raw material 4, the heating of the jig 13 by the liquid raw material 4 stops, and the crystal growth site (the tip of the crystal holder 1 in contact with the apex of the liquid raw material 4). The portion in the vicinity of the substrate 7) is exposed to free space. As a result, the temperature of this portion is lowered, and a temperature gradient in the vertical direction is formed in the liquid raw material 4 at a low temperature at the top thereof, as before the jig 13 is immersed in the liquid raw material 4. A driving force for AlN crystal growth occurs.

この後、平均約50μm/hの速度で結晶保持具1を引き上げながら、6時間の連続運転を行って、基板7上にAlN結晶15を成長させる(図6C参照)。引き上げの初期に引き上げ速度を適宜増減する。その結果、15mm角断面の6H−SiC単結晶基板7上に成長厚さ約300μmでヘテロエピタキシャル成長したAlN単結晶が得られた。   Thereafter, the AlN crystal 15 is grown on the substrate 7 by performing continuous operation for 6 hours while pulling up the crystal holder 1 at an average speed of about 50 μm / h (see FIG. 6C). The pulling speed is appropriately increased or decreased at the initial stage of the pulling. As a result, an AlN single crystal heteroepitaxially grown at a growth thickness of about 300 μm on the 6H—SiC single crystal substrate 7 having a 15 mm square cross section was obtained.

図示していないが、所定の長さまで結晶が成長を完了し、結晶成長を停止する段階になった場合にも、補助加熱・成分調整治具13を活用して、成長結晶15の亀裂発生を防止することができる。   Although not shown in the figure, even when the crystal has been grown to a predetermined length and is in a stage where the crystal growth is stopped, the auxiliary heating / component adjustment jig 13 is used to generate cracks in the grown crystal 15. Can be prevented.

それには、まず、補助加熱・成分調整治具13を、その先端が液体原料4に約10mm浸漬する程度の位置まで下降させる。これにより、結晶保持具1とその先端の成長結晶15は治具13に包囲される。液体原料4に浸漬された補助加熱・成分調整治具13の先端は液体原料4による伝熱で加熱されて昇温し、その内部の成長結晶15の成長部位付近が昇温し、液体原料4の温度勾配が消失して結晶成長が止まる。続いて、成長結晶15が隆起した液体原料4の頂点から離脱するまで結晶保持具1を上昇させる。この後、補助加熱・成分調整治具13を上昇させて、補助加熱・成分調整治具13と液体原料4を離脱させる。こうして、成長結晶を取り出す際にも、結晶への熱衝撃を抑制して、その亀裂発生を防止することができる。   For this purpose, first, the auxiliary heating / component adjusting jig 13 is lowered to a position where the tip of the auxiliary heating / component adjusting jig 13 is immersed in the liquid raw material 4 by about 10 mm. Thereby, the crystal holder 1 and the growth crystal 15 at the tip thereof are surrounded by the jig 13. The tip of the auxiliary heating / component adjusting jig 13 immersed in the liquid raw material 4 is heated by the heat transfer by the liquid raw material 4 to increase the temperature, and the vicinity of the growth site of the growth crystal 15 inside the liquid raw material 4 is heated. The temperature gradient disappears and crystal growth stops. Subsequently, the crystal holder 1 is raised until the grown crystal 15 separates from the top of the raised liquid material 4. Thereafter, the auxiliary heating / component adjustment jig 13 is raised, and the auxiliary heating / component adjustment jig 13 and the liquid raw material 4 are separated. Thus, even when the grown crystal is taken out, the thermal shock to the crystal can be suppressed and the occurrence of cracks can be prevented.

この第四の実施形態を適用して得られた窒化アルミニウムの単結晶を研磨して、顕微鏡観察したところ、結晶に亀裂の発生は認めらず、健全であった。また、多形転位や多結晶も含んでいなかった。   When a single crystal of aluminum nitride obtained by applying the fourth embodiment was polished and observed under a microscope, the crystal was sound with no cracks observed. Also, polymorphic dislocations and polycrystals were not included.

[第五の実施形態]
図7は、CC−LPE法における成長初期の結晶亀裂の発生防止に有効な本発明の第五の実施形態を示す縦断面図である。図中、A、B、Cはそれぞれ、成長開始前、成長開始直後、成長中における結晶保持具1、通電コイル5、補助加熱・成分調整治具13、液体原料4の間の位置関係を示す。
[Fifth embodiment]
FIG. 7 is a longitudinal sectional view showing a fifth embodiment of the present invention effective for preventing the occurrence of crystal cracks at the initial stage of growth in the CC-LPE method. In the figure, A, B, and C respectively indicate the positional relationship among the crystal holder 1, the energizing coil 5, the auxiliary heating / component adjusting jig 13, and the liquid raw material 4 before growth start, immediately after growth start, and during growth. .

第五の実施形態は、前述した第一および第二の実施形態で採用した電磁誘導加熱と、第四の実施形態で採用した補助加熱・成分調整を組み合わせた実施形態である。本発明の第五の実施形態における通電コイル昇降治具14は、通電コイル5を上下に昇降させ、加熱を必要とする部分にコイル5を配置することができる。この通電昇降治具14を配置する代わりに、前述した第三の態様で採用した、独立した高周波電源に接続された上下二つの通電コイルを配置することにより、第五の実施形態を構成することも可能である。   The fifth embodiment is an embodiment in which the electromagnetic induction heating employed in the first and second embodiments described above and the auxiliary heating / component adjustment employed in the fourth embodiment are combined. The energizing coil raising / lowering jig 14 in the fifth embodiment of the present invention can move the energizing coil 5 up and down and arrange the coil 5 in a portion requiring heating. Instead of arranging this energization raising / lowering jig 14, the fifth embodiment is constituted by arranging two upper and lower energization coils connected to independent high-frequency power sources adopted in the third aspect described above. Is also possible.

補助加熱・成分調整治具13は、第四の実施形態において説明したように、結晶保持具1の外周を囲んでおり、上下移動が可能で、補助加熱・成分調整治具13の先端を液体原料4に浸漬させると、補助加熱・成分調整治具13の先端が加熱、昇温され、補助加熱・成分調整治具13で囲まれる液体原料4と単結晶基板7の界面近傍を加熱、昇温することができると同時に、補助加熱・成分調整治具13の先端が液体原料4に溶解して、液体原料4の一部の組成を調整することが可能である。   As described in the fourth embodiment, the auxiliary heating / component adjustment jig 13 surrounds the outer periphery of the crystal holder 1 and can be moved up and down. When immersed in the raw material 4, the tip of the auxiliary heating / component adjusting jig 13 is heated and heated, and the vicinity of the interface between the liquid raw material 4 and the single crystal substrate 7 surrounded by the auxiliary heating / component adjusting jig 13 is heated and raised. At the same time, the tip of the auxiliary heating / component adjusting jig 13 can be dissolved in the liquid raw material 4 to adjust a part of the composition of the liquid raw material 4.

本発明の第五の実施形態における単結晶の製造の概略を、AlN単結晶の製造について次に説明する。
まず、第四の実施形態について説明したように、約5時間の原料の溶融運転を行って、融液中にCとNを溶解させて、AlNが略飽和濃度になった原料溶液4を形成する。この原料溶液4は、交流電流の印加に起因するローレンツ力によりドーム状に隆起し、かつ通電コイル5が隆起頂点より下側に位置するため、隆起頂点が低温となる温度勾配を生じている。
The outline of the production of the single crystal in the fifth embodiment of the present invention will be described next for the production of the AlN single crystal.
First, as described in the fourth embodiment, the raw material is melted for about 5 hours, and C and N are dissolved in the melt to form the raw material solution 4 in which AlN has a substantially saturated concentration. To do. This raw material solution 4 is raised in a dome shape by the Lorentz force resulting from the application of an alternating current, and the energizing coil 5 is located below the raised vertex, so that a temperature gradient is generated at which the raised vertex becomes a low temperature.

その後、6H−SiC単結晶の(11−20)方向が結晶保持具1の移動方向に対して平行になるように単結晶基板7を結晶保持具1に配置する(図7A参照)。続いて、通電コイル昇降治具14を運転して、単結晶基板7が効果的にコイル5からの高周波誘導により加熱される位置(例、図7Bに示すように、コイル高さの中央付近が液体原料の隆起頂点と同じ高さになる位置)まで通電コイル5を上昇させる。これと前後して、補助加熱・成分調整治具13を、図7Bに示すように、その先端が液体原料4に約10mm浸漬する程度まで下降させる。この結果、補助加熱・成分調整治具13の先端が加熱されて昇温する。   Thereafter, the single crystal substrate 7 is arranged on the crystal holder 1 so that the (11-20) direction of the 6H—SiC single crystal is parallel to the moving direction of the crystal holder 1 (see FIG. 7A). Subsequently, the energizing coil raising / lowering jig 14 is operated, and the position where the single crystal substrate 7 is effectively heated by the high frequency induction from the coil 5 (for example, as shown in FIG. The energizing coil 5 is raised to a position where the liquid raw material is at the same height as the raised apex of the liquid material. Before and after this, the auxiliary heating / component adjustment jig 13 is lowered to the extent that its tip is immersed in the liquid raw material 4 by about 10 mm as shown in FIG. 7B. As a result, the tip of the auxiliary heating / component adjusting jig 13 is heated to raise the temperature.

本実施形態では、上昇させた通電コイル5からの誘導加熱と、加熱された補助加熱・成分調整治具13からの輻射熱との両方により単結晶基板7近傍(すなわち、結晶成長部位近傍)が加熱されるため、この部分の所定温度への昇温(約1400℃から約1900℃へ)が、上述した実施形態より短い時間で達成される。また、第四の実施形態について述べたように、液体原料に浸漬された補助加熱・成分調整治具13の先端部分の一部が液体原料4に溶解し、基板7近傍の液体原料4の炭素濃度が高まる。結晶成長部位近傍の温度が所定温度に達したら、結晶保持具1の先端に取り付けた単結晶基板7が隆起した液体原料4の頂点に接触するまで結晶保持具1を下降させる(図7B参照)。   In the present embodiment, the vicinity of the single crystal substrate 7 (that is, the vicinity of the crystal growth site) is heated by both the induction heating from the raised energization coil 5 and the radiant heat from the heated auxiliary heating / component adjustment jig 13. Therefore, the temperature rise to a predetermined temperature (from about 1400 ° C. to about 1900 ° C.) in this portion is achieved in a shorter time than the above-described embodiment. Further, as described in the fourth embodiment, a part of the tip portion of the auxiliary heating / component adjusting jig 13 immersed in the liquid raw material is dissolved in the liquid raw material 4, and the carbon of the liquid raw material 4 in the vicinity of the substrate 7. Concentration increases. When the temperature in the vicinity of the crystal growth site reaches a predetermined temperature, the crystal holder 1 is lowered until the single crystal substrate 7 attached to the tip of the crystal holder 1 comes into contact with the apex of the raised liquid raw material 4 (see FIG. 7B). .

単結晶基板7が液体原料4に接触してから5分経過した後、通電コイル昇降治具14を運転して通電コイル5を元の位置まで下降させると共に、補助加熱・成分調整治具13を上昇させて、補助加熱・成分調整治具13を液体原料4から離脱させる。この時、アルミニウムを含む液体原料4には適量の炭素が溶解していたので、6H−SiC単結晶基板7が液体原料4に溶解することはない。   After 5 minutes have passed since the single crystal substrate 7 contacts the liquid raw material 4, the energizing coil raising / lowering jig 14 is operated to lower the energizing coil 5 to the original position, and the auxiliary heating / component adjusting jig 13 is installed. The auxiliary heating / component adjustment jig 13 is separated from the liquid raw material 4 by raising the temperature. At this time, since the appropriate amount of carbon was dissolved in the liquid raw material 4 containing aluminum, the 6H—SiC single crystal substrate 7 is not dissolved in the liquid raw material 4.

この後、平均約50μm/hの速度で結晶保持具1を引き上げながら、100時間の連続運転を行って、基板上にAlN結晶を成長させる。引き上げの初期には引き上げ速度を適宜増減する。その結果、長さ約5mm、直径約50mmの窒化アルミニウム結晶が得られた。得られた窒化アルミニウムの単結晶を研磨して、顕微鏡観察したところ、結晶に亀裂の発生は認めらず、健全であった。また、多形転位や多結晶も含んでいなかった。   Thereafter, while the crystal holder 1 is pulled up at an average speed of about 50 μm / h, continuous operation is performed for 100 hours to grow AlN crystals on the substrate. At the initial stage of raising, the raising speed is appropriately increased or decreased. As a result, an aluminum nitride crystal having a length of about 5 mm and a diameter of about 50 mm was obtained. When the obtained single crystal of aluminum nitride was polished and observed with a microscope, cracks were not observed in the crystal and it was sound. Also, polymorphic dislocations and polycrystals were not included.

結晶成長開始前後および/または終了前後の補助加熱を、補助加熱・成分調整治具13により行う上記第四および第五の実施形態は、単結晶基板7が成長結晶15と異なる物質であって、製造する単結晶(成長結晶15)との間に格子不整合が生ずるヘテロエピタキシャル成長に特に好適であるが、成長結晶15との間に格子不整合が生じない単結晶基板7を用いるホモエピタキシャル成長の場合にも適用可能である。   In the fourth and fifth embodiments in which the auxiliary heating before and after the start of crystal growth and / or before and after the end is performed by the auxiliary heating / component adjusting jig 13, the single crystal substrate 7 is a substance different from the grown crystal 15, Particularly suitable for heteroepitaxial growth in which lattice mismatch occurs with the single crystal to be manufactured (growth crystal 15), but in the case of homoepitaxial growth using the single crystal substrate 7 in which no lattice mismatch occurs with the growth crystal 15 It is also applicable to.

以上に説明したように、本発明は、ローレンツ力を利用して融液を隆起させ誘導加熱を促進すると共に、隆起した融液の頂点付近に種結晶を接触させて種結晶上に液相エピタキシャル成長によりバルク単結晶を成長させる方法において、成長初期および/または末期における結晶(種結晶および/または成長結晶)の熱衝撃を低減して、成長結晶に亀裂が発生するのを防止することができる。   As described above, the present invention uses the Lorentz force to raise the melt and promote induction heating, and the seed crystal is brought into contact with the vicinity of the apex of the raised melt to cause liquid phase epitaxial growth on the seed crystal. In the method for growing a bulk single crystal, the thermal shock of the crystal (seed crystal and / or growth crystal) at the initial stage and / or the end stage of growth can be reduced to prevent the growth crystal from cracking.

基本的な冷却坩堝法液相エピタキシャル成長(CC−LPE)法に用いる単結晶製造装置を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the single-crystal manufacturing apparatus used for the basic cooling crucible method liquid phase epitaxial growth (CC-LPE) method. 図1の坩堝構造例を示す一部破断斜視図。The partially broken perspective view which shows the crucible structure example of FIG. 本発明のCC−LPE法による単結晶成長初期の結晶亀裂発生防止例の様子を模式的に示す単結晶製造装置の縦断面図。A:成長開始前、B:成長開始直後、C:成長中。The longitudinal cross-sectional view of the single crystal manufacturing apparatus which shows typically the mode of the crystal crack generation | occurrence | production prevention example of the single crystal growth initial stage by CC-LPE method of this invention. A: Before starting growth, B: Immediately after starting growth, C: Growing. 本発明のCC−LPE法による単結晶成長末期の結晶亀裂発生防止例の様子を模式的に示す単結晶製造装置の縦断面図。A:成長末期、B:成長停止直前、C:成長停止直後。The longitudinal cross-sectional view of the single crystal manufacturing apparatus which shows typically the mode of the crystal crack generation | occurrence | production prevention example of the single crystal growth end by the CC-LPE method of this invention. A: end of growth, B: immediately before growth stop, C: immediately after growth stop. 冷却坩堝法液相エピタキシャル成長(CC−LPE)における本発明による成長初期の結晶亀裂発生防止例3を模式的に示す縦断面図、A:成長開始前、B:成長開始直後、C:成長中、D:二つの高周波電源G1,G2の出力の時間変化。Longitudinal cross-sectional view schematically showing an example of prevention of generation of crystal cracks in the initial stage of growth according to the present invention in cooling crucible liquid phase epitaxial growth (CC-LPE), A: before growth start, B: immediately after growth start, C: during growth, D: Time change of outputs of the two high-frequency power supplies G1 and G2. 冷却坩堝法液相エピタキシャル成長(CC−LPE)における本発明による成長初期の結晶亀裂発生防止例4を模式的に示す図、A:成長開始前、B:成長開始直後、C:成長中、D:a−a断面の1例、E:a−a断面の他の例。The figure which shows typically the crystal crack generation | occurrence | production prevention example 4 of the growth initial stage by this invention in cooling crucible method liquid phase epitaxial growth (CC-LPE), A: Before growth start, B: Immediately after growth start, C: During growth, D: One example of an aa cross section, E: Another example of an aa cross section. 冷却坩堝法液相エピタキシャル成長(CC−LPE)における本発明による成長初期の結晶亀裂発生防止例5を模式的に示す縦断面図、A:成長開始前、B:成長開始直後、C:成長中。Longitudinal sectional views schematically showing a growth crack prevention example 5 in the early stage of growth according to the present invention in cooling crucible liquid phase epitaxial growth (CC-LPE), A: before growth start, B: immediately after growth start, C: during growth.

符号の説明Explanation of symbols

1:結晶保持具、2:第一の坩堝部材(略側壁部)、3:第二の坩堝部材(略底面部)、4:液体原料(融液)、5:通電コイル(常伝導コイル)、6:スリット、7:単結晶基板(種結晶)、8:セグメント、9:開口部、10:自由空間、11:チャンバー、12:気体、13:補助加熱・成分調整治具、14:通電コイル昇降治具、15:成長結晶、G1,G2:高周波電源、M:駆動機構 1: Crystal holder, 2: First crucible member (substantially sidewall portion), 3: Second crucible member (substantially bottom portion), 4: Liquid raw material (melt), 5: Energizing coil (normal conducting coil) , 6: slit, 7: single crystal substrate (seed crystal), 8: segment, 9: opening, 10: free space, 11: chamber, 12: gas, 13: auxiliary heating / component adjustment jig, 14: energization Coil lifting jig, 15: growth crystal, G1, G2: high frequency power supply, M: drive mechanism

Claims (18)

坩堝内で加熱された単結晶原料が溶解している融液に種結晶を接触させ、前記融液から種結晶を引き上げることにより単結晶を成長させる単結晶製造方法であって、
常伝導コイルへの交流電流の通電により誘起されるローレンツ力を融液に作用させることにより融液の隆起と誘導加熱を行いながら、隆起した融液の頂点付近に種結晶を接触させて種結晶上に単結晶を成長させ、
さらに、結晶成長の開始前後の非定常過程において種結晶の近傍を補助加熱するか、および/または結晶成長の終了前後の非定常過程において成長結晶の近傍を補助加熱することにより、種結晶および/または成長結晶の熱流束量の急激な変化を防止する、
ことを特徴とする単結晶製造方法。
A method for producing a single crystal, comprising bringing a seed crystal into contact with a melt in which a single crystal raw material heated in a crucible is dissolved and pulling the seed crystal from the melt,
The seed crystal is brought into contact with the apex of the raised melt while the Lorentz force induced by the application of alternating current to the normal conducting coil is applied to the melt to cause the rise and induction heating of the melt. Grow a single crystal on top,
Further, by auxiliary heating in the vicinity of the seed crystal in an unsteady process before and after the start of crystal growth and / or in the vicinity of the growth crystal in an unsteady process before and after the end of crystal growth, the seed crystal and / or Or prevent rapid changes in the heat flux of the growing crystal,
A method for producing a single crystal.
前記補助加熱が加熱部位に対して非接触の加熱手段により行われる、請求項1記載の単結晶製造方法。   The method for producing a single crystal according to claim 1, wherein the auxiliary heating is performed by a heating means that is not in contact with the heated portion. 前記補助加熱が、融液を構成する組成の一部を材質とする治具を融液と接触させることにより行われ、その際に融液と接触した治具の一部が融液中に溶解して融液組成が変化する、請求項1記載の単結晶製造方法。   The auxiliary heating is performed by bringing a jig made of a part of the composition constituting the melt into contact with the melt, and at this time, a part of the jig in contact with the melt is dissolved in the melt. The single crystal manufacturing method according to claim 1, wherein the melt composition changes. 前記補助加熱が、加熱部位に対して非接触の加熱手段に加えて、融液を構成する組成の一部を材質とする治具を融液と接触させることによっても行われ、その際に融液と接触した治具の一部が融液中に溶解して融液組成が変化する、請求項1記載の単結晶製造方法。   The auxiliary heating is also performed by bringing a jig made of a part of the composition constituting the melt into contact with the melt in addition to a heating means that is not in contact with the heated portion. The method for producing a single crystal according to claim 1, wherein a part of the jig in contact with the liquid is dissolved in the melt to change the melt composition. 前記非接触の加熱手段が電磁誘導加熱である請求項2または4記載の単結晶製造方法。   The method for producing a single crystal according to claim 2 or 4, wherein the non-contact heating means is electromagnetic induction heating. 前記電磁誘導加熱が、種結晶および/または成長結晶の近傍を加熱するように位置を変動させた前記常伝導コイルにより行われる、請求項5記載の単結晶製造方法。   The single crystal manufacturing method according to claim 5, wherein the electromagnetic induction heating is performed by the normal conducting coil whose position is changed so as to heat the vicinity of the seed crystal and / or the grown crystal. 前記電磁誘導加熱が、種結晶および/または成長結晶の近傍を加熱する位置に設置された、前記常伝導コイルとは別の第二の常伝導コイルにより行われる、請求項5記載の単結晶製造方法。   The single crystal production according to claim 5, wherein the electromagnetic induction heating is performed by a second normal conductive coil different from the normal conductive coil installed at a position where the vicinity of the seed crystal and / or the grown crystal is heated. Method. 製造する単結晶との間に格子不整合が生じない種結晶を用いる、請求項2および5〜7のいずれかに記載の単結晶製造方法。   The single crystal manufacturing method according to any one of claims 2 and 5 to 7, wherein a seed crystal that does not cause lattice mismatch with the single crystal to be manufactured is used. 製造する単結晶との間に格子不整合が生ずる種結晶を用いる、請求項3〜7のいずれかに記載の単結晶製造方法。   The single crystal manufacturing method according to any one of claims 3 to 7, wherein a seed crystal in which lattice mismatch occurs with the single crystal to be manufactured is used. 単結晶原料の融液を保持する坩堝と、先端に種結晶を保持することができる昇降可能な結晶保持具とを備える単結晶製造装置であって、さらに、融液にローレンツ力を発生させて融液を隆起させると同時に誘導加熱することができる常伝導コイルと、結晶成長の開始前後および終了前後の非定常過程において、それぞれ種結晶および成長結晶の近傍を補助加熱することができる手段とを備えることを特徴とする、単結晶製造装置。   A single crystal manufacturing apparatus comprising a crucible for holding a melt of a single crystal raw material and a crystal holder capable of moving up and down that can hold a seed crystal at the tip, and further generating Lorentz force in the melt A normal coil capable of inductively heating the melt at the same time as it rises, and means for auxiliary heating in the vicinity of the seed crystal and the grown crystal in the unsteady process before and after the start and end of crystal growth, respectively. An apparatus for producing a single crystal, comprising: 前記補助加熱することができる手段が、加熱部位に対して非接触の加熱を行う手段から成る、請求項10記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 10, wherein the means capable of performing auxiliary heating comprises means for performing non-contact heating on a heating portion. 前記補助加熱することができる手段が、融液を構成する組成の一部を材質とする治具から成る、請求項10記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 10, wherein the auxiliary heating means includes a jig made of a part of the composition constituting the melt. 前記補助加熱することができる手段が、加熱部位に対して非接触の加熱を行う手段と、融液を構成する組成の一部を材質とする治具とから成る、請求項10記載の単結晶製造装置。   11. The single crystal according to claim 10, wherein the means capable of performing auxiliary heating includes means for performing non-contact heating on a heating portion and a jig made of a part of the composition constituting the melt. Manufacturing equipment. 前記非接触の加熱手段が電磁誘導加熱である、請求項12または13記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 12 or 13, wherein the non-contact heating means is electromagnetic induction heating. 前記非接触の加熱を行う手段が、前記常伝導コイルとこれを上下方向に移動させる通電コイル昇降治具とから成る、請求項11または13記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 11 or 13, wherein the means for performing the non-contact heating includes the normal coil and an energizing coil lifting jig for moving the normal coil in a vertical direction. 前記非接触の加熱を行う手段が、前記常伝導コイルの上方に配置された別の常伝導コイルである、請求項11または13記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 11 or 13, wherein the means for performing the non-contact heating is another normal coil disposed above the normal coil. 前記坩堝が、融液と接する第一の坩堝部材と、融液の側周面を包囲する導電性材質からなる第2の坩堝部材とから構成され、第2の坩堝部材の周囲に前記常伝導コイルが配置され、かつ第2の坩堝部材は前記常伝導コイルの巻き方向と略直交方向に複数のスリットを有し、さらに第2の坩堝部材を冷却する手段を有する、請求項10〜16のいずれかに記載の単結晶製造装置。   The crucible is composed of a first crucible member in contact with the melt and a second crucible member made of a conductive material surrounding a side peripheral surface of the melt, and the normal conduction is provided around the second crucible member. The coil according to claim 10, wherein the second crucible member has a plurality of slits in a direction substantially orthogonal to the winding direction of the normal coil, and further includes means for cooling the second crucible member. The single-crystal manufacturing apparatus in any one. 前記第一の坩堝部材の上面が、前記第2の坩堝部材から距離をおいて凹部を有する、請求項17記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 17, wherein an upper surface of the first crucible member has a recess at a distance from the second crucible member.
JP2005048853A 2005-02-24 2005-02-24 Single crystal manufacturing method and manufacturing apparatus Expired - Fee Related JP4400479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048853A JP4400479B2 (en) 2005-02-24 2005-02-24 Single crystal manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048853A JP4400479B2 (en) 2005-02-24 2005-02-24 Single crystal manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006232605A true JP2006232605A (en) 2006-09-07
JP4400479B2 JP4400479B2 (en) 2010-01-20

Family

ID=37040669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048853A Expired - Fee Related JP4400479B2 (en) 2005-02-24 2005-02-24 Single crystal manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4400479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995927B1 (en) 2008-10-16 2010-11-22 한국에너지기술연구원 A graphite crucible for electromagnetic induction melting silicon and apparatus for silicon melting and refining using the graphite crucible
CN115679449A (en) * 2022-12-30 2023-02-03 浙江晶越半导体有限公司 Composite crucible for growing silicon carbide crystals by sublimation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995927B1 (en) 2008-10-16 2010-11-22 한국에너지기술연구원 A graphite crucible for electromagnetic induction melting silicon and apparatus for silicon melting and refining using the graphite crucible
CN115679449A (en) * 2022-12-30 2023-02-03 浙江晶越半导体有限公司 Composite crucible for growing silicon carbide crystals by sublimation method

Also Published As

Publication number Publication date
JP4400479B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
JP5170127B2 (en) Method for producing SiC single crystal
JP2008100890A (en) Method for producing sic single crystal
JP4736401B2 (en) Method for producing silicon carbide single crystal
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP2011105575A (en) Single crystal pulling apparatus
JP2004083407A (en) Method and device for growing corundum single crystal
JP4389574B2 (en) SiC single crystal manufacturing method and manufacturing apparatus
JP4595909B2 (en) Method for producing aluminum nitride single crystal
JP6321836B2 (en) Silicon carbide crystal ingot, silicon carbide wafer, silicon carbide crystal ingot, and method of manufacturing silicon carbide wafer
JP4645496B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP4238450B2 (en) Method and apparatus for producing silicon carbide single crystal
JP6216060B2 (en) Crystal production method
JP4513749B2 (en) Method for producing single crystal
JP4400479B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP5761264B2 (en) Method for manufacturing SiC substrate
CN107532328B (en) Method for producing SiC single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP2013075793A (en) Apparatus and method for producing single crystal
JP4720672B2 (en) Method for producing aluminum nitride single crystal
WO2014103539A1 (en) Method for producing sic single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
WO2020241578A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL INGOT
JP2004043211A (en) PROCESS AND APPARATUS FOR PREPARING SiC SINGLE CRYSTAL
JP2016088812A (en) Method and apparatus for manufacturing silicon carbide single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees