JP2008288315A - PIN HOLE JUDGING METHOD OF SiC COATING - Google Patents

PIN HOLE JUDGING METHOD OF SiC COATING Download PDF

Info

Publication number
JP2008288315A
JP2008288315A JP2007130534A JP2007130534A JP2008288315A JP 2008288315 A JP2008288315 A JP 2008288315A JP 2007130534 A JP2007130534 A JP 2007130534A JP 2007130534 A JP2007130534 A JP 2007130534A JP 2008288315 A JP2008288315 A JP 2008288315A
Authority
JP
Japan
Prior art keywords
liquid
pinhole
water
amount
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130534A
Other languages
Japanese (ja)
Other versions
JP4973986B2 (en
Inventor
Yoshiro Hagiwara
好郎 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2007130534A priority Critical patent/JP4973986B2/en
Publication of JP2008288315A publication Critical patent/JP2008288315A/en
Application granted granted Critical
Publication of JP4973986B2 publication Critical patent/JP4973986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new judging method for easily and securely judging the presence of a pin hole of SiC coating in a porous graphite member coated with SiC. <P>SOLUTION: The judging method comprises a process for hermetically storing the porous graphite member coated with SiC and an initial amount of liquid in a hermetical storage member at a room temperature, a process for heating the hermetical storage member hermetically storing the porous graphite member and liquid and making the liquid to be vapor, a process for cooling the hermetical storage member to the room temperature after the heating process is terminated, a process for collecting liquid in the hermetical storage member and a process for comparing the initial amount of liquid with an amount of collected liquid. When the amount of collected liquid decreases below the initial amount of liquid, it is judged that the pin hole exists in SiC coating. When the amount of collected liquid does not decrease below the initial amount of liquid, it is judged that the pin hole does not exist in SiC coating. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、SiCで被覆された多孔質黒鉛部材におけるSiC被覆のピンホール有無判定方法に関するものである。   The present invention relates to a method for determining the presence or absence of pinholes in SiC coating in a porous graphite member coated with SiC.

半導体デバイスの製造工程においては、容器で外界と遮断した半導体基板上に反応性ガスを供給し、前記基板上に薄膜を形成する工程がある。これらの工程では原料ガスの供給により、前記基板上で気相反応を起こさせて薄膜を形成する気相成長装置が使用されている。   In the manufacturing process of a semiconductor device, there is a step of forming a thin film on the substrate by supplying a reactive gas onto a semiconductor substrate cut off from the outside by a container. In these steps, a vapor phase growth apparatus is used that forms a thin film by causing a gas phase reaction on the substrate by supplying a raw material gas.

それらの中でも特に、シリコン基板上にシリコンの単結晶を成長させるエピタキシャル成長装置はLSI等の半導体デバイスの製造工程で利用されている。この装置ではシリコン基板を通常1000℃以上に加熱し、反応容器内に四塩化珪素、トリクロルシラン等の原料ガスと水素との混合ガスを供給し、水素還元または熱分解することによって、前記シリコン基板上にエピタキシャル成長による単結晶のシリコン薄膜を成長させる。また、エピタキシャル成長は半導体装置の製造プロセスにおいてバイポーラ素子の耐圧などを高めるために用いられており、素子においてもメガビットのメモリを製作する場合、α線によるソフトエラーやラッチアップを防ぐために必要な技術になっている。   Among them, in particular, an epitaxial growth apparatus for growing a single crystal of silicon on a silicon substrate is used in a manufacturing process of a semiconductor device such as an LSI. In this apparatus, a silicon substrate is usually heated to 1000 ° C. or more, a mixed gas of a raw material gas such as silicon tetrachloride and trichlorosilane and hydrogen is supplied into a reaction vessel, and the silicon substrate is reduced or thermally decomposed. A single crystal silicon thin film is grown on the epitaxial growth. Epitaxial growth is used to increase the breakdown voltage of bipolar devices in the manufacturing process of semiconductor devices. When manufacturing megabit memories in devices, it is a necessary technology to prevent soft errors and latch-up caused by alpha rays. It has become.

このようなエピタキシャル成長には、例えば図3に示したような気相成長装置が用いられている。図3は従来の気相成長装置を示した模式的断面図である。   For such epitaxial growth, for example, a vapor phase growth apparatus as shown in FIG. 3 is used. FIG. 3 is a schematic cross-sectional view showing a conventional vapor phase growth apparatus.

図3において、30は気相成長装置を示しており、気相成長装置30は石英製のチャンバ31とチャンバベース32とによって外界と隔離されている。チャンバ31内の中央部には円筒形状の支持台33が回転可能に配設され、この支持台33により、使用時には複数個の半導体基板(ウエーハ)35が載置されるサセプタ36が下方から支持されている。サセプタ36は、中央に開口部36aを開穿した円盤形状の黒鉛基材から形成され、当該黒鉛部材はCVD法による厚さ150μmのSiC膜により被覆されている。   In FIG. 3, reference numeral 30 denotes a vapor phase growth apparatus. The vapor phase growth apparatus 30 is separated from the outside by a quartz chamber 31 and a chamber base 32. A cylindrical support base 33 is rotatably disposed in the center of the chamber 31. The support base 33 supports a susceptor 36 on which a plurality of semiconductor substrates (wafers) 35 are placed from below. Has been. The susceptor 36 is formed of a disk-shaped graphite base material having an opening 36a in the center, and the graphite member is covered with a SiC film having a thickness of 150 μm by a CVD method.

また、支持台33の中央部には原料ガス導入部37が開口されており、かつ支持台33の下部はチャンバベース32の下方へ突出している。また、サセプタ36の中央開口部36aには原料ガスノズル38が接続されている。この原料ガスノズル38には原料ガスが半導体基板35面に対して略平行に流出するように複数個の孔38aが形成されている。チャンバベース32の中央部でかつ支持台33の周囲には原料ガスの排出口40が形成されている。また、39はサセプタ36の下方に渦状に設置されたコイルで、サセプタ36を下方から誘導加熱する。   A source gas introduction part 37 is opened at the center of the support base 33, and the lower part of the support base 33 protrudes below the chamber base 32. A source gas nozzle 38 is connected to the central opening 36 a of the susceptor 36. The source gas nozzle 38 has a plurality of holes 38 a so that the source gas flows out substantially parallel to the surface of the semiconductor substrate 35. A source gas discharge port 40 is formed at the center of the chamber base 32 and around the support base 33. A coil 39 is installed in a vortex shape below the susceptor 36 and induction-heats the susceptor 36 from below.

しかし、ここでSiC膜をコーティングしたサセプタでは、SiC膜にピンホールが形成される不具合があった。図4は、実際にサセプタ36に形成されたピンホール50の顕微鏡写真の結果を示す図面である。   However, the susceptor coated with the SiC film here has a problem that pinholes are formed in the SiC film. FIG. 4 is a drawing showing the result of a micrograph of the pinhole 50 actually formed in the susceptor 36.

ウエーハ35を収容するサセプタ36の凹部のSiC膜にピンホール50が形成されると、サセプタ36を構成する黒鉛材料からの不純物ガスがピンホール50から放出され、エピタキシャル膜を成長させるためにそのサセプタ36の凹部に収容されたウエーハ35と反応し、ウエーハ35の裏面にピンホール跡52が発生する不具合があった。実際にサセプタ36にピンホール50が発生したときのウエーハ35の不具合を図5に示す。図5はサセプタ36にピンホール50が開いているときにウエーハ35の不具合を撮影したときの状態を示す図面で、(a)は上面から撮影した状態、(b)は斜め45度より撮影した状態をそれぞれ示す。図5(a)(b)に示すように、サセプタ36にピンホール50が開いていると、ウエーハ35裏面の同じ位置にピンホール状の跡52が転写される。この跡52の濃さ、大きさが、ユーザー毎の外観目視検査基準を超える場合、異物付着として不良品となる。   When the pinhole 50 is formed in the SiC film in the recess of the susceptor 36 that accommodates the wafer 35, impurity gas from the graphite material constituting the susceptor 36 is released from the pinhole 50, and the susceptor is used to grow the epitaxial film. There is a problem that pinhole marks 52 are generated on the back surface of the wafer 35 by reacting with the wafer 35 accommodated in the recess 36. FIG. 5 shows a malfunction of the wafer 35 when the pinhole 50 is actually generated in the susceptor 36. FIGS. 5A and 5B are diagrams showing a state where a defect of the wafer 35 is photographed when the pinhole 50 is opened in the susceptor 36, wherein FIG. 5A is a photographed from the top surface, and FIG. Each state is shown. As shown in FIGS. 5A and 5B, when the pinhole 50 is opened in the susceptor 36, the pinhole-shaped mark 52 is transferred to the same position on the back surface of the wafer 35. If the darkness and size of the mark 52 exceed the visual appearance inspection standard for each user, it becomes a defective product as foreign matter adhesion.

また、図6はウエーハ内部の不純物測定の結果を示すマップ図で、図6に示すように、異物付着がなくても内部不純物測定にて、同じく基準値を満たさない場合には、図6のマップ図におけるセルの太線ハッチング部分54のように表示判定され、不良品となる。   FIG. 6 is a map showing the results of impurity measurement inside the wafer. As shown in FIG. 6, when the internal impurity measurement does not satisfy the reference value even if there is no foreign matter attached, FIG. The display is determined as shown by the thick line hatched portion 54 of the cell in the map diagram, resulting in a defective product.

このため従来では、SiC膜にピンホール50が形成されるとサセプタ36を交換し、ウエーハ35にピンホール跡52が発生することを防止していた。しかし、SiC膜にピンホール50が形成される度にサセプタ36を交換し、その交換したサセプタ36を廃棄処分することは資源の有効活用の観点から妥当とはいえない。このような観点から、部分的に取り外し交換が可能なサセプタが特許文献1に開示されている。
特開2002−164293
For this reason, conventionally, when the pinhole 50 is formed in the SiC film, the susceptor 36 is replaced to prevent the pinhole mark 52 from being generated on the wafer 35. However, it is not appropriate from the viewpoint of effective utilization of resources to replace the susceptor 36 every time the pinhole 50 is formed in the SiC film and to discard the replaced susceptor 36. From this point of view, Patent Document 1 discloses a susceptor that can be partially removed and replaced.
JP2002-164293

サセプタのピンホールの影響は、サセプタの使用時間経過とともに段々強くなり、多量のウエーハに影響を与える事がある為、サセプタ使用前にピンホールを発見する事が重要である。従って、従来は、あらかじめ、サセプタにピンホールがないかどうか確認するためには、サセプタを真空容器内に入れた状態で、真空引きをし、真空度と時間の関係からピンホールの有無を判定していた。これは、ピンホールのない状態では、短時間に真空度が上がるのに対し、ピンホールがあるとピンホールから多孔質の黒鉛内のガスが漏出するため真空度が上がるのに時間がかかるという現象を利用した判定方法である。しかし、ピンホールが極めて小さい場合、判定が困難であった。このような問題があるので、簡便にかつ確実にピンホールの有無を判定する方法が求められていた。   Since the influence of the susceptor pinhole becomes stronger as the susceptor usage time elapses, it may affect a large amount of wafers. Therefore, it is important to find the pinhole before using the susceptor. Therefore, conventionally, in order to confirm whether there is a pinhole in the susceptor in advance, evacuation is performed with the susceptor in the vacuum vessel, and the presence or absence of a pinhole is determined from the relationship between the degree of vacuum and time. Was. This is because in a state without a pinhole, the degree of vacuum rises in a short time, but when there is a pinhole, it takes time to increase the degree of vacuum because the gas in the porous graphite leaks from the pinhole. This is a determination method using a phenomenon. However, when the pinhole is very small, the determination is difficult. Because of such a problem, a method for simply and reliably determining the presence or absence of pinholes has been demanded.

本発明は、上記した従来の問題点に鑑みなされたもので、SiCで被覆された多孔質黒鉛部材におけるSiC被覆のピンホールの有無を簡便かつ確実に判定することを可能にした新規な判定方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and is a novel determination method capable of easily and reliably determining the presence or absence of SiC-coated pinholes in a porous graphite member coated with SiC. The purpose is to provide.

上記課題を解決するために、本発明のSiCで被覆された多孔質黒鉛部材におけるSiC被覆のピンホール有無判定方法は、SiCで被覆された多孔質黒鉛部材と当初量の液体とを密閉収納部材に室温で密閉収納する工程と、前記多孔質黒鉛部材及び液体を密閉収納した密閉収納部材を加熱し前記液体を蒸気とする工程と、前記加熱工程終了後前記密閉収納部材を室温まで冷却する工程と、前記密閉収納部材内の液体を回収する工程と、前記液体の当初量と回収した液体の回収量を比較する工程と、を含み、前記液体の回収量が該液体の当初量よりも減少している場合はSiC被覆にピンホールが存在すると判定し、前記液体の回収量が該液体の当初量よりも減少していない場合はSiC被覆にピンホールが存在しないと判定するようにしたものである。   In order to solve the above-mentioned problem, the SiC-coated pinhole presence / absence determination method in the SiC-coated porous graphite member according to the present invention includes a porous graphite member coated with SiC and an initial amount of liquid in a sealed housing member. A step of hermetically storing at room temperature, a step of heating the hermetic storage member that hermetically stores the porous graphite member and the liquid to make the liquid vapor, and a step of cooling the hermetic storage member to room temperature after the heating step is completed. And a step of recovering the liquid in the sealed housing member and a step of comparing the initial amount of the liquid and the recovered amount of the recovered liquid, wherein the recovered amount of the liquid is smaller than the initial amount of the liquid If there is a pinhole in the SiC coating, it is determined that there is no pinhole in the SiC coating if the recovery amount of the liquid is not reduced below the initial amount of the liquid. Than is.

すなわち、SiCを被覆したサセプタなどの多孔質黒鉛からなる部材を、水等の液体とともにビニール袋等の密閉収納部材内に密閉し、外部から加熱して水等の液体を蒸気(例えば、水蒸気)とすると、その蒸気(水蒸気)は極微小ピンホールでもそれを通して、多孔質の黒鉛に吸着される。その後室温まで冷却すると吸着された蒸気(水蒸気)は液状となるので、サセプタ外部へは戻りにくくなる為、その分確実に水等の液体の量は減り、この場合ピンホール有りと判定される。水等の液体の量に減少がない場合、ピンホールなしと判定できる。上記加熱手段は水を介して間接的に加熱すればよく、すなわち熱湯等を介して間接加熱すれば安全であり、十分である。また、密閉手段はビニール等の合成樹脂からなる袋で十分である。   That is, a member made of porous graphite such as a susceptor coated with SiC is sealed in a sealed housing member such as a plastic bag together with a liquid such as water, and heated from the outside to vaporize the liquid such as water (for example, water vapor) Then, the vapor (water vapor) is adsorbed to the porous graphite through even a very small pinhole. Then, when it is cooled to room temperature, the adsorbed vapor (water vapor) becomes liquid, and it is difficult to return to the outside of the susceptor. Therefore, the amount of liquid such as water is surely reduced, and in this case, it is determined that there is a pinhole. If there is no decrease in the amount of liquid such as water, it can be determined that there is no pinhole. The heating means may be heated indirectly via water, that is, it is safe and sufficient if heated indirectly via hot water or the like. As the sealing means, a bag made of a synthetic resin such as vinyl is sufficient.

但し、水等の液体の減少は見た目では分からない事も考えられるので、判定前後で計量しておく必要がある。又、袋に穴が開いていた場合は、正確な判定が出来ないので、判定後に穴が開いていない事を確認する必要がある。その方法は、判定後のビニール袋等の密閉収納部材に空気を適量入れて再密閉し、水槽内で圧力を掛けて、空気が漏れない事を確認する。つまり、前記液体を回収した空の密閉収納部材に空気を封入し水中に位置せしめた状態で当該密閉収納部材を外部から加圧し、該密閉収納部材から気泡が出なければ該密閉収納部材には穴が開いておらず前記ピンホール有無の判定結果は有効であり、該密閉収納部材から気泡が出れば該密閉収納部材には穴が開いており前記ピンホール有無の判定結果は無効であると判断すればよい。   However, since it is possible that the decrease in liquid such as water is not apparent, it is necessary to measure before and after the determination. If the bag has a hole, an accurate determination cannot be made. Therefore, it is necessary to confirm that the hole has not been opened after the determination. The method is to check that air does not leak by putting a proper amount of air into a sealed storage member such as a plastic bag after the determination and resealing it, and applying pressure in the water tank. That is, when the air is sealed in an empty sealed housing member from which the liquid has been collected and positioned in water, the sealed housing member is pressurized from the outside. The determination result of the presence or absence of the pinhole is not effective without a hole, and if a bubble comes out from the sealed housing member, the sealed storage member has a hole and the determination result of the presence or absence of the pinhole is invalid Just judge.

なお、本発明方法において用いられる液体としては、水の他に、アルコール類、有機溶剤、フッ硝酸等の薬液が使用可能であるが、水がもっとも安全である。   In addition to water, chemicals such as alcohols, organic solvents, and hydrofluoric acid can be used as the liquid used in the method of the present invention, but water is the safest.

本発明によれば、SiCで被覆された多孔質黒鉛部材におけるSiC被覆のピンホールの有無を簡便かつ確実に判定することができるという効果が達成される。   According to the present invention, it is possible to easily and reliably determine the presence or absence of a SiC-coated pinhole in a porous graphite member coated with SiC.

以下、本発明の実施の形態について添付図面中、図1及び図2に基づいて説明するが、図示例は本発明の好ましい実施の形態を示すもので、本発明の技術思想から逸脱しない限り、種々の変形が可能であることはいうまでもない。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. 1 and 2 in the accompanying drawings. However, the illustrated examples show preferred embodiments of the present invention, and as long as they do not depart from the technical idea of the present invention. Needless to say, various modifications are possible.

図1は本発明方法の一つの実施の形態を工程順に示す模式的説明図で、(a)はビニール袋にサセプタ及び計量した水を入れて密閉する工程、(b)はサセプタ及び水を入れたビニール袋を加熱する工程、(c)は所定時間加熱後冷却してビニール袋を開封し水を回収する工程、(d)は水の回収量と水の当初量を比較してピンホールの有無を判定する工程、(e)は使用したビニール袋の穴の有無を確認する工程をそれぞれ示す。図2は図1の工程順のフローチャートである。なお、図1においてサセプタについては図3と同一符号で示した。   FIG. 1 is a schematic explanatory view showing one embodiment of the method of the present invention in the order of steps. (A) is a step of putting a susceptor and measured water in a plastic bag and sealing it, and (b) is putting a susceptor and water. The step of heating the plastic bag, (c) heating and cooling for a predetermined time, opening the plastic bag and collecting the water, (d) comparing the recovered amount of water with the initial amount of water, The step of determining the presence or absence, (e) shows the step of checking the presence or absence of a hole in the used plastic bag. FIG. 2 is a flowchart in the order of steps in FIG. In FIG. 1, the susceptor is indicated by the same reference numeral as in FIG.

本実施の形態においては、SiCで被覆された多孔質黒鉛部材としてサセプタ、液体として水、及び密閉収納部材としてビニール袋を用いる場合について説明する。まず、密閉収納部材としてビニール袋10を用い、この中にサセプタ36と計量容器13で計量した当初量の水14を入れ、シーラーを用いてビニール袋10のシール部15を室温で密閉する(図1(a)及び図2のステップ100)。この水14の当初量は後述する加熱工程で水蒸気となってピンホールを通過して多孔質黒鉛部材(サセプタ)に吸着される量が最低量として必要であり、量が多すぎて蒸発しないで水(熱湯)状態のままのものが存在するとサセプタが水中に浸漬状態になり水蒸気がピンホールを通過できない状態となってしまうので、加熱した状態で水蒸気となりビニール袋10内は飽和水蒸気状態となりかつ水が僅かに残存する程度の当初量の水をビニール袋10内に密封するのが好適である。   In the present embodiment, a case where a susceptor is used as a porous graphite member coated with SiC, water as a liquid, and a plastic bag as a sealed housing member will be described. First, a plastic bag 10 is used as a sealed storage member, and an initial amount of water 14 measured with a susceptor 36 and a measuring container 13 is placed therein, and the seal portion 15 of the plastic bag 10 is sealed at room temperature using a sealer (see FIG. 1 (a) and step 100 of FIG. The initial amount of this water 14 is required to be the minimum amount that becomes water vapor in the heating process described later, passes through the pinhole, and is adsorbed on the porous graphite member (susceptor), and is too much to evaporate. If there is still water (hot water), the susceptor is immersed in water and water vapor cannot pass through the pinhole. Therefore, the water becomes steam when heated and the inside of the plastic bag 10 becomes saturated water vapor and It is preferable to seal the initial amount of water in the plastic bag 10 so that water remains slightly.

次に、サセプタ36及び水14を入れたビニール袋10をヒータ16付きの水槽18に入れて、熱湯で1時間程度加熱し、水14を水蒸気14aとする(図1(b)及び図2のステップ102)。その後、加熱されたビニール袋10を冷水で室温まで冷却する(図2のステップ104)。この冷却時間は15分程度であ充分である。次いで、ビニール袋10を開封して、サセプタ36を取り出し、水14を回収する(図1(c)及び図2のステップ106)。回収した水14について、当初量14Aと、回収量14Bを比較すると、ピンホールを持つサセプタ36では、水がピンホールに吸着されるため水の回収量14Bが水の当初量14Aよりも減少する。従って、水の回収量14Bが水の当初量14Aよりも減少した場合には、サセプタ36にピンホール有りと判定する(図1(d))。また、水の回収量14Bが水の当初量14Aよりも減少していない場合には、サセプタ36にピンホール無しと判定する(図2のステップ108)。   Next, the plastic bag 10 containing the susceptor 36 and the water 14 is put into a water tank 18 with a heater 16 and heated with hot water for about 1 hour, so that the water 14 becomes steam 14a (FIGS. 1B and 2). Step 102). Thereafter, the heated plastic bag 10 is cooled to room temperature with cold water (step 104 in FIG. 2). A cooling time of about 15 minutes is sufficient. Next, the plastic bag 10 is opened, the susceptor 36 is taken out, and the water 14 is collected (step 106 in FIG. 1 (c) and FIG. 2). Comparing the recovered amount of water 14 with the initial amount 14A and the recovered amount 14B, in the susceptor 36 having a pinhole, the amount of recovered water 14B is smaller than the initial amount of water 14A because water is adsorbed to the pinhole. . Therefore, when the recovered amount of water 14B is smaller than the initial amount of water 14A, it is determined that the susceptor 36 has a pinhole (FIG. 1 (d)). Further, when the water recovery amount 14B is not smaller than the initial water amount 14A, it is determined that there is no pinhole in the susceptor 36 (step 108 in FIG. 2).

続いて、上記判定を行った後のビニール袋10に空気を適量入れシーラーを用いてビニール袋10のシール部15を再密閉し、常温水20の水槽22に入れて、両手で圧力を掛けて、空気の漏れ、すなわち気泡24が出るか出ないかを確認する(図1(e)及び図2のステップ110)。気泡が出ればビニール袋10に穴が開いており、気泡が出なければビニール袋10に穴が開いていないことが確認できる。ビニール袋10に穴が開いていないことが確認出来れば、上記したサセプタ36にピンホール有りとの判定結果が有効となる。   Subsequently, an appropriate amount of air is put into the plastic bag 10 after the above determination, and the seal portion 15 of the plastic bag 10 is resealed using a sealer, placed in a water tank 22 of room temperature water 20, and pressure is applied with both hands. Then, it is confirmed whether air leaks, that is, the bubbles 24 are emitted or not (step 110 in FIG. 1 (e) and FIG. 2). If bubbles appear, a hole is formed in the plastic bag 10, and if no bubbles are generated, it can be confirmed that no hole is formed in the plastic bag 10. If it can be confirmed that there is no hole in the plastic bag 10, the determination result that the susceptor 36 has a pinhole is valid.

以下に本発明の実施例を挙げて提示する説明するが、この実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described below with reference to examples, but it is needless to say that the examples are illustrative and should not be construed restrictively.

(実施例1)
サセプタとしては図5(a)(b)で示したような不良品ウエーハが発生し使用を中止したSiCで被覆された多孔質黒鉛部材であるサセプタ8枚(ピンホールの疑いありのサセプタ)を使用した。図1及び図2に示した手順において、ビニール袋(縦30cm×横25cm)に上記サセプタと20ccの当初量の水を入れて、熱湯でヒータ付水槽で1時間加熱した。次に、加熱されたビニール袋を冷水で室温まで冷却し(15分程度)、ビニール袋を開封して、サセプタを取り出し、水を回収した。水の回収量は0〜10ccであった。水の当初量と回収量とを比較したところ、8枚のサセプタのいずれの場合も水の回収量は当初量よりも減少していた。従って、8枚のサセプタともピンホール有りと判定された。
Example 1
As the susceptors, 8 susceptors (susceptors suspected of having pinholes), which are porous graphite members coated with SiC that have been used due to the occurrence of defective wafers as shown in FIGS. used. In the procedure shown in FIGS. 1 and 2, the susceptor and 20 cc of the initial amount of water were placed in a plastic bag (length 30 cm × width 25 cm), and heated in a water tank with a heater for 1 hour with hot water. Next, the heated plastic bag was cooled to room temperature with cold water (about 15 minutes), the plastic bag was opened, the susceptor was taken out, and water was collected. The recovered amount of water was 0 to 10 cc. When the initial amount of water and the recovered amount were compared, the recovered amount of water was lower than the initial amount in any of the eight susceptors. Therefore, it was determined that all eight susceptors had pinholes.

(実施例2)
真空引きのピンホールテストでピンホール有りと判定されたサセプタ10枚(ピンホールサセプタ)について、実施例1と同様にサセプタにおけるピンホールの有無についての判定実験を実施した結果、水の回収量は0〜5ccであった。水の当初量と回収量とを比較したところ、10枚のサセプタのいずれの場合も水の回収量は当初量よりも減少していた。従って、10枚のサセプタともピンホール有りと判定された。
(Example 2)
About 10 susceptors (pinhole susceptors) that were determined to have pinholes in the vacuuming pinhole test, the results of a determination experiment for the presence or absence of pinholes in the susceptor were conducted as in Example 1. 0 to 5 cc. When the initial amount of water and the recovered amount were compared, the recovered amount of water was smaller than the initial amount in all 10 susceptors. Therefore, it was determined that 10 susceptors had pinholes.

(実施例3)
図5(a)(b)で示したような不良品ウエーハの発生が無く、使用限度を超えて使用を中止したサセプタ5枚(正常なサセプタ)について、実施例1と同様にサセプタにおけるピンホールの有無についての判定実験を実施した結果、水の回収量はいずれも20ccであった。水の当初量と回収量とを比較したところ、5枚のサセプタのいずれの場合も水の回収量は当初量よりもいずれも減少していなかった。従って、5枚ともピンホール無しと判定された。
(Example 3)
Pinholes in the susceptor in the same manner as in Example 1 with respect to five susceptors (normal susceptors) that were not used due to the generation of defective wafers as shown in FIGS. As a result of carrying out a determination experiment on the presence or absence of water, the amount of water recovered was 20 cc. When the initial amount of water and the recovered amount were compared, the recovered amount of water was not decreased from the initial amount in any of the five susceptors. Therefore, it was determined that all five sheets had no pinholes.

以上の事から、本発明方法はサセプタのピンホールの判定に有効である事が証明された。又、図5(a)(b)で示した不良品ウエーハが発生し使用を中止したサセプタ、つまり装置取り付け後にピンホールの疑いがあり、使用を中止したサセプタの発生状況は、年間使用量の約1.6%となっており、本発明方法によるサセプタにおけるピンホールの有無についての判定の実施後は、これが0%に減少し、今後は不良品の発生を削減出来ると推定される。   From the above, it has been proved that the method of the present invention is effective in determining the susceptor pinhole. In addition, the susceptor that has been discontinued due to the defective wafer shown in FIGS. 5 (a) and 5 (b), that is, the susceptor that has been discontinued due to the suspected pinhole after the installation of the device, This is about 1.6%, and after the determination of the presence or absence of pinholes in the susceptor according to the method of the present invention, this is reduced to 0%, and it is estimated that the generation of defective products can be reduced in the future.

本発明方法の一つの実施の形態を工程順に示す模式的説明図で、(a)はビニール袋にサセプタ及び計量した水を入れて密閉する工程、(b)はサセプタ及び水を入れたビニール袋を加熱する工程、(c)は所定時間加熱後冷却してビニール袋を開封し水を回収する工程、(d)は回収した水と水の当初量を比較してピンホールの有無を判定する工程、(e)は使用したビニール袋の穴の有無を確認する工程をそれぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS It is typical explanatory drawing which shows one embodiment of the method of this invention in order of a process, (a) puts a susceptor and measured water in a plastic bag, and seals, (b) is a plastic bag which put a susceptor and water. (C) is a process of heating and cooling for a predetermined time and then opening the plastic bag to recover the water, and (d) comparing the recovered water and the initial amount of water to determine the presence or absence of a pinhole. A process and (e) show the process of confirming the presence or absence of the hole of the used plastic bag, respectively. 図1の工程順のフローチャートである。It is a flowchart of the order of the process of FIG. 従来の気相成長装置を示した模式的断面図である。It is the typical sectional view showing the conventional vapor phase growth apparatus. サセプタのピンホールの顕微鏡写真の結果を示す図面である。It is drawing which shows the result of the microscope picture of the pinhole of a susceptor. サセプタにピンホールが開いているときにウエーハの不具合を撮影したときの状態を示す図面で、(a)は上面から撮影した状態、(b)は斜め45度より撮影した状態をそれぞれ示す。It is drawing which shows the state when image | photographing the defect of a wafer when the pinhole is open to a susceptor, (a) shows the state image | photographed from the upper surface, (b) shows the state image | photographed from 45 degree | times diagonally. 内部不純物測定の結果を示すマップ図である。It is a map figure which shows the result of an internal impurity measurement.

符号の説明Explanation of symbols

10:密閉収納部材(ビニール袋)、13:計量容器、14:液体(水)、14a:蒸気(水蒸気)、14A:水の当初量、14B:水の回収量、15:シール部、16:ヒータ、18:ヒータ付水槽、20:常温水、22:常温水の水槽、24:気泡、30:気相成長装置31:チャンバ、32:チャンバベース32、33:支持台、35:半導体基板、36:サセプタ、36a:開口部、37:原料ガス導入部、38:原料ガスノズル、38a:孔、39:コイル、40:原料ガス排出口、50:ピンホール、52:ピンホール跡、54:太線ハッチング部分。   10: Airtight storage member (plastic bag), 13: Metering container, 14: Liquid (water), 14a: Steam (water vapor), 14A: Initial amount of water, 14B: Amount of recovered water, 15: Seal part, 16: Heater, 18: Water tank with heater, 20: Room temperature water, 22: Room temperature water tank, 24: Bubble, 30: Vapor growth apparatus 31: Chamber, 32: Chamber base 32, 33: Support base, 35: Semiconductor substrate, 36: susceptor, 36a: opening, 37: source gas introduction unit, 38: source gas nozzle, 38a: hole, 39: coil, 40: source gas discharge port, 50: pinhole, 52: pinhole mark, 54: thick line Hatched part.

Claims (6)

SiCで被覆された多孔質黒鉛部材と当初量の液体とを密閉収納部材に室温で密閉収納する工程と、前記多孔質黒鉛部材及び液体を密閉収納した密閉収納部材を加熱し前記液体を蒸気とする工程と、前記加熱工程終了後前記密閉収納部材を室温まで冷却する工程と、前記密閉収納部材内の液体を回収する工程と、前記液体の当初量と回収した液体の回収量を比較する工程と、を含み、前記液体の回収量が該液体の当初量よりも減少している場合はSiC被覆にピンホールが存在すると判定し、前記液体の回収量が該液体の当初量よりも減少していない場合はSiC被覆にピンホールが存在しないと判定することを特徴とするSiCで被覆された多孔質黒鉛部材におけるSiC被覆のピンホール有無判定方法。   A step of sealingly storing a porous graphite member coated with SiC and an initial amount of liquid in a sealed storage member at room temperature; heating the porous graphite member and the sealed storage member sealingly storing the liquid; A step of cooling the sealed housing member to room temperature after completion of the heating step, a step of recovering the liquid in the sealed housing member, and a step of comparing the initial amount of the liquid and the recovered amount of the recovered liquid And when the recovery amount of the liquid is smaller than the initial amount of the liquid, it is determined that a pinhole is present in the SiC coating, and the recovery amount of the liquid is decreased from the initial amount of the liquid. If not, it is determined that there is no pinhole in the SiC coating. A method for determining the presence or absence of pinholes in an SiC coating in a porous graphite member coated with SiC. 前記液体が水であることを特徴とする請求項1記載のピンホール有無判定方法。   The pinhole presence / absence determination method according to claim 1, wherein the liquid is water. 前記SiCで被覆された多孔質黒鉛部材がサセプタであることを特徴とする請求項1又は2記載のピンホール有無判定方法。   3. The pinhole presence / absence determination method according to claim 1, wherein the porous graphite member coated with SiC is a susceptor. 前記密閉収納部材の加熱を、該密閉収納部材の外側に水を介在させて加熱する間接的加熱によって行うことを特徴とする請求項1〜3のいずれか1項記載のピンホール有無判定方法。   The pinhole presence / absence determination method according to any one of claims 1 to 3, wherein the hermetic housing member is heated by indirect heating in which water is interposed outside the hermetic housing member. 前記密閉収納部材が合成樹脂シートから作製されたものであることを特徴とする請求項1〜4のいずれか1項記載のピンホール有無判定方法。   The pinhole presence / absence determination method according to claim 1, wherein the sealed housing member is made of a synthetic resin sheet. 前記液体を回収した空の密閉収納部材に空気を封入し水中に位置せしめた状態で当該密閉収納部材を外部から加圧し、該密閉収納部材から気泡が出なければ該密閉収納部材には穴が開いておらず前記ピンホール有無の判定結果は有効であり、該密閉収納部材から気泡が出れば該密閉収納部材には穴が開いており前記ピンホール有無の判定結果は無効であると判断することを特徴とする請求項1〜5のいずれか1項記載のピンホール有無判定方法。   The sealed housing member is pressurized from the outside in a state where air is sealed in the empty sealed housing member from which the liquid has been collected and is positioned in water. If no air bubbles are generated from the sealed housing member, the sealed housing member has a hole. The determination result of presence / absence of the pinhole is not open and the determination result of the presence / absence of the pinhole is valid, and if a bubble comes out from the sealed storage member, it is determined that the determination result of the presence / absence of the pinhole is invalid. The pinhole presence / absence determination method according to any one of claims 1 to 5.
JP2007130534A 2007-05-16 2007-05-16 Method for determining pinhole presence / absence of SiC coating Active JP4973986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130534A JP4973986B2 (en) 2007-05-16 2007-05-16 Method for determining pinhole presence / absence of SiC coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130534A JP4973986B2 (en) 2007-05-16 2007-05-16 Method for determining pinhole presence / absence of SiC coating

Publications (2)

Publication Number Publication Date
JP2008288315A true JP2008288315A (en) 2008-11-27
JP4973986B2 JP4973986B2 (en) 2012-07-11

Family

ID=40147774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130534A Active JP4973986B2 (en) 2007-05-16 2007-05-16 Method for determining pinhole presence / absence of SiC coating

Country Status (1)

Country Link
JP (1) JP4973986B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131279A (en) * 1974-09-10 1976-03-17 New Nippon Electric Co EPITAKISHARUSEICHO SASEBUTA NO KENSAHOHO
JPH0369113A (en) * 1989-08-09 1991-03-25 Fujitsu Ltd Semiconductor manufacturing device
JPH0477400A (en) * 1990-07-20 1992-03-11 Furukawa Electric Co Ltd:The Pinhole detector for susceptor and detecting method of pinhole
JP2003086661A (en) * 2001-09-13 2003-03-20 Nec Tokin Corp Method for detecting defect of susceptor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131279A (en) * 1974-09-10 1976-03-17 New Nippon Electric Co EPITAKISHARUSEICHO SASEBUTA NO KENSAHOHO
JPH0369113A (en) * 1989-08-09 1991-03-25 Fujitsu Ltd Semiconductor manufacturing device
JPH0477400A (en) * 1990-07-20 1992-03-11 Furukawa Electric Co Ltd:The Pinhole detector for susceptor and detecting method of pinhole
JP2003086661A (en) * 2001-09-13 2003-03-20 Nec Tokin Corp Method for detecting defect of susceptor

Also Published As

Publication number Publication date
JP4973986B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
TW478071B (en) Heat treatment apparatus, heat treatment process employing the same, and process for producing semiconductor article
JP5368393B2 (en) Vaporizer, substrate processing apparatus, and coating and developing apparatus
US9240316B2 (en) Method for producing an epitaxially coated semiconductor wafer
US20170004984A1 (en) Substrate transfer apparatus and substrate transfer method
JP6746474B2 (en) Leak inspection method, leak inspection device, electrolytic plating method, and electrolytic plating device
JP4973986B2 (en) Method for determining pinhole presence / absence of SiC coating
JP5120789B2 (en) Method for evaluating contamination of semiconductor manufacturing equipment
KR102443968B1 (en) Cleaning method and film forming method
JP5369994B2 (en) Water vapor permeability measuring method and apparatus
JP5891851B2 (en) Method for removing oxide film formed on the surface of a silicon wafer
JP5228857B2 (en) Manufacturing method of silicon epitaxial wafer
TWI413164B (en) Heat transfer gas supply means and heat transfer gas supply method, and substrate processing apparatus and substrate processing method
US20120186097A1 (en) Supercritical drying device and method
CN113029070A (en) Method for monitoring growth thickness of atomic layer deposition film
JP5719720B2 (en) Thin film processing method
US8948899B2 (en) Substrate processing system, substrate processing apparatus and display method of substrate processing apparatus
JP2007119276A (en) Gallium nitride crystal, apparatus for growing the same, and method for producing the same
JP5799845B2 (en) Evaluation method for metal contamination of gas
JP6056899B2 (en) Surface treatment apparatus, primer treatment apparatus, and liquid repellent film forming apparatus
JPH0510830A (en) Temperature detecting element
JP2000114182A (en) Vapor phase growth system
KR101048820B1 (en) Chemical Storage Tank for Substrate Manufacturing Equipment
JP3944545B2 (en) Sample preparation equipment for X-ray fluorescence analysis
JP2000091305A (en) Wet etching equipment for manufacture semiconductors
KR20090035308A (en) Manufacturing method and etching device for silicon epitaxial single-crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Ref document number: 4973986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250