JP2008288159A - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
JP2008288159A
JP2008288159A JP2007134462A JP2007134462A JP2008288159A JP 2008288159 A JP2008288159 A JP 2008288159A JP 2007134462 A JP2007134462 A JP 2007134462A JP 2007134462 A JP2007134462 A JP 2007134462A JP 2008288159 A JP2008288159 A JP 2008288159A
Authority
JP
Japan
Prior art keywords
ray
anode
ray irradiation
irradiation direction
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007134462A
Other languages
Japanese (ja)
Other versions
JP5436760B2 (en
Inventor
Hoki Haba
方紀 羽場
Hirooki O
宏興 王
Yoshiko Harada
佳子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2007134462A priority Critical patent/JP5436760B2/en
Publication of JP2008288159A publication Critical patent/JP2008288159A/en
Application granted granted Critical
Publication of JP5436760B2 publication Critical patent/JP5436760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray tube having a new structure used for medical, industrial and analytic applications. <P>SOLUTION: This X-ray tube is provided, in a vacuum tube 11, with: a positive electrode 12 having a conical shape having a tip side 12a extended onto an X-ray radiation direction line L1 with a conical top part 12a1 thereof located on the X-ray radiation direction line L1; a field emission type annular negative electrode 14 annularly surrounding the radial outside of the positive electrode tip part 12a coaxially with the positive electrode tip part 12a, and having an outer peripheral surface formed of a nano-carbon film; and an electron screening member 16 arranged on both sides of the annular negative electrode 14 in the X-ray radiation direction, and screening electrons emitted by the annular negative electrode 14; and is structured such that an X-ray extraction window 11a formed of an X-ray-permeable thin film is arranged on a tube wall of the vacuum tube in front of the positive electrode tip part 12a on the X-ray radiation direction line L1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電界放射型の陰極から電界放射により電子放出し、この放出電子を陽極に衝突させてX線を発生させるX線管にかかり、特には、管径が例えば数mm程度に超小型化が可能なX線管に関するものである。   The present invention relates to an X-ray tube that emits electrons by field emission from a field emission type cathode and collides the emitted electrons with an anode to generate X-rays. In particular, the tube diameter is extremely small, for example, about several mm. The present invention relates to an X-ray tube that can be made into a laser.

X線は医療用、工業用、分析用、等数多くの分野で利用される(特許文献1,2等)。医療用では例えば放射線治療、血管内膜照射、診断用X線源等であり、工業用では非破壊検査、表面処理、物理学等である。   X-rays are used in many fields such as medical, industrial, and analytical purposes (Patent Documents 1, 2, etc.). For medical use, for example, radiotherapy, endovascular irradiation, diagnostic X-ray source, etc., for industrial use, nondestructive inspection, surface treatment, physics, etc.

このようなX線は、電子が金属や蛍光物質等のX線ターゲット(陽極)に衝突することによって発生することは周知である(特許文献3)。   It is well known that such X-rays are generated when electrons collide with an X-ray target (anode) such as a metal or a fluorescent material (Patent Document 3).

ところでフィラメント加熱で発生させた熱電子を陽極に衝突させてX線を発生させる熱陰極方式が提案されている(特許文献4)。   Incidentally, a hot cathode method has been proposed in which thermoelectrons generated by filament heating collide with an anode to generate X-rays (Patent Document 4).

しかしながら、熱電子による場合、X線管を小型化が困難であることに加えて、熱電子をビーム化した場合、発熱の課題があるうえ、電子が広範囲に放出されて陽極に衝突するために、陽極から発生したX線束もその束径を小さくすることができない。   However, in the case of using thermoelectrons, it is difficult to reduce the size of the X-ray tube, and when thermoelectrons are beamed, there is a problem of heat generation and electrons are emitted in a wide range and collide with the anode. The bundle diameter of the X-ray bundle generated from the anode cannot be reduced.

そのため、熱陰極方式のX線管の場合では、X線照射スポットを小さくしてX線照射対象に照射することができず、上記用途には不向きである。   Therefore, in the case of a hot cathode type X-ray tube, the X-ray irradiation spot cannot be made small to irradiate the X-ray irradiation target, which is unsuitable for the above-mentioned use.

また、電界放射型の冷陰極から電界放射により電子放出し、この放出電子を陽極に衝突させてX線を発生させるX線管がある。   Further, there is an X-ray tube that emits electrons from a field emission type cold cathode by field emission and collides the emitted electrons with an anode to generate X-rays.

この冷陰極方式のX線管の場合、発熱の課題はないが、従来の冷陰極方式のX線管の場合も、陰極から電子が広範囲に放出されて陽極に衝突するために、陽極から発生するX線束も広がり、X線照射スポットを小さくすることが困難である。   In the case of this cold cathode type X-ray tube, there is no problem of heat generation. However, in the case of the conventional cold cathode type X-ray tube, electrons are emitted from the cathode in a wide range and collide with the anode, and thus are generated from the anode. The X-ray flux to spread also spreads, and it is difficult to reduce the X-ray irradiation spot.

そのため従来の冷陰極方式のX線管の場合では、X線照射スポットをより小さく明瞭化してX線照射対象を照射できない。   For this reason, in the case of a conventional cold cathode type X-ray tube, the X-ray irradiation spot cannot be irradiated with an X-ray irradiation target by making the X-ray irradiation spot smaller and clearer.

特に、医療や分析のためのX線照射対象が小さい場合では、従来のX線管のごとく、X線照射スポットのスポット径が大きいうえにそのスポット内周から外周へかけてのX線密度が不均一であると、X線照射対象に対して明瞭なX線画像が得にくく、高精度な医療、分析等を実施できなくなる。   In particular, when the X-ray irradiation target for medical treatment or analysis is small, the X-ray density from the inner periphery to the outer periphery of the spot is large and the spot diameter of the X-ray irradiation spot is large as in the conventional X-ray tube. If it is not uniform, it is difficult to obtain a clear X-ray image with respect to the X-ray irradiation target, and it becomes impossible to carry out highly accurate medical treatment and analysis.

一方、X線束の束径を小さく絞り込み、X線照射スポットを小さくすることは可能であるものの、構造が複雑化、大型化することにより、小型ないし超小型のX線管には到底採用することができない。
特開平08−167496 特表2004−505421 特表2002−517882 特表2006−514421
On the other hand, although it is possible to narrow down the X-ray bundle diameter and reduce the X-ray irradiation spot, it should be adopted for small or ultra-compact X-ray tubes as the structure becomes complicated and large. I can't.
Japanese Patent Laid-Open No. 08-167497 Special table 2004-505421 Special Table 2002-517882 Special table 2006-514421

本発明では、X線照射対象等が小さくても、構造簡易にして、高精度、高密度でX線束を照射可能なX線管を提供するものである。   The present invention provides an X-ray tube capable of irradiating an X-ray bundle with high accuracy and high density with a simple structure even when an X-ray irradiation target is small.

本発明によるX線管は、真空管内部に、先端側がX線照射方向線上に延びる錐形でかつその錐形頂部がX線照射方向線上前方向に向く陽極と、この陽極先端部の半径方向外側を該陽極先端部と同心で環状に囲み外周面がナノ炭素膜からなる電界放射型の環状陰極と、少なくとも環状陰極のX線照射方向両側に配置されて環状陰極が放出する電子を遮蔽する電子遮蔽部材と、を備えると共に、上記X線照射方向線上で陽極先端部前方の真空管管壁にX線透過可能な薄膜からなるX線導出窓を設けたことを特徴とするものである。   An X-ray tube according to the present invention includes a vacuum tube having a conical shape whose tip side extends on the X-ray irradiation direction line and a conical top portion directed forward in the X-ray irradiation direction line, and a radially outer side of the anode tip portion. A field emission type annular cathode which is concentrically enclosed with the tip of the anode and whose outer peripheral surface is made of a nanocarbon film, and electrons which are arranged at least on both sides in the X-ray irradiation direction of the annular cathode and shield electrons emitted from the annular cathode And an X-ray derivation window made of a thin film capable of transmitting X-rays on the vacuum tube wall in front of the anode tip on the X-ray irradiation direction line.

上記錐形には円錐形、角錐形、を含む。この場合、全周が錐形に限定されず、部分的に錐形でもよい。上記錐形斜面のプロフィールは先端に向けての縮径割合が一定である直線状に限定されず、先端に向けて縮径割合が連続的またはステップ的に変化する形状(放物線状等)であってもよいし、先端に向けて縮径する針形であっても、錐形状に含むことができる。   The cone shape includes a cone shape and a pyramid shape. In this case, the entire circumference is not limited to the conical shape, and may be partially conical. The profile of the conical slope is not limited to a linear shape with a constant reduction ratio toward the tip, but has a shape (parabolic shape, etc.) in which the reduction ratio changes continuously or stepwise toward the tip. Alternatively, even a needle shape with a reduced diameter toward the tip can be included in the cone shape.

上記環状は完全に閉じた環状に限定されず、部分環状も含む。   The ring is not limited to a completely closed ring, and includes a partial ring.

上記錐形頂部は鋭利な頂部に限定されず、多少の丸み等を含むことができる。   The conical top is not limited to a sharp top and may include some rounding or the like.

上記において陽極の形状は先端部以外は直線軸状に限定されない。   In the above, the shape of the anode is not limited to the linear axis shape except for the tip.

上記においては、電子遮蔽部材は、環状陰極のX線照射方向両側で該X線照射方向周り環状に配置された一対の環状板部を備えた構成とすることが好ましい。両環状板部は互いに独立して配置することにより、電子遮蔽部材により環状陰極の放出電子の遮蔽を制御することができるようにしてもよい。   In the above, it is preferable that the electron shielding member includes a pair of annular plate portions arranged annularly around the X-ray irradiation direction on both sides of the annular cathode in the X-ray irradiation direction. By arranging the two annular plate portions independently of each other, the electron shielding member may control the emission electrons emitted from the annular cathode.

上記においては、陽極先端部の外周斜面のX線照射方向線に対する角度が、環状陰極からの電子ビームのビーム径よりも陽極先端部から発生したX線束の束径を小さくする角度に調整されて、X線照射対象へのX線照射スポットが制御された構成とすることが好ましい。   In the above, the angle with respect to the X-ray irradiation direction line of the outer peripheral slope of the anode tip is adjusted to an angle that makes the bundle diameter of the X-ray bundle generated from the anode tip smaller than the beam diameter of the electron beam from the annular cathode. It is preferable that the X-ray irradiation spot on the X-ray irradiation target is controlled.

本発明では、陽極先端部が錐形であること、この陽極先端部周囲に環状陰極を配置したこと、この環状陰極から放出する電子を部分的に遮蔽する電子遮蔽部材を配置したこと、に加えて、陽極先端部前方にX線導出窓を配置し、X線を実質的には略直進可能な構成としたことから、陽極先端部と環状陰極との間に高電界を印加し、環状陰極から発生した電子を電子遮蔽部材で電子遮蔽することにより、陽極先端部斜面に向けて所定ビーム径の電子ビームに集束させ、上記陽極先端部斜面に電子ビームを衝突させて上記陽極先端部斜面からX線束を発生させ、そのX線束をX線照射方向線上前方のX線導出窓に向けて直進させて窓外のX線照射対象にスポット状に照射することができる。   In the present invention, in addition to the fact that the tip of the anode is conical, an annular cathode is disposed around the anode tip, and an electron shielding member that partially shields electrons emitted from the annular cathode is disposed. The X-ray lead-out window is disposed in front of the anode tip, and the X-ray can be substantially linearly advanced. Therefore, a high electric field is applied between the anode tip and the annular cathode, Electrons generated from the electron shielding member are shielded by an electron shielding member so as to be focused on an electron beam having a predetermined beam diameter toward the anode tip slope, and the electron beam collides with the anode tip slope to cause the anode tip slope to An X-ray bundle can be generated, and the X-ray bundle can be made to travel straight toward the X-ray derivation window ahead of the X-ray irradiation direction line to irradiate the X-ray irradiation target outside the window in a spot shape.

以上により、本発明では、スポット内周から外周へのX線密度が一様でスポット径が小さく制御されたX線照射スポットをX線照射対象に照射することが可能であり、医療用、工業用等において超小型のX線管としての用途に適したものとなる。   As described above, in the present invention, it is possible to irradiate an X-ray irradiation target with an X-ray irradiation spot whose X-ray density from the inner periphery to the outer periphery of the spot is uniform and the spot diameter is controlled to be small. It is suitable for use as an ultra-small X-ray tube.

本発明は、上記陽極が、上記先端部に連成され該先端部より熱容量が大きくかつ先端部の発生熱の導熱に用いる導熱部を有する構成とすることが好ましい。この態様では、先端部が電子ビーム衝突で発熱しても、その発熱は導熱部に導熱されるので、当該先端部は冷却されて、X線束の発生効率を向上させることができるようになる。   In the present invention, it is preferable that the anode has a heat conducting portion that is coupled to the tip portion and has a heat capacity larger than that of the tip portion and is used for conducting heat generated at the tip portion. In this aspect, even if the tip portion generates heat due to the electron beam collision, the generated heat is conducted to the heat conducting portion, so that the tip portion is cooled and the generation efficiency of the X-ray flux can be improved.

本発明は、上記陽極の導熱部後端部が真空管外に導出されると共に真空管の真空封止部分とする構成とすることが好ましい。この態様では、導熱部が真空管外に導出されているので、上記導熱した熱が真空管外に放熱され、より先端部の放熱効果が向上し、結果、よりX線束の発生効率を向上させることができるようになる。   In the present invention, the rear end portion of the heat conducting portion of the anode is preferably led out of the vacuum tube and used as a vacuum sealed portion of the vacuum tube. In this aspect, since the heat conducting portion is led out of the vacuum tube, the heat conducted is radiated to the outside of the vacuum tube, the heat radiation effect of the tip portion is further improved, and as a result, the generation efficiency of the X-ray flux can be further improved. become able to.

本発明は、上記陽極先端部斜面の角度を陽極先端部先端ほど連続指数関数的にまたはステップ的に小さくする構成とすることができる。この構成では、環状陰極と陽極先端部斜面との対向位置を軸方向にずらせることにより、X線束の束径をより小さく集束させたり、その逆に束径を広がらせたりすることができる。   The present invention can be configured such that the angle of the slope of the anode tip portion is made smaller in a continuous exponential function or stepwise as the tip of the anode tip portion. In this configuration, by shifting the facing position between the annular cathode and the slope of the tip of the anode in the axial direction, the bundle diameter of the X-ray bundle can be converged smaller, or conversely, the bundle diameter can be increased.

なお、陽極先端部と環状陰極との間に電子加速手段を配置してもよい。環状陰極は中実でも中空でもよい。陽極は中実でも中空でもよい。電子遮蔽部材は、環状陰極からの遠近移動および/または内径拡縮調整可能としてもよい。   An electron acceleration means may be disposed between the anode tip and the annular cathode. The annular cathode may be solid or hollow. The anode may be solid or hollow. The electron shielding member may be capable of adjusting the distance from the annular cathode and / or adjusting the inner diameter.

また、本発明は、陽極先端部と環状陰極とをX線照射方向に相対移動可能となすことにより、X線束の束径を任意に制御することができるようにしてもよい。   In the present invention, the bundle diameter of the X-ray bundle may be arbitrarily controlled by making the anode tip and the annular cathode relatively movable in the X-ray irradiation direction.

本発明によれば、医療用、工業用、分析用等における新規な構造のX線管を提供することができる。   According to the present invention, it is possible to provide an X-ray tube having a novel structure for medical use, industrial use, analysis use and the like.

以下、添付した図面を参照して、本発明の実施の形態に係るX線管を説明する。図1は、同X線管の外観斜視図、図2は同X線管の断面図、図3は図2のA−A線に沿う断面構成を示す図、図4は図2で示すX線管の要部(軸状陽極、環状陰極、電子遮蔽部材、X線導出窓)断面を拡大して示す図、図5は同要部の外観を拡大して示す図である。図6はX線管全体の動作状態を説明するための図、図7は図6の全体動作において環状陰極から放出された電子が遮蔽部材により遮蔽される関係を説明するための図、図8は図6の全体動作において陽極先端部の円錐斜面の角度による電子ビーム径とX線束径との関係を説明するための図、である。   Hereinafter, an X-ray tube according to an embodiment of the present invention will be described with reference to the accompanying drawings. 1 is an external perspective view of the X-ray tube, FIG. 2 is a cross-sectional view of the X-ray tube, FIG. 3 is a diagram showing a cross-sectional configuration along the line AA in FIG. 2, and FIG. FIG. 5 is an enlarged view showing a cross section of the main part (axial anode, annular cathode, electron shielding member, X-ray extraction window) of the ray tube, and FIG. 5 is an enlarged view showing the appearance of the main part. 6 is a diagram for explaining the operation state of the entire X-ray tube, FIG. 7 is a diagram for explaining the relationship in which electrons emitted from the annular cathode are shielded by the shielding member in the overall operation of FIG. FIG. 7 is a diagram for explaining the relationship between the electron beam diameter and the X-ray bundle diameter depending on the angle of the conical slope at the tip of the anode in the overall operation of FIG. 6.

まず図1を参照して、実施の形態のX線管10は、端部にX線を透過できる膜厚数μm程度の薄膜例えばベリリウム膜からなるX線導出窓11aを備える。X線管10は後部にフレキシブルな同軸ケーブル11bが接続され、この同軸ケーブル11bに図示略の駆動電源内蔵コントロール装置が接続され、このコントロール装置の制御により駆動電源から例えばパルス状電圧が印加され、X線導出窓11aからX線照射対象11cにX線をX線照射スポット11dとして照射することができるようになっている。   First, referring to FIG. 1, an X-ray tube 10 of the embodiment includes an X-ray extraction window 11a made of a thin film having a thickness of about several μm, for example, a beryllium film, which can transmit X-rays. A flexible coaxial cable 11b is connected to the rear portion of the X-ray tube 10. A control device with a drive power supply (not shown) is connected to the coaxial cable 11b, and, for example, a pulse voltage is applied from the drive power supply under the control of the control device. The X-ray irradiation target 11c can be irradiated with X-rays as an X-ray irradiation spot 11d from the X-ray extraction window 11a.

図2ないし図5を参照して真空管11は、X線照射方向線L1方向に長手の円筒直管からなり内部が真空とされており、当該内部に軸状陽極12、環状陰極14、電子遮蔽部材16を備える。   2 to 5, the vacuum tube 11 is a cylindrical straight tube that is long in the direction of the X-ray irradiation direction line L1, and the inside thereof is evacuated. Inside, the axial anode 12, the annular cathode 14, the electron shield A member 16 is provided.

軸状陽極12はX線照射方向線L1方向に直線的に延びるように配置されている。軸状陽極12の先端部12aのX線照射方向線L1と同軸前方にX線導出窓11aが位置している。   The axial anode 12 is disposed so as to extend linearly in the X-ray irradiation direction line L1. An X-ray derivation window 11a is positioned in front of the X-ray irradiation direction line L1 of the tip end portion 12a of the axial anode 12.

軸状陽極12の先端部12aは円錐斜面12a2形状をなし電子ビーム衝突によりX線が発生するターゲットとなる。ターゲット材料は特に限定しない。軸状陽極12の陽極先端部12aの後部側は熱容量が大きくかつ先端部12aでの発生熱を導熱する導熱部12bとなり、また導熱部12bの後部側は真空管10後部外に導出され真空管11を真空封止する部分12cとなると共に同軸ケーブル11bに接続され高電圧が印加可能となっている。   The tip portion 12a of the axial anode 12 has a conical slope 12a2 shape and becomes a target for generating X-rays by electron beam collision. The target material is not particularly limited. The rear side of the anode tip portion 12a of the shaft-like anode 12 has a large heat capacity and becomes a heat conducting portion 12b that conducts heat generated at the tip portion 12a, and the rear side of the heat conducting portion 12b is led out of the rear portion of the vacuum tube 10 and is connected to the vacuum tube 11. It becomes the part 12c to be vacuum-sealed and is connected to the coaxial cable 11b so that a high voltage can be applied.

陽極先端部12aは、頂部12a1がX線照射方向線L1上に位置し円錐中心線がX線照射方向線L1に一致する円錐形状をなし、その円錐斜面12a2は、X線照射方向線L1に対して所定角度の斜面である。   The anode tip portion 12a has a conical shape in which the top portion 12a1 is located on the X-ray irradiation direction line L1 and the cone center line coincides with the X-ray irradiation direction line L1, and the conical slope 12a2 is located on the X-ray irradiation direction line L1. On the other hand, the slope has a predetermined angle.

環状陰極14は、陽極先端部12aのX線照射方向線周りを環状に囲み環状導線14aの外周面にナノ炭素膜14bが形成されている。   The annular cathode 14 surrounds the X-ray irradiation direction line of the anode tip portion 12a in an annular shape, and a nanocarbon film 14b is formed on the outer peripheral surface of the annular conducting wire 14a.

ナノ炭素膜14bはカーボンナノチューブ、カーボンナノウォール、カーボンナノファイバー、ダイヤモンドライクカーボン、アモルファスダイヤモンド、結晶性ダイヤモンド、グラファィト、フラーレン、針状炭素膜等、微細なnmオーダーの突起を有するものである。   The nanocarbon film 14b has fine nanometer-order projections such as carbon nanotubes, carbon nanowalls, carbon nanofibers, diamond-like carbon, amorphous diamond, crystalline diamond, graphite, fullerene, and acicular carbon films.

針状炭素膜に関して本出願人はいくつか出願している。例えば、針状炭素膜には、特願2005−232017(特開2007−048603:平成19年2月22日公開)の明細書の図8ないし図12のSEM写真で開示している炭素膜を用いることができる。   The applicant has filed several applications for acicular carbon films. For example, the acicular carbon film includes the carbon film disclosed in the SEM photographs of FIGS. 8 to 12 in the specification of Japanese Patent Application No. 2005-232017 (Japanese Patent Application Laid-Open No. 2007-048603: published on February 22, 2007). Can be used.

環状陰極14は、軸状陽極12との間の電界印加により電界放射して半径方向内側の軸状陽極12に向けて電子を放出する。上記電界印加は、軸状陽極12に例えば駆動電源18から高電位を印加することにより行われる。電位の印加形態は各種あり、本実施の形態は特に限定されない。   The annular cathode 14 emits an electric field by applying an electric field to the axial anode 12 and emits electrons toward the axial anode 12 on the radially inner side. The electric field is applied by applying a high potential to the shaft-like anode 12 from, for example, the drive power supply 18. There are various potential application modes, and this embodiment mode is not particularly limited.

例えば駆動電源18をマイクロコンピュータ20で制御されるパルス電源で構成し、このマイクロコンピュータ20の制御でパルス電源から軸状陽極12に極短パルスを印加してもよい。例えば軸状陽極12に正パルス状電圧+V、環状陰極14に正パルス状電圧+Vと同期してこの正パルス状電圧+Vと絶対値が同じ大きさの負パルス状電圧−Vを印加するようにしてパルス電源の電圧の大きさを半分に制御可能としてもよい。このパルス状電圧の波形は矩形状波でもよいし、鋸歯状波でもよいし、その他の波形形状でもよい。   For example, the drive power supply 18 may be constituted by a pulse power supply controlled by the microcomputer 20, and an extremely short pulse may be applied to the shaft-like anode 12 from the pulse power supply under the control of the microcomputer 20. For example, a positive pulse voltage + V is applied to the axial anode 12 and a negative pulse voltage -V having the same absolute value as the positive pulse voltage + V is applied to the annular cathode 14 in synchronization with the positive pulse voltage + V. Thus, the voltage of the pulse power supply may be controlled in half. The waveform of the pulse voltage may be a rectangular wave, a sawtooth wave, or other waveform shapes.

電子遮蔽部材16は、環状陰極14のX線照射方向両側に配置されて環状陰極14が放出する電子のうち軸方向両側方向への電子を遮蔽する電子遮蔽部材であり、X線照射方向両側一対の環状板部16a,16bと両環状板部16a,16bを連設する円筒部16cとを備える。電子遮蔽部材16は環状陰極14と同電位または略同電位が印加される。   The electron shielding member 16 is an electron shielding member that is arranged on both sides of the annular cathode 14 in the X-ray irradiation direction and shields electrons emitted from the annular cathode 14 in both axial directions. Annular plate portions 16a and 16b and a cylindrical portion 16c connecting both the annular plate portions 16a and 16b. The electron shielding member 16 is applied with the same or substantially the same potential as the annular cathode 14.

図6を参照して軸状陽極12に高パルス状電圧が印加されると、陽極先端部12aと環状陰極14との間に高電界が印加される。これによって環状陰極14から陽極先端部12aに向けて電子が電界放射により放出され、この放出した電子が陽極先端部12aの円錐斜面12a2に衝突する。   Referring to FIG. 6, when a high pulse voltage is applied to the axial anode 12, a high electric field is applied between the anode tip 12 a and the annular cathode 14. As a result, electrons are emitted from the annular cathode 14 toward the anode tip 12a by field emission, and the emitted electrons collide with the conical slope 12a2 of the anode tip 12a.

円錐斜面12a2に電子が衝突すると、該円錐斜面12aからX線が発生する。このX線はX線照射方向線L1方向に直進し、X線導出窓11aから窓外のX線照射対象11cをスポット状に照射する。   When electrons collide with the conical slope 12a2, X-rays are generated from the conical slope 12a. This X-ray goes straight in the X-ray irradiation direction line L1, and irradiates the X-ray irradiation target 11c outside the window in a spot shape from the X-ray derivation window 11a.

この場合、環状陰極14から放出した電子を電子遮蔽部材16で遮蔽することにより電子を陽極先端部12aに衝突させるが、このとき環状板部16a,16bの対向距離や内径を調整することにより電子を破線で示す軌道の電子を遮蔽し実線で示す軌道の電子のみを陽極先端部12aに広がりが狭い電子ビームとして衝突させる。   In this case, the electrons emitted from the annular cathode 14 are shielded by the electron shielding member 16 so that the electrons collide with the anode tip portion 12a. At this time, the opposing distance and the inner diameter of the annular plate portions 16a and 16b are adjusted. , The electrons in the orbits indicated by broken lines are shielded, and only the electrons in the orbits indicated by solid lines are caused to collide with the anode tip 12a as a narrow electron beam.

これにより陽極先端部12aの円錐斜面12a2から発生するX線束の束径を小さく絞り込み可能とし、X線照射対象11cに対してX線照射スポット11dの形態でX線を照射することができる。   Thereby, the bundle diameter of the X-ray bundle generated from the conical slope 12a2 of the anode tip 12a can be narrowed down, and the X-ray irradiation target 11c can be irradiated with X-rays in the form of an X-ray irradiation spot 11d.

また、陽極先端部12aの円錐斜面12a2の角度を調整することにより、陽極先端部12aの円錐斜面12a2に衝突する電子ビームのビーム径が同じでも、陽極先端部12aの円錐斜面12a2から発生するX線束の束径をより小さく絞り込み可能としている。   Further, by adjusting the angle of the conical slope 12a2 of the anode tip portion 12a, X generated from the conical slope 12a2 of the anode tip portion 12a even when the beam diameter of the electron beam colliding with the cone slope 12a2 of the anode tip portion 12a is the same. The bundle diameter of the wire bundle can be narrowed down.

次に図7を参照して環状陰極14から放出された電子が電子遮蔽部材16により遮蔽される関係を説明する。   Next, the relationship in which electrons emitted from the annular cathode 14 are shielded by the electron shielding member 16 will be described with reference to FIG.

図7(a1)は電子遮蔽部材16の両環状板部16a,16bの対向距離がD1のときであり、このときの環状陰極14から放出される電子の広がり角度はθ1である。   FIG. 7A1 shows a case where the opposing distance between the two annular plate portions 16a and 16b of the electron shielding member 16 is D1, and the spread angle of electrons emitted from the annular cathode 14 at this time is θ1.

図7(a2)は電子遮蔽部材16の両環状板部16a,16bの対向距離がD2(<D1)のときであり、このときの環状陰極14から放出される電子の広がり角度はθ2(<θ1)である。すなわち両環状板部16a,16bの対向距離を小さくすると、環状陰極14から放出される電子を陽極先端部12aに効果的に集束させることができる。   FIG. 7A2 shows the case where the opposing distance between the two annular plate portions 16a and 16b of the electron shielding member 16 is D2 (<D1), and the spread angle of electrons emitted from the annular cathode 14 at this time is θ2 (< θ1). That is, if the opposing distance between the annular plate portions 16a and 16b is reduced, the electrons emitted from the annular cathode 14 can be effectively focused on the anode tip portion 12a.

図7(b1)は電子遮蔽部材16の両環状板部16a,16bの内径がR1のときであり、このときの環状陰極14から放出される電子の広がり角度はθ1である。   FIG. 7B1 shows the case where the inner diameters of the two annular plate portions 16a and 16b of the electron shielding member 16 are R1, and the spread angle of electrons emitted from the annular cathode 14 at this time is θ1.

図7(b2)は電子遮蔽部材16の両環状板部16a,16bの内径がR2(<R1)のときであり、このときの環状陰極14から放出される電子の広がり角度はθ2(<θ1)である。すなわち両環状板部16a,16bの内径を小さくすると、環状陰極14から放出される電子を陽極先端部12aに効果的に集束させることができる。   FIG. 7B2 shows the case where the inner diameters of both the annular plate portions 16a and 16b of the electron shielding member 16 are R2 (<R1), and the spread angle of electrons emitted from the annular cathode 14 at this time is θ2 (<θ1). ). That is, if the inner diameters of both the annular plate portions 16a and 16b are reduced, the electrons emitted from the annular cathode 14 can be effectively focused on the anode tip portion 12a.

次に図8を参照して陽極先端部12aの円錐斜面12a2の角度による電子ビーム径とX線束径との関係を説明する。   Next, the relationship between the electron beam diameter and the X-ray flux diameter according to the angle of the conical slope 12a2 of the anode tip 12a will be described with reference to FIG.

図8(a)は円錐斜面12a2の角度がθ1であり、円錐斜面12a2に衝突した電子ビームB1のビーム径r1に対して円錐斜面12a2から発生したX線束B2の束径r2は大きく、X線照射方向線L1前方のX線照射対象に照射するX線照射スポットのスポット径r3は大きい。   In FIG. 8A, the angle of the conical inclined surface 12a2 is θ1, and the bundle diameter r2 of the X-ray bundle B2 generated from the conical inclined surface 12a2 is larger than the beam diameter r1 of the electron beam B1 colliding with the conical inclined surface 12a2. The spot diameter r3 of the X-ray irradiation spot irradiated to the X-ray irradiation target in front of the irradiation direction line L1 is large.

図8(b)は円錐斜面の角度がθ2(<θ1)であり、円錐斜面12a2に衝突した電子ビームB1のビーム径r1に対して円錐斜面12a2から発生したX線束B2の束径r2は小さく、X線照射方向線L1前方のX線照射対象に照射するX線照射スポットのスポット径r3は小さい。すなわち円錐斜面12a2の角度を小さくすることにより、電子ビームB1のビーム径は同じでもX線束の束径を小さくしてX線照射スポットを小さくすることができる。   In FIG. 8B, the angle of the cone slope is θ2 (<θ1), and the bundle diameter r2 of the X-ray bundle B2 generated from the cone slope 12a2 is smaller than the beam diameter r1 of the electron beam B1 colliding with the cone slope 12a2. The spot diameter r3 of the X-ray irradiation spot irradiated to the X-ray irradiation target in front of the X-ray irradiation direction line L1 is small. That is, by reducing the angle of the conical inclined surface 12a2, the X-ray irradiation spot can be reduced by reducing the bundle diameter of the X-ray bundle even if the beam diameter of the electron beam B1 is the same.

以上から実施の形態では、陽極先端部12aと環状陰極14との間での電界印加で環状陰極14から発生した電子が電子遮蔽部材16で遮蔽されてその半径方向内側の陽極先端部12aの円錐斜面12a2に向けて所定の電子ビームに集束される。   As described above, in the embodiment, the electrons generated from the annular cathode 14 by the application of an electric field between the anode tip 12a and the annular cathode 14 are shielded by the electron shielding member 16, and the cone of the anode tip 12a on the radially inner side thereof. It is focused on a predetermined electron beam toward the inclined surface 12a2.

これによって、陽極先端部12aの円錐斜面12a2に電子ビームが衝突して上記円錐斜面12a2から発生するX線束はX線照射方向線L1上前方のX線導出窓11aに向けて直進し窓11a外のX線照射対象にスポット状に照射することができる。   As a result, the electron beam collides with the conical slant surface 12a2 of the anode tip 12a, and the X-ray flux generated from the conical slant surface 12a2 goes straight toward the X-ray derivation window 11a ahead of the X-ray irradiation direction line L1 and out of the window 11a. Can be irradiated in a spot shape.

その結果、X線照射対象に対するX線照射スポットはスポット内周から外周へのX線密度が一様であり、かつ、陽極先端部12aの円錐斜面12a2の斜面角度を小さくしてスポット径も小さくすることができ、医療用、工業用等において超小型のX線管としての用途に適したものとなる。   As a result, the X-ray irradiation spot for the X-ray irradiation target has a uniform X-ray density from the inner periphery to the outer periphery of the spot, and the slope angle of the conical slope 12a2 of the anode tip 12a is reduced to reduce the spot diameter. Therefore, it is suitable for use as an ultra-small X-ray tube in medical use, industrial use, and the like.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiments, and includes various changes or modifications within the scope described in the claims.

図1は本発明の実施の形態に係るX線管の外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of an X-ray tube according to an embodiment of the present invention. 図2は図1のX線管の断面図である。FIG. 2 is a cross-sectional view of the X-ray tube of FIG. 図3は図2のA−A線に沿う断面図である。3 is a cross-sectional view taken along line AA in FIG. 図4は図2で示すX線管の要部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing a main part of the X-ray tube shown in FIG. 図5は同要部を拡大して示す斜視図である。FIG. 5 is an enlarged perspective view showing the main part. 図6は全体の動作状態を説明するための図である。FIG. 6 is a diagram for explaining the entire operation state. 図7は図6の全体動作において環状陰極から放出された電子が遮蔽部材により遮蔽される関係を説明するための図である。FIG. 7 is a view for explaining the relationship in which electrons emitted from the annular cathode are shielded by the shielding member in the overall operation of FIG. 図8は図6の全体動作において陽極先端部の円錐斜面の角度による電子ビーム径とX線束径との関係を説明するための図である。FIG. 8 is a diagram for explaining the relationship between the electron beam diameter and the X-ray bundle diameter depending on the angle of the conical slope at the tip of the anode in the overall operation of FIG.

符号の説明Explanation of symbols

1 X線管
11 真空管
11a X線導出窓
12 軸状陽極
12a 陽極先端部
14 環状陰極
16 電子遮蔽部材
DESCRIPTION OF SYMBOLS 1 X-ray tube 11 Vacuum tube 11a X-ray extraction window 12 Axial anode 12a Anode tip part 14 Annular cathode 16 Electron shielding member

Claims (3)

真空管内部に、先端側がX線照射方向線上に延びる錐形でかつその錐形頂部がX線照射方向線上前方向に向く陽極と、この陽極先端部の半径方向外側を該陽極先端部と同心で環状に囲み外周面がナノ炭素膜からなる電界放射型の環状陰極と、少なくとも環状陰極のX線照射方向両側に配置されて環状陰極が放出する電子を遮蔽する電子遮蔽部材と、を備えると共に、上記X線照射方向線上で陽極先端部前方の真空管管壁にX線透過可能な薄膜からなるX線導出窓を設けた、ことを特徴とするX線管。   Inside the vacuum tube, an anode whose tip side extends in the X-ray irradiation direction line and whose apex is directed forward in the X-ray irradiation direction line, and a radially outer side of the anode tip portion are concentric with the anode tip portion. A field emission type annular cathode having an annular outer peripheral surface made of a nanocarbon film, and an electron shielding member arranged at least on both sides of the annular cathode in the X-ray irradiation direction and shielding electrons emitted from the annular cathode; An X-ray tube characterized in that an X-ray derivation window made of a thin film capable of transmitting X-rays is provided on the vacuum tube wall in front of the anode tip on the X-ray irradiation direction line. 上記電子遮蔽部材は、環状陰極のX線照射方向両側を該X線照射方向周り環状に配置された一対の環状板部を備える、ことを特徴とする請求項1に記載のX線管。   2. The X-ray tube according to claim 1, wherein the electron shielding member includes a pair of annular plate portions that are annularly arranged around the X-ray irradiation direction on both sides of the annular cathode in the X-ray irradiation direction. 上記陽極先端部の外周斜面のX線照射方向線に対する角度が、環状陰極からの電子ビームのビーム径よりも陽極先端部から発生したX線束の束径を小さくする角度に調整されている、ことを特徴とする請求項1または2に記載のX線管。   The angle with respect to the X-ray irradiation direction line of the outer peripheral slope of the anode tip is adjusted to an angle that makes the bundle diameter of the X-ray bundle generated from the anode tip smaller than the beam diameter of the electron beam from the annular cathode. The X-ray tube according to claim 1 or 2, wherein
JP2007134462A 2007-05-21 2007-05-21 X-ray tube Active JP5436760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134462A JP5436760B2 (en) 2007-05-21 2007-05-21 X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134462A JP5436760B2 (en) 2007-05-21 2007-05-21 X-ray tube

Publications (2)

Publication Number Publication Date
JP2008288159A true JP2008288159A (en) 2008-11-27
JP5436760B2 JP5436760B2 (en) 2014-03-05

Family

ID=40147670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134462A Active JP5436760B2 (en) 2007-05-21 2007-05-21 X-ray tube

Country Status (1)

Country Link
JP (1) JP5436760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309676A (en) * 2007-06-15 2008-12-25 Dialight Japan Co Ltd Inspection system
KR20170019309A (en) * 2015-08-11 2017-02-21 한국전자통신연구원 X-ray source and apparatus including the same
CN111564350A (en) * 2019-02-12 2020-08-21 马尔文帕纳科公司 X-ray tube and X-ray analysis system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970585A (en) * 1972-09-18 1974-07-08
JPS63261663A (en) * 1987-04-20 1988-10-28 Fujitsu Ltd X-ray exposure device
JPH02170335A (en) * 1988-10-25 1990-07-02 X-Ray Technol Inc Multitarget x-ray tube
JP2006073385A (en) * 2004-09-02 2006-03-16 Shimadzu Corp X-ray tube apparatus
JP2007048583A (en) * 2005-08-10 2007-02-22 Casio Comput Co Ltd X-ray generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970585A (en) * 1972-09-18 1974-07-08
JPS63261663A (en) * 1987-04-20 1988-10-28 Fujitsu Ltd X-ray exposure device
JPH02170335A (en) * 1988-10-25 1990-07-02 X-Ray Technol Inc Multitarget x-ray tube
JP2006073385A (en) * 2004-09-02 2006-03-16 Shimadzu Corp X-ray tube apparatus
JP2007048583A (en) * 2005-08-10 2007-02-22 Casio Comput Co Ltd X-ray generating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309676A (en) * 2007-06-15 2008-12-25 Dialight Japan Co Ltd Inspection system
KR20170019309A (en) * 2015-08-11 2017-02-21 한국전자통신연구원 X-ray source and apparatus including the same
KR102312207B1 (en) * 2015-08-11 2021-10-14 한국전자통신연구원 X-ray source and apparatus including the same
CN111564350A (en) * 2019-02-12 2020-08-21 马尔文帕纳科公司 X-ray tube and X-ray analysis system
JP2020136269A (en) * 2019-02-12 2020-08-31 マルバーン パナリティカル ビー ヴィ X-ray tube and X-ray analysis system
JP7386723B2 (en) 2019-02-12 2023-11-27 マルバーン パナリティカル ビー ヴィ X-ray tube and X-ray analysis system
CN111564350B (en) * 2019-02-12 2024-05-24 马尔文帕纳科公司 X-ray tube and X-ray analysis system

Also Published As

Publication number Publication date
JP5436760B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US7197116B2 (en) Wide scanning x-ray source
JP4878311B2 (en) Multi X-ray generator
KR101810349B1 (en) Electron source, x-ray source and device using the x-ray source
RU2635372C2 (en) Multi-cathode distributed x-ray apparatus with cathode control and computer-tomographic device with mentioned apparatus
US6661876B2 (en) Mobile miniature X-ray source
JP2007265981A5 (en)
KR20070114741A (en) Magnetic head for x-ray source
US8488737B2 (en) Medical X-ray imaging system
US9779907B2 (en) X-ray tube having a dual grid and dual filament cathode
JP2003288853A (en) X-ray device
US9048064B2 (en) Cathode assembly for a long throw length X-ray tube
KR20100113675A (en) Super miniature x-ray tube using carbon nanotube field emitter
JP5436760B2 (en) X-ray tube
US9508523B2 (en) Forward flux channel X-ray source
Avachat et al. Looking inside a prototype compact X-ray tube comprising CNT-based cold cathode and transmission-type anode
JP5036376B2 (en) Electron beam irradiation device
KR20110045937A (en) Apparatus on generating X-ray using CNT yarn
KR20190040265A (en) X-ray tube
JP5312555B2 (en) Multi X-ray generator
JP3871654B2 (en) X-ray generator
US8867706B2 (en) Asymmetric x-ray tube
US20190189384A1 (en) Bipolar grid for controlling an electron beam in an x-ray tube
JP6537679B2 (en) Radiation tube, radiation source and radiation inspection apparatus
JP2005166565A (en) Negative electrode, x-ray generating device, and x-ray generation method
JP5283053B2 (en) Field emission electron source

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5436760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250