JP2008287092A - Optical scanning apparatus and image forming apparatus - Google Patents

Optical scanning apparatus and image forming apparatus Download PDF

Info

Publication number
JP2008287092A
JP2008287092A JP2007133130A JP2007133130A JP2008287092A JP 2008287092 A JP2008287092 A JP 2008287092A JP 2007133130 A JP2007133130 A JP 2007133130A JP 2007133130 A JP2007133130 A JP 2007133130A JP 2008287092 A JP2008287092 A JP 2008287092A
Authority
JP
Japan
Prior art keywords
folding mirror
image
optical
mirror
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007133130A
Other languages
Japanese (ja)
Other versions
JP4851389B2 (en
Inventor
Naoki Miyatake
直樹 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007133130A priority Critical patent/JP4851389B2/en
Priority to CN 200810099481 priority patent/CN101308253B/en
Publication of JP2008287092A publication Critical patent/JP2008287092A/en
Application granted granted Critical
Publication of JP4851389B2 publication Critical patent/JP4851389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems regarding an image forming apparatus for superposing color images through the use of a plurality of image carriers, currently, plastic materials are largely used for an optical device for a scanning optical system, but the shape of the optical device is often deviated from the ideal one due to a molding condition and a temperature condition, etc., further, these errors including an attaching error of the optical element with a housing cause curving of a scanning line and positional deviation; thereby, color drift occurs, and image quality is remarkably reduced. <P>SOLUTION: When the scanning line is tilted, the tilt of the scanning line can be corrected by using the oscillation of a return mirror M with one end thereof as an axis, the level of the correctable tilt is varied in accordance with the size of a deflection angle to reflect a light beam. That is, if the deflection angle is small, the tilt may not be sufficiently corrected even by increasing the oscillation amount. An image light beam having the highest brightness of color is assigned for the return mirror so as not to make the insufficient correction conspicuous. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、デジタル複写機、レーザプリンタ、レーザファクシミリ等の光走査装置、および、これを用いた画像形成装置に関する。   The present invention relates to an optical scanning device such as a digital copying machine, a laser printer, and a laser facsimile, and an image forming apparatus using the same.

レーザプリンタ等に関連して広く知られた光走査装置は一般に、光源側からの光ビームを光偏向器により偏向させ、fθレンズ等の走査結像光学系により被走査面に向けて集光して被走査面上に光スポットを形成し、この光スポットで被走査面を光走査するように構成されている。被走査面の実体をなすものは光導電性の感光体等である感光媒体の感光面である。光偏向器の回転により光スポットが移動する方向を主走査方向と呼び、光ビームが移動することによって通過する面に垂直な方向を副走査方向と呼ぶ。これらの用語は、本来被走査面上で定義されるべき用語であるが、便宜上、光偏向器から被走査面に至る間の位置においてもこれらの用語を援用する。
また、フルカラー画像形成装置の一例として、4つの感光体を記録紙の搬送方向に配列し、これらの各感光体に対応した複数の光源装置から放射された光ビームの光束を1つの偏向手段により偏向走査し、各感光体に対応する複数の走査結像光学系により各感光体に同時に露光して潜像をつくり、これらの潜像をイエロー、マゼンタ、シアン、ブラックなどの各々異なる色の現像剤を使用する現像器で可視像化したのち、これらの可視像を同一の記録紙に順次重ね合わせて転写し定着することで、カラー画像を得られるように構成されている。このように、光走査装置と感光体の組み合わせを2組以上用いて、多色画像、すなわち、2色画像(例えば赤と黒)や3色以上のカラー画像等を得るようにした画像形成装置は「タンデム式画像形成装置」として知られている。
In general, an optical scanning device widely known in relation to a laser printer or the like generally deflects a light beam from a light source side by an optical deflector and collects the light beam toward a surface to be scanned by a scanning imaging optical system such as an fθ lens. Thus, a light spot is formed on the surface to be scanned, and the surface to be scanned is optically scanned with this light spot. What constitutes the surface to be scanned is a photosensitive surface of a photosensitive medium such as a photoconductive photosensitive member. The direction in which the light spot moves due to the rotation of the optical deflector is called the main scanning direction, and the direction perpendicular to the plane through which the light beam moves is called the sub-scanning direction. These terms are terms that should originally be defined on the surface to be scanned, but for convenience, these terms are also used at positions between the optical deflector and the surface to be scanned.
As an example of a full-color image forming apparatus, four photoconductors are arranged in the conveyance direction of the recording paper, and light beams emitted from a plurality of light source devices corresponding to the photoconductors are formed by one deflecting unit. A deflection scan is performed, and a plurality of scanning imaging optical systems corresponding to the respective photosensitive members are simultaneously exposed to the respective photosensitive members to form latent images, and these latent images are developed in different colors such as yellow, magenta, cyan, and black. After being visualized by a developing device using an agent, these visible images are sequentially superimposed and transferred and fixed on the same recording paper so that a color image can be obtained. As described above, an image forming apparatus that obtains a multicolor image, that is, a two-color image (for example, red and black) or a three-color or more color image, by using two or more combinations of the optical scanning device and the photosensitive member. Is known as a “tandem image forming apparatus”.

このようなタンデム式画像形成装置として、複数の感光媒体が単一の光偏向器を共用する方式のものが開示されている。
[1]偏向器の両側より光束を入射し、光束を振り分けて走査する対向走査方式。
[2]略平行でかつ副走査方向に離れた複数の光束を偏向器に入射し、複数の光束に対応する複数の走査光学素子を副走査方向に並べて走査する。
[3]偏向器の片側より光束を入射し、3枚構成の走査光学系(L1、L2、L3)で、L1、L2は異なる被走査面に向かう複数の光束が通過し、L3は各被走査面毎に設けられている。
このように、複数の被走査面で光偏向器を共用すると、光偏向器の数を減らすことにより、画像形成装置をコンパクト化・低コスト化することが可能になる。
As such a tandem type image forming apparatus, a system in which a plurality of photosensitive media share a single optical deflector is disclosed.
[1] A counter scanning method in which a light beam is incident from both sides of a deflector, and the light beam is distributed and scanned.
[2] A plurality of light beams that are substantially parallel and separated in the sub-scanning direction are incident on the deflector, and a plurality of scanning optical elements corresponding to the plurality of light beams are arranged and scanned in the sub-scanning direction.
[3] A light beam enters from one side of the deflector, and a plurality of scanning optical systems (L1, L2, L3) in L3 and L2 pass through a plurality of light beams directed to different scanning surfaces. It is provided for each scanning plane.
As described above, when the optical deflectors are shared by a plurality of scanned surfaces, it is possible to reduce the number of optical deflectors, thereby reducing the size and cost of the image forming apparatus.

しかし、近年では走査光学系の光学素子にはプラスチック材料が多く使われている。プラスチックは量産性に優れている一方で成形時の金型内温度の分布や金型から取り出した後の冷却が一律に行われないなどのことから、形状が理想のものから外れてしまうことも多い。走査光学系においては、主走査方向に長い形状の光学素子が多く、副走査方向に光学素子が曲がってしまう(反ってしまう)こともあり、保持方法によっては走査線傾き、走査線曲がりなどの副走査対応方向への走査位置ずれとなる。また、光学素子のハウジングへの取り付け誤差も走査面上での副走査対応方向への走査位置ずれとなり無視できない大きさになる場合が多い。   However, in recent years, plastic materials are often used for optical elements of scanning optical systems. While plastic is excellent in mass productivity, the shape may deviate from the ideal because the temperature distribution in the mold during molding and cooling after removal from the mold are not uniformly performed. Many. In a scanning optical system, there are many optical elements having a long shape in the main scanning direction, and the optical elements may be bent (warped) in the sub-scanning direction. Depending on the holding method, the scanning line inclination, the scanning line bending, etc. The scanning position shifts in the sub-scanning corresponding direction. Further, an error in attaching the optical element to the housing often results in a scanning position shift in the sub-scanning corresponding direction on the scanning surface and cannot be ignored.

更に、複数の走査手段を持つ画像形成装置においては、各走査手段毎に走査線曲がりなどの副走査対応方向への走査位置ずれの量が異なってしまい色ずれが発生し、画像品質を著しく低下させる。
説明を加えると、タンデム型のフルカラー複写機においては、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の各色に対応して4つの感光体ドラムを転写ベルトの搬送面に沿って列設し、光走査装置により各感光体ドラムに対応して設けられたビームを走査して、当該感光体ドラム周面に静電潜像を形成すると共に該当する色のトナーで顕像化し、これを転写ベルトによって搬送されるシート上に順次転写して多色画像を形成するようになっていることから、各色ごとにばらばらの副走査対応方向の走査位置ずれが生じてしまうと画質の低下、色ずれをひきおこす。
Furthermore, in an image forming apparatus having a plurality of scanning means, the amount of scanning position deviation in the sub-scanning corresponding direction such as scanning line bending differs for each scanning means, resulting in color misregistration and a marked reduction in image quality. Let
In addition, in a tandem type full-color copying machine, four photosensitive drums corresponding to each color of cyan (C), magenta (M), yellow (Y), and black (K) are transferred on the transfer belt. And an optical scanning device scans the beam provided corresponding to each photoconductive drum to form an electrostatic latent image on the peripheral surface of the photoconductive drum and develop it with the toner of the corresponding color. Since this is converted into an image and this is sequentially transferred onto a sheet conveyed by a transfer belt to form a multicolor image, the scanning position shift in the sub-scanning corresponding direction is different for each color. Causes image quality degradation and color misregistration.

前記問題の解決方法として、特許文献1においては、複数の走査手段を用いる画像形成装置において、各走査手段(ハウジング)全体を感光体に対し位置調整し、各感光体での走査線を一致させる発明が記載されている。しかし、調整のための機構が複雑になり、調整時間もかかるため、コストアップになってしまう。
本出願人は、走査線曲がりの補正方法として、特許文献2において、レンズの中央付近に突起物を突き当てる際に突出量を変化させて走査線曲がりを補正する方式を提案している。しかし、レンズ形状(例えば1枚構成の走査レンズなど中心肉厚が厚く、主走査方向に短いレンズなど)によっては補正困難である。
As a method for solving the above-described problem, in Japanese Patent Application Laid-Open No. H10-228707, in an image forming apparatus using a plurality of scanning units, the position of each scanning unit (housing) is adjusted with respect to the photosensitive member, and the scanning lines on each photosensitive member are matched. The invention has been described. However, the mechanism for adjustment becomes complicated and it takes time for adjustment, resulting in an increase in cost.
The present applicant has proposed a method of correcting the scanning line curvature by changing the amount of protrusion when a projection is abutted near the center of the lens in Patent Document 2 as a method of correcting the scanning line curvature. However, it is difficult to correct depending on the lens shape (for example, a lens having a thick central wall such as a single-lens scanning lens and short in the main scanning direction).

また、被走査面に向け副走査方向に折り返すミラーを撓ませて走査線曲がりを補正する方法が公知である(例えば、特許文献3 参照。)。しかし、ミラーを湾曲させると主走査方向にパワーを持つため、像面湾曲が劣化し、高品質な画像を得ることが困難となる。これは、調整量(撓ませ量)が大きいほど顕著となる。
走査線の傾きの調整としては、折返しミラーを副走査方向に平行な軸を中心に偏芯させ調整する方式がある。本方式によれば、光路長が変化することにより像面湾曲が劣化し高品質な画像を得ることが困難となる。
上記高品質な画像を得ることができなくなるとは、特に解像度が低くなるとの意味である。像面湾曲が劣化するとビームスポット径が太り、解像度が低下してしまうこととなる。
Further, a method for correcting the bending of the scanning line by bending a mirror that is turned back in the sub-scanning direction toward the surface to be scanned is known (for example, see Patent Document 3). However, if the mirror is curved, it has power in the main scanning direction, so that the curvature of field deteriorates and it is difficult to obtain a high-quality image. This becomes more significant as the adjustment amount (deflection amount) is larger.
As an adjustment of the inclination of the scanning line, there is a method in which the folding mirror is eccentrically adjusted around an axis parallel to the sub-scanning direction. According to this method, the curvature of field is deteriorated by changing the optical path length, and it becomes difficult to obtain a high-quality image.
The inability to obtain a high-quality image means that the resolution is particularly low. When the curvature of field is deteriorated, the beam spot diameter is increased and the resolution is lowered.

特開2001−133718号公報JP 2001-133718 A 特開平10−268217号公報Japanese Patent Laid-Open No. 10-268217 特開2001−228427号公報JP 2001-228427 A

走査レンズの湾曲などにより発生する走査線曲がり、光学素子の組み付けなどにより生じる走査線傾きを良好に補正し、高品質なカラー画像が得られる光走査装置、および、画像形成装置の実現、前記課題を解決し色ずれを低減可能な光走査装置、およびカラー画像形成装置の実現を課題とする。   An optical scanning device capable of satisfactorily correcting a scanning line bend caused by the curvature of a scanning lens and a scanning line inclination caused by assembly of an optical element and the like, and a high-quality color image can be obtained, and an image forming apparatus, and the problems It is an object of the present invention to realize an optical scanning device and a color image forming apparatus capable of solving the problem and reducing color misregistration.

請求項1に記載の発明では、複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの前記被走査面に向かう光ビームの前記光偏向器と前記被走査面の間には、前記折り返しミラーが、主走査方向および光ビームの進行方向のいずれに対しても平行とならない軸を中心に回動可能な回動機構を有し、該回動機構を有する複数の折返しミラーのうち、光ビームの偏角が最も小さい折返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする。
請求項2に記載の発明では、請求項1に記載の光走査装置において、前記最明度画像用ビームを反射偏向する折返しミラーは、前記回動機構をもつ複数の折返しミラーのうち、前記軸に対し、前記折り返しミラー面上で外側端の光ビームが反射される位置までの距離が最も大きい折返しミラーであることを特徴とする。
In the invention described in claim 1, after the light beams corresponding to the plurality of scanned surfaces are deflected by the optical deflector, the imaging optical system, the folding mirror for folding the optical path and guiding the light beams to the scanned surface, In the optical scanning device that forms a multi-color image by condensing each of the scanning surfaces corresponding to each other, between the optical deflector and the scanned surface of the light beam directed to at least two scanned surfaces, The folding mirror has a rotation mechanism that can rotate around an axis that is not parallel to either the main scanning direction or the traveling direction of the light beam, and among the plurality of folding mirrors having the rotation mechanism, The folding mirror having the smallest deflection angle of the light beam is a folding mirror that reflects and deflects the lightest image beam.
According to a second aspect of the present invention, in the optical scanning device according to the first aspect, the folding mirror that reflects and deflects the lightest image beam is arranged on the axis among the plurality of folding mirrors having the rotating mechanism. On the other hand, it is a folding mirror having the longest distance to the position where the light beam at the outer end is reflected on the folding mirror surface.

請求項3に記載の発明では、請求項1または2に記載の光走査装置において、前記回動機構をもつ折返しミラーは、主走査方向に曲率を持つように撓ませる撓め機構をもち、前記最明度画像用ビームを反射偏向する折返しミラーは、前記撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折返しミラーであることを特徴とする。
請求項4に記載の発明では、複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーが、主走査方向に曲率を持つように撓ませる撓め機構を有し、該撓め機構を持つ複数の折返しミラーのうち、光ビームの偏角が最も小さい折返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする。
According to a third aspect of the present invention, in the optical scanning device according to the first or second aspect, the folding mirror having the rotation mechanism has a bending mechanism that bends so as to have a curvature in the main scanning direction. The folding mirror that reflects and deflects the lightest image beam has the longest scanning line length in the main scanning direction on the mirror surface of the light beam that forms the image among the plurality of folding mirrors having the deflection mechanism. It is a short folding mirror.
In the invention described in claim 4, after the light beams corresponding to the plurality of scanned surfaces are deflected by the optical deflector, the imaging optical system, the folding mirror for folding the optical path and guiding the light beams to the scanned surface, In the optical scanning device that forms a multi-color image by condensing each on the corresponding scanned surface, the folding mirror is disposed between the optical deflector of the light beam directed to at least two scanned surfaces and the scanned surface. The bending mirror having a bending mechanism that bends so as to have a curvature in the main scanning direction, and the folding mirror having the smallest deflection angle of the light beam among the plurality of folding mirrors having the bending mechanism It is a folding mirror that reflects and deflects.

請求項5に記載の発明では、請求項4に記載の光走査装置において、前記最明度画像用ビームを反射偏向する折返しミラーは、前記撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーであることを特徴とする。
請求項6に記載の発明では、請求項4または5に記載の光走査装置において、前記撓め機構を持つ複数の折返しミラーは、主走査方向および光ビームの進行方向のいずれに対しても平行とならない軸を中心に回動可能な回動機構を有し、前記最明度画像用ビームを反射偏向する折返しミラーは、前記軸に対し、前記折り返しミラー上で、外側端の光ビームが反射される位置までの距離が最も大きい折返しミラーであることを特徴とする。
According to a fifth aspect of the present invention, in the optical scanning device according to the fourth aspect, the folding mirror that reflects and deflects the lightest image beam forms an image among the plurality of folding mirrors having the deflection mechanism. It is a folding mirror having the shortest scanning line length in the main scanning direction on the mirror surface of the light beam.
According to a sixth aspect of the present invention, in the optical scanning device according to the fourth or fifth aspect, the plurality of folding mirrors having the bending mechanism are parallel to both the main scanning direction and the traveling direction of the light beam. The folding mirror that has a pivoting mechanism that can pivot about a non-coordinated axis and reflects and deflects the lightest image beam reflects the light beam at the outer end on the folding mirror with respect to the axis. This is a folding mirror having the longest distance to the position.

請求項7に記載の発明では、複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーが、主走査方向および光ビームの進行方向のいずれに対しても平行とならない軸を中心に回動可能な回動機構を有し、該回動機構を有する複数の折返しミラーのうち、前記軸に対し、前記折り返しミラー面上で外側端の光ビームが反射される位置までの距離が最も離れている折返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする。
請求項8に記載の発明では、請求項7に記載の光走査装置において、前記回動機構をもつ折返しミラーは、主走査方向に曲率を持つように撓ませる撓め機構をもち、前記最明度画像用ビームを反射偏向する折返しミラーは、前記撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折返しミラーであることを特徴とする。
請求項9に記載の発明では、複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーが、主走査方向に曲率を持つように撓ませる撓め機構を有し、該撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする。
In the invention described in claim 7, after the light beams corresponding to the plurality of scanned surfaces are deflected by the optical deflector, the imaging optical system, the folding mirror for folding the optical path and guiding the light beams to the scanned surface, In the optical scanning device that forms a multi-color image by condensing each on the corresponding scanned surface, the folding mirror is disposed between the optical deflector of the light beam directed to at least two scanned surfaces and the scanned surface. A rotation mechanism that can rotate around an axis that is not parallel to either the main scanning direction or the traveling direction of the light beam, and among the plurality of folding mirrors having the rotation mechanism, On the other hand, the folding mirror having the longest distance to the position where the light beam at the outer end is reflected on the folding mirror surface is a folding mirror that reflects and deflects the lightest image beam.
According to an eighth aspect of the present invention, in the optical scanning device according to the seventh aspect, the folding mirror having the rotation mechanism has a bending mechanism that bends so as to have a curvature in the main scanning direction, and the maximum brightness. The folding mirror that reflects and deflects the image beam is a folding mirror that has the shortest scanning line length in the main scanning direction on the mirror surface of the light beam that forms the image among the plurality of folding mirrors having the deflection mechanism. It is a mirror.
In the invention according to claim 9, after the light beam corresponding to the plurality of scanned surfaces is deflected by the optical deflector, the imaging optical system, the folding mirror for folding the optical path and guiding the light beam to the scanned surface, In the optical scanning device that forms a multi-color image by condensing each on the corresponding scanned surface, the folding mirror is disposed between the optical deflector of the light beam directed to at least two scanned surfaces and the scanned surface. , Having a bending mechanism for bending so as to have a curvature in the main scanning direction, and scanning the light beam forming the image on the mirror surface in the main scanning direction among a plurality of folding mirrors having the bending mechanism The folding mirror with the shortest line length is a folding mirror that reflects and deflects the lightest image beam.

請求項10に記載の発明では、請求項1ないし9のいずれか1つに記載の光走査装置において、前記多色とは、イエロー、マゼンタ、シアンの3色を含み、前記最明度画像用ビームはイエロー画像用ビームであることを特徴とする。
請求項11に記載の発明では、請求項1ないし10のいずれか1つに記載の光走査装置において、前記結像光学系は1枚構成の走査レンズよりなることを特徴とする。
請求項12に記載の発明では、電子写真プロセスを実行することによって画像を形成する画像形成装置であって、電子写真プロセスの露光プロセスを実行する手段として請求項1ないし11のいずれか1つに記載の光走査装置を具備した画像形成装置を特徴とする。
請求項13に記載の発明では、請求項12に記載の画像形成装置において、被走査面として、少なくとも3つの感光体を持ち、カラー画像を形成することを特徴とする。
According to a tenth aspect of the present invention, in the optical scanning device according to any one of the first to ninth aspects, the multicolor includes three colors of yellow, magenta, and cyan, and the lightest image beam. Is a yellow image beam.
According to an eleventh aspect of the present invention, in the optical scanning device according to any one of the first to tenth aspects, the imaging optical system is composed of a single scanning lens.
According to a twelfth aspect of the present invention, there is provided an image forming apparatus for forming an image by executing an electrophotographic process, and means for performing an exposure process of the electrophotographic process according to any one of the first to eleventh aspects. An image forming apparatus including the optical scanning device described above is characterized.
According to a thirteenth aspect of the present invention, in the image forming apparatus according to the twelfth aspect, the image forming apparatus has at least three photoconductors as the surface to be scanned, and forms a color image.

本発明によれば、色ずれ低減のための走査線傾き調整を実施した場合において、像面湾曲の変動、ビームスポット径の劣化による多色画像における解像度の低下を低減し、高品質な画像を実現できる光走査装置が提供可能となる。   According to the present invention, when scanning line inclination adjustment for color misregistration reduction is performed, a decrease in resolution in a multicolor image due to field curvature variation and beam spot diameter degradation is reduced, and a high-quality image is obtained. An optical scanning device that can be realized can be provided.

図1は本発明の光走査装置の実施の1形態を説明するための図である。
同図において符号1は光源、2はカップリングレンズ、3はシリンドリカルレンズ、4はポリゴンミラー、4aはポリゴンミラーの反射面、5は結像光学系、6は走査光学系、7は感光体、7aは被走査面をそれぞれ示す。
同図は光源から被走査面までの光路を同一平面に展開して示した図である。
光源としての半導体レーザ1から放射された発散性の光束Lはカップリングレンズ2により以後の光学系に適した光束形態に変換される。カップリングレンズ2により変換された光束形態は、平行光束であることも、弱い発散性あるいは弱い集束性の光束であることもできる。
カップリングレンズ2からの光束Lはシリンドリカルレンズ3により同図の紙面方向に集光され、光偏向器としてのポリゴンミラー4の偏向反射面4aに入射する。
偏向反射面4aにより反射された光束L’は、ポリゴンミラー4の等速回転とともに等角速度的に偏向し、結像光学系5を透過して被走査面7a上に集光する。これにより、偏向光束L’は被走査面7a上に光スポットを形成し、被走査面7aの光走査を行う。前述のように、この方向の走査を主走査と呼んでいる。被走査面7aにおける主走査方向と直交する方向を副走査と呼んでいる。実際には折り返しミラー(同図では折返しミラーは図示していない)等により光の進行方向は変化するので、「主走査方向」・「副走査方向」は、光の進行方向における相対的な関係として用いる。
FIG. 1 is a diagram for explaining an embodiment of an optical scanning device of the present invention.
In the figure, reference numeral 1 is a light source, 2 is a coupling lens, 3 is a cylindrical lens, 4 is a polygon mirror, 4a is a reflecting surface of the polygon mirror, 5 is an imaging optical system, 6 is a scanning optical system, 7 is a photoconductor, Reference numeral 7a denotes a surface to be scanned.
This figure shows the optical path from the light source to the surface to be scanned developed on the same plane.
The divergent light beam L emitted from the semiconductor laser 1 as the light source is converted into a light beam form suitable for the subsequent optical system by the coupling lens 2. The form of the light beam converted by the coupling lens 2 can be a parallel light beam, or a light beam with weak divergence or weak convergence.
The light beam L from the coupling lens 2 is condensed in the direction of the paper surface of the figure by the cylindrical lens 3 and is incident on the deflection reflection surface 4a of the polygon mirror 4 as an optical deflector.
The light beam L ′ reflected by the deflecting / reflecting surface 4a is deflected at a constant angular velocity as the polygon mirror 4 rotates at a constant speed, passes through the imaging optical system 5, and is condensed on the scanned surface 7a. As a result, the deflected light beam L ′ forms a light spot on the scanned surface 7a, and performs optical scanning of the scanned surface 7a. As described above, scanning in this direction is called main scanning. The direction orthogonal to the main scanning direction on the scanned surface 7a is called sub-scanning. Actually, the light traveling direction is changed by a folding mirror (the folding mirror is not shown in the figure), so the “main scanning direction” and “sub-scanning direction” are relative to each other in the light traveling direction. Used as

走査レンズがプラスチック材料の場合、成形時の金型内温度の分布や金型から取り出した後の冷却が一律に行われないなどのことから、形状が理想のものから外れる事が多い。具体的には、走査レンズが副走査方向に湾曲(反る)し、母線が湾曲することで走査レンズに入射する光束があたかも副走査方向に変位して入射するような状態となり、被走査面7a上において走査線の傾きや曲りが発生する。この他、光学素子の組付けばらつきなどでも走査線の傾きや走査線曲がりが発生する。   When the scanning lens is made of a plastic material, the shape often deviates from an ideal one because the temperature distribution in the mold at the time of molding and the cooling after taking out from the mold are not uniformly performed. Specifically, the scanning lens is bent (warped) in the sub-scanning direction, and the generatrix is bent, so that the light beam incident on the scanning lens is displaced and incident in the sub-scanning direction. The scan line tilts or bends on 7a. In addition, the inclination of the scanning line and the bending of the scanning line also occur due to variations in assembly of the optical elements.

図2は本発明の第1の実施例を説明するための図である。
同図において符号A、Bはミラーに対応する光路長変化量、Mは折り返しミラー、Δθは折り返しミラーの変位量(以下偏芯量と呼ぶ)、Pは回動の支点、Zは光軸をそれぞれ示す。
本発明は、折り返しミラーMの一端を回動可能に構成することによって課題を解決しようとするものである。
同図は回動支点Pからの距離が異なる位置に入射する光束の被走査面までの光路長が、同一のミラー回動量Δθによって変化する様子を説明している。同図(a)は支点Pからの距離が近い場合、同図(b)は支点Pからの距離が遠い場合を示している。支点PはミラーMの一端に設けられた軸の平面図上の1点を表しており、後述のように、軸は同図における紙面に垂直とは限らない。
本発明によれば、折り返しミラーMを有する光走査装置の少なくとも2以上の被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーMが、主走査方向および光ビームの進行方向に対し平行とならない軸を中心に回動可能な回動機構を有している。本折返しミラーMを同図に示すが如くミラーMの反射面に平行な軸を支点Pとして回動することで、被走査面7a上での走査線の傾きが変化する。多色画像を形成する場合、各被走査面としての感光体上で各々が異なる傾きを持つと、各色を重ね合わせた際に色ずれとなり画像品質が著しく低下してしまう。逆に言えば、前記折返しミラーMにより各色に対応する被走査面上での走査線傾きを調整し色ずれを低減することが可能となる。
なお、回動軸はミラーMの反射面に平行とする構成のほか、ハウジングの構成によってはハウジングの側面や上面から調整やすいように軸を鉛直方向その他に向けて設けるなど、適宜変形が可能である。
FIG. 2 is a diagram for explaining the first embodiment of the present invention.
In the figure, A and B are optical path length variations corresponding to the mirrors, M is a folding mirror, Δθ is a displacement amount of the folding mirror (hereinafter referred to as eccentricity), P is a pivot point, and Z is an optical axis. Each is shown.
The present invention intends to solve the problem by configuring one end of the folding mirror M to be rotatable.
This figure explains how the optical path length to the surface to be scanned of a light beam incident on a position with a different distance from the rotation fulcrum P changes with the same mirror rotation amount Δθ. FIG. 4A shows a case where the distance from the fulcrum P is short, and FIG. 4B shows a case where the distance from the fulcrum P is long. The fulcrum P represents one point on the plan view of the shaft provided at one end of the mirror M, and as will be described later, the shaft is not always perpendicular to the paper surface in FIG.
According to the present invention, the folding mirror M is arranged between the optical deflector of the light beam directed to at least two or more scanned surfaces of the optical scanning device having the folding mirror M and the scanned surface. It has a turning mechanism that can turn around an axis that is not parallel to the beam traveling direction. As shown in the figure, when the folding mirror M is rotated about an axis parallel to the reflecting surface of the mirror M as a fulcrum P, the inclination of the scanning line on the scanned surface 7a changes. When a multicolor image is formed, if each has a different inclination on the photoconductor as each surface to be scanned, color misregistration occurs when the respective colors are superimposed, and the image quality is significantly reduced. In other words, it is possible to reduce the color shift by adjusting the scanning line inclination on the surface to be scanned corresponding to each color by the folding mirror M.
In addition to the configuration in which the rotation axis is parallel to the reflecting surface of the mirror M, depending on the configuration of the housing, it can be modified as appropriate, for example, by providing the shaft in the vertical direction or the like so that it can be easily adjusted from the side or top surface of the housing. is there.

前記走査線傾きの調整機構においては色ずれ低減は可能となる。しかし、前記調整において走査線傾きを調整する場合、被走査面7aに向かう光ビームL’の光路長が変化する(同図におけるA1とA2に起因する差)。光路長が変化すると像面湾曲が変化するため、被走査面上のビームスポット径が太る現象が生じる。この結果、画像における解像度が低下してしまい色ずれとは異なる画像品質の低下を招くこととなる。
そこで、本発明においては、前記主走査方向および光ビームの進行方向に対し平行とならない軸を中心に回動可能な複数の折返しミラーにおいて、光ビームの偏角が最も小さい折返しミラーを、最も明度の高い色画像を形成する被走査面に対応する光ビーム(以下、最明度画像用ビームという)を反射偏向する折返しミラーとしている。
In the scanning line inclination adjusting mechanism, color misregistration can be reduced. However, when the scanning line inclination is adjusted in the adjustment, the optical path length of the light beam L ′ directed toward the scanned surface 7a changes (difference caused by A1 and A2 in the figure). When the optical path length changes, the curvature of field changes, which causes a phenomenon that the beam spot diameter on the surface to be scanned increases. As a result, the resolution of the image is lowered, and the image quality is different from the color shift.
Therefore, in the present invention, among the plurality of folding mirrors that can be rotated around an axis that is not parallel to the main scanning direction and the traveling direction of the light beam, the folding mirror having the smallest deviation angle of the light beam A folding mirror that reflects and deflects a light beam corresponding to a surface to be scanned that forms a high color image (hereinafter referred to as a beam for maximum brightness image).

図3は折り返しミラーの偏向角の違いによる調整量の違いを説明するための図である。
前記像面湾曲変動を低減するためには、折返しミラーMの偏芯調整量を小さくし、光路長の変化を小さくする必要がある。光路長の変化が小さければ、像面湾曲変動も減りビームスポット径の変動も低減可能となる。折返しミラーの偏芯調整量を小さくするのは、折返しミラーによる光ビームの偏向角(以下単に偏角と呼ぶ)を大きく(鈍角に)する必要がある。同図に示すが如く、偏角が大きいミラーと小さいミラーで被走査面上で同量(図中B)の走査位置変化を与える場合、折返しミラーMの偏芯量は、偏角の大きいミラーのほうが小さくなる。つまり、調整の感度は高いこととなる。この時の光路長の変化を見てみると、図中点線で示す部分が偏角が小さいミラーのほうが大きいことがわかる。つまり、偏角の小さいミラーでは光路長変化、言い換えれば像面湾曲変動が大きくなりビームスポット径が劣化することとなる。同図は、調整用ミラーの偏芯の軸から遠い側の光ビームを抽出して図示している。主走査断面の図で見た場合、図2のA1、もしくは、A2の位置での説明図となる。
なお、同図では副走査方向の矢印が3つ示されている。これは、同図の紙面内における光の進行方向に直交する方向が副走査方向となるからである。
FIG. 3 is a diagram for explaining a difference in adjustment amount due to a difference in deflection angle of the folding mirror.
In order to reduce the field curvature fluctuation, it is necessary to reduce the eccentric adjustment amount of the folding mirror M and to reduce the change in the optical path length. If the change in the optical path length is small, the field curvature fluctuation can be reduced and the beam spot diameter fluctuation can be reduced. In order to reduce the decentering adjustment amount of the folding mirror, it is necessary to increase (obtuse) the deflection angle (hereinafter simply referred to as the deflection angle) of the light beam by the folding mirror. As shown in the figure, when the same amount (B in the figure) of the scanning position change is given on the surface to be scanned with a mirror having a large declination and a small mirror, the decentering amount of the folding mirror M is a mirror having a large declination. Is smaller. That is, the adjustment sensitivity is high. Looking at the change in the optical path length at this time, it can be seen that the portion indicated by the dotted line in the figure is larger for the mirror having a small declination. That is, in a mirror with a small declination, a change in the optical path length, in other words, a field curvature variation becomes large and the beam spot diameter deteriorates. In the figure, a light beam far from the eccentric axis of the adjustment mirror is extracted and shown. When viewed in the main scanning section, it is an explanatory diagram at the position A1 or A2 in FIG.
In the figure, three arrows in the sub-scanning direction are shown. This is because the direction perpendicular to the light traveling direction in the drawing of FIG.

図4は4個の感光体を用いる場合の光路を説明するための図である。
同図において符号7は被走査面を有する感光体を示す。
同図に示すが如く、例えば4つの異なる被走査面7aに向かう光ビームの光路において、調整用の複数の折返しミラー(図中ハッチングされた折返しミラー)の偏角を各光ビームで共通とすることは困難であり現実的ではない。つまり、調整感度が高いミラーが配置される光ビームと、調整感度が低いミラーが配置される光ビームが存在することとなる。これは、像面湾曲変動が大きい色画像と像面湾曲変動の小さい色画像、つまりビームスポット径の劣化の大きい色画像と小さい色画像が必ず存在することとなる。そこで、本発明では、光ビームの偏角が最も小さい(最も調整感度が低い)前記調整用の折返しミラーを、最明度画像用ビームを反射偏向する折返しミラーとしている。本方式の形態とすることにより、多色画像における解像度の劣化の一番大きい色画像を、最も目立ちにくい色、すなわち、最も明度の高い色(例えば、シアン、マゼンタ、イエロー、ブラックの4色画像の場合はイエロー)とすることができる。明度の低い色で解像度が低下することは画像において品質低下が顕著に表れるが、明度の高い色では比較的解像度に及ぼす影響は小さい。本発明によれば、解像度の劣化を最小限にすることが可能となり、色ずれ、解像度の両面から良好な画像品質を得られる光走査装置が実現可能となる。
FIG. 4 is a view for explaining an optical path when four photoconductors are used.
In the figure, reference numeral 7 denotes a photosensitive member having a scanned surface.
As shown in the figure, for example, in the optical paths of light beams directed to four different scanned surfaces 7a, the deflection angles of a plurality of adjustment folding mirrors (hatched folding mirrors in the figure) are common to each light beam. That is difficult and impractical. That is, there are a light beam in which a mirror with high adjustment sensitivity is arranged and a light beam in which a mirror with low adjustment sensitivity is arranged. This means that there are always a color image with a large variation in field curvature and a color image with a small variation in field curvature, that is, a color image with a large deterioration in beam spot diameter and a small color image. Therefore, in the present invention, the folding mirror for adjustment having the smallest deflection angle of the light beam (lowest adjustment sensitivity) is a folding mirror that reflects and deflects the lightest image beam. By adopting the form of this method, the color image with the greatest resolution degradation in the multi-color image is changed to the most inconspicuous color, that is, the color with the highest brightness (for example, cyan, magenta, yellow, and black). In the case of yellow). A reduction in resolution with a low-lightness color causes a significant reduction in quality in the image, but a color with a high lightness has a relatively small effect on the resolution. According to the present invention, it is possible to minimize degradation of resolution, and it is possible to realize an optical scanning device that can obtain good image quality from both sides of color shift and resolution.

前記最明度画像用ビーム(以後、便宜上ビームYと呼ぶことにする)を反射偏向する折返しミラーは、回動支点PとビームYの反射点までの距離が最も離れている折返しミラーであることが望ましい。
画像形成装置は、光学系のハウジングの構造が複雑になるため、折り返しミラーの長さをすべて同じ大きさに作ることができない場合が多い。軸の位置はミラー端部に設けることになるので、軸から光束入射位置(ビームの反射点)までの距離はミラーによって異なる場合がある。
すなわち、4つの異なる被走査面に向かう光ビームの光路において、前記軸を中心に回動可能な複数の折返しミラーの回動支点Pと光軸の距離を一致させることは、光走査装置を収納するハウジングの設計上の大きな制約となる。このため、回動支点Pの位置は、各々の折返しミラーにより異なることが考えられる。
折返しミラーの回動支点Pに対し、折り返しミラー上で光軸を挟み支点と主走査方向で逆側の画像端の光ビーム(以後、便宜上外側端ビームと呼ぶ)の反射位置までの距離が長い場合、図2に示すが如く調整のための偏芯量Δθが同じ場合に、前記距離が短い場合に対し光路長の変化が大きくなってしまう(図中A<B)。光路長の変化が大きい場合の課題は前記説明と同様であるため割愛する。図中光ビームは本来ミラーにより反射するが、説明のため図中では透過するように示している。
The folding mirror that reflects and deflects the lightest image beam (hereinafter referred to as beam Y for convenience) is a folding mirror that is farthest from the pivot point P to the reflection point of the beam Y. desirable.
In the image forming apparatus, the structure of the optical system housing is complicated, and therefore the lengths of the folding mirrors cannot often be made the same. Since the position of the axis is provided at the end of the mirror, the distance from the axis to the light beam incident position (beam reflection point) may differ depending on the mirror.
In other words, in the optical paths of the light beams directed to four different scanning surfaces, it is possible to match the distances between the rotation fulcrums P of the plurality of folding mirrors that can be rotated about the axis and the optical axis. This is a major limitation in designing the housing. For this reason, it is conceivable that the position of the rotation fulcrum P differs depending on each folding mirror.
The distance from the turning fulcrum P of the folding mirror to the reflection position of the light beam at the image end opposite to the fulcrum on the folding mirror in the main scanning direction (hereinafter referred to as the outer end beam for convenience) is long. In this case, as shown in FIG. 2, when the amount of eccentricity Δθ for adjustment is the same, the change in the optical path length becomes larger than when the distance is short (A <B in the figure). Since the problem when the change in the optical path length is large is the same as that described above, it is omitted. In the figure, the light beam is originally reflected by the mirror, but for the sake of explanation, it is shown as being transmitted.

つまり、実施例1の如く調整用の折り返しミラーの調整感度が低く、更に、外側端ビームの反射位置までの距離が長い場合、像面湾曲変動はより大きくなり解像度の劣化も大きくなる。
そこで本発明では、ビームYを反射偏向する折返しミラーは、前記外側端ビームの反射位置までの距離が最も離れている折返しミラーとしている。本発明によれば、解像度の劣化を最小限にすることが可能となり、多色画像における色ずれ、解像度の両面から良好な画像品質を得られる光走査装置が実現可能となる。
In other words, when the adjustment sensitivity of the folding mirror for adjustment is low as in the first embodiment, and the distance to the reflection position of the outer end beam is long, the field curvature variation becomes larger and the resolution degradation also increases.
Therefore, in the present invention, the folding mirror that reflects and deflects the beam Y is a folding mirror that is farthest from the outer end beam reflection position. According to the present invention, degradation in resolution can be minimized, and an optical scanning device that can obtain good image quality from both sides of color misregistration and resolution in a multicolor image can be realized.

ここまで走査線傾き補正について説明してきた。次に走査線曲がり補正について説明する。
前記説明の如く、走査レンズがプラスチック材料の場合、成形時の金型内温度の分布や金型から取り出した後の冷却が一律に行われないなどのことから、形状が理想のものから外れる事が多い。具体的には、走査レンズが副走査方向に湾曲(反る)し、母線が湾曲することで走査レンズに入射する光束があたかも副走査方向に変位して入射するような状態となり、被走査面上において走査線曲りが発生する。この他、光学素子の組付けばらつきなどでも走査線曲がりが発生する。
The scanning line inclination correction has been described so far. Next, scanning line curve correction will be described.
As described above, when the scanning lens is made of a plastic material, the shape is not ideal because the temperature distribution in the mold at the time of molding and the cooling after taking out from the mold are not uniformly performed. There are many. Specifically, the scanning lens is bent (warped) in the sub-scanning direction, and the generatrix is bent, so that the light beam incident on the scanning lens is displaced and incident in the sub-scanning direction. Scan line bending occurs above. In addition, scanning line bending also occurs due to variations in assembly of optical elements.

本発明においては、少なくとも2以上の被走査面に向かう光ビームの光偏向器と被走査面の間には、折り返しミラーが、主走査方向に曲率を持つように撓ませる撓め機構を有する。折返しミラーを主走査方向に曲率を持つように撓ませることで被走査面上で走査線曲がりを発生させることができる。つまり、逆に言えば、発生している走査線曲がりを直線に近い状態に補正することが可能である。   In the present invention, between the optical deflector of the light beam directed to at least two or more scanned surfaces and the scanned surface, the folding mirror has a bending mechanism that bends so as to have a curvature in the main scanning direction. The scanning line can be bent on the surface to be scanned by bending the folding mirror so as to have a curvature in the main scanning direction. That is, in other words, it is possible to correct the generated scanning line curve to a state close to a straight line.

前記走査線曲りの調整機構においては色ずれ低減は可能となる。しかし、走査線曲がりを調整するために折返しミラーを撓ませた場合、折返しミラーが凸、もしくは凹の屈折力を持つこととなり、特に主走査方向の像面湾曲が変動する。実施例1で説明した通り、像面湾曲変動が大きいとビームスポット径が劣化し解像度を低下させることとなる。   In the scanning line curve adjustment mechanism, color misregistration can be reduced. However, when the folding mirror is bent in order to adjust the scanning line bending, the folding mirror has a convex or concave refractive power, and the field curvature in the main scanning direction in particular varies. As described in the first embodiment, if the field curvature variation is large, the beam spot diameter is deteriorated and the resolution is lowered.

図5は本発明の第3の実施例を説明するための図である。
同図は折り返しミラーの偏角の違いによる曲がり変位量の違いを説明するための図である。
図6は折り返しミラーの湾曲と被走査面における像面湾曲の関係を説明するための図である。
前記像面湾曲変動を低減するためには、折返しミラーの撓み量を小さくし、折返しミラーが持つ凸、もしくは凹の屈折力を小さくする必要がある。折り返しミラーの持つ屈折力が小さければ、像面湾曲変動も減りビームスポット径の変動も低減可能となる。折返しミラーの撓み量を小さくするのは、折返しミラーによる光ビームの偏角を大きくする(鈍角にする)必要がある。同図に示すが如く、偏角が大きいミラーと小さいミラーで同量の撓み量(図中A)を与えた時の被走査面での走査線の曲り変動量(図中B、B’)は、偏角が大きいミラーの方が大きくなる(B’)。つまり、偏角が鈍角となるミラーの調整感度は高く、偏角が鋭角となるミラーの調整感度は低いこととなる。同図で説明した2枚のミラー(実際には1枚のミラーが撓んだ状態)と被走査面7aは、それぞれ図6のC、Dの位置に相当する。
FIG. 5 is a diagram for explaining a third embodiment of the present invention.
This figure is a diagram for explaining the difference in bending displacement due to the difference in deflection angle of the folding mirror.
FIG. 6 is a diagram for explaining the relationship between the curvature of the folding mirror and the curvature of field on the surface to be scanned.
In order to reduce the field curvature fluctuation, it is necessary to reduce the bending amount of the folding mirror and to reduce the refractive power of the convex or concave of the folding mirror. If the refracting power of the folding mirror is small, the field curvature fluctuation can be reduced and the beam spot diameter fluctuation can be reduced. In order to reduce the bending amount of the folding mirror, it is necessary to increase (obtuse) the deflection angle of the light beam by the folding mirror. As shown in the figure, the amount of fluctuation in the scanning line curve (B, B 'in the figure) when the same amount of deflection (A in the figure) is given by the mirror having a large declination and the small mirror. Is larger for a mirror having a larger declination (B ′). That is, the adjustment sensitivity of a mirror with a declination being an obtuse angle is high, and the adjustment sensitivity of a mirror with a declination being an acute angle is low. The two mirrors (actually one mirror is bent) and the surface to be scanned 7a described with reference to FIG. 6 correspond to positions C and D in FIG. 6, respectively.

例えば4つの異なる被走査面に向かう光ビームの光路において、折返しミラーの偏角を各光ビームで共通とすることは困難であり現実的ではない。つまり、調整感度が高いミラーが配置される光ビームと、調整感度が低いミラーが配置される光ビームが存在することとなる。これは、像面湾曲変動が大きい色画像と像面湾曲変動の小さい色画像、つまりビームスポット径の劣化の大きい色画像と小さい色画像が必ず存在することとなる。そこで、本発明では、光ビームの偏角が最も小さい(最も調整感度が低い)前記調整用の折返しミラーを、ビームYを反射偏向する折返しミラーとしている。本方式の形態とすることにより、多色画像における解像度の劣化を最も目立ちにくい色、すなわち、最も明度の高い色(例えば、シアン、マゼンタ、イエロー、ブラックの4色画像の場合はイエロー)とすることができる。明度の低い色で解像度が低下することは画像において品質低下が顕著に表れるが、明度の高い色では比較的解像度に及ぼす影響は小さい。本発明によれば、解像度の劣化を最小限にすることが可能となり、色ずれ、解像度の両面から良好な画像品質を得られる光走査装置が実現可能となる。   For example, in the optical paths of light beams directed to four different surfaces to be scanned, it is difficult and unrealistic to make the deflection angle of the folding mirror common to each light beam. That is, there are a light beam in which a mirror with high adjustment sensitivity is arranged and a light beam in which a mirror with low adjustment sensitivity is arranged. This means that there are always a color image with a large variation in field curvature and a color image with a small variation in field curvature, that is, a color image with a large deterioration in beam spot diameter and a small color image. Therefore, in the present invention, the folding mirror for adjustment having the smallest deflection angle of the light beam (lowest adjustment sensitivity) is a folding mirror that reflects and deflects the beam Y. By adopting the form of this method, the resolution deterioration in the multi-color image is the least noticeable color, that is, the color with the highest brightness (for example, yellow in the case of a four-color image of cyan, magenta, yellow, and black). be able to. A reduction in resolution with a low-lightness color causes a significant reduction in quality in the image, but a color with a high lightness has a relatively small effect on the resolution. According to the present invention, it is possible to minimize degradation of resolution, and it is possible to realize an optical scanning device that can obtain good image quality from both sides of color shift and resolution.

図7は折り返しミラーを湾曲させた場合のたわみ量を説明するための図である。
本発明においては、前記折返しミラーにおいて、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーは、ビームYを反射偏向する折返しミラーとしている。
以下で用いる撓み量とは、ミラー両端を結ぶ線に対するミラー中央部の光軸方向(被走査面中央へ向かう方向)の変位量を意味する。また、デプス量とは、走査線両端を結ぶ線に対するミラー中央部の光軸方向の変位量を言う。
調整ミラーの撓み量が同じ場合において、ミラー面上の走査線の長さが長い場合と短い場合では、同図に示すデプス量が異なる(図中A<A’)ため走査線曲がりの補正量が変化する。具体的には、ミラー面上の走査線の長さが短い(図中A)と走査線曲がりの補正感度は低くなる。この場合、同じ補正量(図中AをA’と同じ量にするためには曲率が強くなる)を得るためには、撓み量を大きくする必要が生じる。撓み量を大きくすると、折返しミラーの主走査方向の凸、もしくは凹の屈折力が大きくなり、ビームスポット径が大きく劣化し解像度を低下させることとなる。
FIG. 7 is a diagram for explaining the amount of deflection when the folding mirror is bent.
In the present invention, in the folding mirror, the folding mirror having the shortest scanning line length in the main scanning direction on the mirror surface of the light beam forming the image is a folding mirror that reflects and deflects the beam Y.
The amount of deflection used below means the amount of displacement in the optical axis direction (direction toward the center of the surface to be scanned) of the center of the mirror with respect to a line connecting both ends of the mirror. The depth amount refers to the amount of displacement in the optical axis direction at the center of the mirror with respect to a line connecting both ends of the scanning line.
When the amount of deflection of the adjustment mirror is the same, the depth shown in the figure is different between the case where the length of the scanning line on the mirror surface is long and the case where the length is short (A <A ′ in the figure). Changes. Specifically, when the length of the scanning line on the mirror surface is short (A in the figure), the correction sensitivity of the scanning line bending becomes low. In this case, in order to obtain the same correction amount (in order to obtain the same amount of A as A ′, the curvature becomes strong), it is necessary to increase the amount of deflection. When the deflection amount is increased, the refractive power of the convex or concave in the main scanning direction of the folding mirror is increased, and the beam spot diameter is greatly deteriorated and the resolution is lowered.

そこで、本発明においては、前記折返しミラーにおいて、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーは、ビームY、すなわち、最明度画像用ビームを反射偏向する折返しミラーとし、多色画像における解像度の最大の劣化を最も明度の高い色(例えば、シアン、マゼンタ、イエロー、ブラックの4色画像の場合イエローとなる)に割り当てる。明度の低い色で解像度が低下することは画像において品質低下が顕著に表れるが、明度の高い色では比較的解像度に及ぼす影響は小さい。本発明によれば、走査線曲がりの発生を補正により色ずれ低減を達成し、且つ、像面湾曲の変動、ビームスポット径の劣化による多色画像における解像度の低下を低減し、高品質な画像を実現できる光走査装置が提供可能となる。   Therefore, in the present invention, in the folding mirror, the folding mirror having the shortest scanning line length in the main scanning direction on the mirror surface of the light beam forming the image is the beam Y, that is, for the most bright image. A folding mirror that reflects and deflects the beam is used, and the maximum resolution degradation in a multicolor image is assigned to the color with the highest brightness (for example, yellow for a four-color image of cyan, magenta, yellow, and black). A reduction in resolution with a low-lightness color causes a significant reduction in quality in the image, but a color with a high lightness has a relatively small effect on the resolution. According to the present invention, it is possible to reduce color misregistration by correcting the occurrence of scanning line bending, and to reduce deterioration in resolution in a multicolor image due to fluctuations in field curvature and beam spot diameter degradation. It is possible to provide an optical scanning device that can realize the above.

ここまで、走査線傾き、走査線曲がりを別々に説明してきたが、各々異なる折り返しミラーで調整を実施する場合においても、前記説明を満足することで良好な画像品質を満足できる。つまり、走査線曲り補正用の折返しミラー間で、前記説明の関係が成り立ち、走査線傾き補正用の折り返しミラー間で前記説明の関係が成り立つことで良好な画像品質を実現可能となる。
更に、走査線曲がりと走査線傾き調整ミラーを同一のミラーで実施しても構わない。この場合においても本発明の関係を成り立たせることにより良好な画像品質を実現可能となることは言うまでもない。
すなわち、折り返しミラーの一端に回動機構を設けることと、折り返しミラを撓ませることとは背反ではなく、また、最明度画像用ビームに対して、偏角が最も小さい折り返しミラーを割り振ることと、外側端の光ビームが反射される位置までの距離が最も大きい折り返しミラーを割り振ることと、ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーを割り振ることとは必ずしも背反でない。したがって、それぞれの組み合わせが各種存在する。
So far, scanning line inclination and scanning line bending have been described separately, but even when adjustment is performed using different folding mirrors, satisfactory image quality can be satisfied by satisfying the above description. That is, the above-described relationship is established between the scanning line bending correction folding mirrors, and the above-described description relationship is established between the scanning line tilt correction folding mirrors, thereby realizing a good image quality.
Further, the scanning line bending and the scanning line tilt adjusting mirror may be implemented by the same mirror. In this case, it goes without saying that good image quality can be realized by establishing the relationship of the present invention.
That is, providing a turning mechanism at one end of the folding mirror and bending the folding mirror is not a contradiction, and assigning a folding mirror with the smallest declination to the lightest image beam, It is not necessarily a tradeoff between allocating the folding mirror with the longest distance to the position where the light beam at the outer edge is reflected and allocating the folding mirror with the shortest scanning line length in the main scanning direction on the mirror surface. . Therefore, various combinations exist.

また、走査レンズが2枚構成の場合、本出願人が提案した、走査レンズの中央付近に突起物を突き当て、その突出量を変化させて走査線曲がりを補正する方式があるが、1枚構成の走査レンズの場合、レンズ形状(例えば走査レンズなど中心肉厚が厚く、主走査方向に短いレンズなど)によっては補正困難である。このような、1枚構成の走査レンズを用いる光走査装置においては、レンズの変形を行わないでも済む、本発明の如き折返しミラーによる走査線曲り補正が特に効果的になる。   In the case of two scanning lenses, there is a method proposed by the present applicant that a projection is abutted near the center of the scanning lens and the amount of projection is changed to correct the scanning line bending. In the case of a scanning lens having a configuration, it is difficult to correct depending on the lens shape (for example, a lens having a thick central thickness such as a scanning lens and a short lens in the main scanning direction). In such an optical scanning device using a single-lens scanning lens, scanning line bending correction by a folding mirror as in the present invention that does not require lens deformation is particularly effective.

図8は本発明に係る光走査装置を用いた画像形成装置の1例を示す図である。
本実施の形態は、本発明に係る光走査装置をタンデム型フルカラーレーザプリンタに適用した例である。同図において、装置内の下部側には水平方向に配設された給紙カセット13から給紙される転写紙(図示せず)を搬送する搬送ベルト17が設けられている。この搬送ベルト17上にはイエローY用の感光体7Y、マゼンタM用の感光体7M、シアンC用の感光体7C、およびブラックK用の感光体7Kが、転写紙の搬送方向上流側から順に等間隔で配設されている。なお、以下、符号に対する添字Y,M,C,Kを適宜付けて区別するものとする。これらの感光体7Y,7M,7C,7Kは全て同一径に形成されたもので、その周囲には、電子写真プロセスにしたがって各プロセスを実行するプロセス部材が順に配設されている。感光体7Yを例に採れば、帯電チャージャ8Y、光走査光学系6Y、現像装置10Y、転写チャージャ11Y、クリーニング装置12Y等が順に配設されている。他の感光体7M,7C,7Kに対しても同様である。即ち、本実施の形態では、感光体7Y,7M,7C,7Kの表面を各色毎に設定された被走査面7aとするものであり、各々の感光体に対して4個の光走査光学系6Y,6M,6C,6Kが1対1の対応関係で設けられている。また、搬送ベルト17の周囲には、感光体7Yよりも上流側に位置させてレジストローラ16と、ベルト帯電チャージャ20が設けられ、感光体7Kよりもベルト17の回転方向下流側に位置させてベルト分離チャージャ21、除電チャージャ8、クリーニング装置12等が順に設けられている。また、ベルト分離チャージャ21よりも転写紙搬送方向下流側には定着装置24が設けられ、排紙トレイ26に向けて排紙ローラ25で結ばれている。
FIG. 8 is a view showing an example of an image forming apparatus using the optical scanning device according to the present invention.
The present embodiment is an example in which the optical scanning device according to the present invention is applied to a tandem type full-color laser printer. In the figure, a conveying belt 17 for conveying transfer paper (not shown) fed from a paper feeding cassette 13 disposed in the horizontal direction is provided on the lower side in the apparatus. On the conveying belt 17, a photosensitive member 7Y for yellow Y, a photosensitive member 7M for magenta M, a photosensitive member 7C for cyan C, and a photosensitive member 7K for black K are sequentially arranged from the upstream side in the conveying direction of the transfer paper. They are arranged at equal intervals. Hereinafter, subscripts Y, M, C, and K are appropriately added to the reference numerals for distinction. These photoreceptors 7Y, 7M, 7C, and 7K are all formed to have the same diameter, and process members that perform each process according to the electrophotographic process are sequentially arranged around the photoreceptors. Taking the photoconductor 7Y as an example, a charging charger 8Y, an optical scanning optical system 6Y, a developing device 10Y, a transfer charger 11Y, a cleaning device 12Y, and the like are sequentially arranged. The same applies to the other photoconductors 7M, 7C, and 7K. That is, in the present embodiment, the surfaces of the photoconductors 7Y, 7M, 7C, and 7K are to be scanned surfaces 7a set for the respective colors, and four optical scanning optical systems are provided for each photoconductor. 6Y, 6M, 6C, and 6K are provided in a one-to-one correspondence. In addition, a registration roller 16 and a belt charging charger 20 are provided around the transport belt 17 on the upstream side of the photoconductor 7Y, and are positioned on the downstream side in the rotation direction of the belt 17 with respect to the photoconductor 7K. A belt separation charger 21, a static elimination charger 8, a cleaning device 12 and the like are provided in this order. Further, a fixing device 24 is provided downstream of the belt separation charger 21 in the transfer paper conveyance direction, and is connected to a paper discharge tray 26 by a paper discharge roller 25.

このような概略構成において、例えば、フルカラーモード(複数色モード)時であれば、各感光体7Y,7M,7C,7Kに対してY,M,C,K用の各色の画像信号に基づき各々の光走査装置6Y,6M,6C,6Kによる光ビームの光走査で、各感光体表面に、各色信号に対応した静電潜像が形成される。これらの静電潜像は各々の対応する現像装置で色トナーにより現像されてトナー像となり、搬送ベルト17上に静電的に吸着されて搬送される転写紙上に順次転写されることにより重ね合わせられ、転写紙上にフルカラー画像が形成される。このフルカラー像は定着装置24で定着された後、排紙ローラ25により排紙トレイ26に排紙される。
上記画像形成装置の光走査光学系6Y,6M,6C,6Kを、前述の実施形態に係る光走査装置とすることで、走査線曲がり、走査線傾きおよび像面湾曲の劣化を有効に補正し、色ずれが無く、高品位な画像再現性が確保できる画像形成装置を実現することができる。
In such a schematic configuration, for example, in the case of the full color mode (multiple color mode), each of the photoconductors 7Y, 7M, 7C, and 7K is based on image signals of colors Y, M, C, and K, respectively. In this optical scanning device 6Y, 6M, 6C, 6K, an electrostatic latent image corresponding to each color signal is formed on the surface of each photoconductor. These electrostatic latent images are developed with color toners by the corresponding developing devices to become toner images, which are superposed by being sequentially transferred onto transfer paper that is electrostatically attracted onto the transport belt 17 and transported. As a result, a full-color image is formed on the transfer paper. This full-color image is fixed by the fixing device 24 and then discharged to a discharge tray 26 by a discharge roller 25.
By using the optical scanning optical systems 6Y, 6M, 6C, and 6K of the image forming apparatus as the optical scanning apparatus according to the above-described embodiment, scanning line bending, scanning line inclination, and field curvature deterioration can be effectively corrected. Therefore, it is possible to realize an image forming apparatus that can ensure high-quality image reproducibility without color misregistration.

本発明の光走査装置の実施の1形態を説明するための図である。It is a figure for demonstrating one Embodiment of the optical scanning device of this invention. 本発明の第1の実施例を説明するための図である。It is a figure for demonstrating the 1st Example of this invention. 折り返しミラーの偏向角の違いによる調整量の違いを説明するための図である。It is a figure for demonstrating the difference in the adjustment amount by the difference in the deflection angle of a folding mirror. 4個の感光体を用いる場合の光路を説明するための図である。It is a figure for demonstrating the optical path in the case of using four photoconductors. 本発明の第3の実施例を説明するための図である。It is a figure for demonstrating the 3rd Example of this invention. 折り返しミラーの湾曲と被走査面における像面湾曲の関係を説明するための図である。It is a figure for demonstrating the relationship between the curvature of a folding mirror, and the curvature of field in a to-be-scanned surface. 折り返しミラーを湾曲させた場合のたわみ量を説明するための図である。It is a figure for demonstrating the deflection amount at the time of bending a folding mirror. 本発明に係る光走査装置を用いた画像形成装置の1例を示す図である。1 is a diagram illustrating an example of an image forming apparatus using an optical scanning device according to the present invention.

符号の説明Explanation of symbols

1 光源
2 カップリングレンズ
3 シリンドリカルレンズ
4 ポリゴンミラー
5 結像光学系
6 被走査面
7 感光体
DESCRIPTION OF SYMBOLS 1 Light source 2 Coupling lens 3 Cylindrical lens 4 Polygon mirror 5 Imaging optical system 6 Scanning surface 7 Photoconductor

Claims (13)

複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの前記被走査面に向かう光ビームの前記光偏向器と前記被走査面の間には、前記折り返しミラーが、主走査方向および光ビームの進行方向のいずれに対しても平行とならない軸を中心に回動可能な回動機構を有し、該回動機構を有する複数の折返しミラーのうち、光ビームの偏角が最も小さい折返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする光走査装置。   Light beams corresponding to a plurality of scanned surfaces are deflected by an optical deflector and then collected on the corresponding scanned surfaces by an imaging optical system and a folding mirror that folds the optical path and guides the light beams to the scanned surface. In the optical scanning device that forms a multicolor image by emitting light, the folding mirror is disposed between the optical deflector and the scanned surface of the light beam directed to at least two scanned surfaces. A turning mechanism capable of turning about an axis that is not parallel to any of the beam traveling directions, and a turning-back light beam having the smallest deflection angle among a plurality of turning mirrors having the turning mechanism. An optical scanning device characterized in that the mirror is a folding mirror that reflects and deflects the lightest image beam. 請求項1に記載の光走査装置において、前記最明度画像用ビームを反射偏向する折返しミラーは、前記回動機構をもつ複数の折返しミラーのうち、前記軸に対し、前記折り返しミラー面上で外側端の光ビームが反射される位置までの距離が最も大きい折返しミラーであることを特徴とする光走査装置。   2. The optical scanning device according to claim 1, wherein the folding mirror for reflecting and deflecting the lightest image beam is outside of the plurality of folding mirrors having the rotation mechanism on the folding mirror surface with respect to the axis. An optical scanning device characterized by being a folding mirror having a longest distance to a position where an end light beam is reflected. 請求項1または2に記載の光走査装置において、前記回動機構をもつ折返しミラーは、主走査方向に曲率を持つように撓ませる撓め機構をもち、前記最明度画像用ビームを反射偏向する折返しミラーは、前記撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折返しミラーであることを特徴とする光走査装置。   3. The optical scanning device according to claim 1, wherein the folding mirror having the rotating mechanism has a bending mechanism that bends so as to have a curvature in the main scanning direction, and reflects and deflects the lightest image beam. The folding mirror is a folding mirror having the shortest scanning line length in the main scanning direction on the mirror surface of the light beam forming the image among the plurality of folding mirrors having the bending mechanism. Optical scanning device. 複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーが、主走査方向に曲率を持つように撓ませる撓め機構を有し、該撓め機構を持つ複数の折返しミラーのうち、光ビームの偏角が最も小さい折返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする光走査装置。   Light beams corresponding to a plurality of scanned surfaces are deflected by an optical deflector and then collected on the corresponding scanned surfaces by an imaging optical system and a folding mirror that folds the optical path and guides the light beams to the scanned surface. In an optical scanning device that forms a multicolor image by irradiating light, the folding mirror has a curvature in the main scanning direction between the optical deflector and the scanned surface of the light beam directed to at least two scanned surfaces. The folding mirror having the smallest deflection angle of the light beam is a folding mirror that reflects and deflects the lightest image beam. An optical scanning device. 請求項4に記載の光走査装置において、前記最明度画像用ビームを反射偏向する折返しミラーは、前記撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーであることを特徴とする光走査装置。   5. The optical scanning device according to claim 4, wherein the folding mirror that reflects and deflects the lightest image beam is formed on the mirror surface of the light beam that forms an image among the plurality of folding mirrors having the deflection mechanism. An optical scanning device characterized by being a folding mirror having the shortest scanning line length in the main scanning direction. 請求項4または5に記載の光走査装置において、前記撓め機構を持つ複数の折返しミラーは、主走査方向および光ビームの進行方向のいずれに対しても平行とならない軸を中心に回動可能な回動機構を有し、前記最明度画像用ビームを反射偏向する折返しミラーは、前記軸に対し、前記折り返しミラー上で、外側端の光ビームが反射される位置までの距離が最も大きい折返しミラーであることを特徴とする光走査装置。   6. The optical scanning device according to claim 4, wherein the plurality of folding mirrors having the bending mechanism are rotatable around an axis that is not parallel to either the main scanning direction or the traveling direction of the light beam. A folding mirror that reflects and deflects the lightest image beam has a longest distance from the axis to the position where the outer end light beam is reflected on the folding mirror. An optical scanning device characterized by being a mirror. 複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーが、主走査方向および光ビームの進行方向のいずれに対しても平行とならない軸を中心に回動可能な回動機構を有し、該回動機構を有する複数の折返しミラーのうち、前記軸に対し、前記折り返しミラー面上で外側端の光ビームが反射される位置までの距離が最も離れている折返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする光走査装置。   Light beams corresponding to a plurality of scanned surfaces are deflected by an optical deflector and then collected on the corresponding scanned surfaces by an imaging optical system and a folding mirror that folds the optical path and guides the light beams to the scanned surface. In an optical scanning device that forms a multicolor image by emitting light, the folding mirror is disposed between the optical deflector and the scanned surface of the light beam directed to at least two scanned surfaces, in the main scanning direction and the traveling of the light beam. A rotation mechanism that can rotate around an axis that is not parallel to any of the directions, and out of the plurality of folding mirrors having the rotation mechanism on the folding mirror surface with respect to the axis An optical scanning device characterized in that the folding mirror having the longest distance to the position where the end light beam is reflected is a folding mirror that reflects and deflects the lightness image beam. 請求項7に記載の光走査装置において、前記回動機構をもつ折返しミラーは、主走査方向に曲率を持つように撓ませる撓め機構をもち、前記最明度画像用ビームを反射偏向する折返しミラーは、前記撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折返しミラーであることを特徴とする光走査装置。   8. The optical scanning device according to claim 7, wherein the folding mirror having the rotation mechanism has a bending mechanism that bends so as to have a curvature in the main scanning direction, and reflects and deflects the beam for maximum brightness image. Is a folding mirror that has the shortest scanning line length in the main scanning direction on the mirror surface of the light beam forming the image among the plurality of folding mirrors having the bending mechanism. Scanning device. 複数の被走査面に対応する光ビームを、光偏向器により偏向した後、結像光学系と、光路を折返し被走査面へ光ビームを導く折返しミラーと、により各々対応する被走査面に集光させて多色画像を形成させる光走査装置において、少なくとも2つの被走査面に向かう光ビームの光偏向器と被走査面の間には、前記折り返しミラーが、主走査方向に曲率を持つように撓ませる撓め機構を有し、該撓め機構をもつ複数の折返しミラーのうち、画像を形成する光ビームの前記ミラー面上での主走査方向の走査線の長さが最も短い折り返しミラーは、最明度画像用ビームを反射偏向する折返しミラーであることを特徴とする光走査装置。   Light beams corresponding to a plurality of scanned surfaces are deflected by an optical deflector and then collected on the corresponding scanned surfaces by an imaging optical system and a folding mirror that folds the optical path and guides the light beams to the scanned surface. In an optical scanning device that forms a multicolor image by irradiating light, the folding mirror has a curvature in the main scanning direction between the optical deflector and the scanned surface of the light beam directed to at least two scanned surfaces. A folding mirror having the shortest scanning line length in the main scanning direction on the mirror surface of the light beam forming the image, among the plurality of folding mirrors having the deflection mechanism Is a folding mirror that reflects and deflects the lightest image beam. 請求項1ないし9のいずれか1つに記載の光走査装置において、前記多色とは、イエロー、マゼンタ、シアンの3色を含み、前記最明度画像用ビームはイエロー画像用ビームであることを特徴とする光走査装置。   10. The optical scanning device according to claim 1, wherein the multicolor includes three colors of yellow, magenta, and cyan, and the lightest image beam is a yellow image beam. An optical scanning device. 請求項1ないし10のいずれか1つに記載の光走査装置において、前記結像光学系は1枚構成の走査レンズよりなることを特徴とする光走査装置。   11. The optical scanning device according to claim 1, wherein the imaging optical system is composed of a single scanning lens. 電子写真プロセスを実行することによって画像を形成する画像形成装置であって、電子写真プロセスの露光プロセスを実行する手段として請求項1ないし11のいずれか1つに記載の光走査装置を具備したことを特徴とする画像形成装置。   12. An image forming apparatus for forming an image by executing an electrophotographic process, comprising the optical scanning device according to claim 1 as means for performing an exposure process of an electrophotographic process. An image forming apparatus. 請求項12に記載の画像形成装置において、被走査面として、少なくとも3つの感光体を持ち、カラー画像を形成することを特徴とする画像形成装置。   13. The image forming apparatus according to claim 12, wherein the image forming apparatus has at least three photoconductors as the scanning surface and forms a color image.
JP2007133130A 2007-05-18 2007-05-18 Optical scanning device and image forming apparatus Active JP4851389B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007133130A JP4851389B2 (en) 2007-05-18 2007-05-18 Optical scanning device and image forming apparatus
CN 200810099481 CN101308253B (en) 2007-05-18 2008-05-16 Optical scanning device and image forming device using the optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133130A JP4851389B2 (en) 2007-05-18 2007-05-18 Optical scanning device and image forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011193643A Division JP2012027482A (en) 2011-09-06 2011-09-06 Optical scanner and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2008287092A true JP2008287092A (en) 2008-11-27
JP4851389B2 JP4851389B2 (en) 2012-01-11

Family

ID=40124778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133130A Active JP4851389B2 (en) 2007-05-18 2007-05-18 Optical scanning device and image forming apparatus

Country Status (2)

Country Link
JP (1) JP4851389B2 (en)
CN (1) CN101308253B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140294A (en) * 2012-01-06 2013-07-18 Ricoh Co Ltd Optical scanner and image forming apparatus
WO2015129135A1 (en) * 2014-02-26 2015-09-03 京セラドキュメントソリューションズ株式会社 Optical scanning device and image forming device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0913911D0 (en) 2009-08-10 2009-09-16 Optos Plc Improvements in or relating to laser scanning systems
CN108303179A (en) * 2017-12-29 2018-07-20 三明学院 A kind of large field of view scan system
US11313807B2 (en) * 2018-08-30 2022-04-26 Riso Kagaku Corporation Image inspection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279877A (en) * 2002-03-20 2003-10-02 Fuji Xerox Co Ltd Optical scanner, method for manufacturing reflecting mirror used for optical scanner, and color image forming apparatus
JP2005309336A (en) * 2004-04-26 2005-11-04 Ricoh Co Ltd Method of optical scanning, optical scanner, method of image forming and image forming apparatus
JP2006017881A (en) * 2004-06-30 2006-01-19 Ricoh Co Ltd Optical writing device and image forming apparatus
JP2006259749A (en) * 2006-04-10 2006-09-28 Fuji Xerox Co Ltd Optical scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279877A (en) * 2002-03-20 2003-10-02 Fuji Xerox Co Ltd Optical scanner, method for manufacturing reflecting mirror used for optical scanner, and color image forming apparatus
JP2005309336A (en) * 2004-04-26 2005-11-04 Ricoh Co Ltd Method of optical scanning, optical scanner, method of image forming and image forming apparatus
JP2006017881A (en) * 2004-06-30 2006-01-19 Ricoh Co Ltd Optical writing device and image forming apparatus
JP2006259749A (en) * 2006-04-10 2006-09-28 Fuji Xerox Co Ltd Optical scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140294A (en) * 2012-01-06 2013-07-18 Ricoh Co Ltd Optical scanner and image forming apparatus
US10205844B2 (en) 2012-01-06 2019-02-12 Ricoh Company, Ltd. Light beam scanning device, image forming apparatus, and scanning line adjusting method
WO2015129135A1 (en) * 2014-02-26 2015-09-03 京セラドキュメントソリューションズ株式会社 Optical scanning device and image forming device
JPWO2015129135A1 (en) * 2014-02-26 2017-03-30 京セラドキュメントソリューションズ株式会社 Optical scanning apparatus and image forming apparatus
US9709916B2 (en) 2014-02-26 2017-07-18 Kyocera Document Solutions Inc. Optical scanning device and image forming apparatus

Also Published As

Publication number Publication date
CN101308253A (en) 2008-11-19
JP4851389B2 (en) 2012-01-11
CN101308253B (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP2007041420A (en) Optical scanner and image forming apparatus
JP2007010868A (en) Optical scanner and image forming apparatus
JP2007248565A (en) Optical scanner and image forming apparatus
JP2007248686A (en) Light source device, optical scanner and image forming apparatus
JP2009069507A (en) Optical scanner and image forming apparatus
JP4365582B2 (en) Optical scanning apparatus and image forming apparatus
JP4851389B2 (en) Optical scanning device and image forming apparatus
JP2007316207A (en) Optical scanner and image forming apparatus using the same
JP2009265403A (en) Optical scanning apparatus and image forming apparatus using the same
JP2008020473A (en) Optical scanner and image forming apparatus
EP1336889A2 (en) Scanning optical apparatus and image forming apparatus using the same
JP5009636B2 (en) Optical scanning apparatus and image forming apparatus
JP6361959B2 (en) Optical scanning apparatus and image forming apparatus
JP5019815B2 (en) Optical scanning apparatus and image forming apparatus
JP4526331B2 (en) Optical scanning apparatus and image forming apparatus
JP4841268B2 (en) Optical scanning apparatus and image forming apparatus
JP2005326794A (en) Optical scanning device and image forming apparatus
JP5168864B2 (en) Optical scanning device and image forming device
JP6075026B2 (en) Optical scanning apparatus and image forming apparatus
JP5022945B2 (en) Optical writing apparatus and image forming apparatus
JP5086180B2 (en) Optical scanning apparatus and image forming apparatus
JP2012027482A (en) Optical scanner and image forming apparatus
JP5315682B2 (en) Optical scanning apparatus and image forming apparatus
US20060017995A1 (en) Optical scanning device and color imaging apparatus
JP2006235213A (en) Optical scanner and color image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4851389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3