JP2007316207A - Optical scanner and image forming apparatus using the same - Google Patents

Optical scanner and image forming apparatus using the same Download PDF

Info

Publication number
JP2007316207A
JP2007316207A JP2006143893A JP2006143893A JP2007316207A JP 2007316207 A JP2007316207 A JP 2007316207A JP 2006143893 A JP2006143893 A JP 2006143893A JP 2006143893 A JP2006143893 A JP 2006143893A JP 2007316207 A JP2007316207 A JP 2007316207A
Authority
JP
Japan
Prior art keywords
scanning
optical
light beam
scanned
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143893A
Other languages
Japanese (ja)
Inventor
Naoki Miyatake
直樹 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006143893A priority Critical patent/JP2007316207A/en
Publication of JP2007316207A publication Critical patent/JP2007316207A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an optical deflector used for an image forming apparatus adopts a method by which a plurality of light beams are made incident on one and the same reflection face of one optical deflector for downsizing, the respective incident beams are made incident with different angles so that the beams after reflectance can be easily separated, but bending is caused in scanning lines when a diagonal incident angle is large, by an optical system which condenses the deflected light beams, and though this bending can be corrected by changing the form of the optical system, it does not cope with temperature changes. <P>SOLUTION: The plurality of light beams are made diagonally incident on one and the same deflecting reflection face 4a, separated by turning back mirrors 6 to vertical scanning directions after passing through a common scanning lens 5a, and guided onto corresponding faces to be scanned 7. The beam emitted to a region A and the beam emitted to a region B have bending of scanning lines which are in reversed directions to each other. The direction of bending is reversed every time when the light beam passes through one mirror. When different number of mirrors are given, the large bending of the beams L1 and L4 are set in the same direction and a color slippage is minimized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、デジタル複写機、レーザプリンタ、レーザファクシミリ等の光走査装置、及び、これを用いた画像形成装置に関する。   The present invention relates to an optical scanning device such as a digital copying machine, a laser printer, and a laser facsimile, and an image forming apparatus using the same.

レーザプリンタ等に関連して広く知られた光走査装置は一般に、光源側からの光ビームを光偏向器により偏向させ、fθレンズ等の走査結像光学系により被走査面に向けて集光して被走査面上に光スポットを形成し、この光スポットで被走査面を光走査(主走査)するように構成されている。被走査面の実体をなすものは光導電性の感光体等である感光媒体の感光面である。
また、フルカラー画像形成装置の一例として、4つの感光体を記録紙の搬送方向に配列し、これらの各感光体に対応した複数の光源装置から放射された光ビームの光束を1つの偏向手段により偏向走査し、各感光体に対応する複数の走査結像光学系により各感光体に同時に露光して潜像をつくり、これらの潜像をイエロー、マゼンタ、シアン、ブラックなどの各々異なる色の現像剤を使用する現像器で可視像化したのち、これらの可視像を同一の記録紙に順次重ね合わせて転写し定着することで、カラー画像を得られるように構成されたものがある。
In general, an optical scanning device widely known in relation to a laser printer or the like generally deflects a light beam from a light source side by an optical deflector and collects the light beam toward a surface to be scanned by a scanning imaging optical system such as an fθ lens. Thus, a light spot is formed on the surface to be scanned, and the surface to be scanned is optically scanned (main scan) with this light spot. What constitutes the surface to be scanned is a photosensitive surface of a photosensitive medium such as a photoconductive photosensitive member.
As an example of a full-color image forming apparatus, four photoconductors are arranged in the conveyance direction of the recording paper, and light beams emitted from a plurality of light source devices corresponding to the photoconductors are formed by one deflecting unit. A deflection scan is performed, and a plurality of scanning imaging optical systems corresponding to the respective photosensitive members are simultaneously exposed to the respective photosensitive members to form latent images, and these latent images are developed in different colors such as yellow, magenta, cyan, and black. There is a configuration in which a color image can be obtained by making a visible image by a developing unit using an agent and then transferring these visible images to the same recording paper in order to transfer and fix them.

このように、光走査装置と感光体の組み合わせを2組以上用いて、2色画像や多色画像、カラー画像等を得るようにした画像形成装置は「タンデム式画像形成装置」として知られている。このようなタンデム式画像形成装置として、複数の感光媒体が単一の光偏向器を共用する方式のものがいくつか開示されている。
略平行でかつ副走査方向に離れた複数の光束を偏向器に入射させ、複数の光束に対応する複数の走査光学素子を副走査方向に並べて走査する(例えば、特許文献1 参照。)。
偏向器の片側より光束を入射し、3枚構成(L1〜L3)の走査光学系で、L1、L2は異なる被走査面に向かう複数の光束が通過し、L3は各被走査面毎に設けられている(例えば、特許文献2 参照。)。
As described above, an image forming apparatus that obtains a two-color image, a multicolor image, a color image, or the like by using two or more combinations of optical scanning devices and photoreceptors is known as a “tandem image forming apparatus”. Yes. As such a tandem type image forming apparatus, there have been disclosed several systems in which a plurality of photosensitive media share a single optical deflector.
A plurality of light beams that are substantially parallel and separated in the sub-scanning direction are incident on the deflector, and a plurality of scanning optical elements corresponding to the plurality of light beams are arranged and scanned in the sub-scanning direction (see, for example, Patent Document 1).
A light beam is incident from one side of the deflector and is a three-lens (L1-L3) scanning optical system. L1 and L2 pass a plurality of light beams directed to different scanning surfaces, and L3 is provided for each scanning surface. (For example, refer to Patent Document 2).

このように、複数の被走査面で光偏向器を共用すると、光偏向器の数を減らすことにより、画像形成装置をコンパクト化することが可能になる。
しかし、例えば、シアン、マゼンタ、イエロー、ブラックの4つの異なる被走査面(感光体)を持つフルカラー対応の画像形成装置の光走査装置としては、光偏向器の数を減らすことは可能だが、副走査方向に複数の感光体に向かう光ビームを略平行に並べて光偏向器に入射させるため、ポリゴンミラーが副走査方向に大型化するという課題がある。一般的に、光走査装置内の光学素子でポリゴンミラー部のコストは高く、装置全体の低コスト化、および小型化を狙う場合において、弊害となる。
As described above, when the optical deflectors are shared by a plurality of scanned surfaces, the number of the optical deflectors can be reduced, so that the image forming apparatus can be made compact.
However, for example, as an optical scanning device of a full-color image forming apparatus having four different scanned surfaces (photosensitive members) of cyan, magenta, yellow, and black, the number of optical deflectors can be reduced. There is a problem that the polygon mirror is increased in size in the sub-scanning direction because light beams directed to a plurality of photoconductors in the scanning direction are arranged substantially in parallel and enter the optical deflector. In general, the cost of the polygon mirror portion is high due to the optical elements in the optical scanning device, which is a harmful effect when the cost of the entire device is reduced and the size is reduced.

さらに最近では、カラー画像形成装置の光走査装置において、単一の光偏向器として低コスト化を図る手段として、光偏向器の偏向反射面に副走査方向に角度を持って光ビームを入射させる斜入射光学系が知られている(例えば、特許文献3 参照。)。前記斜入射光学系は、複数の光ビームがそれぞれ偏向反射面で偏向反射された後に、各々対応する被走査面(感光体)に、折返しミラーなどで分離され導かれる。この時、それぞれの光ビームの副走査方向の角度(光偏向器に斜入射する角度)は、前記ミラーで各光束が分離可能な角度に設定されている。
この斜入射光学系を用いることで、前記ミラーで各光束が分離可能な副走査方向の隣接する光ビームの間隔を、光偏光器の大型化(副走査方向へのポリゴンミラーの多段化、厚肉化)無しに実現可能となる。
More recently, as a means for reducing the cost of a single optical deflector in an optical scanning device of a color image forming apparatus, a light beam is incident on the deflection reflecting surface of the optical deflector at an angle in the sub-scanning direction. An oblique incidence optical system is known (for example, refer to Patent Document 3). In the oblique incidence optical system, after a plurality of light beams are deflected and reflected by the deflecting / reflecting surfaces, they are separated and guided to corresponding scanning surfaces (photoconductors) by folding mirrors or the like. At this time, the angle of each light beam in the sub-scanning direction (the angle at which the light beam obliquely enters the optical deflector) is set to an angle at which each light beam can be separated by the mirror.
By using this oblique incidence optical system, the distance between adjacent light beams in the sub-scanning direction, where each light beam can be separated by the mirror, can be increased in size (the number of polygon mirrors in the sub-scanning direction is increased, the thickness is increased). It can be realized without fleshing.

しかし反面、斜め入射方式には「走査線曲がり」が大きいという問題がある。この走査線曲がり発生量は、前記各光ビームの副走査方向の斜入射角により異なり、各々の光ビームで描かれた潜像を各色のトナーにより重ね合わせ可視化した際に、色ずれとなって現れてしまう。
また、斜入射することにより、光束が走査レンズにねじれて入射することで、波面収差も増大し、特に周辺の像高で光学性能が著しく劣化し、ビームスポット径が太ってしまい、高画質化を妨げる要因となる。
斜め入射方式に固有の「大きな走査線曲がり」を補正する方法として、走査結像光学系に「副走査断面内におけるレンズ面の固有傾きを、走査線曲がりを補正するように主走査方向へ変化させたレンズ面を有するレンズ」を含める方法(例えば、特許文献4 参照。)や、走査結像光学系に「副走査断面内における反射面の固有傾きを、走査線曲がりを補正するように主走査方向へ変化させた反射面を有する補正反射面」を含める方法(例えば、特許文献5 参照。)等が提案されている。
However, the oblique incidence method has a problem that “scanning line bending” is large. The amount of bending of the scanning line varies depending on the oblique incident angle of each light beam in the sub-scanning direction, and color misregistration occurs when the latent images drawn by the respective light beams are superimposed and visualized with the respective color toners. Appears.
In addition, the oblique incident light causes the light beam to be twisted and incident on the scanning lens, thereby increasing the wavefront aberration. Particularly, the optical performance is significantly deteriorated at the peripheral image height, the beam spot diameter is increased, and the image quality is improved. It becomes a factor to prevent.
As a method of correcting the “large scanning line bending” inherent to the oblique incidence method, the scanning imaging optical system “changes the inherent inclination of the lens surface in the sub-scan section in the main scanning direction so as to correct the scanning line bending. Including a lens having a lens surface that has been adjusted (see, for example, Patent Document 4), or a scanning imaging optical system in which “the intrinsic inclination of the reflecting surface in the sub-scanning section is corrected so as to correct the scanning line curvature. A method of including a “corrected reflecting surface having a reflecting surface changed in the scanning direction” (see, for example, Patent Document 5) has been proposed.

斜入射される光束を走査レンズの軸外を通し、走査レンズの子線の非球面量を主走査方向に沿って変化させる面を用いて走査線の位置を揃える方法が提案されている(例えば、特許文献6 参照。)。本文献においては、1枚の走査レンズにて補正を行う例を挙げており、前記走査線曲がりの補正は可能であるが、以下に説明する波面収差増大によるビームスポット径の劣化については記述されていない。
斜め入射方式における今1つの問題は、光線スキューにより周辺像高(走査線の両端部近傍)で波面収差の大きな劣化が発生し易いことである。このような波面収差が生じると、周辺像高で光スポットのスポット径が大径化してしまう。この問題を解決できないと、近来強く要請されている「高密度の光走査」を実現できない。上記文献記載の光走査装置では、斜め入射方式に特有の大きな走査線曲がりが極めて良好に補正されているが、上記波面収差の補正は十分といえない。
There has been proposed a method of aligning scanning lines using a surface that passes obliquely incident light beams off the axis of the scanning lens and changes the aspherical amount of the scanning lens child line along the main scanning direction (for example, , See Patent Document 6). In this document, an example is given in which correction is performed by a single scanning lens, and correction of the scanning line bending is possible, but the deterioration of the beam spot diameter due to an increase in wavefront aberration described below is described. Not.
Another problem with the oblique incidence method is that a large wavefront aberration is likely to occur at the peripheral image height (near both ends of the scanning line) due to the light beam skew. When such wavefront aberration occurs, the spot diameter of the light spot increases at the peripheral image height. If this problem cannot be solved, “high-density optical scanning”, which has been strongly demanded recently, cannot be realized. In the optical scanning device described in the above document, a large scanning line curve peculiar to the oblique incidence method is corrected extremely well, but the correction of the wavefront aberration is not sufficient.

斜め入射方式の問題点といえる上記「走査線曲がりと波面収差の劣化」を良好に補正できる光走査装置として、走査結像光学系に複数の回転非対称レンズを含み、これら回転非対称レンズのレンズ面に、副走査方向に曲率を持たず、主走査方向に副走査方向のチルト偏心量を変化させる面を用いたものが提案されている。このような特殊面を少なくとも2面用いることで、波面収差補正と走査線曲がりの補正を良好に実施している(例えば、特許文献7 参照。)。
しかし、斜入射光学系においては、温度変動発生時に走査線曲がりが発生する。走査レンズに対し光ビームが副走査方向に湾曲して入射するため、温度変化による走査レンズの曲率半径の変化、肉厚の変化、もしくは、走査レンズに入射する光ビームの入射高さの変化により走査線曲がりが大きく発生してしまう。従来の走査光学系においては、光ビームが走査レンズに対し湾曲することなくほぼ光軸に水平に入射するため、走査線曲がりの発生は生じない、もしくは極めて小さく、本問題は斜入射光学系特有の問題となっている。
A scanning imaging optical system includes a plurality of rotationally asymmetric lenses as an optical scanning device that can satisfactorily correct the above-mentioned “scanning line bending and wavefront aberration degradation”, which can be said to be a problem with the oblique incidence method, and the lens surfaces of these rotationally asymmetric lenses In addition, there has been proposed one that uses a surface that has no curvature in the sub-scanning direction and changes the tilt eccentricity in the sub-scanning direction in the main scanning direction. By using at least two such special surfaces, wavefront aberration correction and scanning line curve correction are favorably performed (see, for example, Patent Document 7).
However, in the oblique incidence optical system, scanning line bending occurs when temperature fluctuations occur. Since the light beam is incident on the scanning lens while being curved in the sub-scanning direction, it is caused by a change in the radius of curvature of the scanning lens due to a temperature change, a change in thickness, or a change in the incident height of the light beam incident on the scanning lens. The scanning line is greatly bent. In the conventional scanning optical system, the light beam is incident on the optical axis almost horizontally without being curved with respect to the scanning lens, so that the scanning line is not generated or extremely small, and this problem is unique to the oblique incident optical system. It has become a problem.

斜入射光学系において、斜入射角を小さく設定することで走査レンズへ入射する光ビームの湾曲を小さくすることができ、走査線曲がりの発生、および、温度変動時の走査線曲がりの発生を低減可能であるが、各々の対応する被走査面に向けて各光ビームを分離するために必要な副走査方向の間隔を確保するためには、光偏向器の偏向反射面で各光ビームの副走査方向の間隔を大きくする必要が生じ、光偏光器の大型化(副走査方向へのポリゴンミラーの多段化、厚肉化)が必要となってしまう。特許文献7によれば、光偏向器の偏向反射面に水平な光ビームと角度を持つ光ビームを用い、片側走査方式における斜入射角を最も小さく設定する例が開示されている。しかし、前記説明の通り光偏光器の大型化(副走査方向へのポリゴンミラーの多段化、厚肉化)が必要となり、光走査装置の小型化、低コスト化、低消費電力化などに課題があった。   In an oblique incidence optical system, by setting a small oblique incidence angle, the curvature of the light beam incident on the scanning lens can be reduced, reducing the occurrence of scanning line bending and scanning line bending during temperature fluctuations. Although it is possible, in order to secure the interval in the sub-scanning direction necessary for separating the light beams toward the corresponding scanned surfaces, the sub-beams of the light beams are deflected on the deflecting reflecting surface of the optical deflector. It becomes necessary to increase the interval in the scanning direction, and it is necessary to increase the size of the optical polarizer (increasing the number of polygon mirrors in the sub-scanning direction and increasing the thickness). Patent Document 7 discloses an example in which a light beam having an angle with a horizontal light beam is used on a deflecting reflection surface of an optical deflector, and an oblique incident angle in the one-side scanning method is set to be the smallest. However, as described above, it is necessary to increase the size of the optical polarizer (multiple polygon mirrors in the sub-scanning direction and increase the thickness), and there are problems in reducing the size, cost and power consumption of the optical scanning device. was there.

対向走査方式では、光偏向器を挟み光ビームが振り分けられるため、通常4つの被走査面を持つカラー画像形成装置の場合、片側での光ビームの分離は1箇所である。
これに対し、片側走査方式の光走査装置においては、対向走査方式の光走査装置に比べ、全ての光ビームを各々対応する被走査面に分離して導く必要があるため、光偏向器から被走査面としての感光体に至る光路長を長く設定する必要がある。また、全ての光ビームを各々対応する被走査面に導くための折り返しミラーの配置は複雑となる。
よって、片側走査方式において、走査レンズの配置の自由度を低下させること無く良好な光学性能を得つつ、走査光学系を構成する走査レンズに干渉せずに小型化を図ることが、対向走査方式に比べ困難であるという課題がある。
In the opposed scanning method, since the light beams are distributed across the optical deflector, in the case of a color image forming apparatus having four surfaces to be scanned, the light beam is usually separated at one side.
On the other hand, in the one-side scanning type optical scanning device, it is necessary to separate and guide all the light beams to the corresponding scanned surfaces as compared with the counter scanning type optical scanning device. It is necessary to set a long optical path length to the photosensitive member as a scanning surface. Further, the arrangement of the folding mirrors for guiding all the light beams to the corresponding scanned surfaces is complicated.
Therefore, in the one-side scanning method, it is possible to obtain a good optical performance without reducing the degree of freedom of arrangement of the scanning lens, and to reduce the size without interfering with the scanning lens constituting the scanning optical system. There is a problem that it is difficult compared to.

特開平9−54263号公報JP-A-9-54263 特開2001−4948号公報JP 2001-4948 A 特開2003−5114号公報JP 2003-5114 A 特開平11−14932号公報Japanese Patent Laid-Open No. 11-14932 特開平11−38348号公報Japanese Patent Laid-Open No. 11-38348 特開2004−70109号公報JP 2004-70109 A 特開2006−072288号公報JP 2006-072288 A

全ての光ビームを光偏向器の偏向反射面の法線に対し角度を持たせる斜め入射方式の光走査装置において、低コスト化、低消費電力し、小型化した新規な光走査装置の実現を課題とする。
斜め入射方式の光走査装置において、温度変動による走査線曲がりの発生による色ずれを有効に補正する新規な光走査装置の実現を課題とする。
低コスト化、低消費電力、小型化に適した斜め入射方式の光走査装置において、走査線曲がりと波面収差の劣化を有効に補正し、温度変動時においても色ずれ発生が小さい新規な画像形成装置の実現を課題とする。
Inclined-incidence optical scanning devices that make all light beams have an angle with respect to the normal of the deflecting reflection surface of the optical deflector. Realization of a new optical scanning device that is low in cost, low in power consumption, and small in size. Let it be an issue.
An object of the present invention is to realize a novel optical scanning device that effectively corrects color misregistration caused by scanning line bending due to temperature fluctuation in an oblique incidence type optical scanning device.
Inclined-incidence optical scanning devices suitable for low cost, low power consumption, and downsizing. New image formation that effectively compensates for scan line bending and wavefront aberration degradation and produces less color drift even during temperature fluctuations. The realization of the device is an issue.

請求項1に記載の発明では、それぞれ光ビームを射出する複数の光源装置と、前記各光ビームを偏向走査する光偏向器と、少なくとも1枚の走査レンズを有する走査光学系と、複数の被走査面と、を有し、前記各光ビームは前記光偏向器の同一の偏向反射面により偏向された後、前記走査光学系により各々異なる被走査面に集光される光走査装置において、前記すべての光ビームは、前記光偏向器の反射面の法線に対して副走査方向に関し角度を有し、前記走査光学系の少なくとも最も前記光偏向器に近い走査レンズはすべての光ビームで共用され、前記光偏向器で偏向された後、副走査方向に関して前記被走査面に最も近い側の光ビームは、前記光偏向器に最も近い位置で対応する被走査面に向け、対応する被走査面に近づく方向に分離されることを特徴とする。
請求項2に記載の発明では、請求項1に記載の光走査装置において、前記複数の光ビームのうち、前記光偏向器から最も遠い被走査面に向かう光ビームに対し、対応する被走査面に導くための副走査方向への折り返しミラーの枚数は、その他の被走査面に向かう光ビームの光路に配置される折り返しミラーの枚数以下であることを特徴とする。
According to the first aspect of the present invention, a plurality of light source devices each emitting a light beam, a light deflector for deflecting and scanning each light beam, a scanning optical system having at least one scanning lens, and a plurality of objects to be scanned In the optical scanning device, each of the light beams is deflected by the same deflecting and reflecting surface of the optical deflector and then condensed on the different scanned surfaces by the scanning optical system. All the light beams have an angle with respect to the normal of the reflecting surface of the optical deflector with respect to the sub-scanning direction, and at least the scanning lens closest to the optical deflector of the scanning optical system is shared by all the light beams. After being deflected by the optical deflector, the light beam closest to the scanned surface in the sub-scanning direction is directed to the corresponding scanned surface at the position closest to the optical deflector, and the corresponding scanned Separated in the direction approaching the surface And wherein the Rukoto.
According to a second aspect of the present invention, in the optical scanning device according to the first aspect, a surface to be scanned corresponding to a light beam directed to the surface to be scanned farthest from the optical deflector among the plurality of light beams. The number of folding mirrors in the sub-scanning direction for guiding the light to the scanning surface is equal to or less than the number of folding mirrors arranged in the optical path of the light beam toward the other scanned surface.

請求項3に記載の発明では、請求項2に記載の光走査装置において、前記光偏向器から最も遠い被走査面に向かう光ビームは、前記光偏向器で偏向された後、副走査方向において前記被走査面に最も近い側の光ビームに対し、前記光偏向器の偏向反射面の法線に関し、副走査方向における逆側に偏向される光ビームであることを特徴とする。
請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の光走査装置において、光偏向器から最も遠い被走査面に向かう光ビームは、光偏向器から最も遠い位置で対応する被走査面に近づく方向に折り返されることを特徴とする。
According to a third aspect of the present invention, in the optical scanning device according to the second aspect, the light beam directed to the scanning surface farthest from the optical deflector is deflected by the optical deflector and then in the sub-scanning direction. The light beam that is deflected to the opposite side in the sub-scanning direction with respect to the normal line of the deflection reflection surface of the optical deflector with respect to the light beam closest to the surface to be scanned.
According to a fourth aspect of the present invention, in the optical scanning device according to any one of the first to third aspects, the light beam directed to the surface to be scanned farthest from the optical deflector is at a position farthest from the optical deflector. It is characterized by being folded in a direction approaching the corresponding scanned surface.

請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の光走査装置において、異なる被走査面に向かう光ビームのうち、少なくとも被走査面から副走査方向に最も近い光ビームと最も遠い光ビームは、前記被走査面に導くための折り返しミラーの枚数の差が奇数であることを特徴とする。
請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載の光走査装置において、前記光偏向器の偏向反射面の法線を挟み副走査方向の一方の領域に偏向走査される光ビームと、他方の領域に偏向走査される光ビームに対応する折り返しミラーの枚数の差は奇数であることを特徴とする。
According to a fifth aspect of the present invention, in the optical scanning device according to any one of the first to fourth aspects, among the light beams directed to different scanned surfaces, at least the light closest to the scanned surface from the scanned surface. The difference in the number of folding mirrors for guiding the light beam and the farthest light beam to the surface to be scanned is an odd number.
According to a sixth aspect of the present invention, in the optical scanning device according to any one of the first to fifth aspects, the deflection scanning is performed in one region in the sub-scanning direction across the normal line of the deflection reflection surface of the optical deflector. The number of folding mirrors corresponding to the light beam to be deflected and the light beam deflected and scanned in the other region is an odd number.

請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の光走査装置において、前記偏向反射面から対応する被走査面の間に配置される副走査方向への折り返しミラーのうち、少なくとも、偏向反射される光ビームの反射方向と副走査方向に関し逆側に、異なる被走査面に向かう光ビームが通過するように配置されている折り返しミラーは、少なくとも、前記異なる被走査面に向かう光ビームが通過する側が面取りされていることを特徴とする。
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の光走査装置において、光源装置として複数の光ビームを射出するマルチビーム光源装置を用いたことを特徴とする。
According to a seventh aspect of the present invention, in the optical scanning device according to any one of the first to sixth aspects, the folding mirror in the sub-scanning direction is disposed between the deflection reflection surface and the corresponding scanned surface. At least the folding mirror arranged so that the light beam directed to the different scanning surface passes on the opposite side with respect to the reflection direction of the light beam deflected and reflected and the sub-scanning direction is at least the different scanning target The side through which the light beam toward the surface passes is chamfered.
According to an eighth aspect of the present invention, in the optical scanning device according to any one of the first to seventh aspects, a multi-beam light source device that emits a plurality of light beams is used as the light source device.

請求項9に記載の発明では、請求項1ないし8のいずれか1つに記載の光走査装置を、電子写真プロセスの露光プロセスを実行する手段として具備した画像形成装置を特徴とする。
請求項10に記載の発明では、請求項9に記載の画像形成装置において、前記被走査面として少なくとも4つの感光体を有し、カラー画像形成が可能であることを特徴とする。
According to a ninth aspect of the present invention, there is provided an image forming apparatus including the optical scanning device according to any one of the first to eighth aspects as means for performing an exposure process of an electrophotographic process.
According to a tenth aspect of the present invention, in the image forming apparatus according to the ninth aspect, at least four photoconductors are provided as the scanned surfaces, and color image formation is possible.

本発明によれば、光源装置を複数持ち、各光源装置からの全ての光ビームを共通の光偏向器の同一の偏向反射面の法線に対し副走査方向に角度を持ち入射させ、全ての光ビームで共用される走査レンズを持つ走査光学系により各々異なる被走査面に集光させる片側走査方式の斜入射光学系において、光走査装置の小型化、および、温度変動による走査線曲がりの発生による色ずれを有効に補正する新規な光走査装置が実現できる。
更に、光偏向器の小型化や、マルチビームによる光偏向器である回転多面鏡の回転数低下による消費電力の低下など、環境を考慮した光走査装置の実現、及び、前記説明の目的を達成する画像形成装置の実現ができる。
According to the present invention, a plurality of light source devices are provided, and all light beams from the respective light source devices are incident at an angle in the sub-scanning direction with respect to the normal line of the same deflecting reflection surface of the common optical deflector. In a one-side scanning oblique incidence optical system that focuses light onto different scanning surfaces using a scanning optical system with a scanning lens shared by the light beam, the optical scanning device is downsized and scanning line bending occurs due to temperature fluctuations. Thus, a novel optical scanning device that effectively corrects color misregistration caused by the above can be realized.
Furthermore, the realization of the optical scanning device considering the environment, such as the miniaturization of the optical deflector and the reduction of the power consumption due to the decrease in the rotational speed of the rotary polygon mirror, which is an optical deflector by multi-beams, and the purpose of the above description are achieved. An image forming apparatus can be realized.

図1、2は本発明の1実施形態を説明するための図である。
両図において符号1は光源としての半導体レーザ、2はカップリングレンズ、3はシリンドリカルレンズ、4は光偏向器、5は走査レンズ、6は折返しミラー、7は被走査面としての感光体、L1〜L4は光ビーム、ST1〜ST4は画像形成のステージをそれぞれ示す。
半導体レーザ1から放射された発散性の光束はカップリングレンズ2により以後の光学系に適した光束形態に変換される。カップリングレンズ2により変換された光束形態は、平行光束であることも、弱い発散性あるいは弱い集束性の光束であることもできる。カップリングレンズ2からの光束はシリンドリカルレンズ3により副走査方向に集光され、ポリゴンミラーを回転させる回転多面鏡(光偏向器)4の偏向反射面4aに入射する。図2に示すように、光源側からの複数の光ビームLは、ポリゴンミラーの偏向反射面4aの回転軸に直交する平面に対して傾いて入射する。したがって、偏向反射面4aにより反射された光ビームL1〜L4も、同平面に対して傾いている。回転多面鏡の回転軸に直交する平面に対し角度を有する各光ビームは、所望の角度に光源装置、カップリング光学系、第1光学系を傾けて配置しても良いし、折返しミラーを用いて角度をつけても良い。また、第1光学系の光軸を副走査方向にシフトすることで、偏向反射面4aに向かう光ビームに角度をつけても構わない。偏向反射面4aにより反射された光ビームは、ポリゴンミラーの等速回転とともに等角速度的に偏向し、走査光学系を透過して、被走査面7上に集光する。これにより、偏向光束は被走査面7上に光スポットを形成し、被走査面7の光走査を行う。上記平面の内、偏向反射面4aの法線の移動軌跡を含む面を平面Hと呼ぶ。
1 and 2 are diagrams for explaining one embodiment of the present invention.
In both figures, reference numeral 1 is a semiconductor laser as a light source, 2 is a coupling lens, 3 is a cylindrical lens, 4 is an optical deflector, 5 is a scanning lens, 6 is a folding mirror, 7 is a photoreceptor as a surface to be scanned, L1 L4 denotes a light beam, and ST1 to ST4 denote image forming stages.
The divergent light beam emitted from the semiconductor laser 1 is converted into a light beam shape suitable for the subsequent optical system by the coupling lens 2. The form of the light beam converted by the coupling lens 2 may be a parallel light beam, or may be a light beam with weak divergence or weak convergence. The light beam from the coupling lens 2 is condensed in the sub-scanning direction by the cylindrical lens 3 and enters the deflecting / reflecting surface 4a of the rotary polygon mirror (optical deflector) 4 that rotates the polygon mirror. As shown in FIG. 2, the plurality of light beams L from the light source side are incident on the plane perpendicular to the rotation axis of the deflection reflection surface 4a of the polygon mirror. Therefore, the light beams L1 to L4 reflected by the deflecting / reflecting surface 4a are also inclined with respect to the same plane. Each light beam having an angle with respect to a plane orthogonal to the rotation axis of the rotary polygon mirror may be arranged by tilting the light source device, the coupling optical system, and the first optical system at a desired angle, or using a folding mirror. You can also make an angle. Further, the light beam directed toward the deflecting / reflecting surface 4a may be angled by shifting the optical axis of the first optical system in the sub-scanning direction. The light beam reflected by the deflecting / reflecting surface 4a is deflected at a constant angular velocity along with the constant speed rotation of the polygon mirror, passes through the scanning optical system, and is condensed on the scanned surface 7. As a result, the deflected light beam forms a light spot on the surface to be scanned 7 and performs optical scanning of the surface to be scanned 7. Of the planes, a plane including the movement locus of the normal line of the deflecting reflecting surface 4a is referred to as a plane H.

本発明においては、偏向反射面4aにより反射された後に、被走査面7よりも遠くなる側に出射する2本の光ビーム(平面Hより上の領域Bに出射する光ビーム)を、より遠くなる側に出る光ビームからL1、L2とする。平面Hより下の領域Aに出射する2本の光ビームを、被走査面7から遠い側から順にL3、L4とする。
ステージSTは画像形成の単位ユニットを示し、例えば、ST1は黒色の画像形成を行う単位ユニットを示している。構成によってはST4が黒色用であっても良い。本発明では、ST1は光偏向器4に最も近いステージとし、ST4を光偏向器4から最も遠いステージとする。
図2において、紙面に垂直な方向が光走査における主走査方向を表し、紙面に平行な方向が副走査方向を表している。副走査方向とは、厳密には、被走査面7上において主走査方向に直交する方向のことであるが、光ビームLは折り返しミラー6で向きを変えながら被走査面7に至るので、その中間の位置においては、光ビームの進行方向にほぼ直交する方向がその位置における副走査方向となる。
In the present invention, two light beams (light beams emitted to the region B above the plane H) that are emitted farther than the scanned surface 7 after being reflected by the deflecting reflection surface 4a are further distant. Let L1 and L2 be from the light beam exiting on the side. The two light beams emitted to the area A below the plane H are denoted as L3 and L4 in order from the side far from the scanned surface 7.
The stage ST indicates a unit unit for image formation. For example, ST1 indicates a unit unit for forming a black image. Depending on the configuration, ST4 may be for black. In the present invention, ST1 is the stage closest to the optical deflector 4, and ST4 is the stage farthest from the optical deflector 4.
In FIG. 2, the direction perpendicular to the paper surface represents the main scanning direction in optical scanning, and the direction parallel to the paper surface represents the sub-scanning direction. Strictly speaking, the sub-scanning direction is a direction perpendicular to the main scanning direction on the surface to be scanned 7, but the light beam L reaches the surface to be scanned 7 while changing its direction by the folding mirror 6. At the intermediate position, the direction substantially perpendicular to the traveling direction of the light beam is the sub-scanning direction at that position.

図示しない複数の光源装置からの各光ビームは、同一の光偏向器4の同一の偏向反射面4aに斜入射される。各光ビームは、偏向反射面4aの法線を挟み副走査方向両側(図中Aの領域とBの領域)より入射している。全ての光ビームは、共通の走査レンズ5aを透過後、副走査方向への折り返しミラー6(または、6a)により分離され、対応する被走査面としての感光体7に導かれる。本実施例は、走査レンズを第1走査レンズ5aと第2走査レンズ5bの2枚構成(または2群構成)としており、対応する被走査面7に向かう光ビームごとにそれぞれ2枚目の光学系5bが配置されている。   Light beams from a plurality of light source devices (not shown) are obliquely incident on the same deflecting / reflecting surface 4a of the same light deflector 4. Each light beam is incident from both sides in the sub-scanning direction (region A and region B in the figure) across the normal line of the deflecting reflection surface 4a. All the light beams pass through the common scanning lens 5a, are separated by the folding mirror 6 (or 6a) in the sub-scanning direction, and are guided to the corresponding photoreceptor 7 as the scanning surface. In this embodiment, the scanning lens has a two-lens configuration (or a two-group configuration) of a first scanning lens 5a and a second scanning lens 5b, and a second optical lens is provided for each light beam directed to the corresponding scanned surface 7. A system 5b is arranged.

図3は偏向面に対する光束の垂直入射と斜入射の違いを説明するための図である。同図(a)は垂直入射の場合、同図(b)は斜入射の場合をそれぞれ示す。
同図において符号Δdは光束の間隔を示す。
同図(a)において、斜入射を用いない片側走査方式として、全ての光ビームがポリゴンミラーの偏向反射面の法線に対し水平であった従来の光走査装置においては、良好な光学性能が得やすい反面、各光源装置1からの光ビーム、つまり互いに異なる被走査面に導かれる光ビーム間の間隔は、光ビームごとに分離するのに必要な間隔(図中のΔd)、通常3mmから5mmの間隔を持つことが必要である。そのため、偏向手段(ポリゴンミラー)4の高さ(副走査方向の高さ)hが高くなり、空気との接触面積が増大して、風損の影響による消費電力アップ、騒音の増大、コストアップなどの問題が生じていた。特に、光走査装置の構成部品で偏向手段4の占めるコスト比率は高く、コスト面での課題が大きかった。
FIG. 3 is a diagram for explaining the difference between vertical incidence and oblique incidence of a light beam on the deflection surface. FIG. 4A shows the case of normal incidence, and FIG. 4B shows the case of oblique incidence.
In the figure, reference sign Δd indicates the interval between the light beams.
In FIG. 6A, as a one-side scanning method that does not use oblique incidence, the conventional optical scanning device in which all the light beams are horizontal with respect to the normal of the deflecting reflecting surface of the polygon mirror has good optical performance. Although it is easy to obtain, the distance between the light beams from each light source device 1, that is, the light beams guided to different scanning surfaces, is an interval necessary for separating each light beam (Δd in the figure), usually from 3 mm. It is necessary to have an interval of 5 mm. For this reason, the height (height in the sub-scanning direction) h of the deflecting means (polygon mirror) 4 is increased, the contact area with air is increased, power consumption is increased due to the influence of windage loss, noise is increased, and cost is increased. There was a problem such as. In particular, the cost ratio occupied by the deflecting means 4 in the components of the optical scanning device is high, and the cost is a major problem.

その点、同図(b)において、前述の本発明にかかる光走査装置の実施形態によれば、偏向手段4としてのポリゴンミラーの偏向反射面4aで反射される、複数の光源装置1からの光ビームは、ポリゴンミラーの偏向反射面4aの法線に対し、角度を持つ(副走査方向に角度を持つ)光ビームとして走査レンズ5aに入射させることで、ポリゴンミラー4の高さhを大幅に低減することが可能となり、ポリゴンミラー4の偏向反射面4aを形成する多面体を一段で、かつ、副走査方向の厚みを低減でき、回転体としてのイナーシャを小さくでき、起動時間を短くできる。低消費電力で低コストな光走査装置が実現可能である。   In that regard, in FIG. 5B, according to the above-described embodiment of the optical scanning device according to the present invention, the light from the plurality of light source devices 1 reflected by the deflection reflection surface 4a of the polygon mirror as the deflection means 4 is reflected. The light beam is incident on the scanning lens 5a as a light beam having an angle (with an angle in the sub-scanning direction) with respect to the normal line of the deflecting / reflecting surface 4a of the polygon mirror, thereby greatly increasing the height h of the polygon mirror 4. It is possible to reduce the number of polyhedrons forming the deflecting / reflecting surface 4a of the polygon mirror 4 and the thickness in the sub-scanning direction, the inertia as a rotating body can be reduced, and the startup time can be shortened. An optical scanning device with low power consumption and low cost can be realized.

しかし反面、全ての光ビームを光偏向器4の偏向反射面4aの法線に対し副走査方向に角度を持たせる本発明の光走査装置においては、副走査方向の斜入射角を大きく設定する必要が生じる。先に説明した通り、各々の光ビームに対応する被走査面7に向け、各々の光ビームを分離するための副走査方向の光ビーム間隔を確保するために、異なる被走査面に向かう光ビームのうち、少なくとも被走査面7から副走査方向に最も近い光ビーム(L4)と遠い光ビーム(L1)は斜入射角が大きくなる。つまり、走査線曲がりの発生が大きくなることとなる。   However, in the optical scanning device of the present invention in which all the light beams are angled in the sub-scanning direction with respect to the normal line of the deflecting / reflecting surface 4a of the optical deflector 4, the oblique incident angle in the sub-scanning direction is set large. Need arises. As described above, in order to secure the light beam spacing in the sub-scanning direction for separating the respective light beams toward the scanned surfaces 7 corresponding to the respective light beams, the light beams directed toward different scanned surfaces. Among them, at least the light beam (L4) closest to the scanning surface 7 in the sub-scanning direction and the light beam (L1) far from the scanning surface 7 have a large oblique incident angle. That is, the occurrence of scanning line bending is increased.

斜入射光学系における、走査線曲がりについて説明する。
例えば、走査光学系を構成する走査レンズ5、特に副走査方向に強い屈折力を持つ走査レンズ(図1では第2レンズ5b)入射面の主走査方向の形状が、偏向反射面の光ビームの反射点を中心とする円弧形状でない限り、主走査方向のレンズ高さにより光偏向器4の偏向反射面4aから走査レンズ入射面までの距離は異なる。通常、走査レンズを前記形状にすることは、光学性能を維持する上で困難である。つまり、図1の如く、通常の光ビームは、光偏向器により偏向走査され、各像高にて主走査断面において、レンズ面に対し垂直入射することはなく、主走査方向にある入射角を持って入射する。
The scanning line bending in the oblique incidence optical system will be described.
For example, the shape of the scanning surface 5 constituting the scanning optical system, particularly the scanning lens having a strong refractive power in the sub-scanning direction (second lens 5b in FIG. 1) in the main scanning direction is the shape of the light beam on the deflection reflecting surface. Unless the arc shape is centered on the reflection point, the distance from the deflecting / reflecting surface 4a of the optical deflector 4 to the incident surface of the scanning lens varies depending on the lens height in the main scanning direction. Usually, it is difficult to make the scanning lens in the above shape in order to maintain optical performance. That is, as shown in FIG. 1, a normal light beam is deflected and scanned by an optical deflector and does not enter the lens surface perpendicularly at each image height in the main scanning section, but has an incident angle in the main scanning direction. Have incident.

図4は第2走査レンズと走査光束の関係を説明するための図である。同図(a)は走査レンズの斜視図、同図(b)は断面圧縮図である。
副走査方向に角度を持っている(斜入射されているため)ことにより、光偏向器4により偏向反射された光ビームは、像高により光偏向器4の偏向反射面4aから走査レンズ5b入射面までの距離は異なり、同図に示すが如く、走査レンズ5bへの副走査方向の入射高さが周辺に行くほど中心より高い位置、もしくは低い位置(光ビームの副走査方向にもつ角度の方向により異なる)に入射される。この結果、副走査方向に屈折力を持つ面を通過する際に、副走査方向に受ける屈折力が異なり走査線曲がりが発生してしまう。通常の水平入射であれば、偏向反射面から走査レンズ入射面までの距離が異なっても、光ビームは走査レンズに対し水平に進行するため、走査レンズ上での副走査方向の入射位置が異なることはなく、走査線曲がりの発生が生じない。
温度変化時の走査線曲がり変動について説明を加える。近年は、コスト面、高画質化のための設計時のレンズ形状の自由度(非球面形状など)から、走査レンズの材料としてはプラスチックを用いることが一般的となっているため、温度変化によるレンズ形状変化は、ガラスレンズに比べ大きい。
FIG. 4 is a diagram for explaining the relationship between the second scanning lens and the scanning light beam. FIG. 4A is a perspective view of a scanning lens, and FIG.
By having an angle in the sub-scanning direction (because it is obliquely incident), the light beam deflected and reflected by the optical deflector 4 is incident on the scanning lens 5b from the deflecting / reflecting surface 4a of the optical deflector 4 depending on the image height. The distance to the surface is different, and as shown in the figure, the incident height in the sub-scanning direction to the scanning lens 5b is higher or lower than the center (the angle of the light beam in the sub-scanning direction is closer to the periphery). Depending on the direction). As a result, when passing through a surface having refracting power in the sub-scanning direction, the refracting power received in the sub-scanning direction differs and scanning line bending occurs. In the case of normal horizontal incidence, even if the distance from the deflecting / reflecting surface to the scanning lens incidence surface is different, the light beam travels horizontally with respect to the scanning lens, so the incident position in the sub-scanning direction on the scanning lens is different. There is no occurrence of bending of the scanning line.
A description will be given of fluctuations in the scanning line curve when the temperature changes. In recent years, plastics are commonly used as the material for scanning lenses because of the degree of freedom in lens shape (such as aspherical shape) at the time of design for cost and high image quality. The lens shape change is larger than that of the glass lens.

前記説明の如く、斜入射光学系においては、副走査方向に湾曲した状態で走査レンズに光ビームが入射する。したがって周辺光は軸線から外れた位置で走査レンズ5bに入射する。このため、温度変化により走査レンズの曲率半径や肉厚、走査レンズに入射する光ビームの入射角度、副走査方向の位置が変化すると、主走査方向で異なる屈折変化を起こし、周辺光の到達先が十分保証できなくなり、走査線曲がりが発生する。
前記説明同様に、通常の水平入射であれば、偏向反射面から走査レンズ入射面までの距離が異なっても、光ビームは走査レンズに対し水平に進行するため、走査レンズ上での副走査方向の入射位置が光軸とほぼ同じ高さで異なることはなく、走査線曲がりの発生は極めて小さい。つまり、通常のレンズでは軸線上を光ビームが通過するため、温度変化により曲率半径が変化しても、結像位置(デフォーカス方向)は変化するが、光線の副走査方向への屈折は生じない(もしくは僅かである)ため、走査線曲がり(被走査面上の走査線の副走査方向の位置)の変化は極めて小さくなる。
As described above, in the oblique incidence optical system, the light beam is incident on the scanning lens while being curved in the sub-scanning direction. Accordingly, the ambient light is incident on the scanning lens 5b at a position off the axis. For this reason, if the curvature radius and thickness of the scanning lens, the incident angle of the light beam incident on the scanning lens, and the position in the sub-scanning direction change due to temperature changes, different refractive changes occur in the main scanning direction, and the destination of the ambient light Cannot be sufficiently guaranteed, and scanning line bending occurs.
As described above, in the case of normal horizontal incidence, the light beam travels horizontally with respect to the scanning lens even if the distance from the deflecting / reflecting surface to the scanning lens incidence surface is different, and therefore the sub-scanning direction on the scanning lens. The incident position of the scanning line does not differ at substantially the same height as the optical axis, and the occurrence of scanning line bending is extremely small. In other words, a normal lens passes a light beam on the axis, so even if the radius of curvature changes due to temperature changes, the imaging position (defocus direction) changes, but the refraction of light rays in the sub-scanning direction occurs. Since there is no (or slight) change in the scanning line bending (the position of the scanning line in the sub-scanning direction on the surface to be scanned) is extremely small.

以上の説明の如く、大きな走査線曲がりの発生は、斜入射光学系特有の課題であり、その発生方向は、偏向反射面の法線を挟み副走査方向両側で異なる。つまり、図2中Aの領域から入射する光ビームと、同図中Bの領域から入射する光ビームで発生方向は逆転する。これは、走査レンズに入射する走査線の湾曲が、走査レンズに入射する光ビームの副走査方向の入射角の方向、つまり斜入射の方向(同図中A側からの入射かB側からの入射か)によりその方向が逆転するためである。特に副走査方向に強い屈折力を持つ走査レンズへ入射する走査線の湾曲が走査線曲がりを発生させるが、その理由は前述した通りである。
同様に、温度変化が生じたときにおいても、走査線曲がりの変化は、偏向反射面の法線を挟み副走査方向両側で逆となる。このように、異なる被走査面7で走査線曲がりの方向が逆転した場合、各色を重ね合わせた場合には色ずれとなってしまい、カラー画像の品質が著しく低下してしまう。走査線曲がりは、斜入射角が大きいほど走査レンズへ入射する走査線の湾曲が大きくなり、発生量が大きくなる。つまり、本実施の形態においては、内側2つの光ビーム(偏向反射面の法線に近い側)に対し、外側2つの光ビームの走査線曲がりの発生量は大きい。また、温度変動時の走査線曲がり発生量も外側の光ビームで大きくなる。
As described above, the occurrence of a large scanning line bend is a problem peculiar to an oblique incidence optical system, and the direction of the occurrence differs on both sides of the sub-scanning direction across the normal line of the deflecting reflection surface. That is, the generation direction is reversed between the light beam incident from the region A in FIG. 2 and the light beam incident from the region B in FIG. This is because the curvature of the scanning line incident on the scanning lens is the direction of the incident angle in the sub-scanning direction of the light beam incident on the scanning lens, that is, the oblique incident direction (incident from the A side or from the B side in the figure). This is because the direction is reversed depending on whether it is incident. In particular, the curvature of the scanning line incident on the scanning lens having a strong refractive power in the sub-scanning direction causes the scanning line to be bent for the reason described above.
Similarly, even when a temperature change occurs, the change in the scanning line curve is reversed on both sides in the sub-scanning direction across the normal line of the deflection reflection surface. As described above, when the direction of the scanning line curve is reversed on different scanning surfaces 7, when the respective colors are overlapped, color misregistration is caused, and the quality of the color image is remarkably deteriorated. As the oblique incident angle increases, the curvature of the scanning line incident on the scanning lens increases and the amount of generation of the scanning line bending increases. That is, in the present embodiment, the amount of scan line bending of the two outer light beams is larger than the two inner light beams (the side closer to the normal line of the deflecting / reflecting surface). Further, the amount of scan line bending when the temperature fluctuates also increases with the outer light beam.

斜入射することによる走査線曲がりの発生や波面収差の劣化は、副走査方向に屈折力を持たず、主走査方向に副走査方向のチルト偏芯量が変化する面を用いることで補正できることは公知である。しかし、先に説明した温度変動による走査線曲がりの補正はできず、カラー画像において色ずれが発生してしまう。
特許文献7記載の光走査装置においては、光偏向器4の偏向反射面4aの法線に対し水平な光ビームと角度を持つ光ビームを用い、この斜入射角度を小さく設定しているが、走査線曲がりの発生は小さく抑えられる反面、全ての光ビームを光偏向器4の偏向反射面4aの法線に対し副走査方向に角度を持たせる本発明の光走査装置に対し、前記説明の通り光偏光器4の大型化(副走査方向へのポリゴンミラーの多段化、厚肉化)が必要となり、偏向手段(ポリゴンミラー)の高さ(副走査方向の高さ)hが高くなり、空気との接触面積が増大して、風損の影響による消費電力アップ、騒音の増大、コストアップ、光走査装置の大型化などの問題が生じる。
The occurrence of scanning line bending and wavefront aberration degradation due to oblique incidence can be corrected by using a surface that does not have refractive power in the sub-scanning direction and the tilt eccentricity in the sub-scanning direction changes in the main scanning direction. It is known. However, the correction of the scanning line bending due to the temperature variation described above cannot be performed, and color misregistration occurs in the color image.
In the optical scanning device described in Patent Document 7, a light beam having an angle with respect to the normal line of the deflecting / reflecting surface 4a of the optical deflector 4 is used and the oblique incident angle is set small. While the occurrence of scanning line bending is suppressed to a small level, the optical scanning apparatus of the present invention in which all light beams are angled in the sub-scanning direction with respect to the normal line of the deflecting reflection surface 4a of the optical deflector 4 is described above. It is necessary to increase the size of the light polarizer 4 (multiple polygon mirrors in the sub-scanning direction and increase the thickness), and the height (height in the sub-scanning direction) h of the deflecting means (polygon mirror) increases. The contact area with air increases, causing problems such as increased power consumption, increased noise, increased costs, and increased size of the optical scanning device due to the effects of windage loss.

そこで本発明の光走査装置は図2に示す如く、異なる被走査面に向かう光ビームのうち、少なくとも被走査面から副走査方向に最も近い光ビーム(L4)と遠い光ビーム(L1)は、被走査面に導くための折り返しミラー6の枚数差を奇数としている。同図の構成例で具体的に示すと、斜入射光束のうち、一番上に出射する光ビームL1と、一番下に出射する光ビームL4に用いるミラーの数を同じにせず、両者の差を奇数枚とする。すなわち、一方が偶数枚であれば、他方を奇数枚とする。副走査方向の折り返しミラー6により折り返された走査線は折り返し1回ごとに副走査方向に反転するため、前記説明の如く、偏向反射面4aの法線を挟み副走査方向両側で走査線曲がりの発生方向が異なった場合においても、その方向を同一方向に合わせることができる。前記被走査面7から副走査方向に最も近い光ビームL4と遠い光ビームL1、つまり、斜入射角の最も大きな光ビームの走査線曲がりの方向を一致させることで、カラー機における色重ねにおいて、色ずれの発生を低減させる事ができ、良好なカラー画像を達成可能となる。
更に、本発明の光走査装置においては、光偏向器4の偏向反射面4aで偏向走査された後に副走査方向において被走査面7に最も近い側(図の一番下)の光ビームL4は、最も光偏向器4に近い位置(図の左端:ST1)で対応する被走査面7へ向け、対応する被走査面7に近づく方向(図の下向き)に折り返しミラー6aにより分離される。
Therefore, in the optical scanning device of the present invention, as shown in FIG. 2, among the light beams directed to different scanned surfaces, at least the light beam (L4) closest to the scanned surface in the sub-scanning direction and the far light beam (L1) are The difference in the number of folding mirrors 6 for guiding to the surface to be scanned is an odd number. Specifically, in the configuration example of the figure, the number of mirrors used for the uppermost light beam L1 and the lowermost light beam L4 of the obliquely incident light beams is not the same. The difference is an odd number. That is, if one is an even number, the other is an odd number. Since the scanning line folded by the folding mirror 6 in the sub-scanning direction is reversed in the sub-scanning direction every time it is folded, as described above, the scanning line is bent on both sides of the sub-scanning direction across the normal line of the deflecting reflection surface 4a. Even when the generation directions are different, the directions can be matched to the same direction. In color superposition in a color machine, the light beam L4 closest to the scanning surface 7 in the sub-scanning direction and the light beam L1 far away, that is, the scanning beam bending direction of the light beam having the largest oblique incident angle are matched. The occurrence of color misregistration can be reduced, and a good color image can be achieved.
Furthermore, in the optical scanning device of the present invention, the light beam L4 on the side closest to the scanned surface 7 in the sub-scanning direction (lowermost in the figure) after being deflected and scanned by the deflecting / reflecting surface 4a of the optical deflector 4 is The laser beam is separated by the folding mirror 6a toward the corresponding scanned surface 7 at the position closest to the optical deflector 4 (left end: ST1 in the figure) in the direction approaching the corresponding scanned surface 7 (downward in the figure).

図5は折り返しミラーの配置に関する公知例を説明するための図である。
光偏向器4の偏向反射面4aで偏向走査された後に副走査方向において被走査面7から最も遠い側の光ビームL1を、最も光偏向器に近いST1側の位置で、被走査面7から離れる方向に分離している。本構成によれば、被走査面7に光ビームを導くためには、光偏向器4と走査レンズ5aの間を通す必要がある。この時、光ビームを走査レンズ5a、および、光偏向器4に干渉しないように被走査面としての感光体7に導くためには、走査レンズ5aと光偏向器4の間を通す光ビームの角度を光偏向器4の偏向反射面4aの法線に直交する面に対し大きく設定する(つまり光偏向器4側に大きく折り返す)ことが困難であるため、光偏向器4は図中ST1の感光体に対し矢印C側にシフトした配置となる必要が生じ、光走査装置が大型化してしまう。
FIG. 5 is a diagram for explaining a known example relating to the arrangement of the folding mirror.
The light beam L1 farthest from the scanned surface 7 in the sub-scanning direction after being deflected and scanned by the deflecting / reflecting surface 4a of the optical deflector 4 is moved from the scanned surface 7 at a position on the ST1 side closest to the optical deflector. Separated away. According to this configuration, in order to guide the light beam to the scanned surface 7, it is necessary to pass between the optical deflector 4 and the scanning lens 5a. At this time, in order to guide the light beam to the scanning lens 5 a and the photoconductor 7 as the surface to be scanned so as not to interfere with the optical deflector 4, the light beam passing between the scanning lens 5 a and the optical deflector 4 is used. Since it is difficult to set the angle large with respect to a plane orthogonal to the normal line of the deflecting / reflecting surface 4a of the optical deflector 4 (that is, it is greatly folded back to the optical deflector 4 side), the optical deflector 4 is ST1 in the figure. The arrangement needs to be shifted to the arrow C side with respect to the photosensitive member, and the optical scanning device is increased in size.

つまり、配列されている4つの感光体の間に光走査装置を配置することが困難であり、光走査装置の小型化に課題が発生する。折り返しミラー6の枚数を増やし対応することは可能であるが、折り返しミラーのコストアップ、光走査装置のレイアウトの複雑化、光走査装置偏向反射面4aから被走査面7までの光路長が長くなることによる光走査装置の大型化、光学素子増加による安定した光学性能の維持が難しくなるなど現実的ではない。また、折り返しミラーの枚数を増やさずに対応するためには、走査レンズ5aと光偏向器4の間を通すための折り返しミラー6から、被走査面としての感光体7までの距離を長くする必要が生じる。この時、その他の被走査面としての感光体7に向かう光ビームの光路長も長くなるため、やはり光走査装置が大型化したりして、搭載する画像形成装置の小型化が困難となってしまう。公知資料においても、光路長が長くなってしまうため、光偏向器4から最も離れたST4の感光体7に向かう光ビームにおいて、折り返しミラーを2枚と多く採用し、光走査装置のコストアップ、および大型化につながる構成となっている。   That is, it is difficult to dispose the optical scanning device between the four photoconductors arranged, and a problem arises in downsizing the optical scanning device. Although it is possible to cope with an increase in the number of the folding mirrors 6, the cost of the folding mirror is increased, the layout of the optical scanning device is complicated, and the optical path length from the optical scanning device deflection reflection surface 4 a to the scanned surface 7 becomes long. Therefore, it is not realistic that the optical scanning device becomes larger and it becomes difficult to maintain stable optical performance due to an increase in optical elements. Further, in order to cope without increasing the number of the folding mirrors, it is necessary to increase the distance from the folding mirror 6 for passing between the scanning lens 5a and the optical deflector 4 to the photosensitive member 7 as the scanned surface. Occurs. At this time, since the optical path length of the light beam directed to the photosensitive member 7 as the other surface to be scanned becomes longer, the optical scanning device is also increased in size, making it difficult to reduce the size of the mounted image forming apparatus. . Also in known materials, since the optical path length becomes long, in the light beam toward the photoconductor 7 of ST4 farthest from the optical deflector 4, a large number of folding mirrors are used, which increases the cost of the optical scanning device. And it has a configuration that leads to an increase in size.

図6は他の公知例を説明するための図である。
光偏向器4の偏向反射面4aで偏向走査された後に副走査方向において被走査面7から最も遠い側の光ビームL1を、最も光偏向器4に近い位置で(ST1に向けて)、被走査面としての感光体7側に分離している。本構成においては、共用される走査レンズ5aと、最も光偏向器4に近い位置で分離された光ビームL1の干渉を避けるために、光走査装置の光偏向器4は、図中ST1として示した感光体7に対し図中C側にシフトされた配置となり、光走査装置が大型化してしまう。図5の例と同じく、配列されている4つの感光体7の間に光偏向器4を配置することが困難であり、光走査装置の小型化に課題が発生する。本構成の光走査装置では、光偏向器4の偏向反射面4aから被走査面7までの光路長を長くすることで、最も光偏向器4に近い側のST1の感光体7と光偏向器4の位置を図6中Cの方向に近づけることが可能であるが、最も光偏向器4から遠い位置のST4の感光体7に向かう光ビームの光路長が長くなりすぎるため、折り返しミラー6の枚数を増やし、折り返す必要が生じ、折り返しミラーのコストアップ、光走査装置のレイアウトの複雑化、光学素子増加による安定した光学性能の維持が難しくなる。また、同図中左端の折り返しミラー6bと光偏向器4の距離を小さくすることも考えられるが、同図中5aの光学素子との干渉が生じるため、光ビームを光偏向器4の偏向反射面4aの法線の移動軌跡を含む面Hに対し角度を小さくしていく必要が生じ、被走査面としての感光体7と光偏向器4の配置位置をC方向へのシフト無しに配置することは困難となる。また、斜入射角が増大することで、走査線曲がりの発生も大きくなる。
FIG. 6 is a diagram for explaining another known example.
After being deflected and scanned by the deflecting / reflecting surface 4a of the optical deflector 4, the light beam L1 farthest from the scanned surface 7 in the sub-scanning direction is positioned closest to the optical deflector 4 (toward ST1). It is separated to the photoconductor 7 side as a scanning surface. In this configuration, in order to avoid interference between the scanning lens 5a shared and the light beam L1 separated at the position closest to the optical deflector 4, the optical deflector 4 of the optical scanning device is shown as ST1 in the drawing. The arrangement is shifted to the C side in the figure with respect to the photosensitive member 7, and the optical scanning device is increased in size. Similar to the example of FIG. 5, it is difficult to dispose the optical deflector 4 between the four photoconductors 7 arranged, which causes a problem in miniaturization of the optical scanning device. In the optical scanning device of this configuration, by increasing the optical path length from the deflecting / reflecting surface 4a of the optical deflector 4 to the scanned surface 7, the photoconductor 7 and the optical deflector of ST1 closest to the optical deflector 4 are provided. 6 can be brought closer to the direction C in FIG. 6, but the optical path length of the light beam toward the photoconductor 7 of the ST 4 farthest from the optical deflector 4 becomes too long. It is necessary to increase the number of sheets and to fold back, and it becomes difficult to increase the cost of the fold mirror, to complicate the layout of the optical scanning device, and to maintain stable optical performance by increasing the number of optical elements. Further, although it is conceivable to reduce the distance between the folding mirror 6b at the left end of the figure and the optical deflector 4, interference with the optical element 5a in the figure occurs, so that the light beam is deflected and reflected by the optical deflector 4. It is necessary to reduce the angle with respect to the surface H including the normal locus of the surface 4a, and the arrangement positions of the photoconductor 7 and the optical deflector 4 as the scanned surface are arranged without shifting in the C direction. It becomes difficult. In addition, as the oblique incident angle increases, the occurrence of scanning line bending also increases.

つまり、前記公知の光走査装置の光学レイアウトにおいては、斜入射光学系を採用し光偏向器4を小型化したり、低消費電力を狙い、光走査装置の低コスト化を狙う場合において、光走査装置を小型化することが難しく、搭載する画像形成装置の小型化に適さない光走査装置となってしまう。低コストな画像形成装置において小型化は大きな課題であり、搭載する光走査装置においても大きな課題となる。
本発明の光走査装置の形態によれば、光偏向器4の偏向反射面4aで偏向走査された後に副走査方向において被走査面7に最も近い側の光ビームL4は、最も光偏向器4に近い位置で対応するST1の被走査面7へ向け、対応する被走査面7に近づく方向に折り返しミラー6により分離するため、前記課題を解決した小型な光走査装置の実現が可能となる。
That is, in the optical layout of the known optical scanning device, when an oblique incident optical system is used to reduce the size of the optical deflector 4 or to reduce power consumption and to reduce the cost of the optical scanning device, optical scanning is performed. It is difficult to reduce the size of the apparatus, which results in an optical scanning device that is not suitable for downsizing the mounted image forming apparatus. Miniaturization is a big problem in low-cost image forming apparatuses, and it is also a big problem in an optical scanning device to be mounted.
According to the form of the optical scanning device of the present invention, the light beam L4 closest to the scanned surface 7 in the sub-scanning direction after being deflected and scanned by the deflecting / reflecting surface 4a of the optical deflector 4 is the optical deflector 4 closest. Since it is separated by the folding mirror 6 in the direction approaching the corresponding scanned surface 7 toward the corresponding scanned surface 7 of ST1 at a position close to, it is possible to realize a small optical scanning device that solves the above problems.

図7は本発明の他の実施形態を説明するための図である。
被走査面としての感光体7に、副走査方向で最も近い光ビームL4を、共用される走査レンズ5a通過後に最初にその他の光ビームに対して感光体側に分離することで、走査レンズ5aへの干渉を避け、且つ、光偏向器4側に大きく折り返すことが可能となる。従来の光走査装置に対し、折り返しミラー6の枚数を増やすことなく光偏向器4を同図中ST1の感光体に対し同図中C側へシフトする配置を取らずにレイアウト可能となるため、光走査装置の小型化が可能となる。光走査装置から被走査面7までの光路長については、適宜感光体の間隔等により設定可能であるが、従来の光走査装置に対し、被走査面7側に光ビームLを折り返すことで光路長が長くなるといった課題は生じない。
FIG. 7 is a view for explaining another embodiment of the present invention.
The light beam L4 closest to the photosensitive member 7 as the surface to be scanned in the sub-scanning direction is first separated to the photosensitive member side with respect to the other light beams after passing through the shared scanning lens 5a, to the scanning lens 5a. Thus, it is possible to largely fold back to the optical deflector 4 side. Compared to the conventional optical scanning device, the optical deflector 4 can be laid out without increasing the number of folding mirrors 6 without shifting the deflector 4 to the C side in FIG. The optical scanning device can be downsized. The optical path length from the optical scanning device to the surface to be scanned 7 can be set as appropriate depending on the distance between the photoconductors. However, the optical path is obtained by folding the light beam L toward the surface to be scanned 7 with respect to the conventional optical scanning device. The problem that length becomes long does not arise.

以上説明の如く、本発明によれば、全ての光ビームLを光偏向器4の偏向反射面4aの法線に対し副走査方向に角度を持たせる光走査装置を前記光学レイアウトとすることで、低コスト化、低消費電力を実現し、且つ、光走査装置の小型化を達成することができる。また、斜入射光学系により発生する「走査線曲りの方向」を、少なくとも斜入射角の大きい(走査線曲り発生の大きい)光ビーム(L1とL4)で一致させることで、色ずれを低減することが可能となる。
更に色ずれを低減させるためには、全ての光ビームにおいて、光偏向器の偏向反射面の法線を挟み、副走査方向の一方に偏向走査される2本の光ビーム(例えば、L1とL2)と、他方に偏向走査される2本の光ビーム(例えばL3とL4)に対応する折り返しミラーの枚数の差を奇数とすることで、全ての被走査面において走査線曲がりの方向を一致させることができる。次図にその例を示す。
As described above, according to the present invention, an optical scanning device that makes all the light beams L have an angle in the sub-scanning direction with respect to the normal line of the deflection reflection surface 4a of the optical deflector 4 is used as the optical layout. Thus, cost reduction and power consumption can be realized, and the optical scanning device can be miniaturized. In addition, the “scanning line bending direction” generated by the oblique incidence optical system is matched with at least the light beams (L1 and L4) having a large oblique incident angle (large occurrence of scanning line bending), thereby reducing color misregistration. It becomes possible.
In order to further reduce the color misregistration, in all the light beams, two light beams (for example, L1 and L2) that are deflected and scanned in one of the sub-scanning directions with the normal line of the deflecting reflection surface of the optical deflector interposed therebetween. ) And the difference in the number of folding mirrors corresponding to two light beams deflected and scanned on the other side (for example, L3 and L4) are set to odd numbers, so that the scanning line bending directions coincide with each other on all scanned surfaces. be able to. The following figure shows an example.

図8はすべての捜査線曲がりを同一方向に揃える光学系を示す図である。
同図では領域B側に出射する光ビームの折り返しミラーを奇数枚に、領域A側に出射する光ビームの折り返しミラーを偶数枚に設定している。
偏向反射面4aの法線を挟み副走査方向片側、例えば同図中領域Aから偏向反射面4aに入射される光ビームに対応する折り返しミラー6の枚数は奇数枚であり、逆側、つまり同図中領域側Bから入射される光ビームに対応する枚数は偶数枚として配置されている。同図中の光ビームL1〜L4は光偏向器で偏向された後の光ビームであり、偏向反射面4aへの入射光は、同図中の光ビームの副走査方向反対側の領域から入射となる。このように折り返しミラー6を配置することで、折り返しミラー6の枚数は若干増えるが、被走査面における走査線曲がりの方向を全ての光ビームにおいて一致させることができる。この結果、温度変動において走査線曲がりが発生した場合においても良好な色ずれ補正が可能となる。
FIG. 8 is a diagram showing an optical system that aligns all investigation line bends in the same direction.
In the drawing, the folding mirror for the light beam emitted to the region B side is set to an odd number, and the folding mirror for the light beam emitted to the region A side is set to an even number.
The number of folding mirrors 6 corresponding to the light beam incident on the deflecting / reflecting surface 4a from one side in the sub-scanning direction with respect to the normal line of the deflecting / reflecting surface 4a, for example, from the region A in FIG. The number corresponding to the light beams incident from the region side B in the figure is arranged as an even number. The light beams L1 to L4 in the figure are light beams after being deflected by the optical deflector, and the incident light to the deflecting reflection surface 4a is incident from a region opposite to the sub-scanning direction of the light beam in the figure. It becomes. By arranging the folding mirrors 6 in this way, the number of the folding mirrors 6 slightly increases, but the scanning line bending direction on the scanned surface can be made to coincide in all the light beams. As a result, good color misregistration correction is possible even when scanning line bending occurs due to temperature fluctuations.

図9は他の実施形態を説明するための図である。
同図においては光ビームL1とL2の折り返し位置が前の実施形態と異なっている。
対応する被走査面7に向かう各々の光ビームのうち、光偏向器4から最も遠いST4の被走査面7に向かう光ビームは、対応する被走査面7に導くための副走査方向への折り返しミラー6の枚数が、その他の被走査面7に向かう光ビームの光路に配置される折り返しミラー6の枚数以下であることが望ましい。
先の実施形態で説明した如く、光偏向器4で偏向された後、副走査方向において被走査面7から最も近い側の光ビームL4を、対応する被走査面7に向け、光偏向器4から最も近い位置(ST1に対応する位置)で対応する被走査面7に近づく方向に折り返すことで、光走査装置4の小型化が可能となる。更に、対応する被走査面7に向かう各々の光ビームのうち、光偏向器4から最も遠いST4の被走査面7に向かう光ビームは、対応する被走査面7に導くための副走査方向への折り返しミラー6の枚数が、その他の被走査面7に向かう光ビームの光路に配置される折り返しミラー6の枚数以下(同図の例では1枚、その他のビームに関しては各2枚)とすることで、光偏向器4から偏向反射面7までの光路長を最も短く設定することが可能となる。
FIG. 9 is a diagram for explaining another embodiment.
In the figure, the folding positions of the light beams L1 and L2 are different from the previous embodiment.
Of each light beam directed to the corresponding scanned surface 7, the light beam directed to the scanned surface 7 of ST 4 farthest from the optical deflector 4 is turned back in the sub-scanning direction to be guided to the corresponding scanned surface 7. It is desirable that the number of mirrors 6 be equal to or less than the number of folding mirrors 6 arranged in the optical path of the light beam directed to the other scanned surface 7.
As described in the previous embodiment, after being deflected by the optical deflector 4, the light beam L 4 closest to the scanned surface 7 in the sub-scanning direction is directed toward the corresponding scanned surface 7, and the optical deflector 4. The optical scanning device 4 can be miniaturized by folding back in a direction approaching the corresponding scanned surface 7 at the closest position (position corresponding to ST1). Further, among the respective light beams directed to the corresponding scanned surface 7, the light beam directed to the scanned surface 7 of ST 4 farthest from the optical deflector 4 is directed in the sub-scanning direction to be guided to the corresponding scanned surface 7. The number of the folding mirrors 6 is equal to or less than the number of the folding mirrors 6 arranged in the optical path of the light beam toward the other scanning surface 7 (one in the example in the figure, and two for each of the other beams). This makes it possible to set the optical path length from the optical deflector 4 to the deflecting / reflecting surface 7 to be the shortest.

光偏向器4から最も遠いST4の被走査面としての感光体7に導かれる光ビームの折り返しミラー6の枚数が増えると、光偏向器4の偏向反射面4aと被走査面7の光路長が長くなり、光走査装置が大型化してしまう。その他の被走査面7に向かう光ビームは、順次折り返しミラー6により折り返すことで対応する被走査面7に導くことが可能であるが、光路長が長いと折り返しミラー6の枚数を増やす必要が生じるなど、光走査装置が大型化するばかりでなく低コストな光走査装置の提供が困難となる。本発明の如く、光偏向器4から最も遠いST4の感光体7に向かう光ビームの折り返しミラー6の枚数を最小とし、光路長を短く設定することで前記課題を解決可能となる。
更に、対応する被走査面7に向かう各々の光ビームのうち、前記、光偏向器4から最も遠いST4の被走査面7に向かう光ビームLは、光偏向器4で偏向された後、副走査方向において被走査面7に最も近い側の光ビームL4に対し、光偏向器4の偏向反射面4aの法線に関し副走査方向の逆側に偏向される光ビームであることで、色ずれ低減を達成しつつ光走査装置の小型化が達成可能となる。
When the number of folding mirrors 6 of the light beam guided to the photoconductor 7 as the scanning surface of ST4 farthest from the optical deflector 4 increases, the optical path lengths of the deflection reflecting surface 4a of the optical deflector 4 and the scanned surface 7 are increased. It becomes long and the optical scanning device becomes large. The other light beams directed toward the scanned surface 7 can be guided to the corresponding scanned surface 7 by being sequentially folded by the folding mirror 6. However, if the optical path length is long, it is necessary to increase the number of the folding mirrors 6. For example, the optical scanning device is not only enlarged, but it is difficult to provide a low-cost optical scanning device. As in the present invention, the above problem can be solved by minimizing the number of folding mirrors 6 of the light beam directed to the photoconductor 7 of ST4 farthest from the optical deflector 4 and shortening the optical path length.
Further, among the respective light beams traveling toward the scanned surface 7, the light beam L traveling toward the scanned surface 7 of ST 4 farthest from the optical deflector 4 is deflected by the optical deflector 4 and then sub-beamed. Since the light beam L4 closest to the surface to be scanned 7 in the scanning direction is a light beam deflected to the opposite side in the sub-scanning direction with respect to the normal line of the deflection reflection surface 4a of the optical deflector 4, the color shift It is possible to achieve downsizing of the optical scanning device while achieving reduction.

走査線曲がりの方向を揃えるためには、折り返しミラーの枚数を偶数枚と奇数枚で最適に設定する必要があることは今までに説明してきた。物理的に光偏向器4から近いST1の被走査面7に向かう光ビームLを光路長を変えることなく折り返し回数を減らすことは困難である。つまり、本実施の形態の如く、光偏向器4から最も遠いST4の感光体7に向かう光ビームLに対応する折り返しミラー6の枚数を最小、つまり、奇数枚(本実施の形態においては1枚)とし、且つ、光偏向器4で偏向された後、副走査方向において被走査面7に最も近い側の光ビームL4に対し、光偏向器4の偏向反射面4aの法線に関し副走査方向の逆側に偏向される光ビームとすることで、走査線曲がりの方向を合わせつつ、小型化された光走査装置の提供が可能となる。この時、副走査方向に被走査面7に最も近い光ビームL4が、前記実施形態になっている必要があることは言うまでもない。   As described above, in order to align the scanning line bending direction, it is necessary to optimally set the number of folding mirrors to be an even number and an odd number. It is difficult to reduce the number of turns of the light beam L heading toward the scanning surface 7 of ST1 that is physically close to the optical deflector 4 without changing the optical path length. That is, as in the present embodiment, the number of the folding mirrors 6 corresponding to the light beam L directed to the photoconductor 7 of ST4 farthest from the optical deflector 4 is minimized, that is, an odd number (one in this embodiment). And the light beam L4 closest to the scanned surface 7 in the sub-scanning direction after being deflected by the optical deflector 4, the sub-scanning direction with respect to the normal line of the deflection reflection surface 4a of the optical deflector 4 By using the light beam deflected to the opposite side, it is possible to provide a downsized optical scanning device while matching the direction of the scanning line bending. At this time, it goes without saying that the light beam L4 closest to the surface to be scanned 7 in the sub-scanning direction needs to be in the above embodiment.

更に、本実施の形態の如く、光偏向器4から最も遠いST4の感光体に導かれる光ビームLが、光偏向器4による偏向後に、最も被走査面7から遠い光ビームL1であり、また、折り返される方向は被走査面7側であり、折り返しミラー6の枚数が1枚であることにより、より光走査装置を小型化でき、走査線曲り発生の大きい、斜入射角の大きい光ビームL1とL4の走査線曲がりの方向を一致させることができるため、色ずれを低減した小型な光走査装置を提供可能となる。   Further, as in the present embodiment, the light beam L guided to the photosensitive member ST4 farthest from the light deflector 4 is the light beam L1 farthest from the scanned surface 7 after being deflected by the light deflector 4, and The direction of folding is on the scanning surface 7 side, and the number of folding mirrors 6 is one, so that the optical scanning device can be further miniaturized, and the light beam L1 having a large incidence of scanning lines and a large oblique incident angle. And the scanning line bending direction of L4 can be made to coincide with each other, so that it is possible to provide a small optical scanning device with reduced color misregistration.

図10は本発明に適用しうる折り返しミラーの構造を示す図である。同図(a)は主要部光路図、同図(b)は一部拡大図である。
偏向反射面4aから対応する被走査面7の間に配置される副走査方向への折り返しミラー6のうち、少なくとも、偏向反射される光ビームLの反射方向と副走査方向に関し逆側に、異なる被走査面7に向かう隣接した光ビームL’が通過するように配置されている折り返しミラー6は、少なくとも、光ビームL’が通過する側が面取りされている。
偏向反射面4aへ斜入射させる角度が増大すると、諸収差が劣化し光学性能が劣化する。具体的には波面収差の劣化によるビームスポット径の劣化、走査線曲がりの増大などが挙げられる。光学性能面、および、光走査装置の小型化の観点からも、斜入射角をできるだけ小さく設定することが望ましい。
FIG. 10 is a diagram showing a structure of a folding mirror applicable to the present invention. FIG. 4A is a main part optical path diagram, and FIG. 4B is a partially enlarged view.
Among the folding mirrors 6 in the sub-scanning direction arranged between the deflecting / reflecting surface 4a and the corresponding scanned surface 7, at least opposite to the reflection direction of the deflected and reflected light beam L and the sub-scanning direction. The folding mirror 6 arranged so that the adjacent light beam L ′ toward the scanned surface 7 passes is chamfered at least on the side through which the light beam L ′ passes.
When the angle of oblique incidence on the deflecting / reflecting surface 4a increases, various aberrations deteriorate and optical performance deteriorates. Specifically, beam spot diameter deterioration due to wavefront aberration deterioration, scanning line bending increase, and the like can be mentioned. From the viewpoint of optical performance and downsizing of the optical scanning device, it is desirable to set the oblique incident angle as small as possible.

斜入射角を小さくすると、各々対応する被走査面7に各光ビームLを分離するのが困難になる。特に、同図に示すが如く、異なる被走査面に向かう光ビームを分離する折り返しミラー、つまり、少なくとも偏向反射される光ビーム(例えばL2)の反射方向と副走査方向に関し逆側に、異なる被走査面7に向かう光ビーム(例えばL1)が通過するように配置されている折り返しミラー(例えば6−2)は、ミラーの肉厚分だけ各々の光ビームLの間隔を広げる必要がある。光ビームLの間隔を広げるとは、斜入射角を大きくすることとなり好ましくない。そこで、本実施の形態では、少なくとも同図中のハッチング部分を面取りしている。この結果、前記課題は解決され、斜入射角を小さく設定することが可能となる。他の折り返しミラー6(例えば、6−3、6−4)においても、他の光ビームLとの関係が同様であれば、面取りも同様に行われるのはもちろんである。このように面取りすることで、斜入射角をより小さく設定でき、走査線曲がりの発生を小さくすることが可能となり、良好に色ずれ補正された光走査装置の提供が可能となる。   When the oblique incident angle is reduced, it becomes difficult to separate the light beams L on the corresponding scanned surfaces 7. In particular, as shown in the figure, a folding mirror that separates light beams traveling toward different scanning surfaces, that is, at least oppositely reflected in the sub-scanning direction with respect to the reflection direction of the light beam (for example, L2) that is deflected and reflected. The folding mirror (for example, 6-2) arranged so that the light beam (for example, L1) toward the scanning plane 7 passes needs to widen the interval between the light beams L by the thickness of the mirror. Increasing the interval between the light beams L is not preferable because it increases the oblique incident angle. Therefore, in the present embodiment, at least the hatched portion in the figure is chamfered. As a result, the problem is solved, and the oblique incident angle can be set small. Of course, in other folding mirrors 6 (for example, 6-3 and 6-4), if the relationship with the other light beams L is the same, the chamfering is performed in the same manner. By chamfering in this way, the oblique incident angle can be set smaller, the occurrence of scanning line bending can be reduced, and an optical scanning device with good color misregistration correction can be provided.

図11は本発明に適用し得るマルチビーム光源装置を構成する光源ユニットの例を示す図である。
同図において403、404は光源としての半導体レーザ、405はベース部材、406、407は押え部材、408、409はコリメートレンズ、410はホルダ部材、411は光学ハウジングの取り付け壁、412はネジ、413、414はネジ、415はアパーチャ、611はスプリング、612はストッパ部材、613は調節ネジをそれぞれ示す。
本発明に係る光走査装置において、光源を、例えば、複数の発光点を有する半導体レーザアレイや、単数の発光点もしくは複数の発光点を有する光源を複数用いたマルチビーム光源装置とし、複数の光ビームを感光体表面に同時に走査するように構成するとよい。こうすることにより、高速化、高密度化を図った光走査装置および画像形成装置を構成することができ、かかる光走査装置および画像形成装置を構成した場合も、これまで説明してきた効果と同様の効果を得ることができる。
FIG. 11 is a diagram showing an example of a light source unit constituting a multi-beam light source apparatus applicable to the present invention.
In the drawing, 403 and 404 are semiconductor lasers as light sources, 405 is a base member, 406 and 407 are pressing members, 408 and 409 are collimating lenses, 410 is a holder member, 411 is a mounting wall of an optical housing, 412 is a screw, 413 414 is a screw, 415 is an aperture, 611 is a spring, 612 is a stopper member, and 613 is an adjusting screw.
In the optical scanning device according to the present invention, the light source is, for example, a semiconductor laser array having a plurality of light emitting points, or a multi-beam light source device using a single light emitting point or a plurality of light sources having a plurality of light emitting points, and a plurality of light sources. The beam may be scanned on the surface of the photoconductor at the same time. By doing so, it is possible to configure an optical scanning device and an image forming apparatus that are increased in speed and density, and even when such an optical scanning device and an image forming apparatus are configured, the same effects as described above are obtained. The effect of can be obtained.

半導体レーザ403、404は各々ベース部材405の裏側に形成した図示しない嵌合孔405−1、405−2に個別に嵌合されている。上記嵌合孔405−1、405−2は主走査方向に所定角度、実施例では約1.5°微小に傾斜していて、この嵌合孔に嵌合された半導体レーザ403、404も主走査方向に約1.5°傾斜している。半導体レーザ403、404は、その円筒状ヒートシンク部403a、404aに切り欠きが形成されていて、押え部材406、407の中心丸孔に形成された突起406a、407aを上記ヒートシンク部の切り欠き部に合わせることによって発光源の配列方向が合わせられている。押え部材406、407はベース部材405にその背面側からネジ412で固定されることにより、半導体レーザ403、404がベース部材405に固定されている。また、コリメートレンズ408、409は各々その外周をベース部材405の半円状の取り付けガイド面405b、405cに沿わせて光軸方向の調整を行い、発光点から射出した発散ビームが平行光束となるよう位置決めされ接着されている。   The semiconductor lasers 403 and 404 are individually fitted into fitting holes 405-1 and 405-2 (not shown) formed on the back side of the base member 405, respectively. The fitting holes 405-1 and 405-2 are inclined at a predetermined angle in the main scanning direction, in the embodiment, about 1.5 °, and the semiconductor lasers 403 and 404 fitted in the fitting holes are also main. It is inclined about 1.5 ° in the scanning direction. The semiconductor lasers 403 and 404 have notches formed in the cylindrical heat sink portions 403a and 404a, and the projections 406a and 407a formed in the central round holes of the holding members 406 and 407 are formed in the notches of the heat sink portion. By aligning, the arrangement direction of the light emitting sources is adjusted. The holding members 406 and 407 are fixed to the base member 405 with screws 412 from the back side thereof, so that the semiconductor lasers 403 and 404 are fixed to the base member 405. The collimating lenses 408 and 409 are adjusted in the direction of the optical axis along the outer circumferences of the semicircular mounting guide surfaces 405b and 405c of the base member 405, and the divergent beams emitted from the light emitting points become parallel light beams. So that it is positioned and glued.

なお、上記例では、各々の半導体レーザからの光線が主走査面内で交差するように設定するため、光線方向に沿って嵌合孔405a、405bおよび半円状の取り付けガイド面405c,405dを傾けて形成している。ベース部材405の円筒状係合部405cをホルダ部材410に係合し、ネジ413、414を貫通孔410b、410cに通してネジ孔405e、405fに螺合することによって、ベース部材405がホルダ部材410に固定され、光源ユニットを構成する。   In the above example, since the light beams from the respective semiconductor lasers are set to intersect within the main scanning plane, the fitting holes 405a and 405b and the semicircular mounting guide surfaces 405c and 405d are formed along the light beam direction. Tilt to form. By engaging the cylindrical engaging portion 405c of the base member 405 with the holder member 410 and passing the screws 413 and 414 through the through holes 410b and 410c and screwing into the screw holes 405e and 405f, the base member 405 becomes the holder member. It is fixed to 410 and constitutes a light source unit.

光源ユニットのホルダ部材410は、その円筒部410aが光学ハウジングの取り付け壁411に設けた基準孔411aに嵌合され、取り付け壁411の表側よりスプリング611を挿入してストッパ部材612を円筒部突起410に係合することで、取り付け壁411の裏側に密着して保持され、これによって上記光源ユニットが保持されている。スプリング611の一端を取り付け壁411の突起411bに引っ掛け、スプリング611の他端を光源ユニットに引っ掛けることで、光源ユニットに円筒部中心を回転軸とした回転力を発生している。この光源ユニットの回転力を係止するように設けた調節ネジ613を具備していて、この調節ネジ613の進退により、光軸の周りであるθ方向にユニット全体を回転しピッチを調節することができるように構成されている。光源ユニットの前方にはアパーチャ415が配置され、アパーチャ415には半導体レーザ毎に対応したスリット415aが設けられ、光学ハウジングに取り付けられて光ビームの射出径を規定するように構成されている。
半導体レーザは、複数の発光点を持つ半導体レーザアレイを用いても構わない。また、半導体レーザアレイを複数持たず、単独でマルチビームを構成しても良いことは言うまでも無い。光走査装置の光源装置として複数の光ビームを射出するマルチビーム光源装置とすることで、光偏向器の回転数を上げることなく高密度な書込、または、高速化が可能となり、低消費電力化を実現した、高画質、高速に対応可能な光走査装置を実現可能となる。
The holder 410 of the light source unit has a cylindrical portion 410 a fitted in a reference hole 411 a provided in the mounting wall 411 of the optical housing, and a spring 611 is inserted from the front side of the mounting wall 411 to insert the stopper member 612 into the cylindrical projection 410. Is held in close contact with the back side of the mounting wall 411, thereby holding the light source unit. One end of the spring 611 is hooked on the protrusion 411b of the mounting wall 411, and the other end of the spring 611 is hooked on the light source unit, thereby generating a rotational force around the center of the cylindrical portion of the light source unit. An adjustment screw 613 provided to lock the rotational force of the light source unit is provided, and the adjustment unit 613 advances and retracts to rotate the entire unit in the θ direction around the optical axis to adjust the pitch. It is configured to be able to. An aperture 415 is disposed in front of the light source unit, and the aperture 415 is provided with a slit 415a corresponding to each semiconductor laser, and is configured to be attached to an optical housing to define an emission diameter of the light beam.
As the semiconductor laser, a semiconductor laser array having a plurality of light emitting points may be used. Needless to say, a plurality of semiconductor laser arrays may not be provided and a multi-beam may be formed independently. By using a multi-beam light source device that emits multiple light beams as the light source device for an optical scanning device, high-density writing or high speed can be achieved without increasing the rotational speed of the optical deflector, resulting in low power consumption. An optical scanning device that can realize high image quality and high speed can be realized.

図12は本発明を適用した画像形成装置を示す図である。
同図において符号8は帯電チャージャ、9は光走査光学系、10は現像装置、11は転写チャージャ、12はクリーニング装置、13は給紙カセット、14は給紙ローラ、15は搬送ローラ、16はレジストローラ、17は搬送ベルト、18、19はベルト支持ローラ、20はベルト帯電チャージャ、21はベルト分離チャージャ、22は除電チャージャ、23はベルトクリーニング装置、24は定着装置、25は排紙ローラ、26は排紙トレイをそれぞれ示す。
本発明に係る光走査装置を用いた画像形成装置の一実施の形態を、同図を参照しながら説明する。
本実施の形態は、本発明に係る光走査装置をタンデム型フルカラーレーザプリンタに適用した例である。同図において、装置内の下部側には水平方向に配設された給紙カセット13から給紙される転写紙Sを搬送する搬送ベルト17が設けられている。この搬送ベルト17上にはイエローY用の感光体7Y、マゼンタM用の感光体7M、シアンC用の感光体7C、およびブラックK用の感光体7Kが、転写紙Sの搬送方向上流側から順に等間隔で配設されている。なお、以下、符号に対する添字Y、M、C、Kを適宜付けて区別するものとする。これらの感光体7Y、7M、7C、7Kは全て同一径に形成されたもので、その周囲には、電子写真プロセスにしたがって各プロセスを実行するプロセス部材が順に配設されている。
FIG. 12 shows an image forming apparatus to which the present invention is applied.
In the figure, reference numeral 8 denotes a charging charger, 9 denotes an optical scanning optical system, 10 denotes a developing device, 11 denotes a transfer charger, 12 denotes a cleaning device, 13 denotes a paper feeding cassette, 14 denotes a paper feeding roller, 15 denotes a transporting roller, 16 denotes Registration roller, 17 is a conveyance belt, 18 and 19 are belt support rollers, 20 is a belt charger, 21 is a belt separation charger, 22 is a static elimination charger, 23 is a belt cleaning device, 24 is a fixing device, 25 is a discharge roller, Reference numeral 26 denotes a paper discharge tray.
An embodiment of an image forming apparatus using an optical scanning device according to the present invention will be described with reference to FIG.
The present embodiment is an example in which the optical scanning device according to the present invention is applied to a tandem type full-color laser printer. In the drawing, a conveying belt 17 for conveying a transfer sheet S fed from a sheet feeding cassette 13 arranged in a horizontal direction is provided on the lower side in the apparatus. On the conveying belt 17, a photosensitive member 7Y for yellow Y, a photosensitive member 7M for magenta M, a photosensitive member 7C for cyan C, and a photosensitive member 7K for black K are provided from the upstream side in the conveying direction of the transfer paper S. They are arranged at regular intervals in order. Hereinafter, subscripts Y, M, C, and K are appropriately added to the reference numerals for distinction. These photoreceptors 7Y, 7M, 7C, and 7K are all formed to have the same diameter, and process members that perform each process in accordance with the electrophotographic process are sequentially disposed around the photoreceptors.

感光体7Kを例に採れば、帯電チャージャ8K、光走査光学系9K、現像装置10K、転写チャージャ11K、クリーニング装置12K等が順に配設されている。他の感光体7Y、7M、7Cに対しても同様である。即ち、本実施の形態では、感光体7Y、7M、7C、7Kの表面を各色毎に設定された被走査面ないしは被照射面とするものであり、各々の感光体に対して光走査光学系9Y、9M、9C、9Kが1対1の対応関係で設けられている。但し、走査レンズ5aは、M,Y、K,Cで共通使用している。また、搬送ベルト17の周囲には、感光体7Yよりも上流側に位置させてレジストローラ16と、ベルト帯電チャージャ20が設けられ、感光体7Kよりもベルト17の回転方向下流側に位置させてベルト分離チャージャ21、除電チャージャ22、ベルトクリーニング装置23等が順に設けられている。また、ベルト分離チャージャ21よりも転写紙搬送方向下流側には定着装置24が設けられ、排紙トレイ26に向けて排紙ローラ25で結ばれている。   Taking the photoconductor 7K as an example, a charging charger 8K, an optical scanning optical system 9K, a developing device 10K, a transfer charger 11K, a cleaning device 12K, and the like are sequentially arranged. The same applies to the other photoconductors 7Y, 7M, and 7C. That is, in the present embodiment, the surfaces of the photoconductors 7Y, 7M, 7C, and 7K are used as the scan surfaces or the irradiated surfaces set for the respective colors, and the optical scanning optical system is applied to each photoconductor. 9Y, 9M, 9C, and 9K are provided in a one-to-one correspondence. However, the scanning lens 5a is commonly used for M, Y, K, and C. In addition, a registration roller 16 and a belt charging charger 20 are provided around the transport belt 17 on the upstream side of the photoconductor 7Y, and are positioned on the downstream side in the rotation direction of the belt 17 with respect to the photoconductor 7K. A belt separation charger 21, a charge removal charger 22, a belt cleaning device 23, and the like are provided in this order. Further, a fixing device 24 is provided downstream of the belt separation charger 21 in the transfer paper conveyance direction, and is connected to a paper discharge tray 26 by a paper discharge roller 25.

このような概略構成において、例えば、フルカラーモード(複数色モード)時であれば、各感光体7Y、7M、7C、7Kに対してY、M、C、K用の各色の画像信号に基づき各々の光走査装置9Y、9M、9C、9Kによる光ビームの光走査で、各感光体表面に、各色信号に対応した静電潜像が形成される。これらの静電潜像は各々の対応する現像装置で色トナーにより現像されてトナー像となり、搬送ベルト17上に静電的に吸着されて搬送される転写紙S上に順次転写されることにより重ね合わせられ、転写紙S上にフルカラー画像が形成される。このフルカラー像は定着装置24で定着された後、排紙ローラ25により排紙トレイ26に排紙される。
同図は説明のための模式図であり、小型化に最適なレイアウトは取られていない。しかし、本発明の形態の光走査装置を用いることで、色ずれが無く、高品位な画像再現性が確保できる低消費電力、低コストで小型な画像形成装置、およびフルカラー画像形成装置を実現することができる。
In such a schematic configuration, for example, in the full color mode (multiple color mode), each of the photoreceptors 7Y, 7M, 7C, and 7K is based on image signals of colors Y, M, C, and K, respectively. By the optical scanning of the light beam by the optical scanning devices 9Y, 9M, 9C, and 9K, electrostatic latent images corresponding to the respective color signals are formed on the respective photosensitive member surfaces. These electrostatic latent images are developed with color toners by the corresponding developing devices to become toner images, and are sequentially transferred onto the transfer paper S that is electrostatically attracted onto the transport belt 17 and transported. A full color image is formed on the transfer paper S by being superimposed. This full-color image is fixed by the fixing device 24 and then discharged to a discharge tray 26 by a discharge roller 25.
This figure is a schematic diagram for explanation, and an optimal layout for miniaturization is not taken. However, by using the optical scanning device according to the embodiment of the present invention, a low-power consumption, low-cost, small-sized image forming apparatus and full-color image forming apparatus that can ensure high-quality image reproducibility without color misregistration are realized. be able to.

本発明の1実施形態を説明するための図である。It is a figure for demonstrating one Embodiment of this invention. 本発明の1実施形態を説明するための図である。It is a figure for demonstrating one Embodiment of this invention. 偏向面に対する光束の垂直入射と斜入射の違いを説明するための図である。It is a figure for demonstrating the difference of the perpendicular incidence of a light beam with respect to a deflection surface, and oblique incidence. 第2走査レンズと走査光束の関係を説明するための図である。It is a figure for demonstrating the relationship between a 2nd scanning lens and a scanning light beam. 折り返しミラーの配置に関する公知例を説明するための図である。It is a figure for demonstrating the well-known example regarding arrangement | positioning of a folding mirror. 他の公知例を説明するための図である。It is a figure for demonstrating another well-known example. 本発明の他の実施形態を説明するための図である。It is a figure for demonstrating other embodiment of this invention. すべての捜査線曲がりを同一方向に揃える光学系を示す図である。It is a figure which shows the optical system which arranges all the investigation line bends in the same direction. 他の実施形態を説明するための図である。It is a figure for demonstrating other embodiment. 本発明に適用しうる折り返しミラーの構造を示す図である。It is a figure which shows the structure of the folding mirror which can be applied to this invention. 本発明に適用し得るマルチビーム光源装置を構成する光源ユニットの例を示す図である。It is a figure which shows the example of the light source unit which comprises the multi-beam light source device which can be applied to this invention. 本発明を適用した画像形成装置を示す図である。1 is a diagram illustrating an image forming apparatus to which the present invention is applied.

符号の説明Explanation of symbols

1 光源
4 光偏向器
5 走査レンズ
6 折り返しミラー
7 被走査面としての感光体
DESCRIPTION OF SYMBOLS 1 Light source 4 Optical deflector 5 Scan lens 6 Folding mirror 7 Photosensitive body as scanning surface

Claims (10)

それぞれ光ビームを射出する複数の光源装置と、前記各光ビームを偏向走査する光偏向器と、少なくとも1枚の走査レンズを有する走査光学系と、複数の被走査面と、を有し、前記各光ビームは前記光偏向器の同一の偏向反射面により偏向された後、前記走査光学系により各々異なる被走査面に集光される光走査装置において、前記すべての光ビームは、前記光偏向器の反射面の法線に対して副走査方向に関し角度を有し、前記走査光学系の少なくとも最も前記光偏向器に近い走査レンズはすべての光ビームで共用され、前記光偏向器で偏向された後、副走査方向に関して前記被走査面に最も近い側の光ビームは、前記光偏向器に最も近い位置で対応する被走査面に向け、対応する被走査面に近づく方向に分離されることを特徴とする光走査装置。   A plurality of light source devices each emitting a light beam, a light deflector for deflecting and scanning each light beam, a scanning optical system having at least one scanning lens, and a plurality of scanned surfaces, In the optical scanning device in which each light beam is deflected by the same deflecting reflection surface of the optical deflector and then condensed on different scanned surfaces by the scanning optical system, all the light beams are the optical deflection. The scanning lens having an angle with respect to the normal of the reflecting surface of the detector in the sub-scanning direction and at least closest to the optical deflector of the scanning optical system is shared by all the light beams and is deflected by the optical deflector. After that, the light beam closest to the scanned surface in the sub-scanning direction is separated toward the corresponding scanned surface at a position closest to the optical deflector in a direction approaching the corresponding scanned surface. Optical scanning characterized by Location. 請求項1に記載の光走査装置において、前記複数の光ビームのうち、前記光偏向器から最も遠い被走査面に向かう光ビームに対し、対応する被走査面に導くための副走査方向への折り返しミラーの枚数は、その他の被走査面に向かう光ビームの光路に配置される折り返しミラーの枚数以下であることを特徴とする光走査装置。   2. The optical scanning device according to claim 1, wherein, among the plurality of light beams, a light beam directed to a surface to be scanned farthest from the optical deflector is guided in a sub-scanning direction for guiding the light beam to the corresponding surface to be scanned. An optical scanning device characterized in that the number of folding mirrors is equal to or less than the number of folding mirrors arranged in the optical path of a light beam directed to another surface to be scanned. 請求項2に記載の光走査装置において、前記光偏向器から最も遠い被走査面に向かう光ビームは、前記光偏向器で偏向された後、副走査方向において前記被走査面に最も近い側の光ビームに対し、前記光偏向器の偏向反射面の法線に関し、副走査方向における逆側に偏向される光ビームであることを特徴とする光走査装置。   3. The optical scanning device according to claim 2, wherein the light beam directed to the scanning surface farthest from the optical deflector is deflected by the optical deflector and is then closest to the scanning surface in the sub-scanning direction. An optical scanning device characterized in that the optical beam is deflected to the opposite side in the sub-scanning direction with respect to the normal line of the deflecting reflection surface of the optical deflector. 請求項1ないし3のいずれか1つに記載の光走査装置において、光偏向器から最も遠い被走査面に向かう光ビームは、光偏向器から最も遠い位置で対応する被走査面に近づく方向に折り返されることを特徴とする光走査装置。   4. The optical scanning device according to claim 1, wherein the light beam traveling toward the scanning surface farthest from the optical deflector is in a direction approaching the corresponding scanning surface at a position farthest from the optical deflector. An optical scanning device which is folded. 請求項1ないし4のいずれか1つに記載の光走査装置において、異なる被走査面に向かう光ビームのうち、少なくとも被走査面から副走査方向に最も近い光ビームと最も遠い光ビームは、前記被走査面に導くための折り返しミラーの枚数の差が奇数であることを特徴とする光走査装置。   5. The optical scanning device according to claim 1, wherein among light beams directed to different scanned surfaces, at least a light beam closest to the scanned surface and a farthest light beam in the sub-scanning direction are An optical scanning device characterized in that the difference in the number of folding mirrors for guiding to the surface to be scanned is an odd number. 請求項1ないし5のいずれか1つに記載の光走査装置において、前記光偏向器の偏向反射面の法線を挟み副走査方向の一方の領域に偏向走査される光ビームと、他方の領域に偏向走査される光ビームに対応する折り返しミラーの枚数の差は奇数であることを特徴とする光走査装置。   6. The optical scanning device according to claim 1, wherein a light beam deflected and scanned in one region in the sub-scanning direction across the normal line of the deflection reflection surface of the optical deflector, and the other region An optical scanning device characterized in that the difference in the number of folding mirrors corresponding to the light beam deflected and scanned is an odd number. 請求項1ないし6のいずれか1つに記載の光走査装置において、前記偏向反射面から対応する被走査面の間に配置される副走査方向への折り返しミラーのうち、少なくとも、偏向反射される光ビームの反射方向と副走査方向に関し逆側に、異なる被走査面に向かう光ビームが通過するように配置されている折り返しミラーは、少なくとも、前記異なる被走査面に向かう光ビームが通過する側が面取りされていることを特徴とする光走査装置。   7. The optical scanning device according to claim 1, wherein at least one of the folding mirrors in the sub-scanning direction arranged between the deflection reflection surface and the corresponding scanned surface is deflected and reflected. The folding mirror arranged so that the light beam directed to the different scanning surface passes on the opposite side with respect to the reflection direction of the light beam and the sub-scanning direction has at least the side on which the light beam directed to the different scanning surface passes. An optical scanning device which is chamfered. 請求項1ないし7のいずれか1つに記載の光走査装置において、光源装置として複数の光ビームを射出するマルチビーム光源装置を用いたことを特徴とする光走査装置。   8. The optical scanning device according to claim 1, wherein a multi-beam light source device that emits a plurality of light beams is used as the light source device. 請求項1ないし8のいずれか1つに記載の光走査装置を、電子写真プロセスの露光プロセスを実行する手段として具備したことを特徴とする画像形成装置。   An image forming apparatus comprising the optical scanning device according to claim 1 as means for performing an exposure process of an electrophotographic process. 請求項9に記載の画像形成装置において、前記被走査面として少なくとも4つの感光体を有し、カラー画像形成が可能であることを特徴とする画像形成装置。   The image forming apparatus according to claim 9, wherein the surface to be scanned has at least four photoconductors and can form a color image.
JP2006143893A 2006-05-24 2006-05-24 Optical scanner and image forming apparatus using the same Pending JP2007316207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143893A JP2007316207A (en) 2006-05-24 2006-05-24 Optical scanner and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143893A JP2007316207A (en) 2006-05-24 2006-05-24 Optical scanner and image forming apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007316207A true JP2007316207A (en) 2007-12-06

Family

ID=38850143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143893A Pending JP2007316207A (en) 2006-05-24 2006-05-24 Optical scanner and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007316207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160812A (en) * 2008-01-07 2009-07-23 Ricoh Co Ltd Optical source driver, optical scanner, and image forming apparatus
JP2010049061A (en) * 2008-08-22 2010-03-04 Canon Inc Optical scanning apparatus and image forming apparatus using the same
CN101825768A (en) * 2009-03-04 2010-09-08 株式会社理光 Exposure device and image forming apparatus
JP2011221493A (en) * 2010-03-24 2011-11-04 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2013068691A (en) * 2011-09-21 2013-04-18 Ricoh Co Ltd Optical scanner and image forming device
JP2015219496A (en) * 2014-05-21 2015-12-07 キヤノン株式会社 Scanning optical system and image formation device using the same
JP2017102458A (en) * 2016-12-12 2017-06-08 シャープ株式会社 Optical scanner and image forming apparatus
JP2020187177A (en) * 2019-05-10 2020-11-19 シャープ株式会社 Optical scanning device and image forming device having the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031357A (en) * 2003-07-11 2005-02-03 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2005092148A (en) * 2003-09-19 2005-04-07 Ricoh Co Ltd Optical scanner and color image forming device
JP2005091966A (en) * 2003-09-19 2005-04-07 Canon Inc Optical scanner and color image forming apparatus using it
JP2006011291A (en) * 2004-06-29 2006-01-12 Kyocera Mita Corp Optical scanner
JP2007010868A (en) * 2005-06-29 2007-01-18 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007212883A (en) * 2006-02-10 2007-08-23 Ricoh Co Ltd Optical scanner and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031357A (en) * 2003-07-11 2005-02-03 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2005092148A (en) * 2003-09-19 2005-04-07 Ricoh Co Ltd Optical scanner and color image forming device
JP2005091966A (en) * 2003-09-19 2005-04-07 Canon Inc Optical scanner and color image forming apparatus using it
JP2006011291A (en) * 2004-06-29 2006-01-12 Kyocera Mita Corp Optical scanner
JP2007010868A (en) * 2005-06-29 2007-01-18 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007212883A (en) * 2006-02-10 2007-08-23 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160812A (en) * 2008-01-07 2009-07-23 Ricoh Co Ltd Optical source driver, optical scanner, and image forming apparatus
JP2010049061A (en) * 2008-08-22 2010-03-04 Canon Inc Optical scanning apparatus and image forming apparatus using the same
CN101825768A (en) * 2009-03-04 2010-09-08 株式会社理光 Exposure device and image forming apparatus
CN101825768B (en) * 2009-03-04 2014-01-08 株式会社理光 Exposure device and image forming apparatus
JP2011221493A (en) * 2010-03-24 2011-11-04 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2013068691A (en) * 2011-09-21 2013-04-18 Ricoh Co Ltd Optical scanner and image forming device
JP2015219496A (en) * 2014-05-21 2015-12-07 キヤノン株式会社 Scanning optical system and image formation device using the same
JP2017102458A (en) * 2016-12-12 2017-06-08 シャープ株式会社 Optical scanner and image forming apparatus
JP2020187177A (en) * 2019-05-10 2020-11-19 シャープ株式会社 Optical scanning device and image forming device having the same
JP7330751B2 (en) 2019-05-10 2023-08-22 シャープ株式会社 OPTICAL SCANNER AND IMAGE FORMING APPARATUS INCLUDING THE SAME

Similar Documents

Publication Publication Date Title
JP4616118B2 (en) Optical scanning apparatus and image forming apparatus
JP4739996B2 (en) Optical scanning apparatus and image forming apparatus
JP4663355B2 (en) Optical scanning apparatus and image forming apparatus
US7245410B2 (en) Optical scanning device and image forming apparatus
JP4975983B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus
JP5037837B2 (en) Optical scanning apparatus and image forming apparatus
JP2007316207A (en) Optical scanner and image forming apparatus using the same
JP2008064775A (en) Optical scanner and image forming apparatus
JP4851389B2 (en) Optical scanning device and image forming apparatus
JP5168753B2 (en) Optical scanning apparatus, image forming apparatus, and lens
JP6361959B2 (en) Optical scanning apparatus and image forming apparatus
JP5019815B2 (en) Optical scanning apparatus and image forming apparatus
JP2007025536A (en) Optical scanner and image forming apparatus
JP4526331B2 (en) Optical scanning apparatus and image forming apparatus
JP4841268B2 (en) Optical scanning apparatus and image forming apparatus
JP4744117B2 (en) Optical scanning apparatus and image forming apparatus
JP5364968B2 (en) Optical scanning device, multi-beam optical scanning device, image forming apparatus
JP5315682B2 (en) Optical scanning apparatus and image forming apparatus
JP2006235213A (en) Optical scanner and color image forming apparatus
JP4664715B2 (en) Optical scanning device, scanning lens, and image forming apparatus
JP5086180B2 (en) Optical scanning apparatus and image forming apparatus
JP5568831B2 (en) Optical scanning apparatus and image forming apparatus
JP2009222811A (en) Optical scanning device and image forming apparatus
JP2008020649A (en) Light beam scanner, multibeam optical scanner, and image forming apparatus
JP2012027482A (en) Optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327