JP2008286632A - Structure analysis method of trace element - Google Patents

Structure analysis method of trace element Download PDF

Info

Publication number
JP2008286632A
JP2008286632A JP2007131694A JP2007131694A JP2008286632A JP 2008286632 A JP2008286632 A JP 2008286632A JP 2007131694 A JP2007131694 A JP 2007131694A JP 2007131694 A JP2007131694 A JP 2007131694A JP 2008286632 A JP2008286632 A JP 2008286632A
Authority
JP
Japan
Prior art keywords
sample
ray
analysis
fluorescent
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007131694A
Other languages
Japanese (ja)
Other versions
JP5007939B2 (en
Inventor
Junji Iihara
順次 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007131694A priority Critical patent/JP5007939B2/en
Publication of JP2008286632A publication Critical patent/JP2008286632A/en
Application granted granted Critical
Publication of JP5007939B2 publication Critical patent/JP5007939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure analysis method of a trace element capable of suppressing measurement inhibition of a fluorescent X-ray signal caused by generation of a strong diffraction X-ray at a specific angle from a sample, when performing structure analysis of the trace element included in a single crystal sample by utilizing a fluorescent XAFS method. <P>SOLUTION: In this structure analysis method of the trace element, the sample is irradiated with an X-ray, while changing X-ray energy, and a fluorescent X-ray emitted from the sample is detected, and information on an atomic structure of the trace element in the sample is analyzed from a relation between the X-ray energy and the fluorescent X-ray. In the method, the crushed single crystal sample (crushed sample S) is irradiated with the X-ray. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微量元素の構造解析方法に関する。   The present invention relates to a structure analysis method for trace elements.

X線を用いた分析方法の一つとして、試料にX線エネルギーを変化させながらX線を照射し、得られたX線吸収スペクトルから試料中の分析対象元素の化学結合状態や電子状態、局所構造解析を行うXAFS(X線吸収微細構造:X-ray Absorption Fine Structure)法が知られている。そのうち、X線吸収スペクトルを得る手法として、X線の吸収に伴って試料から発せられる蛍光X線の強度を測定する蛍光法がある。例えば、非特許文献1には、試料が入射X線を全反射する条件で蛍光X線の測定を行う技術が開示されている。   As one of the analysis methods using X-rays, a sample is irradiated with X-rays while changing the X-ray energy. From the obtained X-ray absorption spectrum, the chemical bonding state, electronic state, and local state of the element to be analyzed in the sample are measured. An XAFS (X-ray Absorption Fine Structure) method for structural analysis is known. Among them, as a method for obtaining an X-ray absorption spectrum, there is a fluorescence method for measuring the intensity of fluorescent X-rays emitted from a sample along with X-ray absorption. For example, Non-Patent Document 1 discloses a technique for measuring fluorescent X-rays under conditions where a sample totally reflects incident X-rays.

「X線吸収分光法 −XAFSとその応用−」p227-235太田俊明編、株式会社アイピーシー 2002年6月28日発行"X-ray absorption spectroscopy-XAFS and its application-" p227-235 edited by Toshiaki Ota, IPC Corporation, published on June 28, 2002

しかし、上記の技術では、単結晶材料を試料とする場合、次のような問題があった。   However, the above technique has the following problems when a single crystal material is used as a sample.

(1)試料からの回折線の混入による正常な測定の阻害
蛍光法でX線吸収スペクトルを得る場合、試料が単結晶の半導体材料などであれば、試料へのX線の照射に伴い、かなり高い確率で特定の狭い方向に回折線が生じる。この回折線は、蛍光X線の検出器に入射すると、強いノイズとなり、蛍光X線の正常な測定を妨げる。特に、分析対象元素の濃度が低い試料では、蛍光X線の強度に比べて入射X線強度が非常に強いため、完全には回折条件を満たしていないような弱い回折でも、蛍光X線の測定に影響を及ぼす。
(1) Inhibition of normal measurement due to mixing of diffraction lines from a sample When an X-ray absorption spectrum is obtained by a fluorescence method, if the sample is a single crystal semiconductor material, etc. A diffraction line is generated in a specific narrow direction with high probability. When this diffracted ray is incident on a fluorescent X-ray detector, it becomes a strong noise and prevents normal measurement of the fluorescent X-ray. In particular, a sample with a low concentration of the element to be analyzed has a very high incident X-ray intensity compared to the intensity of the fluorescent X-ray, so that the measurement of fluorescent X-rays is possible even with weak diffraction that does not completely satisfy the diffraction conditions. Affects.

測定時の回折線の影響を避ける手法として、入射X線のエネルギーを調整する方法がある。しかし、XAFSではエネルギーを変えながらX線を照射するため、いずれかのエネルギーで強い回折線が検出器に入ることになり、有効な対策になり得ない。   As a method for avoiding the influence of diffraction lines during measurement, there is a method of adjusting the energy of incident X-rays. However, since XAFS irradiates X-rays while changing the energy, a strong diffraction line enters the detector with any energy, and cannot be an effective measure.

また、別な対策としては、試料を回転させて強い回折線が検出器に入射されることを抑制する手法もある。しかし、試料の回転を行うには、その回転軸の設置に高い精度が求められる一方で、この回転軸に偏心があれば、測定結果に変動が生じることになる。特に、全反射条件でX線の照射を行う場合、試料に対するX線の入射角度を極めて微小に制御しなければならない。このとき、回転軸に偏心があれば、X線の試料への侵入深さが変化し、測定される蛍光X線の信号強度が変動して、場合によっては測定結果に本来検出されない振動が現われる。   As another countermeasure, there is a technique of rotating a sample to prevent a strong diffraction line from entering the detector. However, in order to rotate the sample, high accuracy is required for the installation of the rotating shaft. On the other hand, if the rotating shaft is decentered, the measurement result will vary. In particular, when the X-ray irradiation is performed under the total reflection condition, the incident angle of the X-ray with respect to the sample must be controlled extremely minutely. At this time, if the rotation axis is decentered, the penetration depth of the X-ray into the sample changes, the signal intensity of the measured fluorescent X-ray changes, and in some cases, vibration that is not originally detected appears in the measurement result. .

(2)測定感度の低さ
半導体材料などの添加元素を分析対象とする場合、通常、試料が非常に薄い上に、添加元素の濃度は極めて微量である。このような試料に対しては、X線の入射角度を低角にして、入射X線の試料に対する照射面積を増やすことが行われる。ところが、例えば、試料に対してX線を全反射条件で照射する場合、試料の表面からX線が侵入する深さは、せいぜい数nmにすぎない。そのため、X線が照射される分析対象元素の原子数が少なく、得られる蛍光X線の信号強度が低いため、測定感度も低くならざるを得ない。
(2) Low measurement sensitivity When an additive element such as a semiconductor material is to be analyzed, the sample is usually very thin and the concentration of the additive element is extremely small. For such a sample, the X-ray incident angle is lowered to increase the irradiation area of the incident X-ray sample. However, for example, when the sample is irradiated with X-rays under total reflection conditions, the depth at which the X-rays penetrate from the surface of the sample is only a few nm at most. Therefore, since the number of atoms of the analysis target element irradiated with X-rays is small and the signal intensity of the obtained fluorescent X-rays is low, the measurement sensitivity is inevitably lowered.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、蛍光XAFS法を利用して、単結晶の試料に含まれる微量元素の構造解析を行うのに際し、試料から特定角度に強い回折X線が生じることに伴い、蛍光X線信号の測定が阻害されることを抑制できる微量元素の構造解析方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to identify a trace element contained in a single crystal sample using a fluorescent XAFS method. An object of the present invention is to provide a trace element structure analysis method capable of suppressing the inhibition of measurement of a fluorescent X-ray signal due to the generation of diffracted X-rays with a strong angle.

また、本発明の他の目的は、蛍光XAFS法を利用して、単結晶の試料に含まれる微量元素の構造解析を行うのに際し、測定感度を向上することが可能な微量元素の構造解析方法を提供することにある。   Another object of the present invention is to provide a trace element structural analysis method capable of improving the measurement sensitivity when performing a structural analysis of trace elements contained in a single crystal sample using a fluorescent XAFS method. Is to provide.

本発明は、X線エネルギーを変えながら試料にX線を照射し、試料から放出される蛍光X線を検出して、前記X線エネルギーと蛍光X線との関係から試料中の微量元素の原子構造に関する情報を解析する微量元素の構造解析方法である。この方法において、X線の照射を粉砕された単結晶の試料に対して行うことを特徴とする。   The present invention irradiates a sample with X-rays while changing the X-ray energy, detects fluorescent X-rays emitted from the sample, and determines the atomic amounts of trace elements in the sample from the relationship between the X-ray energy and the fluorescent X-rays. It is a structure analysis method of trace elements for analyzing information on structure. In this method, X-ray irradiation is performed on a crushed single crystal sample.

本発明の微量元素の構造解析方法は、試料を粉砕して、いわば多結晶化することにより、粉砕しない単結晶試料のままであれば、例えば立体角0.1度以下の狭い範囲に出現していた強い回折線を360°の放射方向にほぼ均等に分散して出現させることができる。そのため、試料を回転させなくても、蛍光X線の検出器における単位角度あたりの回折線強度を低下でき、回折線の影響を大幅に排除した蛍光XAFS分析が可能になる。   The structure analysis method of trace elements according to the present invention appears in a narrow range of, for example, a solid angle of 0.1 degrees or less if the sample is pulverized, that is, polycrystallized, and remains a single crystal sample that is not pulverized. Strong diffraction lines can appear almost uniformly distributed in the 360 ° radiation direction. Therefore, even if the sample is not rotated, the diffraction line intensity per unit angle in the fluorescent X-ray detector can be reduced, and the fluorescent XAFS analysis can be performed with the influence of the diffraction line being largely eliminated.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

<分析対象試料>
本発明において分析に用いられる試料は、分析対象元素となる微量元素が添加された単結晶材料である。例えば、単結晶の半導体材料などが挙げられる。本発明方法は、微量元素の含有量が1モル%以下の場合に特に効果的に利用できる。この含有量が1モル%を超える場合、回折線の影響を受けない透過XAFS法を適用したり、若しくは蛍光XAFS法においても、蛍光X線強度がある程度高いため、より小さな検出器で測定が行なえ、検出器から回折線の放射方向が外れるようにして蛍光X線の測定を行うことができる。
<Sample to be analyzed>
The sample used for analysis in the present invention is a single crystal material to which a trace element as an analysis target element is added. For example, a single crystal semiconductor material can be used. The method of the present invention can be used particularly effectively when the trace element content is 1 mol% or less. When this content exceeds 1 mol%, the transmission XAFS method that is not affected by the diffraction line is applied, or even in the fluorescent XAFS method, the intensity of the fluorescent X-ray is high to some extent, so that measurement can be performed with a smaller detector. The X-ray fluorescence can be measured in such a manner that the radiation direction of the diffraction line deviates from the detector.

<粉砕工程>
試料は、X線を照射するのに先立って粉砕された状態としておく。試料の粉砕方法は、粉砕後の試料にX線を照射した際、特定の角度に強い回折線が出ない程度に試料を粉砕できる手法であれば特に限定されない。例えば、試料を乳鉢にいれて叩くことで粉砕するなど、機械的な粉砕法が好適に利用できる。
<Crushing process>
The sample is kept in a pulverized state prior to irradiation with X-rays. The method for pulverizing the sample is not particularly limited as long as the sample can be pulverized to such an extent that a strong diffraction line does not appear at a specific angle when the crushed sample is irradiated with X-rays. For example, a mechanical pulverization method such as pulverization by putting a sample in a mortar and hitting it can be suitably used.

試料に、複数の結晶層が積層された半導体材料を用いる場合、通常、この試料には、分析対象となる微量元素が含まれる単結晶の分析層と、この分析層に積層された非分析層とが存在することになる。その場合、分析層と非分析層とを分離し、X線の照射は、分析層の粉砕された試料に対して行うことが好ましい。分析対象にはならない非分析層を予め除去しておくことで、より高感度の測定を行うことができる。分析層と非分析層の分離は、研磨・切削などの機械的加工法やエッチングなどの化学的加工法が好適に利用できる。   When a semiconductor material in which a plurality of crystal layers are stacked is used as a sample, this sample usually includes a single-crystal analysis layer containing a trace element to be analyzed, and a non-analysis layer stacked on the analysis layer. Will exist. In that case, it is preferable that the analysis layer and the non-analysis layer are separated, and the X-ray irradiation is performed on the pulverized sample of the analysis layer. By removing a non-analysis layer that is not an analysis target in advance, it is possible to perform measurement with higher sensitivity. For separation of the analysis layer and the non-analysis layer, a mechanical processing method such as polishing / cutting or a chemical processing method such as etching can be suitably used.

特に、多層に積層された半導体材料の場合、各層の厚みが薄いため、分析層と非分析層の分離にはエッチングが好適に利用できる。エッチングを行う際、非分析層は溶解されるが、分析層は溶解されないエッチング液を用いることが好ましい。但し、非分析層も分析層も溶解されてしまうエッチング液の場合、そのエッチング液では溶解されないマスク層を分析層に形成してエッチングを行えばよい。   In particular, in the case of semiconductor materials stacked in multiple layers, the thickness of each layer is thin, so that etching can be suitably used for separating the analysis layer and the non-analysis layer. When etching is performed, it is preferable to use an etching solution in which the non-analysis layer is dissolved but the analysis layer is not dissolved. However, in the case of an etching solution in which both the non-analysis layer and the analysis layer are dissolved, a mask layer that is not dissolved in the etching solution may be formed on the analysis layer and etched.

また、分析層の厚さや材質によっては、このエッチングの際に分析層の粉砕も行える場合がある。つまり、エッチングにより非分析層を除去すれば、必然的に分析層もばらばらの粒片状になる場合、このエッチングの後に別途分析層の粉砕工程を行わなくても、エッチング液中の粒片を集めてX線の照射対象とすれば良い。エッチング液中の粒片を集める手法としては、濾過が好適に利用できる。もちろん、エッチングにより非分析層を除去しても、分析層が全く粉砕されない場合または分析層がある程度粉砕されるが、粉砕程度が不十分の場合、エッチング後に別途粉砕工程を行なえばよい。   Depending on the thickness and material of the analysis layer, the analysis layer may be pulverized during this etching. In other words, if the non-analytical layer is removed by etching, and the analytical layer inevitably becomes discrete particles, the particles in the etching solution can be removed without performing a separate pulverization step of the analyzing layer after this etching. What is necessary is just to collect and make it X-ray irradiation object. Filtration is preferably used as a method for collecting the particle pieces in the etching solution. Of course, even if the non-analysis layer is removed by etching, the analysis layer is not pulverized at all or the analysis layer is pulverized to some extent. However, if the pulverization level is insufficient, a separate pulverization step may be performed after the etching.

そして、X線を照射する前の粉砕試料の平均粒径は、10μm以下が好ましい。粉砕された試料の平均粒径を10μm以下とすれば、この粉砕試料にX線を照射した場合に、特定の方向に強い回折線が生じることを抑制できる。   And the average particle diameter of the ground sample before X-ray irradiation is preferably 10 μm or less. If the average particle size of the pulverized sample is 10 μm or less, it is possible to suppress generation of strong diffraction lines in a specific direction when the pulverized sample is irradiated with X-rays.

<蛍光X線の測定と測定結果の解析>
本発明方法では、単結晶の試料を粉砕し、その粉砕試料に対してX線を照射する。その際、粉砕試料を平面上に広げてX線を照射しても構わないが、粉砕試料は寄せ集めて集合体とし、その集合体に対してX線を照射することが好ましい。このとき、X線の照射方向から見た集合体の投影サイズをX線の照射領域よりも小さくなるようにすることが望ましい。
<Measurement of X-ray fluorescence and analysis of measurement results>
In the method of the present invention, a single crystal sample is pulverized, and the pulverized sample is irradiated with X-rays. At that time, the crushed sample may be spread on a plane and irradiated with X-rays. However, it is preferable that the crushed samples are gathered together to form an aggregate, and the aggregate is irradiated with X-rays. At this time, it is desirable to make the projection size of the aggregate viewed from the X-ray irradiation direction smaller than the X-ray irradiation area.

例えば、粉砕しない薄膜状の単結晶試料に対して蛍光法によるXAFS解析を行う場合、実際にX線が照射される分析対象領域は試料のごく一部に過ぎない。しかし、粉砕試料を寄せ集めて集合体とすれば、その集合体に対してX線を照射することで、分析対象領域を大幅に増やすことが可能になり、粉砕しない薄膜試料に対してXAFS解析を行っていた場合に比べれば、遥かに強い蛍光X線を検出することができる。そのため、高感度にて蛍光X線の測定を行うことができる。特に、X線の照射方向から見た集合体の投影サイズをX線の照射領域よりも小さくなるようにすれば、実質的に薄膜状の単結晶試料の全体を分析対象領域にした場合に相当する測定を行うことができる。   For example, when XAFS analysis is performed on a thin-film single crystal sample that is not pulverized by the fluorescence method, the analysis target region that is actually irradiated with X-rays is only a small part of the sample. However, if the crushed samples are gathered together to form an aggregate, the aggregate can be irradiated with X-rays to greatly increase the area to be analyzed, and XAFS analysis can be performed on thin film samples that are not pulverized. Compared to the case where the X-ray was performed, far stronger fluorescent X-rays can be detected. Therefore, it is possible to measure fluorescent X-rays with high sensitivity. In particular, if the projection size of the aggregate viewed from the X-ray irradiation direction is made smaller than the X-ray irradiation area, it corresponds to the case where the entire thin-film single crystal sample is set as the analysis target area. Measurements can be made.

試料に対するX線の入射角は、低角に設定することが好ましい。入射角を低角とすれば、試料に対するX線の照射面積を稼ぐことができる。   The incident angle of the X-ray with respect to the sample is preferably set to a low angle. If the incident angle is set to a low angle, the X-ray irradiation area on the sample can be earned.

粉砕試料にX線が照射されると、この試料中の分析対象元素の原子でX線の吸収が起こり、その際、分析対象原子の内殻電子が励起されて殻外に放出され、軌道に空孔が生じる。この空孔を埋めるために、外殻から電子が遷移して分析対象原子のエネルギーバランスを安定化する。このときのエネルギー準位の差に対応して、特性X線(蛍光X線)が生じる。   When the crushed sample is irradiated with X-rays, X-ray absorption occurs in the atoms of the analysis target element in the sample. At this time, the inner shell electrons of the analysis target atoms are excited and emitted to the outside of the shell. Holes are generated. In order to fill these vacancies, electrons transition from the outer shell to stabilize the energy balance of the atoms to be analyzed. Corresponding to the difference in energy level at this time, characteristic X-rays (fluorescent X-rays) are generated.

蛍光X線の検出には、蛍光X線を、分光結晶を利用して検出器で検出する波長分散型と、半導体検出器を用いるエネルギー分散型の2種類の方式がある。本発明方法は、SSD(Solid-state Detector)やシリコンドリフト検出器(SDD)などの半導体検出器を用いるエネルギー分散型において好適に利用できる。   There are two types of detection of fluorescent X-rays: a wavelength dispersion type in which fluorescent X-rays are detected by a detector using a spectral crystal, and an energy dispersion type in which a semiconductor detector is used. The method of the present invention can be suitably used in an energy dispersion type using a semiconductor detector such as an SSD (Solid-state Detector) or a silicon drift detector (SDD).

そして、入射X線のエネルギーと蛍光X線の強度の相関である吸収スペクトルを得てXAFSを行う。   Then, XAFS is performed by obtaining an absorption spectrum that is a correlation between the energy of incident X-rays and the intensity of fluorescent X-rays.

半導体ウェハのうち、最表面のInP層中のZnを分析対象元素とした場合を例として本発明の実施例を図に基づいて説明する。   An example of the present invention will be described with reference to the drawings, taking as an example the case where Zn in the InP layer on the outermost surface of a semiconductor wafer is used as an element to be analyzed.

まず、厚さ350μmのInP基板11の上に、順次、厚さ1μmのInGaAs層12、厚さ1μmのZn添加InP層13を形成した受光素子用の半導体ウェハ10を用意する(図1(A))。このZn添加InP層13中におけるZnの含有量は0.005モル%である。次に、このウェハ10のInP層13(分析層)の表面に、後のエッチングで溶解されないマスク層Mを形成する(図1(B))。ここでは、SiNをマスク層Mとしている。次に、体積比でHCl:H2O=1:1のエッチング液を用いてウェハをエッチングし、InP基板11(非分析層)のみを除去して、他の3層を残す(図1(C))。続いて、エッチング液として、体積比でH3PO4:H2O2:H2O=5:1:40を用いて残った3層に対してエッチングを行い、InGaAs層12(非分析層)のみを除去する(図1(D))。さらに、エッチングにより残った薄膜をすくい取り、乳鉢にて粉砕して粒片化する(図1(E))。得られた粒片の平均粒径は10μm以下であった。そして、この粒片を濾過後、エタノールと純水により順次洗浄を行い、分析用の粉砕試料Sとした。 First, a semiconductor wafer 10 for a light receiving element in which an InGaAs layer 12 having a thickness of 1 μm and a Zn-doped InP layer 13 having a thickness of 1 μm are sequentially formed on an InP substrate 11 having a thickness of 350 μm is prepared (FIG. 1A). )). The Zn content in the Zn-added InP layer 13 is 0.005 mol%. Next, a mask layer M that is not dissolved by later etching is formed on the surface of the InP layer 13 (analysis layer) of the wafer 10 (FIG. 1B). Here, SiN is used as the mask layer M. Next, the wafer is etched using an etching solution having a volume ratio of HCl: H 2 O = 1: 1, and only the InP substrate 11 (non-analytical layer) is removed, leaving the other three layers (FIG. 1 ( C)). Subsequently, the remaining three layers are etched by using H 3 PO 4 : H 2 O 2 : H 2 O = 5: 1: 40 by volume as an etchant, and an InGaAs layer 12 (non-analytical layer) is etched. ) Only (FIG. 1D). Further, the thin film remaining after etching is scooped out and pulverized in a mortar to form particles (FIG. 1E). The average particle size of the obtained particle pieces was 10 μm or less. And after filtering this particle piece, it wash | cleaned one by one by ethanol and the pure water, and it was set as the grinding | pulverization sample S for analysis.

粉砕試料Sが得られたら、これを寄せ集めた状態で平面上に載置して、粒片の集合体に対してX線エネルギーを変えながらX線の照射を行う(図2)。このとき、入射X線Xiの入射角は、X線の照射方向から見た集合体の投影サイズをX線の照射領域よりも小さくなる低角にした。さらに、粉砕試料SへのX線の照射により回折線Dも発生するが、この回折線Dは試料Sからほぼ全方位に分散して放出される。そして、X線の照射に伴って発生する蛍光X線Xfを半導体検出器Xdで測定する。さらに、比較例として、同じウェハに対して、エッチングによる非分析層の除去と分析層の粉砕とを行うことなく、同様に蛍光X線の測定を行った。   When the pulverized sample S is obtained, the crushed sample S is collected and placed on a flat surface, and X-ray irradiation is performed while changing the X-ray energy to the aggregate of particles (FIG. 2). At this time, the incident angle of the incident X-ray Xi was set to a low angle where the projection size of the aggregate viewed from the X-ray irradiation direction was smaller than the X-ray irradiation area. Furthermore, diffraction lines D are also generated by irradiating the pulverized sample S with X-rays. The diffraction lines D are emitted from the sample S while being dispersed in almost all directions. Then, the fluorescent X-ray Xf generated with the X-ray irradiation is measured by the semiconductor detector Xd. Further, as a comparative example, fluorescent X-rays were similarly measured on the same wafer without removing the non-analytical layer by etching and crushing the analytical layer.

測定結果を図3に示す。図3は入射X線Xiのエネルギー(keV)と検出器Xdによるカウント数の関係で表されるX線吸収スペクトルである。このスペクトルの比較から明らかなように、実施例(正常)のスペクトルでは、異常なピークが認められず、回折線に阻害されることなく蛍光X線の測定が行われていると考えられる。これに対して、比較例(異常ピーク)のスペクトルでは、回折線の影響と思われる異常なピークが認められ、蛍光X線の正確な測定が阻害されていることがわかる。   The measurement results are shown in FIG. FIG. 3 is an X-ray absorption spectrum expressed by the relationship between the energy (keV) of the incident X-ray Xi and the count number by the detector Xd. As apparent from the comparison of the spectra, in the spectrum of the example (normal), no abnormal peak is observed, and it is considered that the fluorescent X-ray is measured without being disturbed by the diffraction line. On the other hand, in the spectrum of the comparative example (abnormal peak), an abnormal peak that seems to be an influence of diffraction lines is recognized, and it can be seen that accurate measurement of fluorescent X-rays is inhibited.

つまり、実施例における蛍光X線の測定時、X線の照射対象はいわば多結晶化された粉砕試料Sであるため、回折線は特定の方向に強く生じることなくほぼ全方位に分散され、検出器Xdに強い回折線が入って蛍光X線Xfの測定が阻害されることがない。もちろん、粉砕試料Sの回転も行う必要がないため、高精度の測定結果が得られる。さらに、粉砕試料を寄せ集めた集合体に対してX線を照射しているため、実質的に粉砕前のZn添加InP層13の全体を分析対象領域とすることができるため、信号強度の強い蛍光X線信号を得ることができ、高感度の測定を行うことができる。   That is, when measuring fluorescent X-rays in the examples, the X-ray irradiation target is, so to speak, a polycrystalline pulverized sample S, so that diffraction lines are dispersed in almost all directions without being strongly generated in a specific direction. A strong diffracted ray enters the device Xd and measurement of the fluorescent X-ray Xf is not hindered. Of course, since it is not necessary to rotate the crushed sample S, a highly accurate measurement result can be obtained. Furthermore, since the aggregate of the pulverized samples collected is irradiated with X-rays, the entire Zn-added InP layer 13 before pulverization can be substantially made the analysis target region, so that the signal intensity is high. A fluorescent X-ray signal can be obtained, and highly sensitive measurement can be performed.

例えば、直径2インチのウェハで分析層の厚さが1μmの試料の場合でも、XAFS法の測定の対象となるのは高々数mm幅×数nm深さである。しかし、エッチングにより非分析層を除去し、粒片化して集合体とすることにより、直径2インチ×1μmの体積全体を分析対象領域とすることが可能となる。全反射条件において、粉砕しないウェハの分析対象領域を5mm×2インチ×3nmとした場合、分析領域は7.6×10-7cm3であるのに対し、集合体とした場合の分析領域は2インチφ×1μmなので2.0×10-3cm3となり、約2700倍広い領域からの信号を得られることも判明した。 For example, even in the case of a sample having a diameter of 2 inches and an analysis layer having a thickness of 1 μm, the measurement target of the XAFS method is at most several mm width × several nm depth. However, by removing the non-analytical layer by etching and making the particles into aggregates, the entire volume of 2 inches in diameter × 1 μm can be made the analysis target region. Under total reflection conditions, when the analysis target area of a wafer that is not crushed is 5 mm x 2 inches x 3 nm, the analysis area is 7.6 x 10 -7 cm 3 whereas the analysis area when aggregated is 2 inches Since it was φ × 1μm, it was 2.0 × 10 −3 cm 3 , and it was also found that a signal from an area about 2700 times wider could be obtained.

本発明の微量元素の構造解析方法は、半導体材料中の添加元素の構造解析などに好適に利用できる。   The trace element structural analysis method of the present invention can be suitably used for structural analysis of additive elements in semiconductor materials.

実施例1に係る本発明方法のうち粉砕試料を得るまでの工程の概略説明図である。FIG. 2 is a schematic explanatory diagram of steps required to obtain a pulverized sample in the method of the present invention according to Example 1. 実施例1に係る本発明方法のうち、粉砕試料にX線を照射する工程の概略説明図である。FIG. 2 is a schematic explanatory diagram of a step of irradiating a ground sample with X-rays in the method of the present invention according to Example 1. 実施例1において、得られたX線吸収スペクトルを示すグラフである。In Example 1, it is a graph which shows the acquired X-ray absorption spectrum.

符号の説明Explanation of symbols

10 半導体ウェハ 11 InP基板 12 InGaAs層 13 Zn添加InP層
M マスク層
S 粉砕試料 D 回折線 Xf 蛍光X線 Xd 半導体検出器
Xi 入射X線 Xo 反射X線
10 Semiconductor wafer 11 InP substrate 12 InGaAs layer 13 Zn-doped InP layer
M mask layer
S Ground sample D Diffraction line Xf X-ray fluorescence Xd Semiconductor detector
Xi Incident X-ray Xo Reflected X-ray

Claims (5)

X線エネルギーを変えながら試料にX線を照射し、試料から放出される蛍光X線を検出して、前記X線エネルギーと蛍光X線との関係から試料中の微量元素の原子構造に関する情報を解析する微量元素の構造解析方法であって、
前記X線の照射を粉砕された単結晶の試料に対して行うことを特徴とする微量元素の構造解析方法。
The sample is irradiated with X-rays while changing the X-ray energy, the fluorescent X-rays emitted from the sample are detected, and information on the atomic structure of the trace elements in the sample is obtained from the relationship between the X-ray energy and the fluorescent X-rays. A method for analyzing a structure of a trace element to be analyzed,
A method for analyzing a structure of a trace element, wherein the X-ray irradiation is performed on a crushed single crystal sample.
前記試料は、微量元素を含有する単結晶の分析層と、この分析層に積層された非分析層とを備え、
分析層と非分析層とを分離し、
X線の照射は、分析層の粉砕された試料に対して行うことを特徴とする請求項1に記載の微量元素の構造解析方法。
The sample includes a single crystal analysis layer containing a trace element and a non-analysis layer laminated on the analysis layer.
Separating the analysis layer from the non-analysis layer,
2. The trace element structure analysis method according to claim 1, wherein the X-ray irradiation is performed on a sample whose analysis layer is pulverized.
分析層と非分析層との分離は、エッチングにより非分析層を除去することにより行い、
このエッチングにより分析層を粉砕させることを特徴とする請求項2に記載の微量元素の構造解析方法。
The separation of the analysis layer and the non-analysis layer is performed by removing the non-analysis layer by etching,
The method for analyzing a structure of a trace element according to claim 2, wherein the analysis layer is pulverized by this etching.
分析層と非分析層との分離は、エッチングにより非分析層を除去することにより行い、
このエッチングの後に、分析層を機械的に粉砕することを特徴とする請求項2に記載の微量元素の構造解析方法。
The separation of the analysis layer and the non-analysis layer is performed by removing the non-analysis layer by etching,
3. The trace element structure analysis method according to claim 2, wherein the analysis layer is mechanically pulverized after the etching.
粉砕された砕片状の試料を寄せ集めて集合体とし、
その集合体に対してX線を照射することを特徴とする請求項1〜4のいずれかに記載の微量元素の構造解析方法。
Gathered pieces of crushed pieces into an aggregate,
5. The trace element structure analysis method according to claim 1, wherein the aggregate is irradiated with X-rays.
JP2007131694A 2007-05-17 2007-05-17 Structural analysis method of trace elements Active JP5007939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131694A JP5007939B2 (en) 2007-05-17 2007-05-17 Structural analysis method of trace elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131694A JP5007939B2 (en) 2007-05-17 2007-05-17 Structural analysis method of trace elements

Publications (2)

Publication Number Publication Date
JP2008286632A true JP2008286632A (en) 2008-11-27
JP5007939B2 JP5007939B2 (en) 2012-08-22

Family

ID=40146492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131694A Active JP5007939B2 (en) 2007-05-17 2007-05-17 Structural analysis method of trace elements

Country Status (1)

Country Link
JP (1) JP5007939B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161844A (en) * 1990-10-26 1992-06-05 Fujitsu Ltd X-ray fluorescence analyzer
JPH0627056A (en) * 1992-07-09 1994-02-04 Ricoh Co Ltd Method for alalyzing composition and structure of substance
JP2001033403A (en) * 1999-07-20 2001-02-09 Japan Science & Technology Corp On-the-spot total reflection fluorescence xafs measuring device
JP2004177264A (en) * 2002-11-27 2004-06-24 Sony Corp Method for analyzing indium-gallium-nitride layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161844A (en) * 1990-10-26 1992-06-05 Fujitsu Ltd X-ray fluorescence analyzer
JPH0627056A (en) * 1992-07-09 1994-02-04 Ricoh Co Ltd Method for alalyzing composition and structure of substance
JP2001033403A (en) * 1999-07-20 2001-02-09 Japan Science & Technology Corp On-the-spot total reflection fluorescence xafs measuring device
JP2004177264A (en) * 2002-11-27 2004-06-24 Sony Corp Method for analyzing indium-gallium-nitride layer

Also Published As

Publication number Publication date
JP5007939B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Nasdala et al. Heterogeneous metamictization of zircon on a microscale
KR101275528B1 (en) High-resolution x-ray diffraction measurement with enhanced sensitivity
US7023955B2 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
FI125488B (en) Wavelength crystal dispersion spectrometer, X-ray fluorescence device and method for this
JP6116386B2 (en) Compound, structure, scintillator, radiation detector and method for producing them
CN103076352B (en) Method for obtaining high-quality X-ray absorption spectrum of thin film sample
JP5007939B2 (en) Structural analysis method of trace elements
WO2012153462A1 (en) Method for determining film thickness of soi layer of soi wafer
JP2009288016A (en) Fluorescent x-ray analyzer and evaluation system of semiconductor device using it
Tur’yanskii et al. Band reject filtration of the excitation spectrum at energy dispersive X-ray spectroscopy of weak signals
JP4537149B2 (en) X-ray fluorescence analysis method
JP4473246B2 (en) X-ray fluorescence analyzer and X-ray fluorescence analysis method
Seeger et al. Averaged angle-resolved electroreflectance spectroscopy on Cu (In, Ga) Se2 solar cells: Determination of buffer bandgap energy and identification of secondary phase
Newbury et al. Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS)
JP2936808B2 (en) X-ray diffraction microscopy
JP3643484B2 (en) Total reflection X-ray photoelectron spectrometer
EP4276884A1 (en) Work-affected layer evaluation method and evaluation system
JPH11248653A (en) Method and device for analyzing total reflection fluorescent x-ray
JP5846469B2 (en) Total reflection X-ray fluorescence analyzer and total reflection X-ray fluorescence analysis method
Krstajic Application of total reflection X-ray fluorescence analysis down to carbon
JP2001050911A (en) Method and apparatus for structure selection-type x-ray absorption
JP2009253174A (en) Impurity analysis method and impurity analysis device of semiconductor substrate
WO2015062618A1 (en) Apparatus and method for x-ray transmission analysis of a mineral or electronic waste sample
Egarievwe et al. Surface passivation and contacts in CdZnTe X-rays and gamma-rays detectors
Newbury et al. Is scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) quantitative? Effect of specimen shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 5007939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250