JP2008285339A - Ceramic film, light emitting element and production method of ceramic film - Google Patents

Ceramic film, light emitting element and production method of ceramic film Download PDF

Info

Publication number
JP2008285339A
JP2008285339A JP2007129294A JP2007129294A JP2008285339A JP 2008285339 A JP2008285339 A JP 2008285339A JP 2007129294 A JP2007129294 A JP 2007129294A JP 2007129294 A JP2007129294 A JP 2007129294A JP 2008285339 A JP2008285339 A JP 2008285339A
Authority
JP
Japan
Prior art keywords
ceramic film
film
metal compound
ceramic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129294A
Other languages
Japanese (ja)
Other versions
JP4921242B2 (en
Inventor
Fumi Kurita
ふみ 栗田
Hideko Fukushima
英子 福島
Yukihisa Fujita
恭久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Shimane University filed Critical Hitachi Metals Ltd
Priority to JP2007129294A priority Critical patent/JP4921242B2/en
Publication of JP2008285339A publication Critical patent/JP2008285339A/en
Application granted granted Critical
Publication of JP4921242B2 publication Critical patent/JP4921242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low resistant ceramic film and its production method. <P>SOLUTION: The ceramic film whose crystal structure is mainly a hexagonal metal compound phase and where equation X/Y≥1 (wherein X is the maximum value of X-ray diffraction strength in any one of crystal surfaces being orthogonal to the (a) axis of the ceramic film; and Y is the X-ray diffraction strength of the ceramic film in the same crystal surface as a crystal surface where the X-ray diffraction strength of powders consisting of a metal compound is maximum) is satisfied is formed on a body to be film-formed where an aerosol formed by mixing metal compound powders containing columnar particles whose aspect ratio is in the range of 2-7 of 5-30% in number ratio with a gas is injected from a nozzle to the body to be film-formed under a reduced atmosphere. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セラミックス膜とその製造方法並びに当該セラミックス膜を発光膜とする発光素子に関するものであり、特に結晶軸が特定の方向に配向した金属酸化物相を有するセラミックス膜及びその膜をエアロゾルデポション法を用いて製造する製造方法並びに当該セラミックス膜を発光膜とする発光素子に係わるものである。   The present invention relates to a ceramic film, a method of manufacturing the same, and a light emitting device using the ceramic film as a light emitting film, and more particularly, a ceramic film having a metal oxide phase with a crystal axis oriented in a specific direction, and an aerosol deposition The present invention relates to a manufacturing method manufactured by using a photolithography method and a light emitting element using the ceramic film as a light emitting film.

電界発光素子の発光膜に関する技術の一例が特許文献1に記載されている。この電界発光素子は、平面型画像表示装置(いわゆるフラットパネルディスプレイ:FPD)の一種であるEL素子として使用されるものである。なお、以下、本発明の理解のために発光膜に係わる技術を中心に説明をするが、本発明は発光膜のみに制限されない。   An example of a technique related to a light emitting film of an electroluminescent element is described in Patent Document 1. This electroluminescent element is used as an EL element which is a kind of flat image display device (so-called flat panel display: FPD). In the following, for the understanding of the present invention, the description will focus on the technology relating to the light emitting film, but the present invention is not limited to the light emitting film.

特許文献1の電界発光素子は、透明電極間に発光層、誘電体層、電荷供給層を有し、その発光層は、例えばスパッタ法若しくはCVD法で、又は金属化合物(ZnO等)からなる蛍光体粒子を用いエアロゾルデポジション法で形成されている。   The electroluminescent element of Patent Document 1 has a light emitting layer, a dielectric layer, and a charge supply layer between transparent electrodes, and the light emitting layer is, for example, a fluorescent material made of a metal compound (ZnO or the like) by sputtering or CVD. It is formed by the aerosol deposition method using body particles.

近年、FPDの消費電流の低減及び画像品質の向上の要求に伴い、FPDを構成する発光素子に対しても発光特性や電気特性の向上が求められている。ここで、当該発光素子の発光膜を構成する金属化合物セラミックスは、結晶面の方向により電気特性、磁気特性又は誘電特性等の特性が異なるため、結晶配向を制御することで電気特性や磁気特性等を向上させた材料を得ることが可能となる。   In recent years, with the demand for reduction of current consumption of FPD and improvement of image quality, improvement of light emission characteristics and electrical characteristics is also demanded for light emitting elements constituting FPD. Here, the metal compound ceramics constituting the light-emitting film of the light-emitting element have different characteristics such as electrical characteristics, magnetic characteristics, or dielectric characteristics depending on the direction of the crystal plane. Therefore, by controlling the crystal orientation, electrical characteristics, magnetic characteristics, etc. It is possible to obtain a material with improved resistance.

そこで、近年、上記発光膜又はインクジェットノズルを構成する圧電膜その他種々の機能性部材として用いられる金属化合物セラミックス膜の特性を向上させるため、特定の結晶面について配向させる技術の開発が行われており、その一例が特許文献2に開示されている。   Therefore, in recent years, in order to improve the characteristics of the metal compound ceramic film used as the above-mentioned light emitting film or the piezoelectric film constituting the inkjet nozzle and other various functional members, a technique for orienting a specific crystal plane has been developed. An example thereof is disclosed in Patent Document 2.

特許文献2には、常温で成膜しても、被成膜体への密着性が高く、緻密な膜を形成することが可能なエアロゾルデポジション法を用いた成膜方法が開示されている。すなわち、特許文献2の成膜方法は、原料の粉体を容器に収納し、前記容器にキャリアガスを導入することにより、前記原料の粉体を含むエアロゾルを生成する工程 と、前記生成されたエアロゾルの流路に磁場を印加することにより、エアロゾルに含まれる原料の粉体における結晶方位を配向させる工程 と、前記磁場が印加されたエアロゾルを基板に吹き付けることにより、結晶方位が配向した原料の粉体を前記基板上に堆積させる工程と、を具備する成膜方法である。かかる成膜方法よれば、原料粉体を含むエアロゾルに磁場を印加して粉体の結晶方位を制御するので、基板上に堆積した膜の結晶方位を所望の向きに配向できるという利点がある。   Patent Document 2 discloses a film forming method using an aerosol deposition method that can form a dense film with high adhesion to an object to be formed even if the film is formed at room temperature. . That is, in the film forming method of Patent Document 2, a raw material powder is stored in a container, and a carrier gas is introduced into the container to generate an aerosol containing the raw material powder. Applying a magnetic field to the aerosol flow path to orient the crystal orientation in the raw material powder contained in the aerosol, and spraying the aerosol to which the magnetic field is applied to the substrate to produce a crystal orientation oriented raw material. Depositing the powder on the substrate. This film forming method has an advantage that the crystal orientation of the film deposited on the substrate can be oriented in a desired direction because a magnetic field is applied to the aerosol containing the raw material powder to control the crystal orientation of the powder.

特開2006−127780号公報JP 2006-127780 A 特開2006−97087号公報JP 2006-97087 A

しかしながら、特許文献2に記載されている成膜方法では、当該成膜方法を実施する成膜装置は、原料粉体を含むエアロゾルが流通する流路に磁場を印加するための超伝導磁石や冷却装置その他の設備備えている必要があり成膜装置が複雑化し、成膜コストが高価となる。更に、特許文献2の成膜方法においては、流路を通過するエアロゾルに含まれる全ての原料粒子に磁場が印加されるため、全ての原料粉体が配向することになる。ここで、所望の特性をもつセラミックス膜を得るために、配向性が100%である必要はない。
本発明は、上記従来技術の課題を解決するために発明者が鋭意検討のうえなされたものであり、特定方向に結晶が配向した新規なセラミックス膜及びそのセラミックス膜を工業生産上より簡便に得ることのできる製造方法、並びに当該セラミックス膜を発光膜とする発光素子を提供することを目的とする。
However, in the film forming method described in Patent Document 2, a film forming apparatus that performs the film forming method includes a superconducting magnet for applying a magnetic field to a flow path through which an aerosol containing raw material powder flows, and a cooling device. It is necessary to provide an apparatus and other equipment, so that the film forming apparatus becomes complicated and the film forming cost becomes high. Furthermore, in the film forming method of Patent Document 2, since the magnetic field is applied to all the raw material particles contained in the aerosol passing through the flow path, all the raw material powders are oriented. Here, in order to obtain a ceramic film having desired characteristics, the orientation need not be 100%.
The present invention has been made by the inventor in earnest to solve the above-mentioned problems of the prior art, and a novel ceramic film in which crystals are oriented in a specific direction and the ceramic film can be obtained more easily in industrial production. It is an object of the present invention to provide a manufacturing method that can be used, and a light emitting element using the ceramic film as a light emitting film.

請求項1に係る発明は、結晶構造が六方晶の金属化合物相を主体としたセラミックス膜において、X/Y≧1(ここで、X:前記金属化合物相のa軸に直交するいずれかの結晶面のX線回折強度の中の最大値、Y:前記金属化合物からなる粉末のX線回折強度が最大値となる結晶面と同一の結晶面における前記セラミックス膜のX線回折強度)を満足し、前記金属化合物相は実質的にa軸配向性を有することを特徴とするセラミックス膜である。かかるセラミックス膜によれば、六方晶の金属化合物相を主体としたセラミックス膜において、上記式を満たすことにより前記金属化合物相は実質的にa軸配向性を有しているので、電気特性や磁気特性等に優れたセラミックス膜を提供することができる。例えば当該セラミックス膜を発光膜として用いた場合に、極めて低い電気抵抗を有する発光膜を具現することができるので、低消費電流のFPDを構成することが可能となる。   According to a first aspect of the present invention, there is provided a ceramic film mainly comprising a metal compound phase having a hexagonal crystal structure, wherein X / Y ≧ 1 (where X: any crystal orthogonal to the a-axis of the metal compound phase). The maximum value among the X-ray diffraction intensities of the surface, Y: X-ray diffraction intensity of the ceramic film in the same crystal plane as the crystal plane where the X-ray diffraction intensity of the powder composed of the metal compound is the maximum) The metal compound phase is a ceramic film having substantially a-axis orientation. According to such a ceramic film, in the ceramic film mainly composed of a hexagonal metal compound phase, the metal compound phase substantially has a-axis orientation by satisfying the above formula. A ceramic film excellent in characteristics and the like can be provided. For example, when the ceramic film is used as a light-emitting film, a light-emitting film having an extremely low electric resistance can be realized, so that an FPD with low current consumption can be configured.

なお、上記金属化合物相としては、結晶構造が六方晶である、ZnO、ZnS、SiC、WC、AlB、TiB、ZrB、VB、NbB、TaB、MoB、WB、AlN、NbN、Si、Ta、BaFe1219、SrFe1219、GaN、InNのうちの少なくとも1種以上を含むことができる。さらに、セラミックス膜が発光膜である場合には、上記金属化合物相はZnO、ZnS、AlN、GaN、InNのうちの少なくとも1種以上であることが好ましく、それらに希土類金属等の元素がドープされていてもよい。 As the metal compound phase, the crystal structure is hexagonal, ZnO, ZnS, SiC, WC, AlB 2 , TiB 2 , ZrB 2 , VB 2 , NbB 2 , TaB 2 , MoB 2 , WB 2 , AlN. , Nb 2 N, Si 3 N 4 , Ta 5 N 6 , BaFe 12 O 19 , SrFe 12 O 19 , GaN, and InN. Further, when the ceramic film is a light emitting film, the metal compound phase is preferably at least one of ZnO, ZnS, AlN, GaN, and InN, and is doped with an element such as a rare earth metal. It may be.

請求項4に係る発明は、上記発光膜として用いる場合に好ましい金属酸化物相を有するセラミックス膜で構成された発光素子である。かかる発光素子によれば、ZnO、ZnS、AlN、GaN、InNのうちの少なくとも1種以上の金属化合物相で構成されたセラミックス膜が発光膜となっているので、極めて低い消費電流で、発光することができる。   The invention according to claim 4 is a light emitting element constituted by a ceramic film having a metal oxide phase which is preferable when used as the light emitting film. According to such a light emitting element, the ceramic film composed of at least one metal compound phase of ZnO, ZnS, AlN, GaN, and InN serves as the light emitting film, and thus emits light with a very low current consumption. be able to.

請求項5に係る発明は、上記セラミックス膜の製造方法であって、アスペクト比が2〜7の範囲の粒子を個数比で5〜30%含む結晶構造が六方晶の金属化合物粉末を気体と混合してエアロゾルを形成し、減圧雰囲気でエアロゾルをノズルから被成膜体へ噴射し、被成膜体にセラミックス膜を形成するセラミックス膜の製造方法である。かかる製造方法によれば、金属化合物粉末を含むエアロゾルを被成膜体へ噴射し成膜するエアロゾルデポジション法において、結晶構造が六方晶である金属化合物粉末を用いることにより結晶構造が六方晶のセラミックス膜を形成でき、さらに当該金属化合物粉末のうち個数比で5〜30%の粉末のアスペクト比が2〜7の範囲とすることにより、上記a軸配向性を有するセラミックス膜を容易に形成することができる。なお、アスペクト比とは、金属化合物粉末の粒子の長径を短径で除したものである。   The invention according to claim 5 is a method for producing the ceramic film, wherein a metal compound powder having a crystal structure of hexagonal crystal structure containing 5 to 30% of particles having an aspect ratio in the range of 2 to 7 is mixed with a gas. Thus, an aerosol is formed, and the aerosol is sprayed from a nozzle to a film formation body in a reduced-pressure atmosphere to form a ceramic film on the film formation body. According to such a manufacturing method, in an aerosol deposition method in which an aerosol containing a metal compound powder is sprayed onto a film formation target to form a film, the crystal structure is hexagonal by using a metal compound powder having a hexagonal crystal structure. The ceramic film can be formed, and the ceramic film having the a-axis orientation can be easily formed by setting the aspect ratio of the powder of 5-30% of the metal compound powder in the range of 2-7. be able to. The aspect ratio is obtained by dividing the major axis of the metal compound powder particles by the minor axis.

上記製造方法において、金属化合物粉末に関する数値限定理由について説明する。上記製造方法でa軸配向性を有するセラミックス膜を形成するためには、アスペクト比が2〜7の粒子を個数比で5〜30%含んでいる金属化合物粉末を使用する必要がある。アスペクト比が2未満の場合には、粒子の形態が粒状に近いため、成膜時に一様な方向を向きやすく、a軸配向性を示さない。また、アスペクト比が7を超える場合には、粒子の形態が針状又は板状であるので、膜を形成することが困難となる。また、a軸配向性は、粒子のa軸方向が被成膜体と平行になるよう堆積することによって得られると考えられる。上記範囲のアスペクト比を有する粒子を含む粉体であっても、そのような粒子が個数比で5%未満の場合には、膜形成時に一様な方向を向きやすい粒子が多いので、a軸配向性を有するセラミックス膜が得られない。また、30%を超える場合は、膜形成時に粒子間の密着性に乏しくなるので、セラミックス膜を形成することが困難となる。より好ましくは、アスペクト比が2〜5の粒子を7〜30%含む粉末である。   In the above production method, the reason for limiting the numerical values regarding the metal compound powder will be described. In order to form a ceramic film having a-axis orientation by the above production method, it is necessary to use a metal compound powder containing 5 to 30% of particles having an aspect ratio of 2 to 7 in terms of the number ratio. When the aspect ratio is less than 2, the shape of the particles is almost granular, so that it is easy to face a uniform direction during film formation and does not exhibit a-axis orientation. On the other hand, when the aspect ratio exceeds 7, it is difficult to form a film because the particle shape is needle-like or plate-like. The a-axis orientation is considered to be obtained by depositing particles so that the a-axis direction of the particles is parallel to the film formation target. Even in the case of powder containing particles having an aspect ratio in the above range, when such particles are less than 5% in number ratio, there are many particles that tend to be oriented in a uniform direction during film formation. An oriented ceramic film cannot be obtained. On the other hand, if it exceeds 30%, it becomes difficult to form a ceramic film because the adhesion between particles becomes poor during film formation. More preferably, it is a powder containing 7 to 30% of particles having an aspect ratio of 2 to 5.

なお、上記金属化合物粉末の粒子は、0.05〜1μmの一次粒子で構成されていることが望ましい。粒子径が1μmより大きいと、膜化に十分な衝撃力を付与することが困難となり、膜を形成できない場合がある。また、0.05μmより小さいと、一次粒子同士の凝集力が大きくなり、基板への衝突時に十分な密着力が得られない。   The metal compound powder particles are preferably composed of primary particles of 0.05 to 1 μm. If the particle diameter is larger than 1 μm, it may be difficult to apply a sufficient impact force for film formation, and the film may not be formed. On the other hand, if it is smaller than 0.05 μm, the cohesive force between the primary particles becomes large, and sufficient adhesion cannot be obtained at the time of collision with the substrate.

更に、上記金属化合物粉末の粒子は、せん断付着応力値が0.5〜4kPaであることが望ましい。ここで、せん断付着応力は、粉体流動性分析装置(シスメックス株式会社製 FT4)により測定したものである。せん断付着応力が0.5kPa未満の場合には、一次粒子同士がネック成長等の状態で強固に結合した粒子となっているので、膜化に十分な衝撃力を付与することができず、膜化が困難である。また、せん断付着応力が4kPaを超えると、粒子同士の凝集力が大きくなり、基板への衝突時に十分な密着力が得られないため、膜を形成できない。また、膜化できた場合でも均一に形成することは困難である。なお、かかるせん断付着応力値の範囲内の粒子は、金属化合物粉末を例えば熱処理して形成することができる。   Further, the metal compound powder particles preferably have a shear adhesion stress value of 0.5 to 4 kPa. Here, the shear adhesion stress is measured by a powder fluidity analyzer (FT4 manufactured by Sysmex Corporation). When the shear adhesion stress is less than 0.5 kPa, the primary particles are particles that are firmly bonded in the state of neck growth or the like, so that it is not possible to give an impact force sufficient for film formation, Is difficult. On the other hand, when the shear adhesion stress exceeds 4 kPa, the cohesive force between the particles increases, and a sufficient adhesion force cannot be obtained at the time of collision with the substrate, so that a film cannot be formed. Moreover, even if it can be formed into a film, it is difficult to form it uniformly. The particles within the range of the shear bond stress value can be formed by, for example, heat-treating the metal compound powder.

本発明によれば、上記説明のとおり結晶構造が六方晶の金属化合物相を主体としたセラミックス膜が実質的にa軸配向性を有しているので、電気特性や磁気特性等に優れたセラミックス膜を提供することができる。例えば、発光材料でセラミックス膜を形成した場合、当該セラミックス膜を発光膜とする低抵抗で、高発光効率の発光素子を構成することが出来る。また、上記説明した特定範囲の粒形態を有する金属化合物粉末を用いてエアロゾルデポジション法で成膜することにより上記セラミックス膜を極めて容易に形成することができる。   According to the present invention, as described above, the ceramic film mainly composed of a metal compound phase having a hexagonal crystal structure has substantially a-axis orientation. A membrane can be provided. For example, when a ceramic film is formed using a light-emitting material, a light-emitting element having a low resistance and a high light-emitting efficiency can be formed using the ceramic film as a light-emitting film. Moreover, the ceramic film can be formed very easily by forming a film by the aerosol deposition method using the metal compound powder having the particle form in the specific range described above.

以下、本発明の実施形態について図面を参照して説明する。ここで図1は本発明の実施形態に係る成膜装置の概略構成図である。   Embodiments of the present invention will be described below with reference to the drawings. Here, FIG. 1 is a schematic configuration diagram of a film forming apparatus according to an embodiment of the present invention.

成膜装置は、図1に示すように、成膜室1、エアロゾル生成室2、ガスボンベ3、真空ポンプ4で構成されている。成膜室1内には、被成膜体である基板5を固定するとともに水平方向に駆動させる基板駆動装置6、基板駆動装置6に固定された基板5にエアロゾルを噴射する、開口部を有するノズル7が配置されている。ノズル7は、エアロゾル生成室2と搬送管8を介して接続されている。なお、以下で説明する実験例においては、開口部の長さが5mm、幅が0.3mmのノズル7を用いた。真空ポンプ4は成膜室1に配管を介して接続され、成膜室1を減圧雰囲気にすることができる。エアロゾル生成室2は密閉容器であり、底部に設けられた振動器10を備え、更に配管を介して接続されたガスボンベ3からキャリアガスが供給される。   As shown in FIG. 1, the film forming apparatus includes a film forming chamber 1, an aerosol generating chamber 2, a gas cylinder 3, and a vacuum pump 4. The film forming chamber 1 has a substrate driving device 6 for fixing the substrate 5 as a film formation target and driving it in the horizontal direction, and an opening for injecting aerosol onto the substrate 5 fixed to the substrate driving device 6. A nozzle 7 is arranged. The nozzle 7 is connected to the aerosol generation chamber 2 via the transport pipe 8. In the experimental example described below, a nozzle 7 having an opening portion length of 5 mm and a width of 0.3 mm was used. The vacuum pump 4 is connected to the film forming chamber 1 through a pipe, and the film forming chamber 1 can be in a reduced pressure atmosphere. The aerosol generation chamber 2 is a hermetically sealed container, and is provided with a vibrator 10 provided at the bottom, and is further supplied with a carrier gas from a gas cylinder 3 connected via a pipe.

上記成膜装置の動作について説明する。基板5を基板駆動装置6に固定した後に成膜室1を密閉する。また、エアロゾル生成室2に金属化合物からなる原料粉末9を収容する。振動器10によりエアロゾル生成室2に振動を与えながら、ガスボンベ3からキャリアガスを供給することにより、原料粉末9を含むエアロゾルを生成する。そして、真空ポンプ4を作動させることにより成膜室1を減圧雰囲気とする。すると、成膜室1とエアロゾル生成室2との圧力差により、エアロゾル生成室2から搬送管8を介してエアロゾルがノズル7に供給され、基板駆動装置6で水平方向に移動している基板5にエアロゾルが噴射される。以上により、エアロゾル中の原料粉末粒子が高速で基板5に衝突し、その衝撃力により基板5にセラミックス膜が形成される。また、基板5は基板駆動装置6で水平方向に移動しているので、所定の面積を有するセラミックス膜が形成される。   The operation of the film forming apparatus will be described. After the substrate 5 is fixed to the substrate driving device 6, the film forming chamber 1 is sealed. In addition, the raw material powder 9 made of a metal compound is accommodated in the aerosol generation chamber 2. By supplying a carrier gas from the gas cylinder 3 while applying vibration to the aerosol generation chamber 2 by the vibrator 10, an aerosol containing the raw material powder 9 is generated. Then, by operating the vacuum pump 4, the film forming chamber 1 is brought into a reduced pressure atmosphere. Then, due to the pressure difference between the film formation chamber 1 and the aerosol generation chamber 2, the aerosol is supplied from the aerosol generation chamber 2 to the nozzle 7 via the transport pipe 8, and is moved in the horizontal direction by the substrate driving device 6. Aerosol is injected into the tank. As described above, the raw material powder particles in the aerosol collide with the substrate 5 at a high speed, and a ceramic film is formed on the substrate 5 by the impact force. Further, since the substrate 5 is moved in the horizontal direction by the substrate driving device 6, a ceramic film having a predetermined area is formed.

次に、本発明に係るセラミックス膜の評価方法について説明する。
まず、セラミックス膜の結晶配向性についてZnOの場合を例にとって、説明する。まず、ZnO粉末を粒子の大きさが少なくとも10μm以下で、極端な微粉砕はせずに同一の範囲のサイズにそろえ、結晶の方位がすべての方向に均一に分布するように、X線回折用試料を準備する。
Next, the ceramic film evaluation method according to the present invention will be described.
First, the crystal orientation of the ceramic film will be described by taking the case of ZnO as an example. First, for X-ray diffraction, ZnO powder has a particle size of at least 10 μm and is aligned in the same range without extreme pulverization, and the crystal orientation is uniformly distributed in all directions. Prepare the sample.

次に、上記粉末試料と本発明に係るa軸配向性を有するZnO相で構成されたセラミックス膜を有する基板(配向性基板)とを、それぞれX線回折する。ここで、粉末試料のX線回折パターンにおいて、回折強度が最大となる結晶面は(101)であり、a軸に直交するいずれかの結晶面のうち、X線回折強度が最大となる結晶面は(100)であった。無配向性試料の場合、(101)面の回折強度に対する(100)面の回折強度の比(以下(100)/(101)強度比と表現する場合がある。)は、1未満である。配向性基板のZnO相のX線回折パターンにおいて、(100)/(101)強度比を求めることで、a軸配向性を評価することができる。
以上、セラミックス膜を構成する金属化合物相がZnO相である場合の、a軸配向性の評価方法について説明したが、結晶構造が六方晶であるその他の金属化合物粉末について、a軸に直交するいずれかの結晶面のうちX線回折強度が最大となる結晶面と、最も回折強度の大きい結晶面を表1に示す。
Next, the powder sample and the substrate (orientation substrate) having a ceramic film composed of a ZnO phase having a-axis orientation according to the present invention are each subjected to X-ray diffraction. Here, in the X-ray diffraction pattern of the powder sample, the crystal plane having the maximum diffraction intensity is (101), and the crystal plane having the maximum X-ray diffraction intensity among any crystal planes orthogonal to the a-axis. Was (100). In the case of a non-oriented sample, the ratio of the diffraction intensity of the (100) plane to the diffraction intensity of the (101) plane (hereinafter sometimes expressed as (100) / (101) intensity ratio) is less than 1. The a-axis orientation can be evaluated by determining the (100) / (101) intensity ratio in the X-ray diffraction pattern of the ZnO phase of the orientation substrate.
As described above, the evaluation method of the a-axis orientation when the metal compound phase constituting the ceramic film is a ZnO phase has been described. For other metal compound powders whose crystal structure is hexagonal, any of the metal compound powders orthogonal to the a-axis Table 1 shows the crystal plane having the maximum X-ray diffraction intensity and the crystal plane having the highest diffraction intensity.

また、セラミックス膜の電気抵抗は、プローブの間隔が約1mm及び電流100mAの条件にて、四探針法によって行った。   Further, the electrical resistance of the ceramic film was measured by a four-probe method under the condition that the distance between the probes was about 1 mm and the current was 100 mA.

上記原料粉末として用いる金属化合物粉末の評価方法について説明する。粒子のアスペクト比は、走査型電子顕微鏡によって粒子像を観察し、粒子の長径と短径を計測して評価した。粒子の個数比は、同じく走査型電子顕微鏡により粒子像を観察し、アスペクト比が2〜7の粒子の個数とそれ以外の粒子の個数を計数して、計算した。一次粒子径は、同様に走査型電子顕微鏡により観察し、計測した。また、せん断付着応力の評価は、シスメックス株式会社製の粉体流動性分析装置(型式:FT4)により行った。   An evaluation method of the metal compound powder used as the raw material powder will be described. The aspect ratio of the particles was evaluated by observing the particle image with a scanning electron microscope and measuring the major and minor diameters of the particles. Similarly, the number ratio of particles was calculated by observing particle images with a scanning electron microscope and counting the number of particles having an aspect ratio of 2 to 7 and the number of other particles. The primary particle diameter was similarly observed and measured with a scanning electron microscope. The shear adhesion stress was evaluated by a powder fluidity analyzer (model: FT4) manufactured by Sysmex Corporation.

以下、上記成膜装置1でZnO粉末を用いてガラス基板にZnO相のセラミックス膜を形成した実験例について説明する。ここで、表2、3に、以下の実験例1〜7について、それぞれの成膜条件と特性評価結果を示す。また、表4、表5に、実験例8〜12の実験条件と特性評価結果を示す。なお、本実施例では、セラミックス膜を成膜する被成膜体としてガラス基板を用いているが、金属製又は樹脂製の基板等を用いることができることは言うまでもない。   Hereinafter, an experimental example in which a ZnO phase ceramic film is formed on a glass substrate using ZnO powder in the film forming apparatus 1 will be described. Here, Tables 2 and 3 show film formation conditions and characteristic evaluation results for the following Experimental Examples 1 to 7, respectively. Tables 4 and 5 show the experimental conditions and characteristic evaluation results of Experimental Examples 8 to 12. In this embodiment, a glass substrate is used as a film formation body on which a ceramic film is formed, but it goes without saying that a metal or resin substrate can be used.

(実験例1)
アスペクト比が2〜7の粒子を個数比で30%含むZnO粉末を用い、表2に示すように、キャリアガスとして流量6L/minのヘリウムガスを使用し、成膜室1の圧力が0.2〜0.8kPa、エアロゾル生成室2の圧力が40〜80kPaの成膜条件にてセラミックス膜を形成した。なお、実験例1で使用したZnO粉末の粒子の形態は図2(a)に示すように、一次粒子径が0.05〜0.3μmであった。成膜されたセラミックス膜についてX線回折測定を行った結果、(100)/(101)強度比は2であり、このセラミックス膜はa軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、15Ω・cmであった。
(Experimental example 1)
As shown in Table 2, helium gas having a flow rate of 6 L / min was used as the carrier gas, and the pressure in the film forming chamber 1 was set at 0. 0, using ZnO powder containing particles having an aspect ratio of 2-7 by 30%. A ceramic film was formed under film forming conditions of 2 to 0.8 kPa and the pressure in the aerosol generation chamber 2 being 40 to 80 kPa. In addition, as for the form of the particle | grains of the ZnO powder used in Experimental example 1, the primary particle diameter was 0.05-0.3 micrometer as shown to Fig.2 (a). As a result of X-ray diffraction measurement of the formed ceramic film, it was found that the (100) / (101) intensity ratio was 2, and this ceramic film had a-axis orientation. The resistivity of the ceramic film was 15 Ω · cm.

(実験例2)
アスペクト比が2〜5の粒子を個数比で10%含むZnO粉末を用い、表2の成膜条件以外は上記実験例1と同様にセラミックス膜を形成した。実験例2で使用したZnO粉末の粒子の形態は図2(b)に示すように、一次粒子径が0.07〜0.6μmであった。このセラミックス膜の(100)/(101)強度比は3であり、a軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、12Ω・cmであった。
(Experimental example 2)
A ceramic film was formed in the same manner as in Experimental Example 1 except that ZnO powder containing particles having an aspect ratio of 2 to 5 in a number ratio of 10% was used except for the film forming conditions shown in Table 2. As shown in FIG. 2B, the primary particle diameter of the ZnO powder particles used in Experimental Example 2 was 0.07 to 0.6 μm. This ceramic film had a (100) / (101) strength ratio of 3 and was found to have a-axis orientation. Moreover, the resistivity of this ceramic film was 12 Ω · cm.

(実験例3)
アスペクト比が2〜4の粒子を個数比で7%含むZnO粉末を用い、表2の成膜条件以外は上記実験例1と同様にセラミックス膜を形成した。実験例3で使用したZnO粉末の粒子の形態は図2(c)に示すように、一次粒子径が0.1〜0.7μmであった。このセラミックス膜の(100)/(101)強度比は3であり、a軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、12Ω・cmであった。
(Experimental example 3)
Using a ZnO powder containing 7% by number of particles having an aspect ratio of 2 to 4, a ceramic film was formed in the same manner as in Experimental Example 1 except for the film formation conditions shown in Table 2. The form of the ZnO powder particles used in Experimental Example 3 had a primary particle diameter of 0.1 to 0.7 μm as shown in FIG. This ceramic film had a (100) / (101) strength ratio of 3 and was found to have a-axis orientation. Moreover, the resistivity of this ceramic film was 12 Ω · cm.

(実験例4)
アスペクト比が2〜3の粒子を個数比で5%含むZnO粉末を用い、表2の成膜条件以外は上記実験例1と同様にセラミックス膜を形成した。実験例4で使用したZnO粉末の粒子の形態は図2(d)に示すように、一次粒子径が0.2〜1.1μmであった。このセラミックス膜の(100)/(101)強度比は1であり、a軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、87Ω・cmであった。
(Experimental example 4)
Using a ZnO powder containing 5% by number of particles having an aspect ratio of 2 to 3, a ceramic film was formed in the same manner as in Experimental Example 1 except for the film formation conditions shown in Table 2. As shown in FIG. 2D, the primary particle diameter of the ZnO powder particles used in Experimental Example 4 was 0.2 to 1.1 μm. This ceramic film had a (100) / (101) strength ratio of 1 and was found to have a-axis orientation. The resistivity of this ceramic film was 87 Ω · cm.

(実験例5)
アスペクト比が2〜20の粒子を個数比で50%含むZnO粉末を用い、表2の成膜条件以外は上記実験例1と同様にセラミックス膜形成を試みた。実験例5で使用したZnO粉末の粒子の形態は図2(e)に示すように、一次粒子径が0.03〜0.4μmであった。しかし、膜を形成できなかった。
(Experimental example 5)
Using a ZnO powder containing 50% by number of particles having an aspect ratio of 2 to 20, a ceramic film was formed in the same manner as in Experimental Example 1 except for the film formation conditions shown in Table 2. As shown in FIG. 2E, the primary particle diameter of the ZnO powder particles used in Experimental Example 5 was 0.03 to 0.4 μm. However, a film could not be formed.

(実験例6)
アスペクト比が2〜3の粒子を個数比で2%含むZnO粉末を用い、表2の成膜条件以外は上記実験例1と同様にセラミックス膜を形成した。実験例6で使用したZnO粉末の粒子の形態は図2(f)に示すように、一次粒子径が0.3〜1.0μmであった。このセラミックス膜の(100)/(101)強度比は0.5であり、a軸配向性を有しないことが判った。また、このセラミックス膜の抵抗率は、265Ω・cmであった。
(Experimental example 6)
Using a ZnO powder containing 2% by number of particles having an aspect ratio of 2 to 3, a ceramic film was formed in the same manner as in Experimental Example 1 except for the film formation conditions shown in Table 2. As shown in FIG. 2F, the primary particle diameter of the ZnO powder particles used in Experimental Example 6 was 0.3 to 1.0 μm. The ceramic film had a (100) / (101) strength ratio of 0.5, and was found not to have a-axis orientation. The resistivity of this ceramic film was 265 Ω · cm.

(実験例7)
アスペクト比が1〜2の粒子からなるZnO粉末を用い、表2の成膜条件以外は上記実験例1と同様にセラミックス膜形成を試みた。実験例7で使用したZnO粉末の粒子の形態は図2(g)に示すように、一次粒子径が0.5〜1.5μmであった。しかし、膜を形成できなかった。
(Experimental example 7)
Using a ZnO powder composed of particles having an aspect ratio of 1 to 2, an attempt was made to form a ceramic film in the same manner as in Experimental Example 1 except for the film formation conditions shown in Table 2. As shown in FIG. 2G, the primary particle size of the ZnO powder particles used in Experimental Example 7 was 0.5 to 1.5 μm. However, a film could not be formed.

実験例1〜5で形成したセラミックス膜のX線回折パターンを図3、X線回折結果から求めた(100)/(101)比と抵抗率の関係を図4に示す。表3の実験例1〜7からアスペクト比が2〜7の粒子を5〜30%含むZnO粉末を用いることにより健全なセラミックス膜を形成できるとともに当該セラミックス膜の(100)/(101)強度比は1以上となり、セラミックス膜はa軸配向性を示すことが判った。また、実験例1〜3から、上記粒子を構成する一次粒子径が0.05〜1μmの範囲であれば、20Ω・cm以下と極めて低い抵抗率を有するセラミックス膜を形成できることが判った。このように抵抗率の低いセラミックス膜は、発光素子の発光膜として用いるのに適している。   FIG. 3 shows the X-ray diffraction patterns of the ceramic films formed in Experimental Examples 1 to 5, and FIG. 4 shows the relationship between the (100) / (101) ratio obtained from the X-ray diffraction results and the resistivity. A healthy ceramic film can be formed by using ZnO powder containing 5 to 30% of particles having an aspect ratio of 2 to 7 from Experimental Examples 1 to 7 in Table 3, and the (100) / (101) strength ratio of the ceramic film. Was 1 or more, and it was found that the ceramic film exhibited a-axis orientation. In addition, from Experimental Examples 1 to 3, it was found that a ceramic film having an extremely low resistivity of 20 Ω · cm or less can be formed when the primary particle diameter constituting the particles is in the range of 0.05 to 1 μm. Such a ceramic film having a low resistivity is suitable for use as a light-emitting film of a light-emitting element.

次に、ZnO粉末のせん断付着応力を検討した結果について、説明する。   Next, the result of examining the shear adhesion stress of ZnO powder will be described.

(実験例8)
アスペクト比が2〜7の粒子を個数比で30%含み、せん断付着応力が3.81kPaのZnO粉末を用い、表4に示すように、キャリアガスとして流量6L/minのヘリウムガスを使用し、成膜室1の圧力が0.2〜0.8kPa、エアロゾル生成室2の圧力が40〜80kPaの成膜条件にてセラミックス膜を形成した。成膜されたセラミックス膜についてX線回折測定を行った結果、(100)/(101)強度比は2であり、このセラミックス膜はa軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、15Ω・cmであった。
(Experimental example 8)
Using a ZnO powder having an aspect ratio of 2 to 7 particles with a number ratio of 30% and a shear adhesion stress of 3.81 kPa, as shown in Table 4, helium gas having a flow rate of 6 L / min is used as a carrier gas, A ceramic film was formed under film forming conditions in which the pressure in the film forming chamber 1 was 0.2 to 0.8 kPa and the pressure in the aerosol generating chamber 2 was 40 to 80 kPa. As a result of X-ray diffraction measurement of the formed ceramic film, it was found that the (100) / (101) intensity ratio was 2, and this ceramic film had a-axis orientation. The resistivity of the ceramic film was 15 Ω · cm.

(実験例9)
アスペクト比が2〜5の粒子を個数比で10%含むZnO粉末を用い、せん断付着応力が3.25kPaのZnO粉末を用い、表4の成膜条件以外は上記実験例8と同様にセラミックス膜を形成した。このセラミックス膜の(100)/(101)強度比は3であり、a軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、12Ω・cmであった。
(Experimental example 9)
Using a ZnO powder containing 10% by number of particles having an aspect ratio of 2 to 5, a ZnO powder having a shear adhesion stress of 3.25 kPa, and a ceramic film similar to Experimental Example 8 except for the film formation conditions shown in Table 4 Formed. This ceramic film had a (100) / (101) strength ratio of 3 and was found to have a-axis orientation. Moreover, the resistivity of this ceramic film was 12 Ω · cm.

(実験例10)
アスペクト比が2〜4の粒子を個数比で7%含むZnO粉末を用い、せん断付着応力が2.62kPaのZnO粉末を用い、表4の成膜条件以外は上記実験例8と同様にセラミックス膜を形成した。このセラミックス膜の(100)/(101)強度比は5であり、a軸配向性を有することが判った。また、このセラミックス膜の抵抗率は、9Ω・cmであった。
(Experimental example 10)
Using a ZnO powder containing 7% by number of particles having an aspect ratio of 2 to 4, a ZnO powder having a shear adhesion stress of 2.62 kPa, and a ceramic film similar to Experimental Example 8 except for the film formation conditions shown in Table 4 Formed. This ceramic film had a (100) / (101) strength ratio of 5 and was found to have a-axis orientation. The resistivity of this ceramic film was 9 Ω · cm.

(実験例11)
アスペクト比が2〜4の粒子を個数比で20%含むZnO粉末を用い、せん断付着応力が4.56kPaのZnO粉末を用い、表4の成膜条件以外は上記実験例8と同様にセラミックス膜を形成した。このセラミックス膜の(100)/(101)強度比は1であり、a軸配向性を有することが判ったが、このセラミックス膜の抵抗率は測定不可であった。
(Experimental example 11)
Using a ZnO powder containing 20% by number of particles having an aspect ratio of 2 to 4, a ZnO powder having a shear adhesion stress of 4.56 kPa, and a ceramic film similar to Experimental Example 8 except for the film formation conditions shown in Table 4 Formed. The ceramic film had a (100) / (101) strength ratio of 1 and was found to have a-axis orientation, but the resistivity of this ceramic film was not measurable.

(実験例12)
アスペクト比が2〜3の粒子を個数比で20%含むZnO粉末を用い、せん断付着応力が0.47kPaのZnO粉末を用い、表4の成膜条件以外は上記実験例8と同様にセラミックス膜を形成した。このセラミックス膜の(100)/(101)強度比は3であり、a軸配向性を有することが判ったが、このセラミックス膜の抵抗率は測定不可であった。
(Experimental example 12)
Using a ZnO powder containing 20% by number of particles having an aspect ratio of 2 to 3, a ZnO powder having a shear adhesion stress of 0.47 kPa, and a ceramic film as in Experimental Example 8 except for the film formation conditions shown in Table 4 Formed. This ceramic film had a (100) / (101) strength ratio of 3 and was found to have a-axis orientation, but the resistivity of this ceramic film was not measurable.

表5に示すとおり、実験例8〜10からせん断付着応力が0.5〜4kPaの範囲の粉末を用いることで、本発明にて規定するところのX/Y=(100)/(101)強度比が1以上となり、a軸配向性を示し、低い抵抗率が得られた。発光素子の発光膜として用いるのに適する抵抗率の低いセラミックス膜は、アスペクト比が2〜7の粒子を個数比で5〜30%含み、せん断付着応力が0.5〜4kPaのセラミックス粉末を用いて形成すればよいことが判った。   As shown in Table 5, X / Y = (100) / (101) strength as defined in the present invention by using a powder having a shear adhesion stress in the range of 0.5 to 4 kPa from Experimental Examples 8 to 10. The ratio was 1 or more, a-axis orientation was exhibited, and a low resistivity was obtained. A ceramic film having a low resistivity suitable for use as a light-emitting film of a light-emitting element is a ceramic powder containing 5 to 30% of particles having an aspect ratio of 2 to 7 and a shear adhesion stress of 0.5 to 4 kPa. It was found that it should be formed.

本発明に用いた成膜装置図である。It is the film-forming apparatus figure used for this invention. 本発明の実験例に用いたZnO粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the ZnO powder used for the experiment example of this invention. 本発明の実験例の六方晶セラミックス膜のX線回折パターンであるIt is an X-ray diffraction pattern of the hexagonal ceramic film of the experimental example of the present invention. 本発明の実験例の六方晶セラミックス膜の抵抗率を示すグラフである。It is a graph which shows the resistivity of the hexagonal ceramic film | membrane of the experiment example of this invention.

符号の説明Explanation of symbols

1 成膜室
2 エアロゾル生成室
3 ガスボンベ
4 真空ポンプ
5 被成膜体(基板)
6 基板駆動装置
7 ノズル
8 搬送管
9 セラミックス粉末(原料粉末)
10 振動器
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Aerosol production chamber 3 Gas cylinder 4 Vacuum pump 5 Deposition body (substrate)
6 Substrate driving device 7 Nozzle 8 Transport tube 9 Ceramic powder (raw material powder)
10 Vibrator

Claims (7)

結晶構造が六方晶の金属化合物相を主体としたセラミックス膜において、下記の式を満足することにより、前記金属化合物相は実質的にa軸配向性を有することを特徴とするセラミックス膜。
X/Y≧1
ここで、
X:前記セラミックス膜のa軸に直交するいずれかの結晶面のX線回折強度の中の最大値
Y:前記金属化合物からなる粉末のX線回折強度が最大値となる結晶面と同一の結晶面における前記セラミックス膜のX線回折強度
A ceramic film comprising a metal compound phase having a hexagonal crystal structure as a main component, wherein the metal compound phase substantially has a-axis orientation by satisfying the following formula:
X / Y ≧ 1
here,
X: the maximum value among the X-ray diffraction intensities of any crystal plane orthogonal to the a-axis of the ceramic film Y: the same crystal as the crystal plane where the X-ray diffraction intensity of the powder composed of the metal compound has the maximum value X-ray diffraction intensity of the ceramic film on the surface
前記金属化合物相は、ZnO、ZnS、SiC、WC、AlB、TiB、ZrB、VB、NbB、TaB、MoB、WB、AlN、NbN、Si、Ta、BaFe1219、SrFe1219、GaN、InNのうちの少なくとも1種類を含むことを特徴とする請求項1記載のセラミックス膜。 The metal compound phase includes ZnO, ZnS, SiC, WC, AlB 2 , TiB 2 , ZrB 2 , VB 2 , NbB 2 , TaB 2 , MoB 2 , WB 2 , AlN, Nb 2 N, Si 3 N 4 , Ta 2. The ceramic film according to claim 1, comprising at least one of 5 N 6 , BaFe 12 O 19 , SrFe 12 O 19 , GaN, and InN. 前記セラミックス膜が発光膜であって、前記金属化合物相はZnO、ZnS、AlN、GaN、InNのうちの少なくとも1種以上であることを特徴とする請求項1記載のセラミックス膜。   2. The ceramic film according to claim 1, wherein the ceramic film is a light emitting film, and the metal compound phase is at least one of ZnO, ZnS, AlN, GaN, and InN. 請求項3に記載のセラミックス膜を有することを特徴とする発光素子。   A light emitting device comprising the ceramic film according to claim 3. 請求項1乃至3のいずれか1項に記載のセラミックス膜の製造方法であって、アスペクト比が2〜7の範囲の粒子を個数比で5〜30%含む結晶構造が六方晶の金属化合物粉末を気体と混合してエアロゾルを形成し、減圧雰囲気でエアロゾルをノズルから被成膜体へ噴射し、被成膜体にセラミックス膜を形成するセラミックス膜の製造方法。   The method for producing a ceramic film according to any one of claims 1 to 3, wherein the metal compound powder has a hexagonal crystal structure with a crystal structure containing 5 to 30% of particles having an aspect ratio in the range of 2 to 7 in number ratio. A method for producing a ceramic film, in which an aerosol is formed by mixing a gas with a gas, and the aerosol is sprayed from a nozzle onto a film formation body in a reduced pressure atmosphere to form a ceramic film on the film formation body. 前記金属化合物粉末が粒径0.05〜1μmの一次粒子で構成されていることを特徴とする請求項5に記載のセラミックス膜の製造方法。   6. The method for producing a ceramic film according to claim 5, wherein the metal compound powder is composed of primary particles having a particle size of 0.05 to 1 [mu] m. 前記金属化合物粉末のせん断付着応力が0.5〜4kPaであることを特徴とする請求項5又は6に記載のセラミックス膜の製造方法。   The method for producing a ceramic film according to claim 5 or 6, wherein the metal compound powder has a shear adhesion stress of 0.5 to 4 kPa.
JP2007129294A 2007-05-15 2007-05-15 Ceramic film, light emitting element, and method for manufacturing ceramic film Expired - Fee Related JP4921242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129294A JP4921242B2 (en) 2007-05-15 2007-05-15 Ceramic film, light emitting element, and method for manufacturing ceramic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129294A JP4921242B2 (en) 2007-05-15 2007-05-15 Ceramic film, light emitting element, and method for manufacturing ceramic film

Publications (2)

Publication Number Publication Date
JP2008285339A true JP2008285339A (en) 2008-11-27
JP4921242B2 JP4921242B2 (en) 2012-04-25

Family

ID=40145443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129294A Expired - Fee Related JP4921242B2 (en) 2007-05-15 2007-05-15 Ceramic film, light emitting element, and method for manufacturing ceramic film

Country Status (1)

Country Link
JP (1) JP4921242B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060309A1 (en) * 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method
WO2013035356A1 (en) * 2011-09-07 2013-03-14 日本碍子株式会社 Crystal production method
US10889900B2 (en) 2016-03-01 2021-01-12 Nippon Steel Corporation Ceramic laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152360A (en) * 1999-11-25 2001-06-05 Ricoh Co Ltd Ceramic dielectric film forming method, multilayered structure of ceramic dielectric film/substrate, and electro-mechanical transducer
JP2003041363A (en) * 2001-07-27 2003-02-13 National Institute For Materials Science Method for manufacturing zinc oxide-based thin film
JP2004043893A (en) * 2002-07-11 2004-02-12 Hitachi Metals Ltd Ceramic film deposition method, and ceramic film
JP2006097087A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Film deposition method and film deposition apparatus
JP2006127780A (en) * 2004-10-26 2006-05-18 Canon Inc Electroluminescent element
JP2006188046A (en) * 2004-12-09 2006-07-20 Fuji Photo Film Co Ltd Method for producing ceramic film and structure including ceramic film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152360A (en) * 1999-11-25 2001-06-05 Ricoh Co Ltd Ceramic dielectric film forming method, multilayered structure of ceramic dielectric film/substrate, and electro-mechanical transducer
JP2003041363A (en) * 2001-07-27 2003-02-13 National Institute For Materials Science Method for manufacturing zinc oxide-based thin film
JP2004043893A (en) * 2002-07-11 2004-02-12 Hitachi Metals Ltd Ceramic film deposition method, and ceramic film
JP2006097087A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Film deposition method and film deposition apparatus
JP2006127780A (en) * 2004-10-26 2006-05-18 Canon Inc Electroluminescent element
JP2006188046A (en) * 2004-12-09 2006-07-20 Fuji Photo Film Co Ltd Method for producing ceramic film and structure including ceramic film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060309A1 (en) * 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method
CN103180490A (en) * 2010-11-02 2013-06-26 日本碍子株式会社 Crystal production method
US20130263771A1 (en) * 2010-11-02 2013-10-10 Ngk Insulators, Ltd. Crystal production method
US9663871B2 (en) 2010-11-02 2017-05-30 Ngk Insulators, Ltd. Method for forming a single crystal by spraying the raw material onto a seed substrate
WO2013035356A1 (en) * 2011-09-07 2013-03-14 日本碍子株式会社 Crystal production method
US10889900B2 (en) 2016-03-01 2021-01-12 Nippon Steel Corporation Ceramic laminate

Also Published As

Publication number Publication date
JP4921242B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
CN106029949B (en) Method for forming a coating having a composite coating particle size and coating formed thereby
US10655206B2 (en) Surface treatment method of ceramic powder using microwave plasma for enhancing flowability
US7482042B2 (en) Film forming method and film forming apparatus
JP5927656B2 (en) Film-coated substrate, manufacturing method thereof, and semiconductor manufacturing apparatus member including the film-coated substrate
US20120231243A1 (en) Ceramic material, laminate, member for use in semiconductor manufacturing equipment, and sputtering target member
JP5093745B2 (en) Composite structure
JP2006236965A (en) Electron emitting element
CN103233203A (en) Preparation method of ferromagnetism enhanced BiFeO3 film
JP2006236964A (en) Electron emitting element
JPWO2018155374A1 (en) Composite sintered body, electrostatic chuck member, and electrostatic chuck device
JP4921242B2 (en) Ceramic film, light emitting element, and method for manufacturing ceramic film
Marenkin et al. Growth of magnetic eutectic GaSb-MnSb films by pulsed laser deposition
JP6005314B1 (en) Film-coated substrate, plasma etching apparatus component, and manufacturing method thereof
JP2007023379A (en) Film formation method, and structure
Meng et al. Preparation of highly c-axis oriented AlN films on Si substrate with ZnO buffer layer by the DC magnetron sputtering
WO2021149235A1 (en) Method for producing rare-earth-containing sic substrate and sic epitaxial layer
JP6407273B2 (en) Method for depositing piezoelectric AlN-containing layer, and AlN-containing piezoelectric layer
CN115261762B (en) Material for thermal spraying
JP2002037683A (en) Plasma resistant element and its manufacturing method
Fujii et al. Preparation of Nb doped PZT film by RF sputtering
US10415142B2 (en) Composite structural body
KR101368330B1 (en) Highly dense magnetoelectric nanocomposite thick film and preparation method thereof
Yao et al. Growth and photoluminescence studies of AlN thin films with different orientation degrees
JP2004296609A (en) Permanent magnet film
JP2011171495A (en) Soft magnetic metal film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees