JP2008284272A - Odor component decomposing or sterilizing apparatus, method for decomposing odor component or sterilizing bacteria, and air cleaning apparatus - Google Patents

Odor component decomposing or sterilizing apparatus, method for decomposing odor component or sterilizing bacteria, and air cleaning apparatus Download PDF

Info

Publication number
JP2008284272A
JP2008284272A JP2007133989A JP2007133989A JP2008284272A JP 2008284272 A JP2008284272 A JP 2008284272A JP 2007133989 A JP2007133989 A JP 2007133989A JP 2007133989 A JP2007133989 A JP 2007133989A JP 2008284272 A JP2008284272 A JP 2008284272A
Authority
JP
Japan
Prior art keywords
odor
liquid
decomposing
odor component
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007133989A
Other languages
Japanese (ja)
Other versions
JP5019288B2 (en
Inventor
Toshikuni Masaoka
淑邦 正岡
Masatake Tagawa
雅威 田河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOTA KOGYO SHOKAI KK
Hiroshima University NUC
Original Assignee
YOKOTA KOGYO SHOKAI KK
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOTA KOGYO SHOKAI KK, Hiroshima University NUC filed Critical YOKOTA KOGYO SHOKAI KK
Priority to JP2007133989A priority Critical patent/JP5019288B2/en
Publication of JP2008284272A publication Critical patent/JP2008284272A/en
Application granted granted Critical
Publication of JP5019288B2 publication Critical patent/JP5019288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an odor component decomposing or sterilizing apparatus capable of further improving efficiencies of decomposing odor components or sterilizing bacteria, having no risk of residual toxicity and being safely used; a method for decomposing the odor components or sterilizing the bacteria; and an air cleaning apparatus. <P>SOLUTION: This decomposing or sterilizing apparatus for bringing singlet oxygen in contact with the odor components or the bacteria and decomposing the odor components or sterilizing the bacteria, is provided with a treatment tank having liquid containing photosensitizer pigments in its inside, and an air feeder for feeding air or liquid containing the odor components or the bacteria in the liquid of the treatment tank. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一重項酸素を用いた臭気成分の分解・殺菌装置、臭気成分を分解又は雑菌類を殺菌する方法及び空気清浄装置に関するものである。   The present invention relates to an apparatus for decomposing and sterilizing odor components using singlet oxygen, a method for decomposing odor components or sterilizing miscellaneous bacteria, and an air cleaning apparatus.

従来から、脱臭・殺菌を行う方法として、オゾンや紫外線を用いた方法、活性炭に吸着させる方法、高温ヒーターに接触させて分解する方法が知られている。しかしながら、オゾンを用いた方法は、人体に有害な物質である残留オゾンが殺菌・脱臭装置から放出される危険性があり、紫外線を用いた方法は紫外線によって容器が損傷しやすいという問題があった。また、活性炭による脱臭方法は、吸着量の増加に伴い、活性が低下するため、所定時間毎に活性炭を再生する必要がある。さらに、加熱による脱臭方法は、加熱に多大なエネルギーを必要とするため、高コストになるという問題があった。   Conventionally, as a method for deodorizing and sterilizing, a method using ozone or ultraviolet light, a method of adsorbing to activated carbon, and a method of decomposing by contacting with a high temperature heater are known. However, the method using ozone has a risk that residual ozone, which is harmful to the human body, may be released from the sterilization / deodorizing device, and the method using ultraviolet rays has a problem that the container is easily damaged by the ultraviolet rays. . In addition, since the deodorizing method using activated carbon decreases in activity as the amount of adsorption increases, it is necessary to regenerate the activated carbon every predetermined time. Furthermore, the deodorizing method by heating has a problem of high cost because it requires a large amount of energy for heating.

上記問題を解決する脱臭方法として、例えば、下記特許文献1のものが挙げられる。この特許文献1に開示されている脱臭方法は、光の吸収により三重項励起状態となり得る有機色素および/またはフラーレン類を担体に固定化し、該有機色素および/またはフラーレン類に酸素を含む気相内で紫外線などを照射することにより一重項酸素を発生させ、一重項酸素を気相中の臭気成分と接触させて臭気成分を分解する。
特開2006−212383号公報
As a deodorizing method which solves the said problem, the thing of the following patent document 1 is mentioned, for example. In the deodorization method disclosed in Patent Document 1, an organic dye and / or fullerene that can be in a triplet excited state by light absorption is immobilized on a carrier, and the organic dye and / or fullerene contains a gas phase containing oxygen. In the inside, singlet oxygen is generated by irradiating ultraviolet rays or the like, and the singlet oxygen is brought into contact with the odor component in the gas phase to decompose the odor component.
JP 2006-212383 A

上記特許文献1のような脱臭方法では、オゾンを用いていないため残留毒性の危険性が無く、安全に使用ができ、且つ極めて簡単な装置と低いランニングコストにより気相中の臭気成分を除去できる。しかしながら、気相中では臭気成分が拡散しており、気相中の臭気成分と一重項酸素との気気接触では、十分に臭気成分を分解できないことがあった。   In the deodorizing method as in Patent Document 1, since ozone is not used, there is no risk of residual toxicity, it can be used safely, and odorous components in the gas phase can be removed with a very simple device and low running cost. . However, the odor component is diffused in the gas phase, and the odor component may not be sufficiently decomposed by the air contact between the odor component in the gas phase and singlet oxygen.

そこで、本発明は、従来に比べ、臭気成分の分解及び雑菌類の殺菌効率をさらに向上させることのできる臭気成分の分解又は殺菌装置、臭気成分を分解又は雑菌類を殺菌する方法及び空気清浄装置を提供することを目的とする。   Therefore, the present invention provides an odor component decomposition or sterilization apparatus capable of further improving the odor component decomposition and sterilization efficiency of germs, and a method and an air cleaning device for decomposing the odor component or sterilization of germs as compared with the prior art. The purpose is to provide.

課題を解決するための手段及び効果Means and effects for solving the problems

(1) 本発明の分解又は殺菌装置は、一重項酸素を臭気成分又は雑菌類と接触させて臭気成分を分解又は雑菌類を殺菌する分解又は殺菌装置であって、光増感色素を含んでいる液体を内部に有する処理槽と、前記臭気成分又は前記雑菌類を含む気体又は液体を前記処理槽の前記液体中に供給する供給器とを有していることを特徴とする。 (1) The decomposition or sterilization apparatus of the present invention is a decomposition or sterilization apparatus for degrading an odor component or sterilizing a bacterium by contacting singlet oxygen with an odor component or a bacterium, and includes a photosensitizing dye. And a supply tank for supplying a gas or a liquid containing the odor component or the various germs into the liquid in the processing tank.

(2) 本発明の分解又は殺菌装置は、前記光増感色素に光線を照射する光源を有していることが好ましい。 (2) It is preferable that the decomposition | disassembly or disinfection apparatus of this invention has a light source which irradiates a light beam to the said photosensitizing dye.

上記(1)及び(2)の構成によれば、一重項酸素と液体に溶解した臭気成分及び雑菌類とが気液又は液液接触するため、より確実に一重項酸素と臭気成分及び雑菌類とを接触させることができ、臭気成分の分解及び雑菌類の殺菌効率をさらに向上させる装置を提供することができる。また、一重項酸素の寿命は極めて短く、有害性のあるオゾンも用いていないので、残留毒性の危険性が無く、安全に使用できる。さらに、処理槽が密閉容器であることから、一重項酸素が装置外部へ飛び出すことがなく、安全な装置を提供することができる。
なお、光源は可視光や太陽光を利用することができ、これらを使用すると光源に関するランニングコストを殆ど必要とすることが無い。また、太陽光を用いると光源を設置する必要がない。
According to the configurations of (1) and (2) above, since the singlet oxygen and the odorous component and bacteria dissolved in the liquid are in gas-liquid or liquid-liquid contact, the singlet oxygen, the odorous component and bacteria are more reliably It is possible to provide a device that can further improve the decomposition efficiency of odor components and the sterilization efficiency of various germs. In addition, the lifetime of singlet oxygen is extremely short and no harmful ozone is used, so there is no risk of residual toxicity and it can be used safely. Furthermore, since the treatment tank is a sealed container, singlet oxygen does not jump out of the apparatus, and a safe apparatus can be provided.
Note that visible light or sunlight can be used as the light source, and when these are used, there is almost no running cost associated with the light source. Moreover, when sunlight is used, it is not necessary to install a light source.

(3) 本発明の分解又は殺菌装置は、酸素を含むマイクロバブルを前記処理槽の前記液体に供給するマイクロバブル供給器を有していることが好ましい。 (3) It is preferable that the decomposition | disassembly or disinfection apparatus of this invention has a microbubble supply device which supplies the microbubble containing oxygen to the said liquid of the said processing tank.

上記(3)の構成によれば、処理槽内部の液体に供給されるマイクロバブルによって、臭気成分の分解及び雑菌類の殺菌をさらに促進させることができる。   According to the configuration of (3) above, the decomposition of odor components and the sterilization of miscellaneous bacteria can be further promoted by the microbubbles supplied to the liquid inside the treatment tank.

(4) 本発明の分解又は殺菌装置は、前記処理槽内部の前記液体が、水又は水を主成分とする溶液であり、前記酸素を含むマイクロバブルが、空気を用いて発生させたものであることが好ましい。 (4) In the decomposition or sterilization apparatus of the present invention, the liquid inside the treatment tank is water or a solution containing water as a main component, and the microbubbles containing oxygen are generated using air. Preferably there is.

上記(4)の構成によれば、環境汚染の心配が無く、処理槽内部の液体やマイクロバブルに関するランニングコストを殆ど必要とすることが無い。   According to the configuration (4), there is no concern about environmental pollution, and almost no running cost is required for the liquid and microbubbles inside the processing tank.

(5) 本発明の臭気成分を分解又は雑菌類を殺菌する方法は、光増感色素を含んでいる液体に光線を照射し、一重項酸素を発生させる工程と、前記一重項酸素と臭気成分又は雑菌類とを気液又は液液接触させる工程とからなることを特徴とする。 (5) The method of decomposing the odor component of the present invention or sterilizing miscellaneous substances includes a step of irradiating a liquid containing a photosensitizing dye with light to generate singlet oxygen, and the singlet oxygen and odor component. Or it consists of the process which makes various microbes contact gas-liquid or liquid-liquid.

上記(5)の構成によれば、従来に比べ臭気成分の分解及び雑菌類の殺菌効率をさらに向上させることができる方法を提供することができる。また、一重項酸素の寿命は極めて短く、有害性のあるオゾンも用いていないので、残留毒性の危険性が無く、安全な臭気成分の分解又は殺菌方法を提供することができる。なお、光源は可視光や太陽光を利用することができ、これらを利用すると光源に関するランニングコストを殆ど必要とすることが無い。   According to the configuration of (5) above, it is possible to provide a method capable of further improving the decomposition of odor components and the sterilization efficiency of miscellaneous bacteria as compared with the conventional case. In addition, since the lifetime of singlet oxygen is extremely short and no harmful ozone is used, there is no risk of residual toxicity, and a safe method for decomposing or sterilizing odorous components can be provided. Note that visible light or sunlight can be used as the light source, and when these are used, running costs relating to the light source are hardly required.

(6) 本発明の空気清浄装置は、臭気成分又は雑菌類を含む空気から、清浄な空気と臭気成分又は雑菌類とに分別するスクラバーと、前記臭気成分又は雑菌類を含む空気をスクラバー内部に送入する送入器とを有する空気清浄装置であって、前記スクラバーで分別された臭気成分又は雑菌類を分解又は殺菌する(1)〜(4)のいずれか1に記載の分解又は殺菌装置を有することを特徴とする。 (6) The air purifying apparatus of the present invention includes a scrubber for separating clean air and odorous components or bacteria from air containing odorous components or germs, and air containing the odorous components or germs inside the scrubber. It is an air purifier which has an in-feeder which sends in, Comprising: The decomposition | disassembly or disinfection apparatus of any one of (1)-(4) which decomposes | disassembles or disinfects the odor component or miscellaneous bacteria sorted by the said scrubber It is characterized by having.

上記(6)の構成によれば、臭気成分の分解及び雑菌類の殺菌効率をさらに向上させることができる空気清浄装置を提供することができる。また、分解又は殺菌装置で用いる一重項酸素の寿命は極めて短く、さらに、有害性のあるオゾンを用いていないので、残留毒性の危険性が無く、安全な空気清浄装置を提供することができる。   According to the configuration of (6) above, it is possible to provide an air cleaning device that can further improve the decomposition efficiency of odor components and the sterilization efficiency of various germs. In addition, the lifetime of singlet oxygen used in the decomposition or sterilization apparatus is extremely short, and furthermore, since no harmful ozone is used, there is no risk of residual toxicity, and a safe air cleaning apparatus can be provided.

<第1実施形態>
以下、図面を参照しつつ、本発明の第1実施形態に係る臭気物質分解装置について説明する。図1は、本発明の第1実施形態に係る臭気物質分解装置を示す模式図である。
<First Embodiment>
Hereinafter, an odor substance decomposing apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an odor substance decomposing apparatus according to the first embodiment of the present invention.

図1において、臭気物質分解装置1は、気体供給装置2と、処理槽6と、光照射装置9と、回収装置11とを有している。   In FIG. 1, the odor substance decomposition apparatus 1 includes a gas supply device 2, a treatment tank 6, a light irradiation device 9, and a recovery device 11.

気体供給装置2は、流速計3と、鶏ふん5が配置されている臭気発生装置4とを有している。流速計3は、臭気発生装置4における鶏ふん5が収容されている空間と管を介して連通しており、気体供給装置2の上流側に設置されている。この流速計3は、気体供給装置2に供給される気体の流量を測定するものである。臭気発生装置4は、流速計3を通過した送風12と、鶏ふん5とから臭気を発生させるものである。   The gas supply device 2 includes an anemometer 3 and an odor generating device 4 in which chicken poultry 5 is disposed. The anemometer 3 communicates with the space in which the chicken dung 5 in the odor generating device 4 is accommodated via a pipe, and is installed on the upstream side of the gas supply device 2. This flow meter 3 measures the flow rate of the gas supplied to the gas supply device 2. The odor generating device 4 generates odor from the blower 12 that has passed through the anemometer 3 and the chicken poultry 5.

処理槽6は、臭気発生装置4の鶏ふん5が収容されている空間と管を介して連通しており、前記管の少なくとも一端が浸漬される程度の量の光増感色素溶液7を内部に有している。光増感色素溶液7には、光増感色素が含まれており、光増感色素として、例えば、メチレンブルー、チオニン、ローズベンガル、エリトロシン、エオシンY、フルオレッセイン、プロフラビン、フルオレノン、ローダミンB、テトラフェニルポルフィリン、クロロフィル(葉緑素)類、クロロフィリン、ヘモグロビン類、ヘミン等の有機色素およびその誘導体を好適に用いることができる。また、フラーレン類としては、C60やC70を好適に用いることができる。気体8は、気体供給装置2から供給された気体から、光増感色素溶液7に溶解した臭気成分が除去されたもの又は除去途中のものである。   The treatment tank 6 communicates with a space in which the chicken poultry 5 of the odor generating device 4 is accommodated via a tube, and contains a photosensitizing dye solution 7 in such an amount that at least one end of the tube is immersed therein. Have. The photosensitizing dye solution 7 contains a photosensitizing dye. Examples of the photosensitizing dye include methylene blue, thionine, rose bengal, erythrocin, eosin Y, fluorescein, proflavine, fluorenone, and rhodamine B. Organic pigments such as tetraphenylporphyrin, chlorophyll (chlorophyll), chlorophyllin, hemoglobin, hemin, and derivatives thereof can be suitably used. Moreover, as fullerenes, C60 and C70 can be used suitably. The gas 8 is obtained by removing or removing odor components dissolved in the photosensitizing dye solution 7 from the gas supplied from the gas supply device 2.

光照射装置9は、光増感色素溶液7へ白色光10を照射するものである。なお、光増感色素としてローズベンガルを用いる際に照射する光の波長は、好ましくは490〜580nmである。また、光照射装置9にはLEDなどの光源を使用することができ、光照射装置9の代わりに太陽光を用いてもよい。   The light irradiation device 9 irradiates the photosensitizing dye solution 7 with white light 10. In addition, the wavelength of the light irradiated when using rose bengal as the photosensitizing dye is preferably 490 to 580 nm. Moreover, light sources, such as LED, can be used for the light irradiation apparatus 9, and instead of the light irradiation apparatus 9, sunlight may be used.

回収装置11は、光増感色素溶液7に溶解した臭気成分が除去された気体8を回収するもので、処理槽6の内部と連通している。   The recovery device 11 recovers the gas 8 from which the odor component dissolved in the photosensitizing dye solution 7 is removed, and communicates with the inside of the treatment tank 6.

次に、本発明の第1実施形態に係る臭気物質分解装置の臭気成分の分解方法について説明する。気体供給装置2へ供給された送風12は、流速計2を通過し、臭気発生装置4で鶏ふん5と接触して臭気成分を発生する。発生した臭気成分を含む気体は、処理槽6の光増感色素溶液7へ直接供給され、気体中の臭気成分が光増感色素溶液7へ溶解する。この溶解によって臭気成分が除去された気体8は、処理槽6から回収装置11へ移動し、回収装置11で回収される。   Next, a method for decomposing odor components of the odor substance decomposing apparatus according to the first embodiment of the present invention will be described. The blower 12 supplied to the gas supply device 2 passes through the anemometer 2 and comes into contact with the chicken dung 5 by the odor generator 4 to generate an odor component. The gas containing the generated odor component is directly supplied to the photosensitizing dye solution 7 in the treatment tank 6, and the odor component in the gas is dissolved in the photosensitizing dye solution 7. The gas 8 from which the odor component is removed by this dissolution moves from the treatment tank 6 to the recovery device 11 and is recovered by the recovery device 11.

ここで、処理槽6の光増感色素溶液7内での臭気成分の除去について、詳細に説明する。光照射装置9から発光された白色光10が光増感色素へ照射され、光増感色素を基底状態から一重項励起状態、更に三重項励起状態とし、そのエネルギーが気体供給装置2から供給された気体中に存在する基底状態の酸素分子に与えられ、一重項酸素が発生する。そして、発生した一重項酸素と溶解している臭気成分とが接触し、臭気成分が分解される。なお、処理槽6の光増感色素溶液7へマイクロバブルを供給すると、臭気成分の分解をさらに促進させることができる。   Here, the removal of the odor component in the photosensitizing dye solution 7 of the treatment tank 6 will be described in detail. White light 10 emitted from the light irradiation device 9 is irradiated to the photosensitizing dye, and the photosensitizing dye is changed from the ground state to the singlet excited state and further to the triplet excited state, and the energy is supplied from the gas supply device 2. Singlet oxygen is generated by being given to ground state oxygen molecules present in the gas. Then, the generated singlet oxygen comes into contact with the dissolved odor component, and the odor component is decomposed. In addition, when microbubbles are supplied to the photosensitizing dye solution 7 in the treatment tank 6, decomposition of odor components can be further promoted.

なお、一重項酸素は活性酸素の一種で、極めて不安定な物質であり、強力な酸化作用を有する。しかしながら、その寿命が、水中では半減期で10−6秒、空気中では10−3秒と極めて短く、水中で数センチメートル以内、空気中では数十センチメートル以内の範囲でのみ強力な酸化作用が発生し、それより離れた場所では普通の酸素に戻る。従って、一重項酸素による残留毒性の危険性が無く、また、処理槽6の密閉容器外部へ飛び出す心配も無い。 Note that singlet oxygen is a kind of active oxygen and is an extremely unstable substance and has a strong oxidizing action. However, its lifetime is extremely short, with a half-life of 10 −6 seconds in water and 10 −3 seconds in air, and strong oxidizing action only within a few centimeters in water and within a few tens of centimeters in air. Will occur and will return to normal oxygen at further distances. Therefore, there is no risk of residual toxicity due to singlet oxygen, and there is no fear of jumping out of the sealed container of the processing tank 6.

本実施形態によれば、一重項酸素と液体に溶解した臭気成分とが気液接触するため、より確実に臭気成分と一重項酸素とを接触させることができ、臭気成分の分解効率をさらに向上させる装置1及び臭気成分を分解する方法を提供できる。また、一重項酸素の寿命は極めて短く、有害性のあるオゾンも用いていないので、残留毒性の危険性が無く、さらに、処理槽6の密閉容器外部へ一重項酸素が飛び出すことがないので、安全な臭気物質分解装置1及び臭気物質を分解する方法を提供することができる。また、光源9として太陽光や白色光を利用することができ、光増感色素溶液7として水に光増感色素を溶解したものを利用することができる。これらを利用すると、光源9や溶液7に関するランニングコストを殆ど必要とすることが無く、環境汚染の心配もない。   According to this embodiment, the singlet oxygen and the odor component dissolved in the liquid are in gas-liquid contact, so that the odor component and the singlet oxygen can be contacted more reliably, and the decomposition efficiency of the odor component is further improved. It is possible to provide a device 1 for decomposing and a method for decomposing odor components. In addition, since the lifetime of singlet oxygen is extremely short and no harmful ozone is used, there is no risk of residual toxicity, and furthermore, singlet oxygen does not jump out of the sealed container of the treatment tank 6, A safe odor substance decomposing apparatus 1 and a method for decomposing odor substances can be provided. Moreover, sunlight or white light can be used as the light source 9, and a photosensitizing dye solution 7 in which a photosensitizing dye is dissolved in water can be used. When these are used, the running cost for the light source 9 and the solution 7 is hardly required, and there is no concern about environmental pollution.

<第2実施形態>
次に、本発明の第2実施形態に係る空気清浄装置について説明する。図2は、本発明に係る空気清浄装置を示す模式図である。
Second Embodiment
Next, an air cleaning apparatus according to a second embodiment of the present invention will be described. FIG. 2 is a schematic view showing an air cleaning device according to the present invention.

図2において、空気清浄装置21は、フィルター22と、モーター23、26と、スクラバー24と、空気調和機27と、臭気物質分解・殺菌装置28と、マイクロバブル32を発生させるマイクロバブル発生装置29とからなる。   In FIG. 2, the air cleaning device 21 includes a filter 22, motors 23 and 26, a scrubber 24, an air conditioner 27, an odor substance decomposition / sterilization device 28, and a microbubble generator 29 that generates microbubbles 32. It consists of.

フィルター22は、空気清浄装置21の入口に設置されており、粒子の大きい塵埃を除去するものである。   The filter 22 is installed at the inlet of the air cleaning device 21 and removes dust with large particles.

モーター23は、汚染空気33を空気清浄装置21に吸入し、フィルター22によって粒子の大きい塵埃が除去された汚染空気33をスクラバ−24内部へ送入するもので、フィルター22の下流側に設置されている。   The motor 23 sucks the contaminated air 33 into the air cleaning device 21 and sends the contaminated air 33 from which dust with large particles is removed by the filter 22 into the scrubber 24, and is installed on the downstream side of the filter 22. ing.

スクラバー24は、汚染空気33に洗浄液25を噴射して、汚染空気33に含まれる臭気成分及び雑菌類を分別するものである。   The scrubber 24 sprays the cleaning liquid 25 onto the contaminated air 33 to separate odor components and various germs contained in the contaminated air 33.

モーター26は、スクラバー24で噴射された洗浄液25を臭気物質分解・殺菌装置28内部へ送入するもので、スクラバー24と臭気物質分解・殺菌装置28との間に設置されている。   The motor 26 feeds the cleaning liquid 25 sprayed by the scrubber 24 into the odor substance decomposition / sterilization apparatus 28, and is installed between the scrubber 24 and the odor substance decomposition / sterilization apparatus 28.

臭気物質分解・殺菌装置28は、内部に光増感色素溶液30を有しているものである。可視光・太陽光31が光増感色素溶液30へ照射されると、光増感色素が基底状態から一重項励起状態、更に三重項励起状態となり、そのエネルギーがマイクロバブル32内に存在する基底状態の酸素分子に与えられ、一重項酸素が発生する。   The odor substance decomposing / sterilizing device 28 has a photosensitizing dye solution 30 therein. When visible light / sunlight 31 is irradiated to the photosensitizing dye solution 30, the photosensitizing dye is changed from the ground state to a singlet excited state and further to a triplet excited state, and the energy of the photosensitizing dye is present in the microbubbles 32. It is given to oxygen molecules in the state, and singlet oxygen is generated.

マイクロバブル発生装置29は、スクラバー24内の空気からマイクロバブル32を発生させるものである。発生したマイクロバブル32が臭気物質分解・殺菌装置28へ送られると、臭気物質分解・殺菌装置28内の臭気物質の分解及び殺菌が促進される。   The microbubble generator 29 generates microbubbles 32 from the air in the scrubber 24. When the generated microbubbles 32 are sent to the odorous substance decomposition / sterilization apparatus 28, decomposition and sterilization of the odorous substance in the odorous substance decomposition / sterilization apparatus 28 are promoted.

空気調和機27は、スクラバー24の上部と連通している管を有し、スクラバー24から送入された空気の清浄度・温度・湿度・圧力などを指示された範囲内に調節して保つものである。   The air conditioner 27 has a pipe communicating with the upper part of the scrubber 24, and adjusts and maintains the cleanliness, temperature, humidity, pressure, etc. of the air sent from the scrubber 24 within the specified range. It is.

次に、空気清浄装置21の作動を説明する。汚染空気33は、モーター23によって空気清浄機21に吸入されると、フィルター22によって粒子の大きい塵埃が除去され、その後さらにモーター23によってスクラバー24内部へ送入される。スクラバー24内では、汚染空気33に洗浄液25が噴射され、汚染空気33に含まれる臭気成分及び雑菌類が洗浄液25に溶解し分別される。臭気成分及び雑菌類が分別及び除去された空気は、空気調和機27へ送入され、清浄度・温度・湿度・圧力などが調整された後、空気清浄機21外部へ放出される。一方、スクラバー24内で分別された臭気成分及び雑菌類は、洗浄液25に溶解した状態でモーター26によって臭気物質分解・殺菌装置28へ送入される。   Next, the operation of the air cleaning device 21 will be described. When the contaminated air 33 is sucked into the air purifier 21 by the motor 23, dust with large particles is removed by the filter 22, and then is further fed into the scrubber 24 by the motor 23. In the scrubber 24, the cleaning liquid 25 is injected into the contaminated air 33, and the odor components and the various germs contained in the contaminated air 33 are dissolved and separated in the cleaning liquid 25. The air from which the odor components and bacteria have been separated and removed is sent to the air conditioner 27, and after the cleanliness, temperature, humidity, pressure and the like are adjusted, the air is discharged to the outside of the air cleaner 21. On the other hand, the odor component and the various germs separated in the scrubber 24 are sent to the odor substance decomposition / sterilization device 28 by the motor 26 in a state dissolved in the cleaning liquid 25.

臭気物質分解・殺菌装置28内では、可視光・太陽光31が光増感色素溶液30に照射され、光増感色素を基底状態から一重項励起状態、更に三重項励起状態とし、そのエネルギーがマイクロバブル32内に存在する基底状態の酸素分子に与えられ一重項酸素が発生する。発生した一重項酸素と臭気物質分解・殺菌装置28内に送入された臭気成分及び雑菌類とが接触し、臭気成分の分解及び雑菌類の殺菌が行われる。なお、臭気物質分解・殺菌装置28内では、マイクロバブル発生装置29からマイクロバブル32が供給されているので、臭気成分の分解及び雑菌類の殺菌がさらに促進される。また、マイクロバブル32は、スクラバー24内の空気を利用して発生させたものであり、汚染空気33が有効に利用されている。臭気成分の分解及び雑菌類の殺菌が行われた光増感色素溶液30は、スクラバー24に送られ、洗浄液25として繰返し利用される。なお、光増感色素として、例えば、メチレンブルー、チオニン、ローズベンガル、エリトロシン、エオシンY、フルオレッセイン、プロフラビン、フルオレノン、ローダミンB、テトラフェニルポルフィリン、クロロフィル(葉緑素)類、クロロフィリン、ヘモグロビン類、ヘミン等の有機色素およびその誘導体を好適に用いることができる。また、フラーレン類として、C60やC70を好適に用いることができる。さらに、光増感色素溶液30として、水又は水を主成分とする溶液に上記光増感色素を溶解したものを用いることができる。   In the odor substance decomposition / sterilization apparatus 28, visible light / sunlight 31 is irradiated to the photosensitizing dye solution 30 to change the photosensitizing dye from the ground state to the singlet excited state, and further to the triplet excited state. Singlet oxygen is generated by being given to the ground state oxygen molecules present in the microbubbles 32. The generated singlet oxygen comes into contact with the odorous components and germs sent into the odorous substance decomposition / sterilization device 28, and the odorous components are decomposed and the germs are sterilized. In the odor substance decomposition / sterilization apparatus 28, since the microbubbles 32 are supplied from the microbubble generator 29, decomposition of odor components and sterilization of various bacteria are further promoted. The microbubbles 32 are generated using the air in the scrubber 24, and the contaminated air 33 is effectively used. The photosensitizing dye solution 30 that has been subjected to decomposition of odor components and sterilization of various fungi is sent to the scrubber 24 and repeatedly used as the cleaning liquid 25. Examples of photosensitizing dyes include methylene blue, thionine, rose bengal, erythrosine, eosin Y, fluorescein, proflavine, fluorenone, rhodamine B, tetraphenylporphyrin, chlorophylls, chlorophyrin, hemoglobins, hemin. Organic dyes such as these and their derivatives can be preferably used. Moreover, C60 and C70 can be used suitably as fullerenes. Further, as the photosensitizing dye solution 30, water or a solution containing water as a main component and the photosensitizing dye dissolved therein can be used.

本実施形態によれば、臭気物質分解・殺菌装置28で、一重項酸素と汚染空気33に含まれている臭気成分及び雑菌類とが気液又は液液接触するため、より確実に一重項酸素と臭気成分及び雑菌類とを接触させることができ、臭気成分の分解及び雑菌類の殺菌効率をさらに向上させることができる空気清浄装置21を提供することができる。また、臭気物質分解・殺菌装置28で用いられる一重項酸素の寿命は極めて短く、さらに、有害性のあるオゾンを用いていないので、残留毒性の危険性が無く、安全な空気清浄装置21を提供することができる。   According to the present embodiment, the odorous substance decomposition / sterilization device 28 makes the singlet oxygen and the odorous components and bacteria contained in the contaminated air 33 come into gas-liquid or liquid-liquid contact. It is possible to provide the air purifying device 21 that can contact the odor component and the various germs and further improve the decomposition of the odor component and the sterilization efficiency of the various germs. In addition, the lifetime of singlet oxygen used in the odorous substance decomposition / sterilization device 28 is extremely short, and since no harmful ozone is used, there is no risk of residual toxicity and a safe air cleaning device 21 is provided. can do.

次に、本発明の第1実施形態に係る臭気物質分解装置と同様の構成の臭気物質分解・殺菌装置の実施例を説明する。   Next, an example of the odor substance decomposition / sterilization apparatus having the same configuration as that of the odor substance decomposition apparatus according to the first embodiment of the present invention will be described.

本発明の第1実施形態に係る臭気物質分解装置とほぼ同様の構成の臭気物質分解・殺菌装置を用いて、臭気成分の分解量を測定した。実施例1及び2で用いた臭気物質分解・殺菌装置は、気体供給装置を用いず、あらかじめ特定の臭気成分をメタノール水溶液に溶解させ、この溶液を用いた光増感色素溶液を処理槽内部の液体として用いる点が、第1実施形態に係る臭気物質分解装置と異なっている。なお、実施例1及び2において、光増感色素としてローズベンガル(RB)を用いた10μM RB溶液300mLを、処理槽内部の液体に用いた。また、RB溶液に50mL/分で気泡を送入した。   The decomposition amount of the odor component was measured using the odor substance decomposition / sterilization apparatus having substantially the same configuration as the odor substance decomposition apparatus according to the first embodiment of the present invention. The odor substance decomposition / sterilization apparatus used in Examples 1 and 2 does not use a gas supply apparatus, but a specific odor component is dissolved in an aqueous methanol solution in advance, and a photosensitizing dye solution using this solution is dissolved inside the treatment tank. The point used as a liquid is different from the odor substance decomposition apparatus according to the first embodiment. In Examples 1 and 2, 300 mL of a 10 μM RB solution using rose bengal (RB) as a photosensitizing dye was used as the liquid inside the processing tank. In addition, bubbles were fed into the RB solution at 50 mL / min.

(実施例1)
臭気成分として、メチルメルカプタン、硫化メチル及び二硫化メチルを50(%)v/vメタノール水溶液に溶解させ、メチルメルカプタン濃度100μg/L、硫化メチル濃度186μg/L及び二硫化メチル100μg/LのRB溶液を作成した。このRB溶液に白色光を照射し、RB溶液の臭気成分濃度の経時変化(10分後、20分後、30分後、60分後)をガスクロマトグラフィーで測定した。また、RB溶液に白色光を照射しなかった場合のRB溶液の臭気成分濃度の経時変化(10分後、20分後、30分後、60分後)をガスクロマトグラフィーで測定した。なお、測定は、各時間における処理槽内部の液体3mLを採取し、10(%)v/vメタノール水溶液で5倍に希釈させたものをヘッドスペースサンプラーで気化させ、ガスクロマトグラフィーで分析した。得られた結果を図3〜図5に示す。
Example 1
As an odor component, methyl mercaptan, methyl sulfide and methyl disulfide are dissolved in a 50 (%) v / v methanol aqueous solution, and an RB solution having a methyl mercaptan concentration of 100 μg / L, a methyl sulfide concentration of 186 μg / L and a methyl disulfide concentration of 100 μg / L. It was created. The RB solution was irradiated with white light, and the change over time in the odor component concentration of the RB solution (10 minutes, 20 minutes, 30 minutes, and 60 minutes later) was measured by gas chromatography. Moreover, the time-dependent change (10 minutes, 20 minutes, 30 minutes, and 60 minutes later) of the odor component density | concentration of RB solution when not irradiating white light to RB solution was measured with the gas chromatography. In the measurement, 3 mL of liquid inside the treatment tank at each time was collected, diluted 5 times with a 10 (%) v / v aqueous methanol solution, vaporized with a headspace sampler, and analyzed by gas chromatography. The obtained results are shown in FIGS.

実施例1で用いたヘッドスペースサンプラー及びガスクロマトグラフィーの測定条件を以下に示す。
〔ヘッドスペースサンプラー(7694 Headspace sampler Agilent製)条件〕
オーブン温度:60℃
ループ温度:120℃
transfer line 温度:220℃
Incubation時間:45分
〔ガスクロマトグラフィー測定条件〕
ガスクロマトグラフィー:6890N(Agilent製)
カラム:DB−1(内径0.32mm、長さ60m、膜厚5μm) (Agilent製)
昇温条件:35℃で5分間保持した後、250℃まで昇温(昇温速度10℃/分)し、250℃で3分間保持
試料注入口温度:220℃
検出器:5380 PFPD(O−I−Analytical製)
検出温度:250℃
キャリアガス流速:ヘリウム1.5mL/分
The measurement conditions of the headspace sampler and gas chromatography used in Example 1 are shown below.
[Head space sampler (made by 7694 Headspace sampler Agilent) conditions]
Oven temperature: 60 ° C
Loop temperature: 120 ° C
transfer line Temperature: 220 ° C
Incubation time: 45 minutes [Gas chromatography measurement conditions]
Gas chromatography: 6890N (manufactured by Agilent)
Column: DB-1 (inner diameter 0.32 mm, length 60 m, film thickness 5 μm) (manufactured by Agilent)
Temperature raising condition: held at 35 ° C. for 5 minutes, then raised to 250 ° C. (temperature raising rate 10 ° C./min) and held at 250 ° C. for 3 minutes Sample inlet temperature: 220 ° C.
Detector: 5380 PFPD (manufactured by O-I-Analytical)
Detection temperature: 250 ° C
Carrier gas flow rate: Helium 1.5mL / min

(実施例2)
臭気成分として、インドール及びスカトールを10(%)v/vメタノール水溶液に溶解させ、インドール濃度10.6mg/L、スカトール濃度12.5mg/LのRB溶液を作成した。このRB溶液に白色光を照射し、RB溶液の臭気成分濃度の経時変化(10分後、20分後、30分後、60分後)を液体クロマトグラフィーで測定した。また、RB溶液に白色光を照射しなかった場合及び処理槽内部の溶液にインドール濃度10.6mg/L、スカトール濃度12.5mg/Lの10(%)v/vのメタノール水溶液300mLを使用した場合の処理槽内部の溶液の臭気成分濃度の経時変化(10分後、20分後、30分後、60分後)を液体クロマトグラフィーで測定した。なお、測定は、各時間の処理槽内部の液体3mLを採取し、10(%)v/vメタノール水溶液で5倍に希釈させたものを液体クロマトグラフィーで分析した。得られた結果を図6及び図7に示す。
(Example 2)
As odor components, indole and skatole were dissolved in a 10 (%) v / v aqueous methanol solution to prepare an RB solution having an indole concentration of 10.6 mg / L and a skatole concentration of 12.5 mg / L. This RB solution was irradiated with white light, and the change over time in the odor component concentration of the RB solution (10 minutes, 20 minutes, 30 minutes, and 60 minutes later) was measured by liquid chromatography. In addition, when the RB solution was not irradiated with white light, and 300 mL of a 10 (%) v / v aqueous methanol solution having an indole concentration of 10.6 mg / L and a skatole concentration of 12.5 mg / L was used as the solution inside the treatment tank. The change with time in the odor component concentration of the solution inside the treatment tank (after 10 minutes, 20 minutes, 30 minutes, and 60 minutes) was measured by liquid chromatography. In addition, the measurement collected liquid 3mL inside the processing tank of each time, and analyzed by liquid chromatography what diluted 5 times with 10 (%) v / v methanol aqueous solution. The obtained results are shown in FIGS.

実施例2で用いた液体クロマトグラフィーの測定条件を以下に示す。
〔液体クロマトグラフィー測定条件〕
カラム:JASCO Finepak SIL C−18(内径4.6mm、長さ250mm、膜厚5μm)
カラム温度:40℃
溶離液(移動相):メタノール:水=45:55
流速:1mL/分
検出器:UV−8000(TOYOSODA製)
検出波長:UV280nm
The measurement conditions of liquid chromatography used in Example 2 are shown below.
[Measurement conditions for liquid chromatography]
Column: JASCO Finepak SIL C-18 (inner diameter 4.6 mm, length 250 mm, film thickness 5 μm)
Column temperature: 40 ° C
Eluent (mobile phase): methanol: water = 45: 55
Flow rate: 1 mL / min Detector: UV-8000 (manufactured by TOYOSODA)
Detection wavelength: UV280nm

図3〜図7から、RB溶液に白色光線を照射した場合は臭気成分が分解され、メチルメルカプタン、硫化メチル及びスカトールは供給量のほぼ全てが分解されていることがわかる。一方、RB溶液に光線を照射しなかった場合や光増感色素(ローズベンガル)を使用しなかった場合は、臭気成分がほとんど分解されていないことがわかる。従って、臭気成分の分解には、光増感色素及び光線が必要であり、いずれかが欠けると臭気成分がほとんど分解されないことがわかる。   3 to 7, it can be seen that when the RB solution is irradiated with white light, the odor component is decomposed, and methyl mercaptan, methyl sulfide and skatole are decomposed almost entirely. On the other hand, when the RB solution is not irradiated with light or when a photosensitizing dye (rose bengal) is not used, it is understood that the odor component is hardly decomposed. Therefore, it can be seen that a photosensitizing dye and a light beam are necessary for the decomposition of the odor component, and if any of them is missing, the odor component is hardly decomposed.

(実施例3)
次に、本発明の第1実施形態に係る臭気物質分解装置と同様の構成の臭気物質分解・殺菌装置を用いて、家畜の排泄物に含まれる硫化水素、メチルメルカプタン、硫化メチル、インドール及びスカトールの濃度を測定した。
(Example 3)
Next, hydrogen sulfide, methyl mercaptan, methyl sulfide, indole and skatole contained in livestock excrement using the odor substance decomposition / sterilization apparatus having the same configuration as the odor substance decomposition apparatus according to the first embodiment of the present invention The concentration of was measured.

臭気発生装置に配置する家畜の排泄物は、下記の方法で作製した排泄物を用いた。まず、鶏の排泄物320gに純水120mLを加え、均一になるように混合した。実験を行うまで、この混合物を液体窒素で瞬間凍結して保存後、冷蔵庫で解凍した。解凍した鶏の排泄物50gを臭気発生装置に配置した。   The excrement produced by the following method was used as the excrement of livestock to be placed in the odor generator. First, 120 mL of pure water was added to 320 g of chicken excrement, and mixed uniformly. The mixture was snap frozen in liquid nitrogen, stored and then thawed in the refrigerator until the experiment was performed. 50 g of thawed chicken excrement was placed in the odor generator.

本実施例では、気体供給装置へ100mL/分で10時間通気し、鶏の排泄物から発生した臭気成分を含む気体を処理槽内部へ供給した。処理槽内部の液体は、10μM RB溶液1400mLを用いた。そして、RB溶液に白色光を照射した場合と照射しなかった場合のRB溶液の硫化水素、メチルメルカプタン、硫化メチル、インドール及びスカトールの濃度を測定した。なお、硫化水素、メチルメルカプタン及び硫化メチルの濃度は、ガスクロマトグラフィーで測定し、実施例1と同様の条件で行った。また、インドール及びスカトールは、液体クロマトグラフィーで測定し、実施例2と同様の条件で行った。得られた結果を図8に示す。図8(a)は、RB溶液に白色光を照射しなかった場合のガスクロマトグラフィーの測定結果を示す図、(b)は、RB溶液に白色光を照射した場合のガスクロマトグラフィーの測定結果を示す図である。なお、インドールの発生量は0に近く、スカトールは検出不能な微量であったため、インドール及びスカトールの結果を省略する。   In this example, the gas supply apparatus was aerated at 100 mL / min for 10 hours, and a gas containing odor components generated from chicken excrement was supplied into the treatment tank. As the liquid inside the treatment tank, 1400 mL of 10 μM RB solution was used. The concentrations of hydrogen sulfide, methyl mercaptan, methyl sulfide, indole and skatole in the RB solution when the RB solution was irradiated with white light and when it was not irradiated were measured. The concentrations of hydrogen sulfide, methyl mercaptan, and methyl sulfide were measured by gas chromatography and performed under the same conditions as in Example 1. Indole and skatole were measured under the same conditions as in Example 2 as measured by liquid chromatography. The obtained result is shown in FIG. FIG. 8A is a diagram showing a gas chromatography measurement result when the RB solution is not irradiated with white light, and FIG. 8B is a gas chromatography measurement result when the RB solution is irradiated with white light. FIG. Since the amount of indole generated is close to 0 and skatole was a trace amount that cannot be detected, the results of indole and skatole are omitted.

図8から、鶏の排泄物から硫化水素が多量に発生していることがわかる(図8(a)参照)。また、RB溶液に白色光を照射した場合は発生した硫化水素の殆どが分解されている(図8(b)参照)が、RB溶液に白色光を照射しなかった場合は硫化水素が分解されていないことがわかる(図8(a)参照)。従って、本発明に係る実施形態は、家畜排泄物から多量に発生する硫化水素の分解に効果的であることがわかる。また、メチルメルカプタンは硫化メチルよりも発生量が多く、全て分解されていることがわかる。   It can be seen from FIG. 8 that a large amount of hydrogen sulfide is generated from chicken excrement (see FIG. 8A). When the RB solution is irradiated with white light, most of the generated hydrogen sulfide is decomposed (see FIG. 8B), but when the RB solution is not irradiated with white light, the hydrogen sulfide is decomposed. (See FIG. 8 (a)). Therefore, it turns out that embodiment which concerns on this invention is effective in decomposition | disassembly of the hydrogen sulfide generated in large quantities from livestock excrement. It can also be seen that methyl mercaptan is more generated than methyl sulfide and is all decomposed.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。例えば、第1実施形態において、光照射装置を用いずに太陽光を用いると、光照射装置を設置する必要がない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples. For example, in the first embodiment, when sunlight is used without using the light irradiation device, it is not necessary to install the light irradiation device.

本発明の第1実施形態に係る臭気物質分解装置を示す模式図である。It is a mimetic diagram showing the odor substance decomposition device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る空気清浄装置を示す模式図である。It is a schematic diagram which shows the air purifying apparatus which concerns on 2nd Embodiment of this invention. 本発明の実施例1に係るメチルメルカプタン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the methyl mercaptan density | concentration which concerns on Example 1 of this invention. 本発明の実施例1に係る硫化メチル濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the methyl sulfide density | concentration which concerns on Example 1 of this invention. 本発明の実施例1に係る二硫化メチル濃度の経時変化を示す図である。It is a figure which shows a time-dependent change of the methyl disulfide density | concentration which concerns on Example 1 of this invention. 本発明の実施例2に係るインドール濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the indole density | concentration which concerns on Example 2 of this invention. 本発明の実施例2に係るスカトール濃度の経時変化を示す図である。It is a figure which shows a time-dependent change of the skatole density | concentration which concerns on Example 2 of this invention. (a)は、本発明の実施例3に係るRB溶液に白色光を照射しなかった場合のガスクロマトグラフィーの測定結果を示す図、(b)は、本発明の実施例3に係るRB溶液に白色光を照射した場合のガスクロマトグラフィーの測定結果を示す図である。(A) is a figure which shows the measurement result of the gas chromatography at the time of not irradiating white light to RB solution which concerns on Example 3 of this invention, (b) is RB solution which concerns on Example 3 of this invention It is a figure which shows the measurement result of the gas chromatography at the time of irradiating to white light.

符号の説明Explanation of symbols

1 臭気物質分解装置
2 気体供給装置
3 流速計
4 臭気発生装置
5 鶏ふん
6 処理槽
7 光増感色素溶液
8 気体
9 光照射装置
10 白色光
11 回収装置
12 送風
21 空気清浄装置
22 フィルター
23 モーター
24 スクラバー
25 洗浄液
26 モーター
27 空気調和機
28 臭気物質分解・殺菌装置
29 マイクロバブル発生装置
30 ローズベンガル溶液
31 可視光、太陽光
32 マイクロバブル
33 汚染空気
34 浄化空気





DESCRIPTION OF SYMBOLS 1 Odor substance decomposition apparatus 2 Gas supply apparatus 3 Current meter 4 Odor generation apparatus 5 Chicken dung 6 Processing tank 7 Photosensitizing dye solution 8 Gas 9 Light irradiation apparatus 10 White light 11 Recovery apparatus 12 Air blow 21 Air cleaning apparatus 22 Filter 23 Motor 24 Scrubber 25 Cleaning liquid 26 Motor 27 Air conditioner 28 Odor substance decomposition and sterilization device 29 Micro bubble generator 30 Rose Bengal solution 31 Visible light, sunlight 32 Micro bubble 33 Contaminated air 34 Purified air





Claims (6)

一重項酸素を臭気成分又は雑菌類と接触させて臭気成分を分解又は雑菌類を殺菌する分解又は殺菌装置であって、
光増感色素を含んでいる液体を内部に有する処理槽と、
前記臭気成分又は前記雑菌類を含む気体又は液体を前記処理槽の前記液体中に供給する供給器とを有していることを特徴とする分解又は殺菌装置。
A decomposition or sterilization device for contacting singlet oxygen with an odor component or a bacterium to decompose the odor component or sterilize the bacterium,
A treatment tank having a liquid containing a photosensitizing dye therein;
A decomposing or sterilizing apparatus comprising: a supply unit configured to supply a gas or a liquid containing the odor component or the various bacteria into the liquid of the treatment tank.
前記光増感色素に光線を照射する光源を有していることを特徴とする請求項1に記載の分解又は殺菌装置。   The decomposition or sterilization apparatus according to claim 1, further comprising a light source that irradiates the photosensitizing dye with light. 酸素を含むマイクロバブルを前記処理槽の前記液体中に供給するマイクロバブル供給器を有していることを特徴とする請求項1又は2に記載の分解又は殺菌装置。   3. The decomposition or sterilization apparatus according to claim 1, further comprising a microbubble supply device that supplies microbubbles containing oxygen into the liquid in the treatment tank. 前記処理槽内部の前記液体が、水又は水を主成分とする溶液であり、前記酸素を含むマイクロバブルが、空気を用いて発生させたものであることを特徴とする請求項3に記載の分解又は殺菌装置。   The liquid in the treatment tank is water or a solution containing water as a main component, and the microbubbles containing oxygen are generated using air. Decomposition or sterilization equipment. 光増感色素を含んでいる液体に光線を照射し、一重項酸素を発生させる工程と、
前記一重項酸素と臭気成分又は雑菌類とを気液又は液液接触させる工程とからなることを特徴とする臭気成分を分解又は雑菌類を殺菌する方法。
Irradiating a liquid containing a photosensitizing dye with light to generate singlet oxygen;
A method of decomposing an odor component or disinfecting a bacterium, comprising a step of bringing the singlet oxygen and an odor component or a bacterium into contact with each other in a gas-liquid or liquid-liquid contact.
臭気成分又は雑菌類を含む空気から、清浄な空気と臭気成分又は雑菌類とに分別するスクラバーと、前記臭気成分又は雑菌類を含む空気をスクラバー内部に送入する送入器とを有する空気清浄装置であって、
前記スクラバーで分別された臭気成分又は雑菌類を分解又は殺菌する請求項1〜4のいずれか1項に記載の分解又は殺菌装置を有することを特徴とする空気清浄装置。






















An air cleaner having a scrubber for separating clean air and odor components or germs from air containing odor components or germs, and a feeder for feeding the air containing the odor components or germs into the scrubber. A device,
An air cleaning apparatus comprising the decomposition or sterilization apparatus according to any one of claims 1 to 4, which decomposes or sterilizes odor components or various fungi sorted by the scrubber.






















JP2007133989A 2007-05-21 2007-05-21 Odor component decomposition apparatus, method for decomposing odor component, and air cleaning apparatus Active JP5019288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133989A JP5019288B2 (en) 2007-05-21 2007-05-21 Odor component decomposition apparatus, method for decomposing odor component, and air cleaning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133989A JP5019288B2 (en) 2007-05-21 2007-05-21 Odor component decomposition apparatus, method for decomposing odor component, and air cleaning apparatus

Publications (2)

Publication Number Publication Date
JP2008284272A true JP2008284272A (en) 2008-11-27
JP5019288B2 JP5019288B2 (en) 2012-09-05

Family

ID=40144558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133989A Active JP5019288B2 (en) 2007-05-21 2007-05-21 Odor component decomposition apparatus, method for decomposing odor component, and air cleaning apparatus

Country Status (1)

Country Link
JP (1) JP5019288B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024650A1 (en) 2012-08-10 2014-02-13 国立大学法人広島大学 Deodorizing material, process for manufacturing deodorizing material, and deodorizing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665071A (en) * 1979-11-01 1981-06-02 Asahi Chem Ind Co Ltd Photo-oxidation treating agent
JPH03140160A (en) * 1989-10-26 1991-06-14 Japan Hai Chem Kk Deodorizing method by stimulation with visible ray
JPH0365849U (en) * 1989-11-01 1991-06-26
JPH0970516A (en) * 1995-09-05 1997-03-18 Omron Corp Air cleaner
JP2000516522A (en) * 1996-07-04 2000-12-12 ドゥ モイレナエル エリック コルデマンス Apparatus and method for treating liquid medium
JP2004350935A (en) * 2003-05-29 2004-12-16 Jigyo Sozo Kenkyusho:Kk Filter
JP2005152868A (en) * 2003-11-24 2005-06-16 Opt:Kk Water cleaning apparatus and water cleaning method
JP2007090197A (en) * 2005-09-28 2007-04-12 Mitsubishi Gas Chem Co Inc Cleaning method of ground water/soil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665071A (en) * 1979-11-01 1981-06-02 Asahi Chem Ind Co Ltd Photo-oxidation treating agent
JPH03140160A (en) * 1989-10-26 1991-06-14 Japan Hai Chem Kk Deodorizing method by stimulation with visible ray
JPH0365849U (en) * 1989-11-01 1991-06-26
JPH0970516A (en) * 1995-09-05 1997-03-18 Omron Corp Air cleaner
JP2000516522A (en) * 1996-07-04 2000-12-12 ドゥ モイレナエル エリック コルデマンス Apparatus and method for treating liquid medium
JP2004350935A (en) * 2003-05-29 2004-12-16 Jigyo Sozo Kenkyusho:Kk Filter
JP2005152868A (en) * 2003-11-24 2005-06-16 Opt:Kk Water cleaning apparatus and water cleaning method
JP2007090197A (en) * 2005-09-28 2007-04-12 Mitsubishi Gas Chem Co Inc Cleaning method of ground water/soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024650A1 (en) 2012-08-10 2014-02-13 国立大学法人広島大学 Deodorizing material, process for manufacturing deodorizing material, and deodorizing device
JP2014036701A (en) * 2012-08-10 2014-02-27 Hiroshima Univ Deodorization material, method for producing deodorization material and deodorization device
US9381504B2 (en) 2012-08-10 2016-07-05 Hiroshima University Deodorizing material, process for manufacturing deodorizing material, and deodorizing device

Also Published As

Publication number Publication date
JP5019288B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US20100112677A1 (en) Sterile environment maintaining apparatus
JP5700859B2 (en) Virus inactivation apparatus and virus inactivation method
KR101984795B1 (en) System for Removing Malodor using Microplasma Air Ozone
JPH10511572A (en) Method and apparatus for treating a fluid
US20090020016A1 (en) System for removal of airborne contaminants
KR102260282B1 (en) Air purification system using plasma
US20170283287A1 (en) Method of and apparatus for oxidative treatment of liquid, gaseous, and/or solid phase
KR20080057808A (en) Odor gas treatment device having biochemical odor gas treatment unit
JP2008036513A (en) Unit and system for gas treatment
CN111237920A (en) Formaldehyde removal disinfection machine
CN201978207U (en) Forest state air purification machine
CN203540330U (en) Treatment device of odor pollutant waste gas
JP5019288B2 (en) Odor component decomposition apparatus, method for decomposing odor component, and air cleaning apparatus
US20230355823A1 (en) Device for generating hydroxyl radicals
CN209451632U (en) A kind of pig house environmental protection grade deodorizing process system
JP3936876B2 (en) Sterilization / deodorization equipment
CN215961296U (en) Disinfection and sterilization device
CN210159443U (en) Livestock and poultry farm exhaust treatment system
KR20110101700A (en) A deodorization apparatus for garbage extinction device
JP2003210938A (en) Exhaust-gas cleaning device
CN212029764U (en) Formaldehyde removal disinfection machine
JP2948623B2 (en) Air purification method
JPH0422747Y2 (en)
JP3065849U (en) Deodorizing device
KR102588294B1 (en) Odor gas deodorization device using oh radical oxygen water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Ref document number: 5019288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250