JP2008281721A - Method for correcting black defect in chromium mask - Google Patents

Method for correcting black defect in chromium mask Download PDF

Info

Publication number
JP2008281721A
JP2008281721A JP2007125142A JP2007125142A JP2008281721A JP 2008281721 A JP2008281721 A JP 2008281721A JP 2007125142 A JP2007125142 A JP 2007125142A JP 2007125142 A JP2007125142 A JP 2007125142A JP 2008281721 A JP2008281721 A JP 2008281721A
Authority
JP
Japan
Prior art keywords
transparent film
glass
electron beam
defect
black defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007125142A
Other languages
Japanese (ja)
Other versions
JP4898545B2 (en
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007125142A priority Critical patent/JP4898545B2/en
Publication of JP2008281721A publication Critical patent/JP2008281721A/en
Application granted granted Critical
Publication of JP4898545B2 publication Critical patent/JP4898545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent overetching in glass caused when a black defect in a chromium mask is corrected by a photomask defect correcting device using a charged particle beam. <P>SOLUTION: An overetched portion 3 of glass is filled with a transparent film 6 by electron beam deposition using TEOS (tetraethoxy silane) or siloxane molecules as a material. The depth distribution in the overetched portion of the glass is obtained with an atomic force microscope, and the film thickness to fill the defect is controlled according to the distribution to flatten the surface of the filled transparent film. Otherwise, the transparent film is deposited to be higher than the normal glass surface, and the portion higher than the glass surface is scraped off by a mechanical process by an atomic force microscope with a fixed height so as to flatten the surface of the filled transparent film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は荷電粒子ビームフォトマスク欠陥修正装置のクロムマスクの黒欠陥修正方法に関し、特に、クロムマスクの黒欠陥をエッチングして修正する時に発生するガラス基板のオーバーエッチの修復方法に関するものである。   The present invention relates to a method for correcting a black defect in a chrome mask of a charged particle beam photomask defect correcting apparatus, and more particularly, to a method for repairing an overetch of a glass substrate that occurs when a black defect in a chrome mask is corrected by etching.

半導体集積回路の微細化要求に対して、リソグラフィは縮小投影露光装置の光源の波長の短波長化と高NA化で対応してきた。縮小投影露光装置の転写の原版で無欠陥であることが要求されるフォトマスクの欠陥修正は従来レーザーや集束イオンビームを用いて行われてきたが、レーザーでは分解能が不十分で最先端の微細なパターンの欠陥は修正できず、縮小投影露光装置の光源の波長の短波長化により集束イオンビームではプライマリービームとして使用するガリウムの注入によるガラス部のイメージングダメージ(透過率の低下)が問題となってきており、微細なパターンの欠陥が修正できてイメージングダメージのない欠陥修正技術が求められている。   Lithography has responded to the demand for miniaturization of semiconductor integrated circuits by shortening the wavelength of the light source of the reduction projection exposure apparatus and increasing the NA. Photomask defect correction, which is required to be defect-free on the transfer master of a reduction projection exposure apparatus, has been performed using a laser or a focused ion beam. The defect of the pattern cannot be corrected, and the shortened wavelength of the light source of the reduction projection exposure apparatus causes the imaging ion damage (decrease in transmittance) of the glass part due to the implantation of gallium used as the primary beam in the focused ion beam. Therefore, there is a demand for a defect correction technique that can correct defects in fine patterns and that does not cause imaging damage.

このような背景から最近では電子ビームによるガスアシストエッチングで黒欠陥を修正し、電子ビームCVDで遮光膜を堆積して白欠陥を修正する電子ビームフォトマスク欠陥修正装置が開発されている(非特許文献1)。電子ビームでイメージング及び加工を行うため、高分解能でかつガリウム注入による透過率の低下が起こらない。電子ビームフォトマスク欠陥修正装置に加えて原子間力顕微鏡(AFM)技術を応用して機械的な加工により欠陥を除去する装置も開発されている(非特許文献2)。   Under these circumstances, recently, an electron beam photomask defect correction device has been developed that corrects black defects by gas-assisted etching using an electron beam and deposits a light-shielding film by electron beam CVD to correct white defects (non-patent). Reference 1). Since imaging and processing are performed with an electron beam, the transmittance is not reduced due to high resolution and gallium implantation. In addition to the electron beam photomask defect correction apparatus, an apparatus that removes defects by mechanical processing using an atomic force microscope (AFM) technique has also been developed (Non-patent Document 2).

電子ビームフォトマスク欠陥修正装置でクロムマスクの黒欠陥をガスアシストエッチングで修正する場合において、ガラス基板部へのオーバーエッチが起こらないように修正すると修正部のクロム膜のエッジがだれ、必要とされる高精度な加工が行えず、修正部のクロム膜のエッジが立つように加工すると、クロム膜とガラスのエッチングの選択性が低いため、クロム膜の下のガラス部も削ってしまいオーバーエッチを生じていた。このガラス部のオーバーエッチが転写時に修正部の局所的な透過率の低下によるスペース線幅減少やデフォーカス時の線幅を変動させるという問題があった。
K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann, H. P. Coops, P. Kuschnerus, J. Oster, P. Spies, and B. Weyrauch, J. Vac. Sci. Technol. B22 2902-2906(2004) Y. Morikawa, H. Kokubo, M. Nishiguchi, N. Hayashi, R. White, R. Bozak, and L. Terrill, Proc. of SPIE 5130 520-527(2003) 特表2006-504136
When correcting the black defect of the chrome mask by gas-assisted etching with the electron beam photomask defect correction device, if the correction is made so that overetching to the glass substrate part does not occur, the edge of the chrome film in the correction part will be required. However, if the edge of the chrome film in the correction part is raised, the etching selectivity of the chrome film and glass is low, so the glass part under the chrome film is also shaved and overetched. It was happening. This overetching of the glass part has a problem that a space line width is reduced due to a decrease in local transmittance of the correction part at the time of transfer and a line width at the time of defocusing is changed.
K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann, HP Coops, P. Kuschnerus, J. Oster, P. Spies, and B. Weyrauch, J. Vac. Sci. Technol. B22 2902-2906 (2004) Y. Morikawa, H. Kokubo, M. Nishiguchi, N. Hayashi, R. White, R. Bozak, and L. Terrill, Proc. Of SPIE 5130 520-527 (2003) Special table 2006-504136

本発明は、荷電粒子ビームフォトマスク欠陥修正装置を用いたクロムマスクの黒欠陥修正時に発生するガラスのオーバーエッチに起因する欠陥修正箇所の透過率低下やデフォーカス特性の低下などの転写特性の問題点を克服する手段を提供することを目的とする。   The present invention relates to a problem of transfer characteristics such as a decrease in transmittance and a defocus characteristic in a defect correction portion caused by glass overetching that occurs when correcting a black defect in a chrome mask using a charged particle beam photomask defect correction apparatus. The object is to provide a means to overcome the points.

上記課題を解決するために、本願発明における黒欠陥修正方法においては、以下のようにした。   In order to solve the above problems, the black defect correcting method according to the present invention is configured as follows.

荷電粒子ビームを用いてクロムマスクの黒欠陥をエッチングして修正し、該修正した時に形成される、クロムマスクのガラス基板のオーバーエッチ部を、電子ビームデポジションの透明な膜で埋める。   The black defect of the chrome mask is corrected by etching using a charged particle beam, and the overetched portion of the glass substrate of the chrome mask formed at the time of the correction is filled with a transparent film of electron beam deposition.

前記荷電粒子ビームが集束イオンビームである時には、前記オーバーエッチ部をAFM探針で更に削り、しかる後に電子ビームデポジションの透明な膜で埋める。   When the charged particle beam is a focused ion beam, the overetched portion is further shaved with an AFM probe, and then filled with a transparent film of electron beam deposition.

前記オーバーエッチ部をAFM探針で削るとき、該削ってできた穴の底面が前記ガラス基板の表面と平行なるようにする。   When the overetched portion is shaved with an AFM probe, the bottom surface of the shaved hole is made parallel to the surface of the glass substrate.

また、上記おいてガラスのオーバーエッチ部の深さ分布を原子間力顕微鏡で求め、その深さ分布に従って埋める透明膜の厚みを制御することにより、埋めた透明膜表面が平坦になるようにする。   In addition, the depth distribution of the overetched portion of the glass is obtained with an atomic force microscope, and the thickness of the transparent film to be filled is controlled according to the depth distribution so that the surface of the filled transparent film becomes flat. .

あるいは、上記において、ガラスのオーバーエッチ部を埋める透明膜が前記ガラス基板表面よりも高くなるように埋め、しかる後該ガラス面よりも高い部分を、原子間力顕微鏡を用いて削り取り、埋めた透明膜表面がガラス基板表面と同じ高さに平坦になるようにする。   Alternatively, in the above, the transparent film filling the overetched portion of the glass is filled so as to be higher than the surface of the glass substrate, and then the portion higher than the glass surface is scraped off using an atomic force microscope and buried. The film surface is flattened at the same height as the glass substrate surface.

テトラエトキシシラン(TEOS)やシロキ酸系を原料ガスとした電子ビームCVDで透明な膜がデポジションできることが知られている。本願発明においては、この透明な電子ビームCVD膜を電子ビームガスアシストエッチングでクロムマスクの黒欠陥を修正したときにできるガラスのオーバーエッチ部を埋めるのに利用する。   It is known that a transparent film can be deposited by electron beam CVD using tetraethoxysilane (TEOS) or siloxy acid as a source gas. In the present invention, this transparent electron beam CVD film is used to fill the overetched portion of the glass formed when the black defect of the chromium mask is corrected by electron beam gas assist etching.

凹凸に起因する光学特性の低下を回避するために埋めた膜がガラス面と同じ高さになるようにする。このために、AFMでガラスのオーバーエッチ部の深さ分布を求め、その深さ分布に従って埋める透明膜厚分布を制御し埋めた透明膜表面がガラス基板表面と同じ高さで平坦になるようにする。   In order to avoid a decrease in optical characteristics due to unevenness, the buried film is made to be the same height as the glass surface. For this purpose, the depth distribution of the overetched portion of the glass is obtained by AFM, the transparent film thickness distribution is controlled according to the depth distribution, and the buried transparent film surface is flat at the same height as the glass substrate surface. To do.

あるいは、まず透明膜を正常なガラス面よりも高くなるようにして埋め、次にガラス面(ガラス基板表面)よりも高い部分をAFMフォトマスク欠陥修正装置により、ガラス面の高さまで平坦になるように削る。   Alternatively, the transparent film is first filled so as to be higher than the normal glass surface, and then the portion higher than the glass surface (glass substrate surface) is flattened to the height of the glass surface by the AFM photomask defect correction device. Sharpen.

オーバーエッチ部を、材質がガラス基板に近い透明膜で埋めるため、露光波長で露光した時に透過率の低下(転写時の線幅減少)が起こらない。材質がガラス基板に近い透明膜なので位相の効果もガラス基板と近くデフォーカス特性の低下(フォーカス変動時の線幅変動)を緩和することができる。   Since the overetched portion is filled with a transparent film whose material is close to that of a glass substrate, the transmittance does not decrease (the line width decreases during transfer) when exposed at the exposure wavelength. Since the material is a transparent film close to the glass substrate, the phase effect is also close to that of the glass substrate, and the defocus characteristic deterioration (line width fluctuation at the time of focus fluctuation) can be mitigated.

埋めた透明膜表面を平坦にすることで埋めた膜の凹凸に起因する反射率の増大や位相効果のような光学特性(転写特性)の低下を回避することができる。   By flattening the surface of the buried transparent film, it is possible to avoid an increase in reflectivity and a decrease in optical characteristics (transfer characteristics) such as phase effect due to unevenness of the buried film.

以下に本発明の実施例について図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

本発明は、集束イオンビームを含む荷電粒子ビームによるエッチングで黒欠陥を修正した場合に適用できる。   The present invention can be applied to the case where a black defect is corrected by etching with a charged particle beam including a focused ion beam.

図1は、電子ビームの透明膜デポで、電子ビームによるオーバーエッチ部を埋める場合を説明するための概略断面図である。   FIG. 1 is a schematic cross-sectional view for explaining a case where an electron beam transparent film deposit fills an overetched portion with an electron beam.

黒欠陥のあるマスクパターン1とガラス基板2を有するクロムマスクを、電子ビームフォトマスク欠陥修正装置に導入し、欠陥検査装置で見つかった黒欠陥位置が電子ビーム照射位置に来るように移動し、電子ビーム4によるエッチングにより黒欠陥を修正する。クロムマスクの黒欠陥を修正するときに電子ビームガスアシストエッチング加工を行った領域と、電子ビームのドリフトを補正するためのドリフトマーカーからの相対的な位置を予め記録しておく。   A chrome mask having a mask pattern 1 having a black defect and a glass substrate 2 is introduced into an electron beam photomask defect correcting apparatus, and the black defect position found by the defect inspection apparatus is moved so as to come to the electron beam irradiation position. Black defects are corrected by etching with beam 4. A region where the electron beam gas assist etching process is performed when correcting the black defect of the chrome mask and a relative position from the drift marker for correcting the drift of the electron beam are recorded in advance.

電子ビームを用いて黒欠陥を修正するとオーバーエッチ部3が発生する。このオーバーエッチ部3を含む領域を観察し、保存した加工領域の2次元形状情報と、該加工領域のドリフトマーカーからの相対的な位置情報から透明膜で埋める領域を決定する(図1(a))。TEOSやシロキ酸系分子を供給系5から透明膜原料ガスとしてビーム照射位置に供給しながら決定した領域にのみ数pAから数10pAの電子ビーム4を走査し、電子ビームCVDで透明膜6を堆積してクロムマスクの黒欠陥修正個所のガラスのオーバーエッチ部3を埋める(図1(b))。   When the black defect is corrected using the electron beam, the overetched portion 3 is generated. The region including the overetched portion 3 is observed, and the region to be filled with the transparent film is determined from the stored two-dimensional shape information of the processing region and relative position information from the drift marker of the processing region (FIG. 1 (a )). Scan the electron beam 4 of several pA to several tens of pA only in the region determined while supplying TEOS or siloxy acid-based molecules from the supply system 5 as the transparent film source gas to the beam irradiation position, and deposit the transparent film 6 by electron beam CVD. Then, the overetched portion 3 of the glass at the black defect correction portion of the chrome mask is filled (FIG. 1 (b)).

次に埋めた透明膜の凹凸に起因する光学特性(転写特性)の低下を回避する方法を説明する。電子ビームを用いたエッチングにより黒欠陥修正したクロムマスクを電子ビームフォトマスク欠陥修正装置から取り出し、6インチマスクを全面観察可能なAFM装置に導入する。AFMの探針9を相対的に欠陥検査装置で見つかった黒欠陥位置に移動し、カーボンナノチューブのような先端径が小さくアスペクトの高い探針9を用いて、ガラスのオーバーエッチ部3を含む領域を観察し、高忠実な深さ分布を求める(図2(a))。該深さ分布を求めたクロムマスクを電子ビームフォトマスク欠陥修正装置に戻す。欠陥検査装置で見つかった黒欠陥位置に電子ビームを移動し、オーバーエッチ部3を含む領域を観察する。保存した加工領域の2次元形状情報と、該加工領域のドリフトマーカーからの相対的な位置情報から透明膜で埋める領域を決定し、又、得られたオーバーエッチ部の深さ分布に従って電子ビームCVDで埋める膜厚を制御する(深いところは透明膜を厚くし、浅いところは透明膜を薄くする)ことにより埋めた透明膜6表面が平坦になるようにする(図2(b))。   Next, a method for avoiding a decrease in optical characteristics (transfer characteristics) due to the unevenness of the buried transparent film will be described. A chrome mask with black defects corrected by etching using an electron beam is taken out of the electron beam photomask defect correction apparatus, and a 6-inch mask is introduced into an AFM apparatus that can observe the entire surface. Move the AFM probe 9 to the position of the black defect relatively found by the defect inspection device, and use the probe 9 with a small tip diameter and high aspect like carbon nanotubes to include the glass overetched part 3 To obtain a high-fidelity depth distribution (Fig. 2 (a)). The chromium mask whose depth distribution has been obtained is returned to the electron beam photomask defect correcting apparatus. The electron beam is moved to the position of the black defect found by the defect inspection apparatus, and the region including the overetched portion 3 is observed. The region to be filled with the transparent film is determined from the stored two-dimensional shape information of the processing region and the relative position information from the drift marker of the processing region, and the electron beam CVD is performed according to the obtained depth distribution of the overetched portion. The surface of the filled transparent film 6 is flattened by controlling the film thickness filled with (by making the transparent film thicker at deeper locations and by making the transparent film thinner at shallower locations) (FIG. 2 (b)).

あるいは電子ビームCVDで透明膜6が正常なガラス面2よりも高くなるように埋め(図3(a))、該埋められた部分のガラス面より高い部分をAFM探針により削りとる。   Alternatively, the transparent film 6 is buried by electron beam CVD so as to be higher than the normal glass surface 2 (FIG. 3 (a)), and a portion higher than the glass surface of the buried portion is scraped off by an AFM probe.

具体的には、以下のようにする。   Specifically, it is as follows.

電子ビームCVDで透明膜6が正常なガラス面2よりも高くなるように埋め(図3(a))た後、クロムマスクを電子ビームフォトマスク欠陥修正装置から取り出す。次にクロムマスクをAFMフォトマスク欠陥修正装置に導入し、AFM探針を欠陥検査装置で見つかった黒欠陥位置に相対的に移動する。透明膜6をつけたところを含む領域を観察し、ガラス面2よりも高い部分を、探針先端の高さをガラス面の高さに設定し、その高さのまま余剰部がある領域を走査してガラス面よりも高い部分を加工探針8の機械的な加工で削り取り、埋めた透明膜6表面が平坦になるようにする(図3(b))。   After the transparent film 6 is filled so as to be higher than the normal glass surface 2 by electron beam CVD (FIG. 3 (a)), the chromium mask is taken out from the electron beam photomask defect correcting apparatus. Next, the chrome mask is introduced into the AFM photomask defect correction apparatus, and the AFM probe is moved relative to the black defect position found by the defect inspection apparatus. Observe the area including the place where the transparent film 6 was applied, set the height of the tip of the tip higher than the glass surface 2 to the height of the glass surface, and the area with the surplus portion at that height By scanning, the portion higher than the glass surface is scraped off by mechanical processing of the processing probe 8 so that the surface of the buried transparent film 6 becomes flat (FIG. 3 (b)).

上記オーバーエッチ部3を埋める透明膜はTEOSやシロキ酸系分子を原料とする電子ビームCVDだけでなく、透明膜材料をインクとしたディップペンナノリソグラフィーの透明膜(特許文献1参照)でも作製可能である。このディップペンナノリソグラフィーの透明膜でガラスのオーバーエッチ部を埋めた場合にも、埋めた透明膜の凹凸に起因する光学特性の低下を回避するために、上記の2種類の埋める透明膜の表面平坦化法を適用することできる。   The transparent film filling the overetched portion 3 can be produced not only by electron beam CVD using TEOS or siloxy acid-based molecules as raw materials, but also by dip pen nanolithography transparent films using transparent film materials as ink (see Patent Document 1). It is. Even when the overetched portion of the glass is filled with the transparent film of the dip pen nanolithography, in order to avoid the deterioration of the optical characteristics due to the unevenness of the filled transparent film, the surfaces of the above two kinds of transparent films to be filled are used. A planarization method can be applied.

本発明を、集束イオンビームを用いて黒欠陥修正した時にできるオーバーエッチ部に適用することも可能である。図4に、本発明を集束イオンビームを用いた黒欠陥修正時にできるオーバーエッチ部に適用する場合の概略断面図を示す。   The present invention can also be applied to an over-etched portion that is formed when a black defect is corrected using a focused ion beam. FIG. 4 is a schematic cross-sectional view in the case where the present invention is applied to an overetched portion that can be formed at the time of correcting a black defect using a focused ion beam.

集束イオンビームのイオン源がガリウムであった場合には、オーバーエッチ部にはガリウムが注入されている。このオーバーエッチ部に注入されたガリウムをAFM探針にて除去する。このために集束イオンビームによる修正でオーバーエッチが生じたマスクをAFMフォトマスク欠陥修正装置に導入し、AFM探針を欠陥検査装置で見つかった黒欠陥位置に相対的に移動する。AFMでオーバーエッチ部3を含む領域を3次元形状観察し、加工探針8の機械的な加工によりオーバーエッチ部3を更に深く掘る(図4(b))。この時、さらに掘り下げた穴9の底面がガラス基板2の表面と平行になるようにすると共に、穴9の深さを測定する。次に、AFMフォトマスク欠陥修正装置からマスクを取り出し、電子ビームフォトマスク欠陥修正装置に導入する。上記掘り下げた穴9を電子ビーム照射位置に移動し、掘り下げた穴9を含む領域を観察し二次元形状情報を保存する。該保存した加工領域の2次元形状情報と、該加工領域のドリフトマーカーからの相対的な位置情報から透明膜で埋める領域を決定し、オーバーエッチング部のガラスを深く掘り込んだ穴9を、上記測定した穴9の深さ分電子ビームCVDの透明膜6で埋める(図4(c))。埋めた透明膜の凹凸が問題になる場合には前記の2種類の表面平坦化法のいずれかを適用する。   When the ion source of the focused ion beam is gallium, gallium is implanted into the overetched portion. Gallium implanted into the overetched portion is removed with an AFM probe. For this purpose, a mask in which overetching has occurred due to the correction by the focused ion beam is introduced into the AFM photomask defect correction apparatus, and the AFM probe is moved relative to the black defect position found by the defect inspection apparatus. A region including the overetched portion 3 is observed by AFM in a three-dimensional shape, and the overetched portion 3 is dug deeper by mechanical processing of the processing probe 8 (FIG. 4B). At this time, the depth of the hole 9 is measured while making the bottom surface of the hole 9 further dug parallel to the surface of the glass substrate 2. Next, the mask is taken out from the AFM photomask defect correcting apparatus and introduced into the electron beam photomask defect correcting apparatus. The deep hole 9 is moved to the electron beam irradiation position, the region including the deep hole 9 is observed, and the two-dimensional shape information is stored. The region 9 to be filled with a transparent film is determined from the two-dimensional shape information of the stored processing region and the relative position information from the drift marker of the processing region, and the hole 9 in which the glass of the over-etched portion is deeply dug The depth of the measured hole 9 is filled with a transparent film 6 of electron beam CVD (FIG. 4C). When the unevenness of the buried transparent film becomes a problem, one of the two kinds of surface flattening methods is applied.

本発明の特徴を最も良く表す電子ビームの透明膜デポでオーバーエッチ部を埋める場合の概略断面図である。It is a schematic sectional drawing in the case of filling an overetched part with a transparent film deposit of an electron beam that best represents the characteristics of the present invention. AFMでオーバーエッチ形状を測長しておいて平坦になるように電子ビーム透明膜をつける場合の概略断面図である。FIG. 5 is a schematic cross-sectional view when an electron beam transparent film is attached so as to be flattened by measuring the overetch shape with AFM. 盛り上がった透明デポ膜のはみ出た部分をAFMスクラッチで削り取って平坦にする場合の概略断面図である。FIG. 6 is a schematic cross-sectional view in the case where the protruding portion of the raised transparent deposition film is flattened by scraping with an AFM scratch. 本発明を集束イオンビーム黒欠陥修正のオーバーエッチ部に適用する場合の概略断面図である。It is a schematic sectional drawing at the time of applying this invention to the overetching part of focused ion beam black defect correction.

符号の説明Explanation of symbols

1 パターン
2 ガラス基板
3 オーバーエッチ部
4 電子ビーム
5 TEOSまたはシロキ酸系分子供給系
6 透明デポ膜
7 観察用探針
8 加工用探針
9 AFMで更に削り込んだ穴
DESCRIPTION OF SYMBOLS 1 Pattern 2 Glass substrate 3 Overetch part 4 Electron beam 5 TEOS or siloxy acid system molecule supply system 6 Transparent deposit film 7 Observation probe 8 Processing probe 9 Hole further cut by AFM

Claims (5)

荷電粒子ビームを用いてクロムマスクの黒欠陥をエッチングして修正し、該修正した時に形成される、クロムマスクのガラス基板のオーバーエッチ部を、電子ビームデポジションの透明な膜で埋めることを特徴とするクロムマスク黒欠陥修正方法。   The black defect of the chrome mask is corrected by etching using a charged particle beam, and the overetched portion of the glass substrate of the chrome mask formed at the time of the correction is filled with a transparent film of electron beam deposition. And chrome mask black defect correction method. 前記荷電粒子ビームが集束イオンビームである時には、前記オーバーエッチ部を原子間力顕微鏡の探針で更に削り、しかる後に電子ビームデポジションの透明な膜で埋めることを特徴とする請求項1記載のクロムマスク黒欠陥修正方法。   2. The over-etched portion is further shaved with a probe of an atomic force microscope when the charged particle beam is a focused ion beam, and then filled with a transparent film of electron beam deposition. Chrome mask black defect correction method. 前記オーバーエッチ部を原子間力顕微鏡の探針で削るとき、該削ってできた穴の底面が前記ガラス基板の表面と平行になるようにすることを特徴とする請求項2記載のクロムマスク黒欠陥修正方法。   3. The chrome mask black according to claim 2, wherein when the overetched portion is shaved with a probe of an atomic force microscope, the bottom surface of the bored hole is parallel to the surface of the glass substrate. Defect correction method. 前記ガラスのオーバーエッチ部の深さ分布を原子間力顕微鏡で求める工程と、その深さ分布に従って埋める透明膜の厚みを制御することにより、埋めた透明膜表面が平坦になるようにする工程を有することを特徴とする請求項1から3のいずれか1項に記載のクロムマスク黒欠陥修正方法。   The step of obtaining the depth distribution of the over-etched portion of the glass with an atomic force microscope, and the step of controlling the thickness of the transparent film to be buried according to the depth distribution so that the buried transparent film surface becomes flat. The chrome mask black defect correcting method according to any one of claims 1 to 3, further comprising: 前記ガラスのオーバーエッチ部を埋める透明膜が前記ガラス基板表面よりも高くなるように埋める工程と、該ガラス面よりも高い部分を、原子間力顕微鏡の探針を用いて削り取り、埋めた透明膜表面がガラス基板表面と同じ高さに平坦になるようにする工程を有することを特徴とする請求項1から3のいずれか1項に記載のクロムマスク黒欠陥修正方法。   The step of filling the transparent film filling the overetched portion of the glass so as to be higher than the surface of the glass substrate, and the transparent film obtained by scraping and filling the portion higher than the glass surface using a probe of an atomic force microscope The method for correcting a black defect in a chrome mask according to any one of claims 1 to 3, further comprising a step of making the surface flat at the same height as the surface of the glass substrate.
JP2007125142A 2007-05-10 2007-05-10 Chromium mask black defect correction method Expired - Fee Related JP4898545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125142A JP4898545B2 (en) 2007-05-10 2007-05-10 Chromium mask black defect correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125142A JP4898545B2 (en) 2007-05-10 2007-05-10 Chromium mask black defect correction method

Publications (2)

Publication Number Publication Date
JP2008281721A true JP2008281721A (en) 2008-11-20
JP4898545B2 JP4898545B2 (en) 2012-03-14

Family

ID=40142601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125142A Expired - Fee Related JP4898545B2 (en) 2007-05-10 2007-05-10 Chromium mask black defect correction method

Country Status (1)

Country Link
JP (1) JP4898545B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053407A (en) * 2012-09-06 2014-03-20 Dainippon Printing Co Ltd Process of manufacturing template for nanoimprint lithography
JP2014174249A (en) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd Method of correcting defect of photomask, photomask production method and photomask
JP2014174243A (en) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd Method of correcting defect of photomask, photomask production method and photomask
CN108073035A (en) * 2016-11-08 2018-05-25 中芯国际集成电路制造(上海)有限公司 A kind of restorative procedure of lithography mask version and lithography mask version defect
US20210096461A1 (en) * 2019-09-26 2021-04-01 Kioxia Corporation Defect repairing method and template manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323571A (en) * 1992-03-24 1993-12-07 Toshiba Corp Phase shift mask and mask modifying method
JPH11118627A (en) * 1997-10-14 1999-04-30 Toyota Autom Loom Works Ltd Magnetostriction type torque sensor
JP2003228161A (en) * 2002-02-01 2003-08-15 Seiko Instruments Inc Method of repairing defect of mask
JP2004287321A (en) * 2003-03-25 2004-10-14 Sii Nanotechnology Inc Method for correcting defect in photomask
JP2005260057A (en) * 2004-03-12 2005-09-22 Sii Nanotechnology Inc Method for correcting black defect of mask for euv lithography
JP2006139049A (en) * 2004-11-12 2006-06-01 Nec Electronics Corp Method and device for correcting photomask

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323571A (en) * 1992-03-24 1993-12-07 Toshiba Corp Phase shift mask and mask modifying method
JPH11118627A (en) * 1997-10-14 1999-04-30 Toyota Autom Loom Works Ltd Magnetostriction type torque sensor
JP2003228161A (en) * 2002-02-01 2003-08-15 Seiko Instruments Inc Method of repairing defect of mask
JP2004287321A (en) * 2003-03-25 2004-10-14 Sii Nanotechnology Inc Method for correcting defect in photomask
JP2005260057A (en) * 2004-03-12 2005-09-22 Sii Nanotechnology Inc Method for correcting black defect of mask for euv lithography
JP2006139049A (en) * 2004-11-12 2006-06-01 Nec Electronics Corp Method and device for correcting photomask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053407A (en) * 2012-09-06 2014-03-20 Dainippon Printing Co Ltd Process of manufacturing template for nanoimprint lithography
JP2014174249A (en) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd Method of correcting defect of photomask, photomask production method and photomask
JP2014174243A (en) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd Method of correcting defect of photomask, photomask production method and photomask
CN108073035A (en) * 2016-11-08 2018-05-25 中芯国际集成电路制造(上海)有限公司 A kind of restorative procedure of lithography mask version and lithography mask version defect
US20210096461A1 (en) * 2019-09-26 2021-04-01 Kioxia Corporation Defect repairing method and template manufacturing method

Also Published As

Publication number Publication date
JP4898545B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
TWI286273B (en) Methods for repairing an alternating phase-shift mask
TWI613694B (en) Method and apparatus for processing a substrate with a focussed particle beam
TWI664312B (en) Method and device for permanently repairing defects of absent material of a photolithographic mask
JP5821100B2 (en) Method and apparatus for correcting errors on a wafer processed by a photolithographic mask
JP2022106773A (en) Method and apparatus for compensating defects of mask blank
JP4898545B2 (en) Chromium mask black defect correction method
TW201841192A (en) Method and apparatus for analyzing a defective location of a photolithographic mask
JP2010170019A (en) Method for removing foreign substance of lithography original and method for manufacturing lithography original
JP2008185931A (en) Method for correcting defect in photomask using focused ion beam microfabrication device
JP2014216365A (en) Method for manufacturing nanoimprint lithography mask
JP7320416B2 (en) Photomask substrate repair method, photomask substrate manufacturing method, photomask substrate processing method, photomask substrate, photomask manufacturing method, and substrate processing apparatus
JP6229291B2 (en) Method for manufacturing mask for nanoimprint lithography
Yasaka et al. Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices
JP6167568B2 (en) Photomask defect correcting method and photomask manufacturing method
JP2009086428A (en) Method and apparatus for photomask defect correction using charged particle beam
JP7429583B2 (en) Lithography mask manufacturing method, lithography mask, and semiconductor device manufacturing method
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP6471447B2 (en) Method of correcting member for manufacturing wire grid polarizer, method of manufacturing wire grid polarizer, and exposure method
JP2004287321A (en) Method for correcting defect in photomask
Murachi et al. Registration accuracy improvement of fiducial mark on EUVL mask with MIRAI EUV ABI prototype
JP2008134603A (en) Method of correcting photomask defect
JP2015184453A (en) Method for manufacturing photomask
JP4438618B2 (en) Photomask black defect repair method
TWI839822B (en) Method for particle beam-induced processing of a defect of a microlithographic photomask
JP2004279539A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees