JP2008281346A - Atomic beam source and surface reforming device - Google Patents

Atomic beam source and surface reforming device Download PDF

Info

Publication number
JP2008281346A
JP2008281346A JP2007123159A JP2007123159A JP2008281346A JP 2008281346 A JP2008281346 A JP 2008281346A JP 2007123159 A JP2007123159 A JP 2007123159A JP 2007123159 A JP2007123159 A JP 2007123159A JP 2008281346 A JP2008281346 A JP 2008281346A
Authority
JP
Japan
Prior art keywords
insulator
atomic beam
beam source
cylindrical body
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007123159A
Other languages
Japanese (ja)
Other versions
JP4810497B2 (en
Inventor
Yukihiro Maekawa
幸弘 前川
Takashi Omura
貴志 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007123159A priority Critical patent/JP4810497B2/en
Publication of JP2008281346A publication Critical patent/JP2008281346A/en
Application granted granted Critical
Publication of JP4810497B2 publication Critical patent/JP4810497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control a substrate processing state in real time by imparting versatility easily coping in the case of different using conditions, and by changing an electron beam distribution during beam irradiation. <P>SOLUTION: Two rod-shaped electrodes 2 used as anodes are arranged inside a discharge container 1 serving as a cathode, and a DC power source 6 is connected to the electrodes 2, and a voltage is applied. Structure is adopted wherein one rod-shaped insulator 3 is arranged between the two electrodes 2, and the insulator 3 can be moved vertically and horizontally by an insulator driving part 20. Further, the discharge container 1 is provided with a gas supply port 4 for introducing gas necessary for generating plasma in the container, and a beam discharge hole 5 which is a discharge part for discharging the atomic beam. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、半導体製造プロセスなどにおいて、ドライエッチング,表面クリーニングなどを行うための原子線(電子ビーム)を発生する原子線源に関し、特に照射範囲における処理速度の均一性が要求されるような場合に好適な原子線源、および、その原子線源を用いた表面改質装置に関するものである。   The present invention relates to an atomic beam source that generates an atomic beam (electron beam) for performing dry etching, surface cleaning, etc., for example, in a semiconductor manufacturing process and the like, and in particular, uniformity of processing speed in an irradiation range is required. The present invention relates to an atomic beam source suitable for such a case, and a surface modification apparatus using the atomic beam source.

従来の原子ビームの発生装置では、被処理基板内での処理速度の均一性を得るために、被処理基板を回転させたり、ビームの放出孔の分布やその孔径を最適化する方法、あるいは放出孔が設けられている部分の板厚に変化をもたせて最適化する方法があった。   In a conventional atomic beam generator, in order to obtain a uniform processing speed within the substrate to be processed, the substrate to be processed is rotated, a method for optimizing the distribution and diameter of the emission holes of the beam, or emission. There has been a method of optimizing by changing the thickness of the portion where the hole is provided.

図12は特許文献1に記載された従来の原子線源の構成例を図である。   FIG. 12 is a diagram illustrating a configuration example of a conventional atomic beam source described in Patent Document 1. In FIG.

図12において、101はガスノズル、102は直流電源、103はビーム放出用電極、104は原子ビーム、105は陽極、108a〜108cはビーム放出孔、109は試料、110は回転台を示している。   In FIG. 12, 101 is a gas nozzle, 102 is a DC power source, 103 is a beam emission electrode, 104 is an atomic beam, 105 is an anode, 108a to 108c are beam emission holes, 109 is a sample, and 110 is a turntable.

図13は特許文献2に記載された従来の原子線源の他の構成例を示す図である。(a)は一部断面した斜視図、(b)は放電電極の断面図である。   FIG. 13 is a diagram showing another configuration example of the conventional atomic beam source described in Patent Document 2. In FIG. (A) is the perspective view which carried out the partial cross section, (b) is sectional drawing of a discharge electrode.

図13(a),(b)において、210はプラズマ空間、212は放電容器、214はガス導入口、216はガス導入電極、218は原子ビーム放出孔、220は放出電極、222は電極、224はガス導入管、228は直流電源を示している。
特開平8−255698号公報 特開平10−106798号公報
13A and 13B, 210 is a plasma space, 212 is a discharge vessel, 214 is a gas introduction port, 216 is a gas introduction electrode, 218 is an atomic beam emission hole, 220 is an emission electrode, 222 is an electrode, 224 Indicates a gas introduction pipe, and 228 indicates a DC power source.
JP-A-8-255698 JP-A-10-106798

しかしながら、前記特許文献1,2に記載の従来の構成では、原子ビームと被処理基板との距離,角度などを変更したり、あるいは異なる装置に取り付けたりするなど、使用条件が異なる場合には、電子ビームの放出孔の分布,孔径,厚みを最適化し直す必要があり、このため、放出孔が設けられている放出孔電極を新たに作成し直す必要がある。よって、被処理基板の処理均一化にはコストと、期間がかかるという課題を有していた。   However, in the conventional configuration described in Patent Documents 1 and 2, when the usage conditions are different, such as changing the distance, angle, etc. between the atomic beam and the substrate to be processed, or attaching to a different apparatus, It is necessary to re-optimize the distribution, hole diameter, and thickness of the electron beam emission holes. For this reason, it is necessary to newly create an emission hole electrode provided with the emission holes. Therefore, there has been a problem that it takes cost and time to equalize the processing of the substrate to be processed.

また、放出孔の分布,孔径,厚みは、基板をビームで照射している間に変更することは困難であった。このため、ビーム照射中に電子ビームの分布を変更することができないという問題を有していた。   Further, it is difficult to change the distribution, hole diameter, and thickness of the emission holes while the substrate is irradiated with the beam. For this reason, there has been a problem that the electron beam distribution cannot be changed during beam irradiation.

本発明は、前記従来の課題を解決するものであり、使用条件が異なる場合に容易に対応できる汎用性をもたせると共に、ビーム照射中に電子ビームの分布を変更することにより、リアルタイムに基板の処理状態を制御することができる原子線源および表面改質装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, provides versatility that can easily cope with different use conditions, and changes the electron beam distribution during beam irradiation, thereby processing the substrate in real time. An object of the present invention is to provide an atomic beam source and a surface modification apparatus capable of controlling the state.

前記目的を達成するため、請求項1に記載の原子線源に係る発明は、陰極として作用して内部にプラズマを発生させ、イオンあるいは原子を放出する筒状体と、前記筒状体の一部に開口され、前記イオンあるいは原子を外部に放出する放出部と、前記筒状体の内部に配置される陽極と、前記放出部と前記陽極とに電気的に接続され、電圧を印加して前記筒状体内に前記プラズマを発生させる電源と、前記筒状体の内部に配置される絶縁体とを備えたことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is characterized in that a cylindrical body that acts as a cathode to generate plasma and emits ions or atoms, and one of the cylindrical bodies. An emission part that is opened in the part and emits the ions or atoms to the outside, an anode disposed inside the cylindrical body, and the emission part and the anode are electrically connected to each other, and a voltage is applied. A power source for generating the plasma in the cylindrical body and an insulator disposed inside the cylindrical body are provided.

請求項2に記載の発明は、請求項1記載の原子線源において、筒状体の内部で放出部に対して絶縁体を変位させる絶縁体駆動部を備えたことを特徴とする。   According to a second aspect of the present invention, in the atomic beam source according to the first aspect of the present invention, an insulator driving unit that displaces the insulator with respect to the emitting unit inside the cylindrical body is provided.

請求項3に記載の発明は、請求項1または2記載の原子線源において、陽極の任意の2点の端面から絶縁体の中心までの距離を、それぞれ同じ距離に設定したことを特徴とする。   According to a third aspect of the present invention, in the atomic beam source according to the first or second aspect, the distances from any two end faces of the anode to the center of the insulator are set to the same distance. .

請求項4に記載の発明は、請求項1〜3いずれか1項記載の原子線源において、陽極を、リング状電極あるいは2つの棒状陽極としたことを特徴とする。   According to a fourth aspect of the present invention, in the atomic beam source according to any one of the first to third aspects, the anode is a ring-shaped electrode or two rod-shaped anodes.

請求項5に記載の発明は、請求項1〜4いずれか1項記載の原子線源において、絶縁体の形状を、絶縁体の中心線に対して対称な形状にしたことを特徴とする。   The invention according to claim 5 is the atomic beam source according to any one of claims 1 to 4, characterized in that the shape of the insulator is symmetrical to the center line of the insulator.

請求項6に記載の発明は、筒状体内部にプラズマを発生する原子線源からイオンあるいは原子を対象物に放出して該対象物の表面改質を行う表面改質装置において、前記電子線源として請求項1〜5のいずれか1項記載の原子線源を使用し、該電子線源のイオンあるいは原子を放出する放出中心軸を、前記対象物の載置平面に垂直な軸線に対して任意の角度に傾けて設置したことを特徴とする。   According to a sixth aspect of the present invention, there is provided a surface modification apparatus for performing surface modification of an object by emitting ions or atoms to the object from an atomic beam source that generates plasma inside the cylindrical body. The atomic beam source according to any one of claims 1 to 5 is used as a source, and an emission central axis for emitting ions or atoms of the electron beam source is set to an axis perpendicular to a plane on which the object is placed. It is characterized by being installed at an arbitrary angle.

本発明によれば、原子線と被処理基板との距離,角度などを変更すること、あるいは異なる装置に取付けることなど、使用条件が異なる場合にも容易に対応できると共に、電子線照射中に電子線の分布を変更することにより、リアルタイムに基板の処理状態を制御することが可能となる。   According to the present invention, it is possible to easily cope with different usage conditions such as changing the distance, angle, etc. between the atomic beam and the substrate to be processed, or by attaching to a different apparatus. By changing the line distribution, the processing state of the substrate can be controlled in real time.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明に係る原子ビーム源の実施形態の概略構成を示す図であり、(a)は斜視図、(b)は断面図である。   FIG. 1 is a diagram showing a schematic configuration of an embodiment of an atomic beam source according to the present invention, where (a) is a perspective view and (b) is a sectional view.

図1の実施形態1の原子ビーム源10では、直方体の筒状体である陰極としての放電容器1の内部に、陽極となる棒状の電極2が2本配置されており、これらの電極2が直流電源6に接続されて電圧を印加できるようになっている。また、2本の電極2の間に1本の棒状の絶縁体3が配置されており、図中の矢印で示すように、絶縁体駆動部(後で詳述する)20により、絶縁体3が上下左右に移動可能な構造になっている。さらに放電容器1には、容器内でプラズマを発生させるために必要なガスを導入するガス供給口4、および電子ビームを放出する放出部であるビーム放出孔5が設けられている。   In the atomic beam source 10 of Embodiment 1 of FIG. 1, two rod-shaped electrodes 2 serving as anodes are disposed inside a discharge vessel 1 serving as a cathode that is a rectangular parallelepiped cylindrical body. It is connected to a DC power source 6 so that a voltage can be applied. In addition, one rod-like insulator 3 is disposed between the two electrodes 2, and as indicated by an arrow in the figure, an insulator drive unit (described later in detail) 20 causes the insulator 3. Can be moved up, down, left and right. Further, the discharge vessel 1 is provided with a gas supply port 4 for introducing a gas necessary for generating plasma in the vessel, and a beam emission hole 5 which is an emission part for emitting an electron beam.

この例では放電容器1の外周形状は直方体状の筒状体であるが、図2に示すような円柱形,立方体,球形,多面体など、どのような形状でもよい。この放電容器1は、ステンレス,アルミニウムなどの導電体で形成され、電極2との間に電圧を印加してプラズマを発生させるが、放電容器1を接地することが一般的である。そして内部で発生するプラズマにより放電容器1が削られることを防ぐために、容器内面にカーボンなどスパッタ率の低い材料を用いることがよい。   In this example, the outer peripheral shape of the discharge vessel 1 is a rectangular parallelepiped cylindrical body, but may be any shape such as a cylinder, a cube, a sphere, or a polyhedron as shown in FIG. The discharge vessel 1 is formed of a conductor such as stainless steel or aluminum, and generates a plasma by applying a voltage between the electrode 2 and the discharge vessel 1 is generally grounded. In order to prevent the discharge vessel 1 from being scraped by plasma generated inside, it is preferable to use a material having a low sputtering rate, such as carbon, on the inner surface of the vessel.

前記電極2については、本例では円柱形状のものを2本配置しているが、断面形状は、四角,多角形など、どのような筒状形状のものでもよい。例えば、図2に示す本実施形態の原子ビーム源の変形例のような円柱状の放電容器1の場合(図1に示す部材と対応する部材には同一符号を付して説明は省略する)は、電極2をリング状のものにしている。この電極2の材料も実施形態1における放電容器1の内側と同様に、カーボンなどを用いるのがよい。さらに電極2の形状は、図1に示すような棒状、図2に示すようなリング状のほかにも、多角形,板状の電極に複数の任意の形状の孔を穿設したものなどでもよい。   As for the electrode 2, two cylindrical ones are arranged in this example, but the cross-sectional shape may be any cylindrical shape such as a square or a polygon. For example, in the case of a cylindrical discharge vessel 1 such as a modification of the atomic beam source of the present embodiment shown in FIG. 2 (members corresponding to those shown in FIG. 1 are given the same reference numerals and description thereof is omitted). The electrode 2 has a ring shape. As the material of the electrode 2, carbon or the like may be used as in the inside of the discharge vessel 1 in the first embodiment. Furthermore, the shape of the electrode 2 is not limited to a rod shape as shown in FIG. 1 or a ring shape as shown in FIG. 2, but may be a polygonal or plate-like electrode having a plurality of holes of arbitrary shapes. Good.

図3(a),(b)は本発明に係る表面改質装置の実施形態の構成を示す説明図であり、本例では図1に示す構成の原子ビーム源10を使用している。   FIGS. 3A and 3B are explanatory views showing the configuration of an embodiment of the surface modification apparatus according to the present invention. In this example, the atomic beam source 10 having the configuration shown in FIG. 1 is used.

図3において、原子ビーム源10におけるイオンあるいは原子ビーム11を放出する放出中心軸Mを、表面改質の対象物である基板8を載置する基板保持台9の載置平面に垂直な軸線Nに対し、任意の角度θに傾けて設置することが可能になっている。   In FIG. 3, the emission central axis M for emitting ions or the atomic beam 11 in the atomic beam source 10 is an axis N perpendicular to the mounting plane of the substrate holder 9 on which the substrate 8 that is the object of surface modification is mounted. On the other hand, it can be installed at an arbitrary angle θ.

このため、原子ビーム源10から基板8に対して電子ビーム11を照射する際には、図3(a)に示すように、基板8の表面に対して原子ビーム11が垂直になるようにしたり、図3(b)に示すように、任意の角度θをもつようにして照射してもよい。また、図3(b)では、原子ビーム源10の電極2および絶縁体3が基板8の表面と平行になるように配置しているが、電極2および絶縁体3が基板8の表面と平行にならないような配置であってもよい。   Therefore, when the electron beam 11 is irradiated from the atomic beam source 10 to the substrate 8, the atomic beam 11 is made to be perpendicular to the surface of the substrate 8 as shown in FIG. As shown in FIG. 3B, irradiation may be performed with an arbitrary angle θ. In FIG. 3B, the electrode 2 and the insulator 3 of the atomic beam source 10 are arranged so as to be parallel to the surface of the substrate 8, but the electrode 2 and the insulator 3 are parallel to the surface of the substrate 8. The arrangement may be such that it does not become.

図4は本原子ビーム源10における原子ビームの動作原理の説明図を示しており、原子ビームを動作させるには、先ず、直流電源6以外の構成要素を真空容器1内に入れて十分に排気した後、ガス供給口4からガス(本例ではアルゴン)を導入する。ここで真空容器1外に設置された直流電源6によって、電極2と放電容器1の間に電圧を印加する。これにより電極2と放電容器1の間に放電が生じてプラズマが発生し、アルゴンイオンと電子が生成される。   FIG. 4 is an explanatory diagram of the principle of operation of the atomic beam in the present atomic beam source 10. In order to operate the atomic beam, first, components other than the DC power source 6 are placed in the vacuum vessel 1 and exhausted sufficiently. After that, gas (argon in this example) is introduced from the gas supply port 4. Here, a voltage is applied between the electrode 2 and the discharge vessel 1 by a DC power source 6 installed outside the vacuum vessel 1. As a result, a discharge is generated between the electrode 2 and the discharge vessel 1 to generate plasma, and argon ions and electrons are generated.

図4のような構成では、中央付近で発生した電子は、2つの電極(陽極)2からの引力および放電容器(陰極)1からの斥力がほぼ左右対称に働き、放電容器1内の中央を上下方向に往復運動を繰り返すことになり、中央の上下に電子密度の大きな部分ができる。中央付近以外で発生した原子は、電極2の引力および放電容器からの斥力により、電極(陽極)2へ引きつけられる。   In the configuration as shown in FIG. 4, the electrons generated near the center act almost symmetrically with the attractive force from the two electrodes (anode) 2 and the repulsive force from the discharge vessel (cathode) 1. The reciprocating motion is repeated in the vertical direction, and a portion with a large electron density is formed above and below the center. Atoms generated outside the vicinity of the center are attracted to the electrode (anode) 2 by the attractive force of the electrode 2 and the repulsive force from the discharge vessel.

また、アルゴンイオンは、中央付近では、電極(陽極)2からの斥力、放電容器(陰極)1からの引力によって、上または下方向に加速し、ビーム放出孔5に向かって加速されたイオンが、ビーム放出孔5の手前、あるいはビーム放出孔5にて電子と衝突,再結合をして中性原子になる。イオンと電子の衝突においては、電子の質量がイオンに比べて無視できるほどに小さいので、アルゴンイオンの運動エネルギーは、そのまま原子に受け継がれて高速の原子ビームが放出される。その他のイオンは放電容器(陰極)1に引き付けられるか、電子と衝突して中性原子になる。   Further, argon ions are accelerated upward or downward by repulsive force from the electrode (anode) 2 and attractive force from the discharge vessel (cathode) 1 near the center, and ions accelerated toward the beam emitting hole 5 are accelerated. In front of the beam emission hole 5 or in the beam emission hole 5, it collides with electrons and recombines to become neutral atoms. In the collision between ions and electrons, the mass of the electrons is negligibly small compared to the ions, so that the kinetic energy of the argon ions is directly transferred to the atoms and a high-speed atomic beam is emitted. Other ions are attracted to the discharge vessel (cathode) 1 or collide with electrons to become neutral atoms.

このような動作原理であるため、2つの電極2からの等距離にある面,線、あるいは点においては、アルゴンイオンおよび加速されたアルゴン原子の密度が大きくなり、ひいては電子ビームの強度が強くなるという構造になっている。電極が2本の棒でなくて、孔を有する板状のものの場合でも、電極2の各部から等距離にある面,線,点においても同様である。したがって、このような位置関係にある部位に絶縁体3を配置することが放電容器1内のプラズマ状態に大きな影響を与え、放電容器1から放出される電子ビームの分布、基板処理の均一性を制御するために有効である。   Because of this principle of operation, the density of argon ions and accelerated argon atoms increases on the surface, line, or point that are equidistant from the two electrodes 2, and the intensity of the electron beam increases accordingly. It has a structure. Even in the case where the electrode is not two bars but is a plate having a hole, the same applies to surfaces, lines, and points equidistant from each part of the electrode 2. Therefore, the arrangement of the insulator 3 in the position having such a positional relationship has a great influence on the plasma state in the discharge vessel 1, and the distribution of the electron beam emitted from the discharge vessel 1 and the uniformity of the substrate processing are reduced. It is effective to control.

また、上述した構造上、電極2から等距離にある面,線,点に対してプラズマおよび電子ビームの分布は対称になるため、放出される電子ビームの分布の均一性、すなわち、基板処理の均一性向上のためには、絶縁体3の形状も、この面,線,点に対して対称な形状にすることがよい。さらに、絶縁体3は1個である必要はなく、複数の絶縁体3を電極2から等距離にある面,線,点に対して対称に配置してもよい。   In addition, because of the structure described above, the plasma and electron beam distributions are symmetric with respect to surfaces, lines, and points that are equidistant from the electrode 2, so that the uniformity of the emitted electron beam distribution, that is, the substrate processing In order to improve the uniformity, the shape of the insulator 3 is preferably symmetric with respect to this plane, line, and point. Furthermore, the number of insulators 3 is not necessarily one, and a plurality of insulators 3 may be arranged symmetrically with respect to planes, lines, and points that are equidistant from the electrode 2.

前記絶縁体3については、図1では円柱形状の例を示したが、図2のような円板状のものなど、どのような形状でもよい。   As for the insulator 3, an example of a cylindrical shape is shown in FIG. 1, but any shape such as a disk shape as shown in FIG. 2 may be used.

図5(a)〜(h)は電極2が2本の棒状の場合における絶縁体3の各種形状例を示す原子ビーム源の断面図であって、断面形状は、(a)に示す四角あるいは多角形、(b)に示す楕円、(c)に示す十字、(d)に示すひし形、(e)に示すリング、(f)に示すフリー曲線、(g),(h)に示す複数の円形形状で作成したものなど、どのようなものでもよい。   FIGS. 5A to 5H are cross-sectional views of an atomic beam source showing examples of various shapes of the insulator 3 in the case where the electrode 2 is in the shape of two rods, and the cross-sectional shape is the square shown in FIG. Polygon, ellipse shown in (b), cross shown in (c), rhombus shown in (d), ring shown in (e), free curve shown in (f), multiples shown in (g) and (h) Anything such as a circular shape may be used.

図6(a)〜(d)は電極2が棒状でない場合の絶縁体3の各種形状例を示す図であって、(a),(b)に示すように、電極2がリング状の場合は絶縁体3としては球状、あるいは棒状(断面は任意形状)にしたり、中心軸に対して軸対称な任意の形状が可能であり、(c)に示すように、電極2が多角形に孔が形成された形状の場合も同様である。   6A to 6D are diagrams showing examples of various shapes of the insulator 3 when the electrode 2 is not rod-shaped, and the electrode 2 is ring-shaped as shown in FIGS. The insulator 3 can be spherical or rod-shaped (the cross section has an arbitrary shape), or any shape that is axially symmetric with respect to the central axis. As shown in FIG. The same applies to the shape in which is formed.

また(d)に示すように、板状の電極2に複数の孔2aが形成された形状の場合には、各孔2aに対してそれぞれ球状、棒状または軸対称な任意の形状の絶縁体3を配置する。このように、電極2に複数の孔2aがある場合は、全ての孔2aに絶縁体3を配置する必要はなく、一部の孔2aに配置するだけでもよい。   Further, as shown in (d), in the case where a plurality of holes 2a are formed in the plate-like electrode 2, the insulator 3 having any shape that is spherical, rod-shaped, or axially symmetric with respect to each hole 2a. Place. Thus, when there are a plurality of holes 2a in the electrode 2, it is not necessary to arrange the insulators 3 in all the holes 2a, and it may be arranged only in a part of the holes 2a.

絶縁体3の材質としては、高温になる場合があるので、アルミナなどセラミックなどが望ましい。   The insulator 3 is preferably made of ceramic such as alumina because it may be at a high temperature.

図7は絶縁体の構成を示す断面図であって、(a),(b)に示す断面が円形あるいは四角形の中実体で全体が絶縁体3のもの、あるいは(c),(d)に示すように、導電体21の表面に絶縁体3の膜を形成したもの、あるいは(e),(f)に示すように、中空の導電体21の表面に絶縁体3の膜を形成したもの、あるいは(g),(h)に示すように、中空の導電体21の内外周に絶縁体3の膜を形成したものでも同様の効果が得られる。   FIG. 7 is a cross-sectional view showing the structure of the insulator, and the cross-sections shown in (a) and (b) are solid bodies of a circle or quadrangle and the whole is the insulator 3, or (c) and (d). As shown, a film of the insulator 3 formed on the surface of the conductor 21, or a film of the insulator 3 formed on the surface of the hollow conductor 21, as shown in (e) and (f). Alternatively, as shown in (g) and (h), the same effect can be obtained by forming the insulator 3 film on the inner and outer peripheries of the hollow conductor 21.

また、ビーム放出孔5については、図1,図2に示したように、孔部が略均一に配置してあればよく、この放出孔の孔形状も一般には円形が加工も容易でよいが、その他の形状であってもよい。   In addition, as shown in FIG. 1 and FIG. 2, the beam emission hole 5 only needs to have a substantially uniform hole portion. Other shapes may also be used.

図8(a)〜(d)は図1に示す構成の原子ビーム源内の絶縁体3の位置変位の説明図、図9は絶縁体が図8(a)〜(d)に示す位置のときの原子ビームから放出されるビームの強度分布の実測図である。   FIGS. 8A to 8D are explanatory views of the positional displacement of the insulator 3 in the atomic beam source having the configuration shown in FIG. 1, and FIG. 9 is a diagram when the insulator is at the positions shown in FIGS. 8A to 8D. It is an actual measurement figure of intensity distribution of the beam emitted from the atomic beam.

図8において、(a)は絶縁体がない場合、(b)は絶縁体3が中央に配された場合、(c)は絶縁体3が下部(ビーム放出孔5側)に配された場合、(d)は反対に絶縁体3が上部に配された場合を示す。   8A shows a case where there is no insulator, FIG. 8B shows a case where the insulator 3 is arranged at the center, and FIG. 8C shows a case where the insulator 3 is arranged at the lower part (on the beam emission hole 5 side). (D) shows the case where the insulator 3 is arranged on the upper side.

電子ビーム照射対象である基板表面に対して、垂直に原子ビームを照射した場合には、このビームの強度分布は、原子ビームによる処理速度(例えば、基板表面の加工速度など)の分布と一致する。以下では、基板の処理速度の分布と絶縁体の位置の関係を説明するが、原子ビームの強度分布についても同様のことが言える。   When an atomic beam is irradiated perpendicularly to the surface of the substrate that is the electron beam irradiation target, the intensity distribution of this beam coincides with the distribution of the processing speed by the atomic beam (for example, the processing speed of the substrate surface). . In the following, the relationship between the distribution of the processing speed of the substrate and the position of the insulator will be described, but the same applies to the intensity distribution of the atomic beam.

図9に示すように、絶縁体3がない図8(a)の場合では、中央部での処理速度が大きくなっているのに対し、絶縁体3を2つの電極2の中央に配置した図8(b)の場合では、全体的に均一になる。また、図8(c)に示すように絶縁体3をビーム放出孔5側に移動すると、中央を対称軸として2つの山ができる分布になり、図8(d)に示すように、反対に絶縁体3を放出孔5から離れる方向に移動すると中央の処理速度が非常に大きくなる。   As shown in FIG. 9, in the case of FIG. 8A without the insulator 3, the processing speed at the center is increased, whereas the insulator 3 is arranged at the center of the two electrodes 2. In the case of 8 (b), it becomes uniform as a whole. Further, when the insulator 3 is moved to the beam emission hole 5 side as shown in FIG. 8 (c), the distribution is such that two peaks are formed with the center as the axis of symmetry, as shown in FIG. 8 (d). When the insulator 3 is moved away from the discharge hole 5, the central processing speed becomes very high.

このように絶縁体3の位置を変化させることで、処理速度の分布を変化させることができる。ここでは、絶縁体3を上下方向に移動した場合の例を示したが、絶縁体3を左右に移動した場合にも処理速度の分布を変化させることができる。   By changing the position of the insulator 3 in this way, the processing speed distribution can be changed. Here, an example in which the insulator 3 is moved in the vertical direction has been described, but the distribution of the processing speed can be changed also when the insulator 3 is moved in the left and right directions.

さらには、処理中の基板上の膜厚をリアルタイムで測定して、その結果をフィードバックして、上述したように絶縁体3の位置を移動させることにより、さらに処理速度の均一性を向上させることができる。   Furthermore, the uniformity of the processing speed can be further improved by measuring the film thickness on the substrate being processed in real time, feeding back the result, and moving the position of the insulator 3 as described above. Can do.

例えば、図1に示すような原子ビーム源の構成において、処理対象の基板の外周部の処理速度を大きくしたい場合は、図8(c)に示すように、絶縁体3をビーム放出孔5側へ移動させる。また、逆に基板中央部の処理速度を大きくしたい場合は、図8(d)に示すように、絶縁体3をビーム放出孔5側から遠ざける方向へ移動させることによって、制御することができる。また、基板の均一処理だけでなく、基板表面に凹凸加工をしたい場合には、処理中に絶縁体3を移動させることで実現可能となる。   For example, in the configuration of the atomic beam source as shown in FIG. 1, when it is desired to increase the processing speed of the outer peripheral portion of the substrate to be processed, the insulator 3 is placed on the beam emission hole 5 side as shown in FIG. Move to. Conversely, when it is desired to increase the processing speed at the center of the substrate, it can be controlled by moving the insulator 3 in a direction away from the beam emission hole 5 as shown in FIG. Further, when it is desired not only to uniformly treat the substrate but also to process the surface of the substrate, the insulator 3 can be moved during the treatment.

図10は本実施形態に適用される絶縁体駆動部の構成例を示す図であり、(a)は正面断面図、(b)は(a)におけるX−X線断面図である。   10A and 10B are diagrams showing a configuration example of an insulator driving unit applied to the present embodiment, in which FIG. 10A is a front sectional view, and FIG. 10B is a sectional view taken along line XX in FIG.

図10において、絶縁体駆動部20は、放電容器1に設けられた長孔23の範囲で、柱状の絶縁体3を上下移動可能にボルト24などで固定する構成になっており、長孔23における外部に対して開いている部分(ボルト24の頭部で被覆されない部位)を被覆用の板(図示せず)などで塞ぐことができるようにしてある。   In FIG. 10, the insulator driving unit 20 is configured to fix the columnar insulator 3 with a bolt 24 or the like so as to be movable up and down within the range of the long hole 23 provided in the discharge vessel 1. A portion (a portion not covered with the head of the bolt 24) that is open to the outside in the case can be closed with a covering plate (not shown) or the like.

この構成により、原子ビーム源を取り付ける装置を変更したり、あるいは原子ビーム取り付け位置を変更したり、あるいは基板ごとに原子ビームによる基板処理速度の分布を変更するなど、基板の処理速度の分布をビーム照射中に変更する必要がない場合に、絶縁体3の位置を放電容器1に設けられた長孔23の範囲内で移動することができる。   With this configuration, the substrate processing speed distribution can be changed by changing the device for attaching the atomic beam source, changing the atomic beam mounting position, or changing the substrate processing speed distribution by the atomic beam for each substrate. When there is no need to change during irradiation, the position of the insulator 3 can be moved within the range of the long hole 23 provided in the discharge vessel 1.

なお、図10に示す構成において、絶縁体3は、放電容器1でなく、電極2など他の部分に固定してもよい。また単純な長孔23だけでなく、絶縁体3を移動させたい範囲によっては、それに適合する孔形状にする。   In the configuration shown in FIG. 10, the insulator 3 may be fixed to other portions such as the electrode 2 instead of the discharge vessel 1. In addition to the simple long hole 23, depending on the range in which the insulator 3 is to be moved, the hole shape is adapted to that.

図11は本実施形態に適用される絶縁体駆動部の他の構成例を示す図であり、(a)は正面断面図、(b)は(a)におけるX−X線断面図である。   11A and 11B are diagrams showing another configuration example of the insulator driving unit applied to the present embodiment, in which FIG. 11A is a front sectional view and FIG. 11B is a sectional view taken along line XX in FIG.

図11において、絶縁体駆動部20は、原子ビーム照射中に絶縁体3を移動させる必要がある場合には、例えばモータ25の動力を、ボールねじ26およびガイド27に連結されたシャフト28などを介して絶縁体3に伝達することで、絶縁体3の位置を移動させ、上述したように基板の処理速度の分布を制御することを可能にしている。   In FIG. 11, when it is necessary to move the insulator 3 during the atomic beam irradiation, the insulator drive unit 20 uses, for example, the power of the motor 25 to the shaft 28 connected to the ball screw 26 and the guide 27. The position of the insulator 3 can be moved by transmitting to the insulator 3 via the control, and the distribution of the processing speed of the substrate can be controlled as described above.

この際、移動するシャフト28と放電容器1との隙間からガスの漏れを防止するために、本例ではベローズ29を使用している。ベローズ29以外にもマグネットカップリング、あるいはOリングなどによるシール方法を用いてもよい。   At this time, a bellows 29 is used in this example in order to prevent gas leakage from the gap between the moving shaft 28 and the discharge vessel 1. In addition to the bellows 29, a sealing method using a magnet coupling or an O-ring may be used.

前記モータ25,ボールねじ26,ガイド27などが真空中において使用可能な構造のものであれば、図11のような構造全体を真空容器1内に配置することができる。しかし、モータ25,ボールねじ26,ガイド27などが真空中で使用不可能なものであれば、図11中にYで示した面と原子ビームを設置する真空容器1の壁との間で適宜シールすることにより、モータ25,ボールねじ26,ガイド27などを大気中に配置することができ、図11のような構成で実現可能になる。   If the motor 25, the ball screw 26, the guide 27, and the like have a structure that can be used in a vacuum, the entire structure as shown in FIG. However, if the motor 25, the ball screw 26, the guide 27, and the like cannot be used in a vacuum, an appropriate distance between the surface indicated by Y in FIG. 11 and the wall of the vacuum vessel 1 on which the atomic beam is installed. By sealing, the motor 25, the ball screw 26, the guide 27 and the like can be arranged in the atmosphere, and can be realized with the configuration as shown in FIG.

なお、前記構成例以外にも、各種機構により絶縁体を移動させる構成は実現可能である。   In addition to the above configuration example, a configuration in which the insulator is moved by various mechanisms can be realized.

本発明は、原子ビームと被処理基板との距離、角度などを変更すること、あるいは異なる装置に取付けることなど、使用条件が異なる場合にも容易に対応できると共に、電子ビーム照射中に電子ビームの分布を変更することにより、リアルタイムに処理対象である基板の処理状態を制御することができるという特徴を有し、半導体製造プロセスなどにおいて、照射範囲における処理速度の均一性あるいは処理速度分布の制御が要求されるような場合などに利用可能である。   The present invention can easily cope with different usage conditions, such as changing the distance and angle between the atomic beam and the substrate to be processed, or being attached to a different apparatus. By changing the distribution, the processing state of the substrate to be processed can be controlled in real time. In the semiconductor manufacturing process, etc., the uniformity of the processing speed in the irradiation range or the control of the processing speed distribution can be controlled. It can be used when required.

本発明に係る原子ビーム源の実施形態の概略構成を示す図であり、(a)は斜視図、(b)は断面図It is a figure which shows schematic structure of embodiment of the atomic beam source which concerns on this invention, (a) is a perspective view, (b) is sectional drawing. 本実施形態の変形例である円柱状の放電容器を一部断面して示す斜視図The perspective view which shows the cylindrical discharge vessel which is a modification of this embodiment partially in cross section (a),(b)は本発明に係る表面改質装置の実施形態の構成を示す説明図(A), (b) is explanatory drawing which shows the structure of embodiment of the surface modification apparatus which concerns on this invention. 本実施形態の原子ビーム源における原子ビームの動作原理の説明図Explanatory drawing of the principle of operation of the atomic beam in the atomic beam source of this embodiment (a)〜(h)は本実施形態の電極が2本の棒状の場合における絶縁体の各種形状例を示す原子ビーム源の断面図(A)-(h) is sectional drawing of the atomic beam source which shows the example of various shapes of an insulator in case the electrode of this embodiment is two rod shape (a)〜(d)は本実施形態の電極が棒状でない場合の絶縁体の各種形状例を示す図であり、(a),(b)は斜視図、(c),(d)は上図が平面図、下図が断面図(A)-(d) is a figure which shows the example of various shapes of the insulator in case the electrode of this embodiment is not rod-shaped, (a), (b) is a perspective view, (c), (d) is the top Figure is a plan view (a)〜(h)は本実施形態の絶縁体の構成を示す断面図(A)-(h) is sectional drawing which shows the structure of the insulator of this embodiment. (a)〜(d)は本実施形態の原子ビーム源内における絶縁体の位置変位の説明図(A)-(d) is explanatory drawing of the position displacement of the insulator in the atomic beam source of this embodiment. 図8(a)〜(d)のときの原子ビームから放出されるビームの強度分布の実測図8A to 8D are actual measurement diagrams of the intensity distribution of the beam emitted from the atomic beam. 本実施形態に適用される絶縁体駆動部の構成例を示す図であり、(a)は正面断面図、(b)は(a)におけるX−X線断面図It is a figure which shows the structural example of the insulator drive part applied to this embodiment, (a) is front sectional drawing, (b) is XX sectional drawing in (a). 本実施形態に適用される絶縁体駆動部の他の構成例を示す図であり、(a)は正面断面図、(b)は(a)におけるX−X線断面図It is a figure which shows the other structural example of the insulator drive part applied to this embodiment, (a) is front sectional drawing, (b) is XX sectional drawing in (a). 従来の原子線源の構成例を示す図Diagram showing a configuration example of a conventional atomic beam source 従来の原子線源の他の構成例を示す図The figure which shows the other structural example of the conventional atomic beam source

符号の説明Explanation of symbols

1 放電容器
2 電極
3 絶縁体
4 ガス供給口
5 ビーム放出孔
6 直流電源
8 基板
9 基板保持台
10 原子ビーム源
11 原子ビーム
20 絶縁体駆動部
21 導電体
23 長孔
24 ボルト
25 モータ
26 ボールねじ
27 ガイド
28 シャフト
29 ベローズ
DESCRIPTION OF SYMBOLS 1 Discharge vessel 2 Electrode 3 Insulator 4 Gas supply port 5 Beam emission hole 6 DC power supply 8 Substrate 9 Substrate holder 10 Atomic beam source 11 Atomic beam 20 Insulator driving part 21 Conductor 23 Long hole 24 Bolt 25 Motor 26 Ball screw 27 Guide 28 Shaft 29 Bellows

Claims (6)

陰極として作用して内部にプラズマを発生させ、イオンあるいは原子を放出する筒状体と、
前記筒状体の一部に開口され、前記イオンあるいは原子を外部に放出する放出部と、
前記筒状体の内部に配置される陽極と、
前記放出部と前記陽極とに電気的に接続され、電圧を印加して前記筒状体内に前記プラズマを発生させる電源と、
前記筒状体の内部に配置される絶縁体と、
を備えたことを特徴とする原子線源。
A cylindrical body that acts as a cathode, generates plasma inside, and emits ions or atoms;
An emission part that is opened in a part of the cylindrical body and emits the ions or atoms to the outside;
An anode disposed inside the cylindrical body;
A power source electrically connected to the emitting portion and the anode, and applying a voltage to generate the plasma in the cylindrical body;
An insulator disposed inside the cylindrical body;
An atomic beam source characterized by comprising:
前記筒状体の内部で前記放出部に対して前記絶縁体を変位させる絶縁体駆動部を備えたことを特徴とする請求項1記載の原子線源。   The atomic beam source according to claim 1, further comprising an insulator driving unit that displaces the insulator with respect to the emitting unit inside the cylindrical body. 前記陽極の任意の2点の端面から前記絶縁体の中心までの距離を、それぞれ同じ距離に設定したことを特徴とする請求項1または2記載の原子線源。   3. The atomic beam source according to claim 1, wherein the distances from any two end faces of the anode to the center of the insulator are set to the same distance. 前記陽極を、リング状電極あるいは2つの棒状陽極としたことを特徴とする請求項1〜3いずれか1項記載の原子線源。   The atomic beam source according to claim 1, wherein the anode is a ring-shaped electrode or two rod-shaped anodes. 前記絶縁体の形状を、前記絶縁体の中心線に対して対称な形状にしたことを特徴とする請求項1〜4いずれか1項記載の原子線源。   The atomic beam source according to claim 1, wherein the shape of the insulator is symmetrical with respect to a center line of the insulator. 筒状体内部にプラズマを発生する原子線源からイオンあるいは原子を対象物に放出して該対象物の表面改質を行う表面改質装置において、
前記電子線源として請求項1〜5のいずれか1項記載の原子線源を使用し、該電子線源のイオンあるいは原子を放出する放出中心軸を、前記対象物の載置平面に垂直な軸線に対して任意の角度に傾けて設置したことを特徴とする表面改質装置。
In a surface modification apparatus for performing surface modification of an object by discharging ions or atoms to the object from an atomic beam source that generates plasma inside the cylindrical body,
The atomic beam source according to any one of claims 1 to 5 is used as the electron beam source, and an emission central axis for emitting ions or atoms of the electron beam source is perpendicular to a mounting plane of the object. A surface modification apparatus characterized by being installed at an arbitrary angle with respect to an axis.
JP2007123159A 2007-05-08 2007-05-08 Atomic beam source and surface modification equipment Expired - Fee Related JP4810497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123159A JP4810497B2 (en) 2007-05-08 2007-05-08 Atomic beam source and surface modification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123159A JP4810497B2 (en) 2007-05-08 2007-05-08 Atomic beam source and surface modification equipment

Publications (2)

Publication Number Publication Date
JP2008281346A true JP2008281346A (en) 2008-11-20
JP4810497B2 JP4810497B2 (en) 2011-11-09

Family

ID=40142298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123159A Expired - Fee Related JP4810497B2 (en) 2007-05-08 2007-05-08 Atomic beam source and surface modification equipment

Country Status (1)

Country Link
JP (1) JP4810497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038476A1 (en) * 2015-08-28 2017-03-09 日本碍子株式会社 Atomic beam source
WO2019207958A1 (en) * 2018-04-26 2019-10-31 国立大学法人名古屋大学 Atomic beam generation device, joining device, surface modification method and joining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143799A (en) * 1986-12-05 1988-06-16 日本電信電話株式会社 High speed atomic beam source
JPH1092702A (en) * 1996-09-18 1998-04-10 Agency Of Ind Science & Technol Method for normal-temperature junction of silicon wafer
JP2002289399A (en) * 2001-03-26 2002-10-04 Ebara Corp Neutral particle beam treatment apparatus
JP2007317650A (en) * 2006-04-27 2007-12-06 Matsushita Electric Ind Co Ltd Fast atom radiation source and fast atomic beam discharging method and surface reforming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143799A (en) * 1986-12-05 1988-06-16 日本電信電話株式会社 High speed atomic beam source
JPH1092702A (en) * 1996-09-18 1998-04-10 Agency Of Ind Science & Technol Method for normal-temperature junction of silicon wafer
JP2002289399A (en) * 2001-03-26 2002-10-04 Ebara Corp Neutral particle beam treatment apparatus
JP2007317650A (en) * 2006-04-27 2007-12-06 Matsushita Electric Ind Co Ltd Fast atom radiation source and fast atomic beam discharging method and surface reforming device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016000096B4 (en) 2015-08-28 2024-03-14 Ngk Insulators, Ltd. Atomic beam source
US20170154697A1 (en) * 2015-08-28 2017-06-01 Ngk Insulators, Ltd. Atomic beam source
KR20170098789A (en) * 2015-08-28 2017-08-30 엔지케이 인슐레이터 엘티디 Atomic beam source
JPWO2017038476A1 (en) * 2015-08-28 2017-09-21 日本碍子株式会社 Atomic beam source
US9947428B2 (en) 2015-08-28 2018-04-17 Ngk Insulators, Ltd. Atomic beam source
KR101886587B1 (en) 2015-08-28 2018-08-07 엔지케이 인슐레이터 엘티디 Atomic beam source
WO2017038476A1 (en) * 2015-08-28 2017-03-09 日本碍子株式会社 Atomic beam source
WO2019207958A1 (en) * 2018-04-26 2019-10-31 国立大学法人名古屋大学 Atomic beam generation device, joining device, surface modification method and joining method
JPWO2019207958A1 (en) * 2018-04-26 2021-04-30 国立大学法人東海国立大学機構 Atomic beam generator, joining device, surface modification method and joining method
US11412607B2 (en) 2018-04-26 2022-08-09 National University Corporation Tokai National Higher Education And Research System Atomic beam generator, bonding apparatus, surface modification method, and bonding method
JP7165335B2 (en) 2018-04-26 2022-11-04 国立大学法人東海国立大学機構 Atomic Beam Generator, Bonding Device, Surface Modification Method and Bonding Method
TWI806983B (en) * 2018-04-26 2023-07-01 國立大學法人名古屋大學 Atomic wire generating device, bonding device, surface modification method, and bonding method
KR20210005587A (en) * 2018-04-26 2021-01-14 내셔널 유니버시티 코포레이션 토카이 내셔널 하이어 에듀케이션 앤드 리서치 시스템 Atomic ray generator, bonding device, surface modification method and bonding method
KR102661678B1 (en) 2018-04-26 2024-04-26 내셔널 유니버시티 코포레이션 토카이 내셔널 하이어 에듀케이션 앤드 리서치 시스템 Atomic beam generator, bonding device, surface modification method and bonding method

Also Published As

Publication number Publication date
JP4810497B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP6220749B2 (en) Ion gun, ion milling apparatus, and ion milling method
KR100951389B1 (en) Thin Film Forming Apparatus
JP2001028244A (en) Beam source
JP6100619B2 (en) Ion source and ion milling equipment
JP5903864B2 (en) Ion milling equipment
KR20140078747A (en) Switched electron beam plasma source array for uniform plasma production
JP2015220352A (en) Plasma processing apparatus
JP2014209406A (en) Ion beam generating device, and ion beam plasma processing apparatus
US4767931A (en) Ion beam apparatus
JP2014078514A (en) Plasma sources
JP4810497B2 (en) Atomic beam source and surface modification equipment
TW201408807A (en) Magnetron sputtering device, magnetron sputtering method, and storage medium
JP2004162138A (en) Plasma assisted sputtering film-forming apparatus
JP4818977B2 (en) Fast atom beam source, fast atom beam emission method, and surface modification apparatus
JP2008181704A (en) High-density plasma treatment device
JP2009262172A (en) Electron beam irradiation device for reforming surface in through-hole
JP2007317650A5 (en)
JPH08190995A (en) High speed atomic beam source
JP4774322B2 (en) Surface treatment equipment
JP2018022701A (en) Ion gun, ion milling device, and ion milling method
JP5187876B2 (en) Electron beam irradiation surface modification equipment
JP2006161063A (en) Surface treatment device, and optical element molding die
JP2008081797A (en) Surface treatment device, optical element forming mold, and optical element
JPH1074735A (en) Fast atomic beam
KR101597424B1 (en) Method for manufacturing cylinder mold having micro pattern with slope cutting face, etching apparatus and etching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees