JP2008281012A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2008281012A
JP2008281012A JP2008218378A JP2008218378A JP2008281012A JP 2008281012 A JP2008281012 A JP 2008281012A JP 2008218378 A JP2008218378 A JP 2008218378A JP 2008218378 A JP2008218378 A JP 2008218378A JP 2008281012 A JP2008281012 A JP 2008281012A
Authority
JP
Japan
Prior art keywords
cylinder
exhaust
amount
cylinders
overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008218378A
Other languages
Japanese (ja)
Other versions
JP4803225B2 (en
Inventor
Keisuke Komori
啓介 小森
Masaharu Ichise
雅春 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008218378A priority Critical patent/JP4803225B2/en
Publication of JP2008281012A publication Critical patent/JP2008281012A/en
Application granted granted Critical
Publication of JP4803225B2 publication Critical patent/JP4803225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine for suppressing combustion dispersion among cylinders by uniforming the amount of exhaust gas to be recirculated in each of the cylinders. <P>SOLUTION: In a V-8 unequally-spaced ignition engine, the heat conductivity of an exhaust passage for a fourth cylinder #4, a fifth cylinder #5, a seventh cylinder #7, and an eighth cylinder #8 where overlap periods do not overlap one another in an exhaust stroke is set to be lower than that of the passage area of an exhaust passage for a first cylinder #1, a second cylinder #2, a third cylinder #3, and a sixth cylinder #6 where overlap periods overlap one another in an exhaust stroke in the specified cylinders. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の気筒が左右のバンクに分けて配列されて各バンクの気筒が不等間隔で点火・爆発する不等間隔点火式のV型多気筒内燃機関に関するものである。   The present invention relates to an unequal interval ignition type V-type multi-cylinder internal combustion engine in which a plurality of cylinders are divided into left and right banks and the cylinders of each bank are ignited and exploded at unequal intervals.

一般的なV型多気筒エンジンにおいて、シリンダブロックは上部に所定角度で傾斜した2つのバンクを有しており、各バンクに設けられた各シリンダにピストンが移動自在に嵌合し、各ピストンは下部に回転自在に支持されたクランクシャフトに連結されている。また、シリンダブロックの各バンクの上部にはシリンダヘッドが締結されることで各燃焼室が構成されており、各燃焼室には吸気ポート及び排気ポートが形成され、吸気弁及び排気弁により開閉可能となっている。そして、吸気管の下流部が2つに分岐して各バンクの吸気ポートに連結される一方、排気管の上流部が2つに分岐して各バンクの排気ポートに連結され、この排気管の下流部に触媒装置が装着されている。   In a general V-type multi-cylinder engine, the cylinder block has two banks inclined at a predetermined angle at the top, and a piston is movably fitted to each cylinder provided in each bank. It is connected to a crankshaft rotatably supported at the bottom. In addition, each combustion chamber is configured by fastening a cylinder head to the upper part of each bank of the cylinder block, and each combustion chamber is formed with an intake port and an exhaust port, and can be opened and closed by an intake valve and an exhaust valve. It has become. The downstream part of the intake pipe is branched into two and connected to the intake port of each bank, while the upstream part of the exhaust pipe is branched into two and connected to the exhaust port of each bank. A catalytic device is mounted in the downstream portion.

例えば、V型8気筒エンジンにて、左バンクには第1気筒、第3気筒、第5気筒、第7気筒が設けられ、右バンクには第2気筒、第4気筒、第6気筒、第8気筒が設けられ、各バングに排気マニホールドを介して排気管が連結されている。そして、動弁系の動バランスを最適化するために各気筒の点火順序は、第1気筒、第8気筒、第7気筒、第3気筒、第6気筒、第5気筒、第4気筒、第2気筒となっている。また、V型8気筒エンジンでは、ピストンによるポンピングロスの低減や発生するNOxの低減などの目的で、排気弁の閉止時期を遅角すると共に吸気弁の開弁時期を進角することで、排気弁の開放期間後期と吸気弁の開放期間前期とをオーバーラップさせるようにしている。   For example, in a V-type 8-cylinder engine, the left bank is provided with a first cylinder, a third cylinder, a fifth cylinder, and a seventh cylinder, and the right bank is provided with a second cylinder, a fourth cylinder, a sixth cylinder, Eight cylinders are provided, and an exhaust pipe is connected to each bang through an exhaust manifold. In order to optimize the dynamic balance of the valve train, the firing order of each cylinder is as follows: first cylinder, eighth cylinder, seventh cylinder, third cylinder, sixth cylinder, fifth cylinder, fourth cylinder, It has 2 cylinders. Further, in the V-type 8-cylinder engine, the exhaust valve closing timing is retarded and the intake valve opening timing is advanced for the purpose of reducing the pumping loss due to the piston and reducing the generated NOx. The latter half of the valve opening period overlaps the first half of the intake valve opening period.

特開平3−070810号公報Japanese Patent Laid-Open No. 3-070810 特表2003−515025号公報Special table 2003-515025 gazette

ところが、上述したV型8気筒エンジンにあっては、点火順序が気筒番号順でないため、左バンクでは第1気筒、第7気筒、第3気筒、第5気筒の順に不等間隔で点火され、右バンクでは第8気筒、第6気筒、第4気筒、第2気筒の順に点火されることとなり、各バンクにおける点火(爆発)間隔が不等となっている。そのため、左バンクでは、第1気筒のオーバーラップ期間と第7気筒の排気行程が重なると共に、第3気筒のオーバーラップ期間と第5気筒の排気行程が重なってしまう。また、右バンクでは、第2気筒のオーバーラップ期間と第8気筒の排気行程が重なると共に、第6気筒のオーバーラップ期間と第4気筒の排気行程が重なってしまう。   However, in the V-type 8-cylinder engine described above, since the ignition order is not the cylinder number order, the left bank is ignited at unequal intervals in the order of the first cylinder, the seventh cylinder, the third cylinder, and the fifth cylinder. In the right bank, the eighth cylinder, the sixth cylinder, the fourth cylinder, and the second cylinder are ignited in this order, and the ignition (explosion) intervals in each bank are unequal. Therefore, in the left bank, the overlap period of the first cylinder and the exhaust stroke of the seventh cylinder overlap, and the overlap period of the third cylinder and the exhaust stroke of the fifth cylinder overlap. In the right bank, the overlap period of the second cylinder and the exhaust stroke of the eighth cylinder overlap, and the overlap period of the sixth cylinder and the exhaust stroke of the fourth cylinder overlap.

そして、一方の気筒のオーバーラップ期間と他方の気筒の排気行程が重なると、一方の気筒の吸気弁及び排気弁の開放状態で、他方の気筒の排気弁が開放することとなり、この他方の気筒の排気ポートから排出された排気ガスが排気マニホールドを通って一方の気筒に排気脈動として悪影響を与える。即ち、一方の気筒に他方の気筒の排気脈動が作用することで、この一方の気筒では、排気マニホールドから排気ポートを通ってシリンダ(燃焼室)内に戻る排気ガス循環量、つまり、内部EGR量が増加してしまう。すると、各気筒間で内部EGR量が相違することで吸入空気量も相違し、燃焼がばらついて不安定となり、出力トルクが変動してしまうと共に、オーバーラップによる燃費の改善や排気ガス性能の向上などの効果を得ることができない。   When the overlap period of one cylinder overlaps with the exhaust stroke of the other cylinder, the exhaust valve of the other cylinder opens while the intake valve and the exhaust valve of one cylinder are open, and this other cylinder Exhaust gas discharged from the exhaust port of the engine passes through the exhaust manifold and adversely affects one cylinder as exhaust pulsation. That is, the exhaust pulsation of the other cylinder acts on one cylinder, and in this one cylinder, the exhaust gas circulation amount that returns from the exhaust manifold to the cylinder (combustion chamber) through the exhaust port, that is, the internal EGR amount. Will increase. As a result, the amount of intake air varies due to the difference in internal EGR amount among the cylinders, combustion varies and becomes unstable, the output torque fluctuates, and fuel efficiency and exhaust gas performance increase due to overlap. The effects such as cannot be obtained.

なお、不等間隔点火を行うエンジンにて、特定気筒における排気干渉による充填効率やノック特性のばらつきを抑制するものとして、例えば、上記特許文献1、2に記載された技術がある。ところが、特許文献1の内燃機関の排気装置は、点火順序で先行する気筒との点火間隔が小さい気筒の排気マニホールドの集合部をエゼクタ形状としたものであり、排気マニホールドの排気脈動による特定気筒における内部EGR量の増加で発生する燃焼変動を抑制することはできない。また、特許文献2の多気筒型内燃機関は、オーバーラップ期間を減少することで排気衝撃を減少したものであり、排気脈動による特定気筒の内部EGR量の増加を十分に抑制することはできず、且つ、オーバーラップによる燃費の改善や排気ガス性能の向上を図ることができない。   In addition, in the engine which performs non-uniform interval ignition, there exist the technique described in the said patent document 1, 2 as what suppresses the dispersion | variation in the filling efficiency and knock characteristic by exhaust interference in a specific cylinder, for example. However, the exhaust system of the internal combustion engine disclosed in Patent Document 1 has an ejector shape in which a collection portion of the exhaust manifold of a cylinder having a small ignition interval from the preceding cylinder in the ignition order is formed in a specific cylinder due to exhaust pulsation of the exhaust manifold. It is not possible to suppress the combustion fluctuation that occurs due to the increase in the internal EGR amount. Further, the multi-cylinder internal combustion engine of Patent Document 2 has a reduced exhaust impact by reducing the overlap period, and cannot sufficiently suppress an increase in the internal EGR amount of a specific cylinder due to exhaust pulsation. In addition, it is impossible to improve fuel consumption and exhaust gas performance due to overlap.

本発明は、このような問題を解決するためのものであって、各気筒における排気ガス再循環量を均一化することで気筒間の燃焼のばらつきを抑制した内燃機関を提供することを目的とする。   An object of the present invention is to solve such a problem, and an object of the present invention is to provide an internal combustion engine in which variation in combustion among cylinders is suppressed by uniformizing an exhaust gas recirculation amount in each cylinder. To do.

上述した課題を解決し、目的を達成するために、本発明の内燃機関は、複数の気筒が左右のバンクに分けて配列されて該各バンクの気筒が不等間隔で点火されると共に、前記各気筒における排気弁の開放期間と吸気弁の開放期間とがオーバーラップする期間を有する内燃機関において、前記各バンクにて、特定の気筒の排気行程に前記オーバーラップ期間が重なる第1の気筒の排気ガス再循環量と、特定の気筒の排気行程に前記オーバーラップ期間が重ならない第2の気筒の排気ガス再循環量との偏差が減少するように、前記各気筒の排気ガス再循環量を変更する排気ガス再循環量変更手段を設け、該排気ガス再循環量変更手段として、前記第1の気筒に連結された排気系の熱伝導率を、前記第2の気筒に連結された排気系の熱伝導率よりも低く設定したことを特徴とするものである。 In order to solve the above-described problems and achieve the object, the internal combustion engine of the present invention includes a plurality of cylinders divided into left and right banks, and the cylinders in each bank are ignited at unequal intervals, and In the internal combustion engine having a period in which the exhaust valve opening period and the intake valve opening period overlap in each cylinder, the first cylinder in which the overlap period overlaps the exhaust stroke of a specific cylinder in each bank. The exhaust gas recirculation amount of each cylinder is reduced so that the deviation between the exhaust gas recirculation amount and the exhaust gas recirculation amount of the second cylinder in which the overlap period does not overlap the exhaust stroke of a specific cylinder is reduced. An exhaust gas recirculation amount changing means for changing is provided. As the exhaust gas recirculation amount changing means, the heat conductivity of the exhaust system connected to the first cylinder is changed to an exhaust system connected to the second cylinder. Than the thermal conductivity of It is characterized in that it has ku set.

本発明の内燃機関によれば、複数の気筒が左右のバンクに分けて配列され、各バンクの気筒が不等間隔で点火されると共に、各気筒における排気弁の開放期間と吸気弁の開放期間とがオーバーラップする期間を有する内燃機関にて、特定の気筒の排気行程にオーバーラップ期間が重なる第1の気筒の排気ガス再循環量と、特定の気筒の排気行程にオーバーラップ期間が重ならない第2の気筒の排気ガス再循環量との偏差が減少するように、各気筒の排気ガス再循環量を変更する排気ガス再循環量変更手段を設け、排気ガス再循環量変更手段として、第1の気筒に連結された排気系の熱伝導率を、第2の気筒に連結された排気系の熱伝導率よりも低く設定したので、オーバーラップ期間が重なる第1の気筒では、オーバーラップ期間が重ならない第2の気筒よりも、排気脈動により内部排気ガス再循環量が増加するが、排気ガス再循環量変更手段により、第1の気筒の内部排気ガス再循環量または第2の気筒の内部排気ガス再循環量または各気筒の外部排気ガス再循環量を変更することで、各気筒における排気ガス再循環量が均一化され、気筒間の燃焼のばらつきを抑制することができる。 According to the internal combustion engine of the present invention, a plurality of cylinders are divided into left and right banks, the cylinders in each bank are ignited at unequal intervals, and the exhaust valve opening period and the intake valve opening period in each cylinder In an internal combustion engine having an overlapping period, the exhaust gas recirculation amount of the first cylinder in which the overlapping period overlaps with the exhaust stroke of the specific cylinder and the overlapping period does not overlap with the exhaust stroke of the specific cylinder Exhaust gas recirculation amount changing means for changing the exhaust gas recirculation amount of each cylinder is provided so that a deviation from the exhaust gas recirculation amount of the second cylinder is reduced . Since the thermal conductivity of the exhaust system connected to the first cylinder is set lower than the thermal conductivity of the exhaust system connected to the second cylinder, in the first cylinder where the overlap period overlaps, the overlap period If they overlap Although the internal exhaust gas recirculation amount is increased by the exhaust pulsation as compared with the second cylinder, the internal exhaust gas recirculation amount of the first cylinder or the internal exhaust gas of the second cylinder is changed by the exhaust gas recirculation amount changing means. By changing the recirculation amount or the external exhaust gas recirculation amount of each cylinder, the exhaust gas recirculation amount in each cylinder can be made uniform, and variations in combustion among the cylinders can be suppressed.

以下に、本発明にかかる内燃機関の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an internal combustion engine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施例1に係る内燃機関を表すV型8気筒エンジンの概略平面図、図2は、実施例1のV型8気筒エンジンの概略構成図、図3は、実施例1のV型8気筒エンジンにおける吸気弁及び排気弁の開放時期を表すタイムチャートである。   FIG. 1 is a schematic plan view of a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 1 of the present invention, FIG. 2 is a schematic configuration diagram of the V-type 8-cylinder engine of Embodiment 1, and FIG. 2 is a time chart showing the opening timing of an intake valve and an exhaust valve in one V-type 8-cylinder engine.

実施例1では、内燃機関としてV型8気筒エンジンを適用している。このV型8気筒エンジンにおいて、図1及び図2に示すように、シリンダブロック11は上部に所定角度で傾斜した左右のバンク12,13を有しており、各バンク12,13にそれぞれ4つのシリンダボア14,15が形成され、各シリンダボア14,15にピストン16,17がそれぞれ上下移動自在に嵌合している。そして、シリンダブロック11の下部に図示しないクランクシャフトが回転自在に支持されており、各ピストン16,17はコネクティングロッド18,19を介してこのクランクシャフトにそれぞれ連結されている。   In the first embodiment, a V-type 8-cylinder engine is applied as the internal combustion engine. In this V-type 8-cylinder engine, as shown in FIGS. 1 and 2, the cylinder block 11 has left and right banks 12 and 13 inclined at a predetermined angle at the upper portion, and each bank 12 and 13 has four banks 12 and 13 respectively. Cylinder bores 14 and 15 are formed, and pistons 16 and 17 are fitted to the respective cylinder bores 14 and 15 so as to be vertically movable. A crankshaft (not shown) is rotatably supported at the lower part of the cylinder block 11, and the pistons 16 and 17 are connected to the crankshaft via connecting rods 18 and 19, respectively.

一方、シリンダブロック11の各バンク12,13の上部にはシリンダヘッド20,21が締結されており、シリンダブロック11とピストン16,17とシリンダヘッド20,21により各燃焼室22,23が構成されている。そして、この燃焼室22,23の上部、つまり、シリンダヘッド20,21の下面に吸気ポート24,25及び排気ポート26,27が対向して形成され、この吸気ポート24,25及び排気ポート26,27に対して吸気弁28,29及び排気弁30,31の下端部が位置している。この吸気弁28,29及び排気弁30,31は、シリンダヘッド20,21に軸方向に沿って移動自在に支持されると共に、吸気ポート24,25及び排気ポート26,27を閉止する方向に付勢支持されている。また、シリンダヘッド20,21には、吸気カムシャフト32,33及び排気カムシャフト34,35が回転自在に支持されており、吸気カム36,37及び排気カム38,39が図示しないローラロッカアームを介して吸気弁28,29及び排気弁30,31の上端部に接触している。   On the other hand, cylinder heads 20 and 21 are fastened to the upper portions of the banks 12 and 13 of the cylinder block 11, and the combustion chambers 22 and 23 are constituted by the cylinder block 11, the pistons 16 and 17, and the cylinder heads 20 and 21. ing. The intake ports 24 and 25 and the exhaust ports 26 and 27 are formed on the upper portions of the combustion chambers 22 and 23, that is, the lower surfaces of the cylinder heads 20 and 21 so as to face each other. 27, the lower end portions of the intake valves 28 and 29 and the exhaust valves 30 and 31 are located. The intake valves 28 and 29 and the exhaust valves 30 and 31 are supported by the cylinder heads 20 and 21 so as to be movable in the axial direction, and are attached in a direction to close the intake ports 24 and 25 and the exhaust ports 26 and 27. It is supported. Further, intake camshafts 32 and 33 and exhaust camshafts 34 and 35 are rotatably supported on the cylinder heads 20 and 21, and the intake cams 36 and 37 and the exhaust cams 38 and 39 are interposed via a roller rocker arm (not shown). Are in contact with the upper ends of the intake valves 28 and 29 and the exhaust valves 30 and 31.

従って、エンジンに同期して吸気カムシャフト32,33及び排気カムシャフト34,35が回転すると、吸気カム36,37及び排気カム38,39がローラロッカアームを作動させ、吸気弁28,29及び排気弁30,31が所定のタイミングで上下移動することで、吸気ポート24,25及び排気ポート26,27を開閉し、吸気ポート24,25と燃焼室22,23、燃焼室22,23と排気ポート26,27とをそれぞれ連通することができる。   Accordingly, when the intake camshafts 32 and 33 and the exhaust camshafts 34 and 35 rotate in synchronization with the engine, the intake cams 36 and 37 and the exhaust cams 38 and 39 operate the roller rocker arm, and the intake valves 28 and 29 and the exhaust valve 30 and 31 move up and down at a predetermined timing to open and close intake ports 24 and 25 and exhaust ports 26 and 27, intake ports 24 and 25 and combustion chambers 22 and 23, combustion chambers 22 and 23, and exhaust port 26. , 27 can communicate with each other.

また、このエンジンの動弁機構は、運転状態に応じて吸気弁28,29及び排気弁30,31を最適な開閉タイミングに制御する吸気可変動弁機構(VVT:Variable Valve Timing-intelligent)40,41と排気可変動弁機構42,43により構成されている。この吸気可変動弁機構40,41及び排気可変動弁機構42,43は、例えば、吸気カムシャフト32,33及び排気カムシャフト34,35の軸端部にVVTコントローラが設けられて構成され、油圧ポンプ(または電動モータ)によりカムスプロケットに対する各カムシャフト32,33,34,35の位相を変更することで、吸気弁28,29及び排気弁30,31の開閉時期を進角または遅角することができるものである。この場合、各可変動弁機構40,41,42,43は、吸気弁28,29及び排気弁30,31の作用角(開放期間)を一定としてその開閉時期を進角または遅角する。また、吸気カムシャフト32,33及び排気カムシャフト34,35には、その回転位相を検出するカムポジションセンサ44,45,46,47が設けられている。   In addition, the valve mechanism of this engine is a variable intake valve timing mechanism (VVT) 40 that controls the intake valves 28 and 29 and the exhaust valves 30 and 31 at an optimal opening / closing timing according to the operating state. 41 and an exhaust variable valve mechanism 42, 43. The intake variable valve operating mechanisms 40 and 41 and the exhaust variable valve operating mechanisms 42 and 43 are configured, for example, by providing VVT controllers at the shaft end portions of the intake camshafts 32 and 33 and the exhaust camshafts 34 and 35. The opening / closing timing of the intake valves 28, 29 and the exhaust valves 30, 31 is advanced or retarded by changing the phase of each camshaft 32, 33, 34, 35 with respect to the cam sprocket by a pump (or electric motor). Is something that can be done. In this case, each variable valve mechanism 40, 41, 42, 43 advances or retards the opening / closing timing with the operating angle (opening period) of intake valves 28, 29 and exhaust valves 30, 31 being constant. The intake camshafts 32, 33 and the exhaust camshafts 34, 35 are provided with cam position sensors 44, 45, 46, 47 for detecting their rotational phases.

各シリンダヘッド20,21の吸気ポート24,25には吸気マニホールド48,49を介してサージタンク50が連結され、このサージタンク50には吸気管51が連結されており、この吸気管51の空気取入口にはエアクリーナ52が取付けられている。また、吸気管51には、エアクリーナ52の下流側に位置してスロットル弁を有する電子スロットル装置53が設けられている。一方、排気ポート26,27には、排気マニホールド54,55及び触媒装置56,57を介して連結管58が連結され、この連結管58には排気管59が連結され、この排気管59には触媒装置60が装着されている。   A surge tank 50 is connected to the intake ports 24 and 25 of the cylinder heads 20 and 21 via intake manifolds 48 and 49, and an intake pipe 51 is connected to the surge tank 50. An air cleaner 52 is attached to the intake port. The intake pipe 51 is provided with an electronic throttle device 53 having a throttle valve located on the downstream side of the air cleaner 52. On the other hand, a connecting pipe 58 is connected to the exhaust ports 26 and 27 via exhaust manifolds 54 and 55 and catalyst devices 56 and 57, and an exhaust pipe 59 is connected to the connecting pipe 58. A catalyst device 60 is mounted.

また、各シリンダヘッド20,21には、各燃焼室22,23に直接燃料(ガソリン)を噴射するインジェクタ61,62が装着されており、各インジェクタ61,62にはデリバリパイプ63,64が連結され、この各デリバリパイプ63,64には高圧燃料ポンプ65から所定圧の燃料を供給可能となっている。また、シリンダヘッド20,21には、燃焼室22,23の上方に位置して混合気に着火する点火プラグ66,67が装着されている。   The cylinder heads 20 and 21 are respectively provided with injectors 61 and 62 for injecting fuel (gasoline) directly into the combustion chambers 22 and 23. Delivery pipes 63 and 64 are connected to the injectors 61 and 62, respectively. The delivery pipes 63 and 64 can be supplied with fuel at a predetermined pressure from the high-pressure fuel pump 65. The cylinder heads 20 and 21 are equipped with spark plugs 66 and 67 that are located above the combustion chambers 22 and 23 and ignite the air-fuel mixture.

ところで、車両には電子制御ユニット(ECU)68が搭載されており、このECU68は、インジェクタ61,62の燃料噴射タイミングや点火プラグ66,67の点火時期などを制御可能となっており、検出した吸入空気量、吸気温度、スロットル開度、アクセル開度、エンジン回転数、冷却水温などのエンジン運転状態に基づいて燃料噴射量、噴射時期、点火時期などを決定している。即ち、吸気管51の上流側にはエアフローセンサ69及び吸気温センサ70が装着され、計測した吸入空気量及び吸気温度をECU68に出力している。また、電子スロットル装置53にはスロットルポジションセンサ71が設けられ、アクセルペダルにはアクセルポジションセンサ72が設けられており、現在のスロットル開度及びアクセル開度をECU68に出力している。更に、クランクシャフトにはクランク角センサ73が設けられ、検出したクランク角度をECU68に出力し、ECU68はクランク角度に基づいてエンジン回転数を算出する。また、シリンダブロック11には水温センサ74が設けられており、検出したエンジン冷却水温をECU68に出力している。   By the way, an electronic control unit (ECU) 68 is mounted on the vehicle, and this ECU 68 can control and detect the fuel injection timing of the injectors 61 and 62, the ignition timing of the spark plugs 66 and 67, and the like. The fuel injection amount, the injection timing, the ignition timing, and the like are determined based on the engine operating state such as the intake air amount, the intake air temperature, the throttle opening, the accelerator opening, the engine speed, and the cooling water temperature. That is, an air flow sensor 69 and an intake air temperature sensor 70 are mounted on the upstream side of the intake pipe 51, and the measured intake air amount and intake air temperature are output to the ECU 68. The electronic throttle device 53 is provided with a throttle position sensor 71, and the accelerator pedal is provided with an accelerator position sensor 72, which outputs the current throttle opening and accelerator opening to the ECU 68. Further, a crank angle sensor 73 is provided on the crankshaft, and the detected crank angle is output to the ECU 68. The ECU 68 calculates the engine speed based on the crank angle. Further, the cylinder block 11 is provided with a water temperature sensor 74 and outputs the detected engine cooling water temperature to the ECU 68.

また、ECU68は、エンジン運転状態に基づいて吸気可変動弁機構40,41及び排気可変動弁機構42,43を制御可能となっている。即ち、低温時、エンジン始動時、アイドル運転時や軽負荷時には、排気弁30,31の開放時期と吸気弁28,29の開放時期とのオーバーラップをなくすことで、排気ガスが吸気ポート24,25または燃焼室22,23に吹き返す量を少なくし、燃焼安定及び燃費向上を可能とする。また、中負荷時には、このオーバーラップを大きくすることで、内部EGR率を高めて排ガス浄化効率を向上させると共に、ポンピングロスを低減して燃費向上を可能とする。更に、高負荷低中回転時には、吸気弁28,29の閉止時期を進角することで、吸気が吸気ポート24,25に吹き返す量を少なくして体積効率を向上させる。そして、高負荷高回転時には、吸気弁28,29の閉止時期を回転数にあわせて遅角することで、吸入空気の慣性力に合わせたタイミングとして体積効率を向上させる。   Further, the ECU 68 can control the intake variable valve mechanisms 40 and 41 and the exhaust variable valve mechanisms 42 and 43 based on the engine operating state. That is, when the temperature is low, when the engine is started, when idling, or when the load is light, the exhaust gas is discharged from the intake port 24, by eliminating the overlap between the opening timing of the exhaust valves 30, 31 and the opening timing of the intake valves 28, 29. 25 or the amount of air blown back to the combustion chambers 22 and 23 is reduced, and combustion stability and fuel efficiency can be improved. Further, at the time of medium load, by increasing the overlap, the internal EGR rate is increased to improve the exhaust gas purification efficiency, and the pumping loss is reduced to improve the fuel consumption. Further, at the time of high-load low-medium rotation, the closing timing of the intake valves 28 and 29 is advanced to reduce the amount of intake air that blows back to the intake ports 24 and 25, thereby improving volumetric efficiency. At the time of high load and high rotation, the closing timing of the intake valves 28 and 29 is retarded according to the rotational speed, thereby improving the volume efficiency as the timing according to the inertial force of the intake air.

ところで、本実施例のV型8気筒エンジンにおいて、図1に示すように、左バンク12には第1気筒#1、第3気筒#3、第5気筒#5、第7気筒#7が直列に設けられ、右バンク13には第2気筒#2、第4気筒#4、第6気筒#6、第8気筒#8が直列に設けられ、各バング12,13に排気マニホールド54,55を介して連結管58及び排気管59が連結されている。そして、動弁系の動バランスを最適化するために、各気筒の点火順序は、第1気筒#1、第8気筒#8、第7気筒#7、第3気筒#3、第6気筒#6、第5気筒#5、第4気筒#4、第2気筒#2となっている。   Incidentally, in the V-type 8-cylinder engine of this embodiment, as shown in FIG. 1, the first bank # 1, the third cylinder # 3, the fifth cylinder # 5, and the seventh cylinder # 7 are connected in series to the left bank 12. In the right bank 13, the second cylinder # 2, the fourth cylinder # 4, the sixth cylinder # 6, and the eighth cylinder # 8 are provided in series, and the exhaust manifolds 54 and 55 are provided in the bangs 12 and 13, respectively. The connecting pipe 58 and the exhaust pipe 59 are connected to each other. In order to optimize the dynamic balance of the valve train, the firing order of each cylinder is as follows: first cylinder # 1, eighth cylinder # 8, seventh cylinder # 7, third cylinder # 3, sixth cylinder # 6, fifth cylinder # 5, fourth cylinder # 4, and second cylinder # 2.

そのため、このV型8気筒エンジンでは、点火順序が気筒番号順でないため、左バンクでは第1気筒#1−(180°CA)−第7気筒#7−(90°CA)−第3気筒−(180°CA)−第5気筒#5−(270°CA)−第1気筒#1の順に不等間隔で点火され、また、右バンクでは第8気筒#8−(270°CA)−第6気筒#6−(180°CA)−第4気筒#4−(90°CA)−第2気筒#2−(180°CA)−第8気筒#8の順に点火されることとなり、各バンクにおける点火(爆発)間隔が不等間隔となっている。そのため、左バンク12では、特定の気筒のオーバーラップ期間と他の気筒の排気行程が重なってしまい、排気行程にある気筒から排出された排気ガスが排気マニホールドを通ってオーバーラップ期間にある気筒に排気脈動として作用し、この気筒の内部EGR量だけが増加してしまう。   Therefore, in this V-type 8-cylinder engine, since the ignition order is not the order of the cylinder number, in the left bank, the first cylinder # 1- (180 ° CA) —the seventh cylinder # 7— (90 ° CA) —the third cylinder— (180 ° CA) -Fifth cylinder # 5- (270 ° CA) -First cylinder # 1 are ignited at unequal intervals, and in the right bank, the eighth cylinder # 8- (270 ° CA) -No. The six cylinders # 6- (180 ° CA) -fourth cylinder # 4- (90 ° CA) -second cylinder # 2- (180 ° CA) -eighth cylinder # 8 will be ignited in this order. Ignition (explosion) intervals in are uneven. Therefore, in the left bank 12, the overlap period of a specific cylinder overlaps with the exhaust stroke of another cylinder, and the exhaust gas discharged from the cylinder in the exhaust stroke passes through the exhaust manifold to the cylinder in the overlap period. Acting as exhaust pulsation, only the internal EGR amount of this cylinder increases.

即ち、図3に示すように、左バンク12では、第1気筒#1にて、クランク角度360°CAの近傍で吸気可変動弁機構40により吸気弁28による吸気タイミングが進角されると共に、排気可変動弁機構42により排気弁30による排気タイミングが遅角されることで、ここにオーバーラップ期間OLが設けられる。一方、第7気筒#7にて、クランク角度360°CAの近傍で排気弁30が開き始めることで排気行程が開始される。そのため、このクランク角度360°CAの近傍で、第1気筒#1のオーバーラップ期間と第7気筒#7の排気行程初期が重なってしまう。   That is, as shown in FIG. 3, in the left bank 12, in the first cylinder # 1, the intake timing by the intake valve 28 is advanced by the intake variable valve mechanism 40 in the vicinity of the crank angle 360 ° CA, The exhaust timing by the exhaust valve 30 is retarded by the exhaust variable valve mechanism 42, so that an overlap period OL is provided here. On the other hand, in the seventh cylinder # 7, the exhaust stroke starts when the exhaust valve 30 starts to open near the crank angle of 360 ° CA. Therefore, in the vicinity of the crank angle 360 ° CA, the overlap period of the first cylinder # 1 overlaps the initial exhaust stroke of the seventh cylinder # 7.

すると、第1気筒#1の吸気弁28及び排気弁30の開放状態で、第7気筒#7の排気弁30が開放することとなり、第7気筒#7の排気ポート26から排出された排気ガスが排気マニホールド54を通って第1気筒#1に排気脈動として作用する。即ち、第7気筒#7から第1気筒#1に排気脈動が作用すると、この第1気筒#1では、この排気脈動により排気マニホールド54から排気ポート26を通って燃焼室22内に戻る内部EGR量が増加し、吸気ポート24から吸入される空気量が減少してしまう。   Then, when the intake valve 28 and the exhaust valve 30 of the first cylinder # 1 are opened, the exhaust valve 30 of the seventh cylinder # 7 is opened, and the exhaust gas discharged from the exhaust port 26 of the seventh cylinder # 7. Acts as exhaust pulsation on the first cylinder # 1 through the exhaust manifold 54. That is, when exhaust pulsation acts on the first cylinder # 1 from the seventh cylinder # 7, in this first cylinder # 1, the internal EGR that returns from the exhaust manifold 54 to the combustion chamber 22 through the exhaust port 26 by this exhaust pulsation. The amount increases, and the amount of air drawn from the intake port 24 decreases.

この現象は、第1気筒#1に限らず、第5気筒#5の排気行程にオーバーラップ期間OLが重なる第3気筒#3、また、右バンク13にて、第8気筒#8の排気行程にオーバーラップ期間OLが重なる第2気筒#2、第4気筒#4の排気行程にオーバーラップ期間OLが重なる第6気筒#6で発生するものである。そして、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6で内部EGR量が増加すると、この現象が発生しない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の内部EGR量及び空気量と相違することとなり、燃焼がばらついて不安定となり、出力トルクが変動してしまう。   This phenomenon is not limited to the first cylinder # 1, but the exhaust stroke of the eighth cylinder # 8 in the third cylinder # 3 in which the overlap period OL overlaps with the exhaust stroke of the fifth cylinder # 5 or in the right bank 13. This occurs in the sixth cylinder # 6 where the overlap period OL overlaps the exhaust stroke of the second cylinder # 2 and the fourth cylinder # 4 where the overlap period OL overlaps. When the internal EGR amount increases in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the fourth cylinder # 4, the fifth cylinder # 5, This is different from the internal EGR amount and the air amount of the seventh cylinder # 7 and the eighth cylinder # 8, the combustion varies and becomes unstable, and the output torque fluctuates.

そこで、実施例1では、図1に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の内部EGR量(排気ガス再循環量、内部排気ガス再循環量)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の内部EGR量との偏差が減少するように、排気ガス再循環量を変更(排気ガス再循環量変更手段)可能としている。そして、この実施例1では、排気ガス再循環量変更手段として、各バンク12,13に連結された排気系にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の排気通路の通路面積に対して、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気通路の通路面積を大きく設定している。   Therefore, in the first embodiment, as shown in FIG. 1, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, the fifth cylinder # 5, and the fourth cylinder # 4 as specific cylinders. The internal EGR amount of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 (the exhaust gas recirculation amount, Internal exhaust gas recirculation amount), and the exhaust strokes of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinders whose overlap periods do not overlap. The exhaust gas recirculation amount can be changed (exhaust gas recirculation amount changing means) so that the deviation from the internal EGR amount is reduced. In the first embodiment, as the exhaust gas recirculation amount changing means, the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, the first cylinder are connected in the exhaust system connected to the banks 12 and 13. The passage areas of the exhaust passages of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 are set larger than the passage area of the exhaust passage of the sixth cylinder # 6.

具体的に説明すると、左バンク12の排気マニホールド54にて、第1気筒#1の排気ポート26aに連結された分岐管54aと、第3気筒#3の排気ポート26bに連結された分岐管54bとが集合して第1集合管54Aに連結される一方、第5気筒#5の排気ポート26cに連結された分岐管54cと、第7気筒#7の排気ポート26dに連結された分岐管54dとが集合して第2集合管54Bに連結され、各集合管54A,54Bが集合して第3集合管54Cに連結され、この第3集合管54Cは連結管58に連結されている。そして、第1気筒#1及び第3気筒#3の排気ポート26a,26b及び分岐管54a,54bに対して、第5気筒#5及び第7気筒#7の排気ポート26c,26d及び分岐管54c,54dの通路面積、つまり、配管内径を大きく設定している。   Specifically, in the exhaust manifold 54 of the left bank 12, the branch pipe 54a connected to the exhaust port 26a of the first cylinder # 1 and the branch pipe 54b connected to the exhaust port 26b of the third cylinder # 3. Are combined and connected to the first collecting pipe 54A, while the branch pipe 54c connected to the exhaust port 26c of the fifth cylinder # 5 and the branch pipe 54d connected to the exhaust port 26d of the seventh cylinder # 7. Are collected and connected to the second collecting pipe 54B, and the collecting pipes 54A and 54B are gathered and connected to the third collecting pipe 54C, and the third collecting pipe 54C is connected to the connecting pipe 58. The exhaust ports 26a and 26b and the branch pipes 54a and 54b of the first cylinder # 1 and the third cylinder # 3 are compared with the exhaust ports 26c and 26d and the branch pipe 54c of the fifth cylinder # 5 and the seventh cylinder # 7. , 54d, that is, the pipe inner diameter is set large.

また、右バンク13にて、第2気筒#2の排気ポート27aに連結された分岐管55aと、第6気筒#6の排気ポート27cに連結された分岐管55cとが集合して第1集合管55Aに連結される一方、第4気筒#4の排気ポート27bに連結された分岐管55bと、第8気筒#8の排気ポート27dに連結された分岐管55dとが集合して第2集合管55Bに連結され、各集合管55A,55Bが集合して第3集合管55Cに連結され、この第3集合管55Cは連結管58に連結されている。そして、第2気筒#2及び第6気筒#6の排気ポート27a,27c及び分岐管55a,55cに対して、第4気筒#4及び第8気筒#8の排気ポート27b,27d及び分岐管55b,55dの通路面積、つまり、配管内径を大きく設定している。   Further, in the right bank 13, a branch pipe 55a connected to the exhaust port 27a of the second cylinder # 2 and a branch pipe 55c connected to the exhaust port 27c of the sixth cylinder # 6 are gathered to form a first set. On the other hand, the branch pipe 55b connected to the exhaust port 27b of the fourth cylinder # 4 and the branch pipe 55d connected to the exhaust port 27d of the eighth cylinder # 8 are combined to be connected to the pipe 55A. The collecting pipes 55A and 55B are connected to the pipe 55B and connected to the third collecting pipe 55C. The third collecting pipe 55C is connected to the connecting pipe 58. The exhaust ports 27a and 27c and the branch pipes 55a and 55c of the second cylinder # 2 and the sixth cylinder # 6 are compared with the exhaust ports 27b and 27d and the branch pipe 55b of the fourth cylinder # 4 and the eighth cylinder # 8. , 55d, that is, the pipe inner diameter is set large.

従って、左バンク12にて、第1気筒#1及び第3気筒#3では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第5気筒#5及び第7気筒#7では、オーバーラップ期間に他の気筒の排気脈動の影響を受けないが、第5気筒#5及び第7気筒#7の排気ポート26c,26d及び分岐管54c,54dの通路面積が、第1気筒#1及び第3気筒#3の排気ポート26a,26b及び分岐管54a,54bの通路面積に比べて大きいため、排気系の排気ガスが排気ポート26c,26dを通って燃焼室22内に引き込まれる流速を一定として、この第5気筒#5及び第7気筒#7では、この排気ガスの引き込み量が多くなり、内部EGR量が所定量増加する。その結果、第1気筒#1及び第3気筒#3にて増加される内部EGR量と同量の内部EGRが第5気筒#5及び第7気筒#7でも増加されることとなり、左バンク12の各気筒における内部EGR量がほぼ均一状態となる。   Therefore, in the first bank # 1 and the third cylinder # 3 in the left bank 12, the internal EGR amount is affected by the exhaust pulsation of the seventh cylinder # 7 and the fifth cylinder # 5 during the overlap period. To increase. On the other hand, the fifth cylinder # 5 and the seventh cylinder # 7 are not affected by the exhaust pulsation of the other cylinders during the overlap period, but the exhaust ports 26c, 26d of the fifth cylinder # 5 and the seventh cylinder # 7 and Since the passage areas of the branch pipes 54c and 54d are larger than the passage areas of the exhaust ports 26a and 26b and the branch pipes 54a and 54b of the first cylinder # 1 and the third cylinder # 3, the exhaust gas of the exhaust system is exhausted to the exhaust port. In the fifth cylinder # 5 and the seventh cylinder # 7, the exhaust gas drawing amount increases and the internal EGR amount increases by a predetermined amount, with the flow velocity drawn into the combustion chamber 22 through 26c and 26d being constant. . As a result, the internal EGR amount that is the same as the internal EGR amount increased in the first cylinder # 1 and the third cylinder # 3 is also increased in the fifth cylinder # 5 and the seventh cylinder # 7. The amount of internal EGR in each cylinder becomes substantially uniform.

同様に、右バンク13にて、第2気筒#2及び第6気筒#6では、オーバーラップ期間に第8気筒#8及び第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4及び第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けないが、第4気筒#4及び第8気筒#8の排気ポート27b,27d及び分岐管55b,55dの通路面積が、第2気筒#2及び第6気筒#6の排気ポート27a,27c及び分岐管55a,55cの通路面積に比べて大きいため、排気系の排気ガスが排気ポート27b,27dを通って燃焼室22内に引き込まれる流速を一定として、この第4気筒#4及び第8気筒#8では、この排気ガスの引き込み量が多くなり、内部EGR量が所定量増加する。その結果、第2気筒#2及び第6気筒#6にて増加される内部EGR量と同量の内部EGRが第4気筒#4及び第8気筒#8でも増加されることとなり、右バンク13の各気筒における内部EGR量がほぼ均一状態となる。   Similarly, in the right bank 13, in the second cylinder # 2 and the sixth cylinder # 6, the internal EGR amount is affected by the exhaust pulsation of the eighth cylinder # 8 and the fourth cylinder # 4 during the overlap period. Quantitative increase. On the other hand, the fourth cylinder # 4 and the eighth cylinder # 8 are not affected by the exhaust pulsation of the other cylinders during the overlap period, but the exhaust ports 27b, 27d of the fourth cylinder # 4 and the eighth cylinder # 8 and Since the passage areas of the branch pipes 55b and 55d are larger than the passage areas of the exhaust ports 27a and 27c and the branch pipes 55a and 55c of the second cylinder # 2 and the sixth cylinder # 6, the exhaust gas of the exhaust system is discharged to the exhaust port. In the fourth cylinder # 4 and the eighth cylinder # 8, the exhaust gas drawing amount increases and the internal EGR amount increases by a predetermined amount, with the flow velocity drawn into the combustion chamber 22 through 27b and 27d being constant. . As a result, the internal EGR amount that is the same as the internal EGR amount increased in the second cylinder # 2 and the sixth cylinder # 6 is also increased in the fourth cylinder # 4 and the eighth cylinder # 8. The amount of internal EGR in each cylinder becomes substantially uniform.

このように実施例1の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6における排気通路の通路面積に対して、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気通路の通路面積を大きく設定している。   Thus, in the internal combustion engine of the first embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the third cylinder # 3, and the second cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 2, the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 in which the overlap period does not overlap the exhaust stroke with respect to the passage area of the exhaust passage in the sixth cylinder # 6 The passage area of the exhaust passage is set large.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けないが、排気通路としての排気ポート26c,26d,27b,27d及び分岐管54c,54d,55b,55dの通路面積が大きいため、排気系の排気ガスが排気通路を通って燃焼室22内に多く引き込まれることとなり、内部EGR量が所定量増加する。そのため、各気筒#1,#2,#3,#6にて排気脈動により増加される内部EGR量と同量の内部EGRが、排気脈動の影響を受けない各気筒#4,#5,#7,#8でも、排気通路面の拡大により増加されることとなり、全てのバンク12,13の各気筒#1〜#8における内部EGR量がほぼ均一状態となる。その結果、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap each other, they are not affected by exhaust pulsation during this period, but exhaust ports 26c, 26d, 27b, and 27d as exhaust passages and branch pipes 54c, 54d, and 55b , 55d has a large passage area, the exhaust gas of the exhaust system is drawn in a large amount into the combustion chamber 22 through the exhaust passage, and the internal EGR amount increases by a predetermined amount. Therefore, the internal EGR amount equal to the internal EGR amount increased by the exhaust pulsation in each cylinder # 1, # 2, # 3, # 6 is not affected by the exhaust pulsation. 7 and # 8 are also increased due to the expansion of the exhaust passage surface, and the internal EGR amount in each of the cylinders # 1 to # 8 of all the banks 12 and 13 becomes almost uniform. As a result, variations in combustion between cylinders can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、この実施例1にて、排気脈動が作用する気筒#1,#2,#3,#6の排気通路面積と、排気脈動が作用しない気筒#4,#5,#7,#8の排気通路面積との大きさの設定は、エンジン回転数、エンジン負荷、吸気負圧、オーバーラップ期間などに応じて最適なものとすればよい。   In the first embodiment, the exhaust passage areas of the cylinders # 1, # 2, # 3, and # 6 where the exhaust pulsation acts and the cylinders # 4, # 5, # 7, and # 8 where the exhaust pulsation does not act. The size of the exhaust passage area may be set optimally according to the engine speed, engine load, intake negative pressure, overlap period, and the like.

また、実施例1では、排気ガス再循環量変更手段として、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8排気通路の通路面積を大きくするために、排気ポート26c,26d,27b,27d及び分岐管54c,54d,55b,55dの通路面積を大きく設定したが、排気ポート26c,26d,27b,27dだけの通路面積を大きくしても良い。   Further, in the first embodiment, as the exhaust gas recirculation amount changing means, in order to increase the passage area of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 exhaust passage, Although the passage areas of the exhaust ports 26c, 26d, 27b, and 27d and the branch pipes 54c, 54d, 55b, and 55d are set large, the passage area of only the exhaust ports 26c, 26d, 27b, and 27d may be increased.

図4は、本発明の実施例2に係る内燃機関を表すV型8気筒エンジンの概略平面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 4 is a schematic plan view of a V-type 8-cylinder engine that represents an internal combustion engine according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例2のV型8気筒エンジンにおいて、図4に示すように、各バンク12,13にて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の内部EGR量と、オーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の内部EGR量との偏差が減少するように排気ガス再循環量を変更(排気ガス再循環量変更手段)可能としている。そして、この実施例2では、排気ガス再循環量変更手段として、各バンク12,13に連結された排気マニホールド54,55にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の排気通路の熱伝導率を、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気通路の熱伝導率よりも低く設定している。   In the V-type 8-cylinder engine of the second embodiment, as shown in FIG. 4, in each bank 12, 13, the first cylinder # 1, the second cylinder # 2, and the overlap period overlap with the exhaust stroke of a specific cylinder. The internal EGR amounts of the third cylinder # 3 and the sixth cylinder # 6 and the internal EGR amounts of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 that do not overlap with each other. The exhaust gas recirculation amount can be changed (exhaust gas recirculation amount changing means) so as to reduce the deviation from the above. In the second embodiment, the exhaust gas recirculation amount changing means includes the first cylinder # 1, the second cylinder # 2, and the third cylinder # in the exhaust manifolds 54 and 55 connected to the banks 12 and 13, respectively. 3. The thermal conductivity of the exhaust passage of the sixth cylinder # 6 is set lower than the thermal conductivity of the exhaust passage of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8. is doing.

具体的に説明すると、左バンク12の排気マニホールド54にて、第1気筒#1の排気ポート26aに連結された分岐管54aと、第3気筒#3の排気ポート26bに連結された分岐管54bと、第5気筒#5の排気ポート26cに連結された分岐管54cと、第7気筒#7の排気ポート26dに連結された分岐管54dとが集合して連結管58に連結されている。そして、第1気筒#1及び第3気筒#3の分岐管54a,54bをチタン合金などの低熱伝導金属により製造し、第5気筒#5及び第7気筒#7の分岐管54c,54dをステンレス鋼により製造することで、第1気筒#1及び第3気筒#3の分岐管54a,54bの熱伝導率を、第5気筒#5及び第7気筒#7の分岐管54c,54dの熱伝導率よりもの低いものに設定している。   Specifically, in the exhaust manifold 54 of the left bank 12, the branch pipe 54a connected to the exhaust port 26a of the first cylinder # 1 and the branch pipe 54b connected to the exhaust port 26b of the third cylinder # 3. The branch pipe 54c connected to the exhaust port 26c of the fifth cylinder # 5 and the branch pipe 54d connected to the exhaust port 26d of the seventh cylinder # 7 are combined and connected to the connection pipe 58. The branch pipes 54a and 54b of the first cylinder # 1 and the third cylinder # 3 are manufactured from a low heat conductive metal such as a titanium alloy, and the branch pipes 54c and 54d of the fifth cylinder # 5 and the seventh cylinder # 7 are made of stainless steel. By manufacturing the steel, the thermal conductivity of the branch pipes 54a and 54b of the first cylinder # 1 and the third cylinder # 3 is changed to the thermal conductivity of the branch pipes 54c and 54d of the fifth cylinder # 5 and the seventh cylinder # 7. It is set to be lower than the rate.

また、右バンク13の排気マニホールド55にて、第2気筒#2の排気ポート27aに連結された分岐管55aと、第4気筒#4の排気ポート27bに連結された分岐管55bと、第6気筒#6の排気ポート27cに連結された分岐管55cと、第8気筒#8の排気ポート27dに連結された分岐管55dとが集合して連結管58に連結されている。そして、第2気筒#2及び第6気筒#6の分岐管55a,55cをチタン合金などの低熱伝導金属により製造し、第4気筒#4及び第8気筒#8の分岐管55b,55dをステンレス鋼により製造することで、第2気筒#2及び第6気筒#6の分岐管55a,55cの熱伝導率を、第4気筒#4及び第8気筒#8の分岐管55b,55dの熱伝導率よりも低いものに設定している。   Further, in the exhaust manifold 55 of the right bank 13, a branch pipe 55a connected to the exhaust port 27a of the second cylinder # 2, a branch pipe 55b connected to the exhaust port 27b of the fourth cylinder # 4, and a sixth A branch pipe 55c connected to the exhaust port 27c of the cylinder # 6 and a branch pipe 55d connected to the exhaust port 27d of the eighth cylinder # 8 are gathered and connected to the connection pipe 58. The branch pipes 55a and 55c of the second cylinder # 2 and the sixth cylinder # 6 are made of a low heat conductive metal such as a titanium alloy, and the branch pipes 55b and 55d of the fourth cylinder # 4 and the eighth cylinder # 8 are made of stainless steel. By manufacturing the steel, the thermal conductivity of the branch pipes 55a and 55c of the second cylinder # 2 and the sixth cylinder # 6 is changed to the thermal conductivity of the branch pipes 55b and 55d of the fourth cylinder # 4 and the eighth cylinder # 8. It is set to be lower than the rate.

従って、左バンク12にて、第1気筒#1及び第3気筒#3では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加するが、排気マニホールド54の分岐管54a,54bが低熱伝導金属であるため、燃焼室22内の排気熱が排気マニホールド54に伝わりにくく、燃焼室22の内部温度が上昇して内部EGRのエネルギーが増加することで燃焼速度が向上すると共に、燃焼室22の内部温度が上昇して残留する排気ガスが体積膨張することで実質的な内部EGR量が減少する。一方、第5気筒#5及び第7気筒#7では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は変動しない。その結果、第1気筒#1及び第3気筒#3にて減少する内部EGR量と第5気筒#5及び第7気筒#7の内部RGR量がほぼ同量となり、左バンク12の各気筒における内部EGR量がほぼ均一状態となる。   Therefore, in the first bank # 1 and the third cylinder # 3 in the left bank 12, the internal EGR amount is affected by the exhaust pulsation of the seventh cylinder # 7 and the fifth cylinder # 5 during the overlap period. Although increased, the branch pipes 54a and 54b of the exhaust manifold 54 are made of a low heat conductive metal, so that the exhaust heat in the combustion chamber 22 is not easily transmitted to the exhaust manifold 54, and the internal temperature of the combustion chamber 22 rises and the energy of the internal EGR increases. As the combustion rate increases, the combustion speed improves, and the internal temperature of the combustion chamber 22 rises and the remaining exhaust gas undergoes volume expansion, thereby reducing the substantial internal EGR amount. On the other hand, in the fifth cylinder # 5 and the seventh cylinder # 7, the internal EGR amount does not fluctuate without being affected by the exhaust pulsation of the other cylinders during the overlap period. As a result, the internal EGR amount that decreases in the first cylinder # 1 and the third cylinder # 3 and the internal RGR amount in the fifth cylinder # 5 and the seventh cylinder # 7 become substantially the same, and each cylinder in the left bank 12 The amount of internal EGR becomes almost uniform.

同様に、右バンク13にて、第2気筒#2及び第6気筒#6では、オーバーラップ期間に第8気筒#8及び第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加するが、排気マニホールド55の分岐管55a,55cが低熱伝導金属であるため、燃焼室23内の排気熱が排気マニホールド55に伝わりにくく、燃焼室23の内部温度が上昇して内部EGRのエネルギーが増加することで燃焼速度が向上すると共に、燃焼室23の内部温度が上昇して残留する排気ガスが体積膨張することで実質的な内部EGR量が減少する。一方、第4気筒#4及び第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は変動しない。その結果、第2気筒#2及び第6気筒#6にて減少する内部EGR量と第4気筒#4及び第8気筒#8の内部EGRがほぼ同量となり、右バンク13の各気筒における内部EGR量がほぼ均一状態となる。   Similarly, in the right bank 13, in the second cylinder # 2 and the sixth cylinder # 6, the internal EGR amount is affected by the exhaust pulsation of the eighth cylinder # 8 and the fourth cylinder # 4 during the overlap period. Although the amount increases, since the branch pipes 55a and 55c of the exhaust manifold 55 are made of a low heat conductive metal, the exhaust heat in the combustion chamber 23 is not easily transmitted to the exhaust manifold 55, the internal temperature of the combustion chamber 23 rises, and the internal EGR As the energy increases, the combustion speed improves, and the internal temperature of the combustion chamber 23 rises, and the remaining exhaust gas undergoes volume expansion, thereby reducing the substantial internal EGR amount. On the other hand, in the fourth cylinder # 4 and the eighth cylinder # 8, the internal EGR amount does not fluctuate without being affected by the exhaust pulsation of the other cylinders during the overlap period. As a result, the internal EGR amount that decreases in the second cylinder # 2 and the sixth cylinder # 6 and the internal EGR amount in the fourth cylinder # 4 and the eighth cylinder # 8 are substantially the same, and the internal EGR amount in each cylinder of the right bank 13 The EGR amount becomes almost uniform.

このように実施例2の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程に、オーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の排気マニホールド54,55における分岐通路54a,54b,55a,55cの熱伝導率を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気マニホールド54,55における分岐通路54c,54d,55b,55dの熱伝導率を低く設定している。   Thus, in the internal combustion engine of the second embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the third cylinder # 3, and the second cylinder in which the overlap period overlaps with the exhaust stroke of a specific cylinder. # 2, the thermal conductivity of the branch passages 54a, 54b, 55a, 55c in the exhaust manifolds 54, 55 of the sixth cylinder # 6, the fourth cylinder # 4, the fifth cylinder # 5, where the overlap period does not overlap the exhaust stroke The thermal conductivities of the branch passages 54c, 54d, 55b, and 55d in the exhaust manifolds 54 and 55 of the seventh cylinder # 7 and the eighth cylinder # 8 are set low.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加するが、排気マニホールド54の分岐管54a,54bが低熱伝導金属であるために燃焼室22の排気熱が排気マニホールド54に伝わりにくく、燃焼室22の内部温度が上昇し、燃焼速度が向上すると共に、残留する排気ガスが体積膨張することで実質的な内部EGR量が減少する。一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けず、内部EGR量は変動しない。そのため、排気脈動の影響を受ける各気筒#1,#2,#3,#6の内部EGR量と排気脈動の影響を受けない各気筒#4,#5,#7,#8の内部EGR量がほぼ同量となり、全てのバンク12,13の各気筒#1〜#8における内部EGR量がほぼ均一状態となる。その結果、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps with the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, but the branch pipe of the exhaust manifold 54 Since 54a and 54b are low heat conductive metals, the exhaust heat of the combustion chamber 22 is not easily transmitted to the exhaust manifold 54, the internal temperature of the combustion chamber 22 rises, the combustion speed is improved, and the remaining exhaust gas expands in volume. As a result, the substantial internal EGR amount is reduced. On the other hand, in cylinders # 4, # 5, # 7, and # 8 where the overlap period does not overlap with the exhaust stroke, the internal EGR amount does not fluctuate during this period without being affected by exhaust pulsation. Therefore, the internal EGR amount of each cylinder # 1, # 2, # 3, # 6 affected by the exhaust pulsation and the internal EGR amount of each cylinder # 4, # 5, # 7, # 8 not affected by the exhaust pulsation Are substantially the same, and the internal EGR amounts in the cylinders # 1 to # 8 of all the banks 12 and 13 are substantially uniform. As a result, variations in combustion between cylinders can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、この実施例2では、各気筒#1,#2,#3,#6の排気通路の熱伝導率を、各気筒#4,#5,#7,#8の排気通路の熱伝導率よりも低いものに設定するため、各気筒#1,#2,#3,#6の分岐通路54a,54b,55a,55cをチタン合金などの低熱伝導金属により製造し、各気筒#4,#5,#7,#8の分岐管54c,54d,55b,55dをステンレス鋼により製造したが、この構成に限るものではない。例えば、各気筒#1,#2,#3,#6の分岐通路54a,54b,55a,55cをステンレス鋼により製造し、各気筒#4,#5,#7,#8の分岐管54c,54d,55b,55dを鉄などの高熱伝導金属により製造してもよく、チタンなどの高価な材料を使用せずに製造コストを低減することができる。   In the second embodiment, the thermal conductivity of the exhaust passages of the cylinders # 1, # 2, # 3, and # 6 is set to the thermal conductivity of the exhaust passages of the cylinders # 4, # 5, # 7, and # 8. Therefore, the branch passages 54a, 54b, 55a, and 55c of the cylinders # 1, # 2, # 3, and # 6 are made of a low heat conductive metal such as a titanium alloy, and the cylinders # 4 and # 4 are manufactured. Although the branch pipes 54c, 54d, 55b, and 55d of # 5, # 7, and # 8 are manufactured from stainless steel, the present invention is not limited to this configuration. For example, the branch passages 54a, 54b, 55a, 55c of the cylinders # 1, # 2, # 3, and # 6 are made of stainless steel, and the branch pipes 54c of the cylinders # 4, # 5, # 7, and # 8 are manufactured. 54d, 55b, and 55d may be manufactured from a high heat conductive metal such as iron, and the manufacturing cost can be reduced without using an expensive material such as titanium.

また、実施例2にて、排気脈動が作用する気筒#1,#2,#3,#6の熱伝導率と、排気脈動が作用しない気筒#4,#5,#7,#8の熱伝導率との大きさの設定は、エンジン回転数、エンジン負荷、吸気負圧、オーバーラップ期間などに応じて最適なものとすればよい。   In the second embodiment, the thermal conductivity of cylinders # 1, # 2, # 3, and # 6 where exhaust pulsation acts and the heat of cylinders # 4, # 5, # 7, and # 8 where exhaust pulsation does not work. The magnitude of the conductivity may be set optimally according to the engine speed, engine load, intake negative pressure, overlap period, and the like.

更に、実施例2では、排気ガス再循環量変更手段として、気筒#1,#2,#3,#6の熱伝導率と、気筒#4,#5,#7,#8との熱伝導率とを相違させるために,分岐管54a〜54d,55a〜55dの材料を変更したが、排気ポート26a〜26d,27a〜27dの材質を変更しても良い。   Further, in the second embodiment, as the exhaust gas recirculation amount changing means, the thermal conductivity of the cylinders # 1, # 2, # 3, and # 6 and the thermal conductivity of the cylinders # 4, # 5, # 7, and # 8 are used. In order to make the ratio different, the material of the branch pipes 54a to 54d and 55a to 55d is changed, but the material of the exhaust ports 26a to 26d and 27a to 27d may be changed.

図5は、本発明の実施例3に係る内燃機関を表すV型8気筒エンジンにおける吸気弁及び排気弁のリフト量を表すグラフである。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 5 is a graph showing lift amounts of intake valves and exhaust valves in a V-type 8-cylinder engine that represents an internal combustion engine according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例3のV型8気筒エンジンの構成は上述した実施例1とほぼ同様であり、動弁機構については、図2を用いて説明する。本実施例のV型8気筒エンジンにおいて、図2に示すように、各バンク12,13にて、特定の気筒の排気行程に、オーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の内部EGR量と、オーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の内部EGR量との偏差が減少するように排気ガス再循環量を変更(排気ガス再循環量変更手段)可能としている。そして、この実施例3では、排気ガス再循環量変更手段として、各動弁機構にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の排気弁30,31のリフト量を、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気弁30,31のリフト量よりも小さく設定している。   The configuration of the V-type 8-cylinder engine of Embodiment 3 is substantially the same as that of Embodiment 1 described above, and the valve mechanism will be described with reference to FIG. In the V-type 8-cylinder engine of the present embodiment, as shown in FIG. 2, the first cylinder # 1 and the third cylinder # 3 in which the overlap period overlaps with the exhaust stroke of a specific cylinder in each of the banks 12 and 13. The internal EGR amounts of the second cylinder # 2 and the sixth cylinder # 6 and the internal EGR of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 that do not overlap with each other. The exhaust gas recirculation amount can be changed (exhaust gas recirculation amount changing means) so that the deviation from the amount decreases. In the third embodiment, as the exhaust gas recirculation amount changing means, the exhaust valves of the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 are used in each valve operating mechanism. The lift amounts of 30, 31 are set smaller than the lift amounts of the exhaust valves 30, 31 of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8.

具体的には、図示しないが、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の排気カム38,39のカムプロフィールと、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気カム38,39のカムプロフィールとを相違させることで、それぞれのバルブリフト量を異ならせるようにしている。即ち、図5に示すように、各気筒#1,#2,#3,#6の排気弁30,31のリフト量を、各筒#4,#5,#7,#8の排気弁30,31のリフト量よりも小さく設定することで、吸気弁28,29及び排気弁30,31の両方が開放するオーバーラップ期間における排気ポート26,27の開放量(開口面積、図5に車線部で現す領域)を減少させるようにしている。   Specifically, although not shown, the cam profiles of the exhaust cams 38 and 39 of the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the fourth cylinder # 4, By making the cam profiles of the exhaust cams 38 and 39 of the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 different from each other, the respective valve lift amounts are made different. That is, as shown in FIG. 5, the lift amount of the exhaust valves 30, 31 of each cylinder # 1, # 2, # 3, # 6 is set to the exhaust valve 30 of each cylinder # 4, # 5, # 7, # 8. , 31 is set to be smaller than the lift amount of the exhaust ports 26, 27 during the overlap period in which both the intake valves 28, 29 and the exhaust valves 30, 31 are open (open area, lane portion in FIG. The area shown by is reduced.

従って、左バンク12にて、第1気筒#1及び第3気筒#3では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けるが、排気弁30,31のリフト量を小さく排気ポート26,27の開口面積が小さいため、内部EGR量は変動せずに所定量となる。その結果、排気脈動の影響を受ける第1気筒#1及び第3気筒#3の内部EGR量と、排気脈動の影響を受けない第5気筒#5及び第7気筒#7の内部EGRがほぼ同量となり、左バンク12の各気筒における内部EGR量がほぼ均一状態となる。同様に、右バンク13にて、第2気筒#2及び第6気筒#6では、オーバーラップ期間に第8気筒#8及び第4気筒#4の排気脈動の影響を受けるが、排気弁30,31のリフト量を小さく排気ポート26,27の開口面積が小さいため、内部EGR量は変動せずに所定量となる。その結果、排気脈動の影響を受ける第2気筒#2及び第6気筒#6の内部EGR量と、排気脈動の影響を受けない第4気筒#4及び第8気筒#8の内部EGRがほぼ同量となり、右バンク13の各気筒における内部EGR量がほぼ均一状態となる。   Accordingly, in the left bank 12, the first cylinder # 1 and the third cylinder # 3 are affected by the exhaust pulsation of the seventh cylinder # 7 and the fifth cylinder # 5 during the overlap period, but the exhaust valves 30, 31 are affected. Since the lift amount of the exhaust ports 26 and 27 is small, the internal EGR amount does not vary and becomes a predetermined amount. As a result, the internal EGR amounts of the first cylinder # 1 and the third cylinder # 3 affected by the exhaust pulsation and the internal EGR of the fifth cylinder # 5 and the seventh cylinder # 7 which are not affected by the exhaust pulsation are substantially the same. The amount of internal EGR in each cylinder of the left bank 12 becomes almost uniform. Similarly, in the right bank 13, the second cylinder # 2 and the sixth cylinder # 6 are affected by the exhaust pulsation of the eighth cylinder # 8 and the fourth cylinder # 4 during the overlap period. Since the lift amount of 31 is small and the opening areas of the exhaust ports 26 and 27 are small, the internal EGR amount does not vary and becomes a predetermined amount. As a result, the internal EGR amounts of the second cylinder # 2 and the sixth cylinder # 6 that are affected by the exhaust pulsation and the internal EGR of the fourth cylinder # 4 and the eighth cylinder # 8 that are not affected by the exhaust pulsation are substantially the same. The internal EGR amount in each cylinder of the right bank 13 becomes almost uniform.

このように実施例3の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6における排気弁30,31のリフト量を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の排気弁30,31のリフト量よりも小さく設定している。   Thus, in the internal combustion engine of the third embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the third cylinder # 3, and the second cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 2. The lift amount of the exhaust valves 30 and 31 in the sixth cylinder # 6 is set to the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. The lift amount of the exhaust valves 30 and 31 is set to be smaller.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けるが、排気弁30,31のリフト量を小さく排気ポート26,27の開口面積が小さいため、内部EGR量は変動せずに所定量となる。そのため、排気脈動の影響を受ける気筒#1,#2,#3,#6の内部EGR量と、排気脈動の影響を受けない気筒#4,#5,#7,#8の内部EGR量がほぼ同量となり、全てのバンク12,13の各気筒#1〜#8における内部EGR量がほぼ均一状態となる。その結果、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps with the exhaust stroke, the lift amount of the exhaust valves 30 and 31 is reduced and the exhaust ports 26 and 27 are affected by the exhaust pulsation during this period. Since the opening area is small, the internal EGR amount does not vary and becomes a predetermined amount. Therefore, the internal EGR amount of cylinders # 1, # 2, # 3, and # 6 that are affected by exhaust pulsation and the internal EGR amount of cylinders # 4, # 5, # 7, and # 8 that are not affected by exhaust pulsation are The amounts are almost the same, and the internal EGR amounts in the cylinders # 1 to # 8 of all the banks 12 and 13 are almost uniform. As a result, variations in combustion between cylinders can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、この実施例3にて、排気脈動が作用する気筒#1,#2,#3,#6の排気弁30,31のリフト量と、排気脈動が作用しない気筒#4,#5,#7,#8の排気弁30,31のリフト量との大きさの設定は、エンジン回転数、エンジン負荷、吸気負圧、オーバーラップ期間などに応じて最適なものとすればよい。   In the third embodiment, the lift amount of the exhaust valves 30 and 31 of the cylinders # 1, # 2, # 3, and # 6 to which the exhaust pulsation acts and the cylinders # 4, # 5, and # to which the exhaust pulsation does not act. The setting of the magnitudes of the lift amounts of the exhaust valves 30 and 31 of 7 and # 8 may be optimized according to the engine speed, the engine load, the intake negative pressure, the overlap period, and the like.

また、実施例3では、各気筒#1,#2,#3,#6の排気カム38,39のカムプロフィールと、各気筒#4,#5,#7,#8の排気カム38,39のカムプロフィールとを相違させることで、それぞれのバルブリフト量を異ならせるようにしたが、この構成に限定されるものではない。例えば、排気可変動弁機構42,43によりエンジン運転状態に応じてオーバーラップ期間が変更されるような場合には、排気カムシャフト34,35に異なるカムプロフィールをもった複数の排気カムを設け、エンジン運転状態に応じて切り換えるようにしても良い。   In the third embodiment, the cam profiles of the exhaust cams 38 and 39 of the cylinders # 1, # 2, # 3, and # 6 and the exhaust cams 38 and 39 of the cylinders # 4, # 5, # 7, and # 8 are used. Although the valve lift amounts are made different by making the cam profiles different from each other, the present invention is not limited to this configuration. For example, when the overlap period is changed by the exhaust variable valve mechanisms 42 and 43 according to the engine operating state, the exhaust camshafts 34 and 35 are provided with a plurality of exhaust cams having different cam profiles, You may make it switch according to an engine driving | running state.

図6は、本発明の実施例4に係る内燃機関を表すV型8気筒エンジンの概略平面図、図7は、実施例4のV型8気筒エンジンにおける外部EGR制御のフローチャートである。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 6 is a schematic plan view of a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 4 of the present invention, and FIG. 7 is a flowchart of external EGR control in the V-type 8-cylinder engine of Embodiment 4. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例4のV型8気筒エンジンにおいて、図6に示すように、各バンク12,13にて、特定の気筒の排気行程に、オーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の内部EGR量と、オーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の内部EGR量に外部EGR量を加えたEGR量との偏差が減少するように排気ガス再循環量を変更(排気ガス再循環量変更手段)可能としている。即ち、この実施例4では、排気ガス再循環量変更手段として外部EGR機構を設け、排気脈動の影響を受けない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8に対して外部EGRを供給するようにしている。   In the V-type 8-cylinder engine of the fourth embodiment, as shown in FIG. 6, in each of the banks 12 and 13, the first cylinder # 1 and the third cylinder # 3 in which the overlap period overlaps with the exhaust stroke of a specific cylinder. The internal EGR amounts of the second cylinder # 2 and the sixth cylinder # 6 and the internal EGR of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 that do not overlap with each other. The exhaust gas recirculation amount can be changed (exhaust gas recirculation amount changing means) so that the deviation from the EGR amount obtained by adding the external EGR amount to the amount decreases. That is, in the fourth embodiment, the external EGR mechanism is provided as the exhaust gas recirculation amount changing means, and the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder are not affected by the exhaust pulsation. External EGR is supplied to # 8.

具体的に説明すると、連結管58の一方側(右バンク13側)における触媒装置57の下流側には排気ガス再循環(EGR)通路81の一端部が連結されており、このEGR通路81は他端部が2つの分岐管82,83に分岐している。一方の分岐管82は、左バンク12側の吸気マニホールド48における第5気筒#5及び第7気筒#7に対応する分岐部48c,48dに連結されている。また、他方の分岐管83は、右バンク13側の吸気マニホールド49における第4気筒#4及び第8気筒#8に対応する分岐部48c,48dに連結されている。そして、EGR通路81の他端部にはEGR弁84が設けられている。ECU68は、エンジン運転状態に応じてこのEGR弁84を開閉制御可能となっており、エンジン回転数、エンジン負荷、オーバーラップ期間、吸気負圧に基づいてEGR弁84の開度を制御している。   More specifically, one end of an exhaust gas recirculation (EGR) passage 81 is connected to the downstream side of the catalyst device 57 on one side (right bank 13 side) of the connecting pipe 58, and this EGR passage 81 is The other end is branched into two branch pipes 82 and 83. One branch pipe 82 is connected to branch portions 48c and 48d corresponding to the fifth cylinder # 5 and the seventh cylinder # 7 in the intake manifold 48 on the left bank 12 side. The other branch pipe 83 is connected to branch portions 48c and 48d corresponding to the fourth cylinder # 4 and the eighth cylinder # 8 in the intake manifold 49 on the right bank 13 side. An EGR valve 84 is provided at the other end of the EGR passage 81. The ECU 68 can control the opening and closing of the EGR valve 84 according to the engine operating state, and controls the opening degree of the EGR valve 84 based on the engine speed, the engine load, the overlap period, and the intake negative pressure. .

即ち、図7に示すように、ステップS1にて、エンジン回転数及びエンジン負荷(例えば、スロットル開度、吸入空気量、燃料噴射量など)を読込み、ステップS2にて、オーバーラップ期間を検出し、ステップS3にて、吸気負圧を検出する。そして、ステップS4にて、予め設定された制御マップを用いて、エンジン回転数、エンジン負荷、オーバーラップ期間、吸気負圧に基づいてEGR弁84の開度を設定する。具体的には、オーバーラップ期間に排気脈動の影響を受けて増加する気筒#1,#2,#3,#6の内部EGR量と、オーバーラップ期間に排気脈動の影響を受けない気筒#4,#5,#7,#8の内部EGR量とをエンジン運転状態に基づいて推定し、両者のEGR不足量と外部EGR量とが同量となるようにEGR弁84の開度を設定する。   That is, as shown in FIG. 7, the engine speed and engine load (for example, throttle opening, intake air amount, fuel injection amount, etc.) are read in step S1, and the overlap period is detected in step S2. In step S3, intake negative pressure is detected. In step S4, the opening degree of the EGR valve 84 is set based on the engine speed, the engine load, the overlap period, and the intake negative pressure using a preset control map. Specifically, the internal EGR amount of cylinders # 1, # 2, # 3, and # 6 that increases due to the influence of exhaust pulsation during the overlap period, and the cylinder # 4 that is not affected by exhaust pulsation during the overlap period , # 5, # 7, and # 8 are estimated based on the engine operating state, and the opening degree of the EGR valve 84 is set so that both the EGR deficiency amount and the external EGR amount are the same amount. .

従って、各バンク12,13にて、第1気筒#1、第3気筒#、第2気筒#2、3第6気筒#6では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、他の排気脈動の影響を受けずに内部EGR量は増加しないが、排気ガスがEGR通路81及び分岐管82,83を通して外部EGRとして供給されることで、全体としてのEGR量が所定量増加する。その結果、排気脈動の影響を受ける第1気筒#1、第3気筒#3、第2気筒#2、3第6気筒#6のEGR量と、排気脈動の影響を受けない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のEGRがほぼ同量となり、各バンク12,13の各気筒におけるEGR量がほぼ均一状態となる。   Accordingly, in each of the banks 12 and 13, in the first cylinder # 1, the third cylinder #, the second cylinder # 2, and the third cylinder # 6, the seventh cylinder # 7 and the fifth cylinder # 5 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being influenced by other exhaust pulsations, but the exhaust gas is not in the EGR passage. By being supplied as an external EGR through 81 and branch pipes 82 and 83, the EGR amount as a whole increases by a predetermined amount. As a result, the EGR amount of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the third cylinder # 6 that are affected by the exhaust pulsation and the fourth cylinder # 4 that is not affected by the exhaust pulsation The EGR of the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 are substantially the same, and the EGR amounts in the respective cylinders of the banks 12 and 13 are substantially uniform.

このように実施例4の内燃機関にあっては、V型8気筒エンジンにて、外部EGR機構を設け、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6には外部EGRを供給せずに、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8にだけ外部EGRを供給するようにしている。   Thus, in the internal combustion engine of the fourth embodiment, in the V-type 8-cylinder engine, the external EGR mechanism is provided, and the first cylinder # 1 and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. No external EGR is supplied to the second cylinder # 2 and the sixth cylinder # 6, and the overlap period does not overlap the exhaust stroke. The fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, External EGR is supplied only to the eighth cylinder # 8.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けないが、排気ガスがEGR通路81及び分岐管82,83を通して外部EGRとして供給されることで、内部EGR量に外部EGR量を加えた全体のEGR量は所定量増加する。そのため、排気脈動の影響を受ける気筒#1,#2,#3,#6のEGR量と、排気脈動の影響を受けない気筒#4,#5,#7,#8のEGR量がほぼ同量となり、全てのバンク12,13の各気筒#1〜#8におけるEGR量がほぼ均一状態となる。その結果、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the exhaust pulsation is not affected during this period, but the exhaust gas is supplied as an external EGR through the EGR passage 81 and the branch pipes 82 and 83. The total EGR amount obtained by adding the external EGR amount to the internal EGR amount increases by a predetermined amount. Therefore, the EGR amounts of cylinders # 1, # 2, # 3, and # 6 that are affected by exhaust pulsation are substantially the same as the EGR amounts of cylinders # 4, # 5, # 7, and # 8 that are not affected by exhaust pulsation. The EGR amount in each of the cylinders # 1 to # 8 of all the banks 12 and 13 is almost uniform. As a result, variations in combustion between cylinders can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

図8は、本発明の実施例5に係る内燃機関を表すV型8気筒エンジンの概略平面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 8 is a schematic plan view of a V-type 8-cylinder engine that represents an internal combustion engine according to Embodiment 5 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例5のV型8気筒エンジンにおいて、図8に示すように、各バンク12,13にて、特定の気筒の排気行程に、オーバーラップ期間が重なる第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6のEGR量と、オーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のEGR量との偏差が減少するように排気ガス再循環量を変更(排気ガス再循環量変更手段)可能としている。即ち、この実施例4では、排気ガス再循環量変更手段として外部EGR機構を設け、排気脈動の影響を受ける第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6への外部EGR量と、排気脈動の影響を受けない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8への外部EGR量とを調整するようにしている。   In the V-type 8-cylinder engine of the fifth embodiment, as shown in FIG. 8, the first cylinder # 1 and the third cylinder # 3 in which the overlap period overlaps with the exhaust stroke of a specific cylinder in each bank 12, 13. The EGR amounts of the second cylinder # 2 and the sixth cylinder # 6 and the EGR amounts of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 that do not overlap with each other. The exhaust gas recirculation amount can be changed (exhaust gas recirculation amount changing means) so as to reduce the deviation. That is, in the fourth embodiment, the external EGR mechanism is provided as the exhaust gas recirculation amount changing means, and the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, the sixth cylinder #, which are affected by the exhaust pulsation. The external EGR amount to 6 and the external EGR amount to the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 that are not affected by the exhaust pulsation are adjusted. Yes.

具体的に説明すると、連結管58の一方側(右バンク13側)における触媒装置57の下流側には排気ガス再循環(EGR)通路91の一端部が連結されており、このEGR通路91は他端部が2つの分岐管92,93に分岐している。一方の分岐管92は先端部側が2つに分岐し、一方の分岐部92aが左バンク12側の第1気筒#1及び第3気筒#3に対応する分岐部48a,48bに連結され、他方の分岐部92bが右バンク13側の第2気筒#2及び第6気筒#6に対応する分岐部49a,49cに連結されている。また、他方の分岐管93は先端部側が2つに分岐し、一方の分岐部93aが左バンク12側の第5気筒#5及び第7気筒#7に対応する分岐部48c,48dに連結され、他方の分岐部93bが右バンク13側の第4気筒#4及び第8気筒#8に対応する分岐部49b,49dに連結されている。そして、分岐管92,93にはEGR弁94,95が設けられている。ECU68は、エンジン運転状態に応じてこのEGR弁94,95を開閉制御可能となっており、エンジン回転数、エンジン負荷、オーバーラップ期間、吸気負圧に基づいてEGR弁84の開度を制御している。   More specifically, one end of an exhaust gas recirculation (EGR) passage 91 is connected to the downstream side of the catalyst device 57 on one side (right bank 13 side) of the connecting pipe 58, and this EGR passage 91 is The other end is branched into two branch pipes 92 and 93. One branch pipe 92 is branched into two at the tip end side, and one branch portion 92a is connected to the branch portions 48a and 48b corresponding to the first cylinder # 1 and the third cylinder # 3 on the left bank 12 side. The branch portion 92b is connected to the branch portions 49a and 49c corresponding to the second cylinder # 2 and the sixth cylinder # 6 on the right bank 13 side. Further, the other branch pipe 93 branches into two at the tip end side, and one branch portion 93a is connected to the branch portions 48c and 48d corresponding to the fifth cylinder # 5 and the seventh cylinder # 7 on the left bank 12 side. The other branch portion 93b is connected to the branch portions 49b and 49d corresponding to the fourth cylinder # 4 and the eighth cylinder # 8 on the right bank 13 side. The branch pipes 92 and 93 are provided with EGR valves 94 and 95, respectively. The ECU 68 can control the opening and closing of the EGR valves 94 and 95 according to the engine operating state, and controls the opening degree of the EGR valve 84 based on the engine speed, the engine load, the overlap period, and the intake negative pressure. ing.

即ち、ECU68は、予め設定された制御マップを用いて、エンジン回転数、エンジン負荷、オーバーラップ期間、吸気負圧に基づいて各EGR弁94,95の開度を設定する。具体的には、ECU68は、エンジンの高回転高負荷状態ほどEGR弁94,95の開度が大きくなるように、つまり、大量のEGRが吸気系統に導入されるように制御する。また、ECU68は、オーバーラップ期間に排気脈動の影響を受けて増加する気筒#1,#2,#3,#6の内部EGR量と、オーバーラップ期間に排気脈動の影響を受けない気筒#4,#5,#7,#8の内部EGR量とをエンジン運転状態に基づいて推定し、両者のEGR不足量と外部EGR量とが同量となるようにEGR弁84の開度を設定する。   That is, the ECU 68 sets the opening degree of each EGR valve 94, 95 based on the engine speed, the engine load, the overlap period, and the intake negative pressure using a preset control map. Specifically, the ECU 68 performs control so that the opening degree of the EGR valves 94 and 95 becomes larger as the engine is in a higher rotation and higher load state, that is, a large amount of EGR is introduced into the intake system. Further, the ECU 68 increases the internal EGR amount of the cylinders # 1, # 2, # 3, and # 6 that are increased by the influence of the exhaust pulsation during the overlap period, and the cylinder # 4 that is not affected by the exhaust pulsation during the overlap period. , # 5, # 7, and # 8 are estimated based on the engine operating state, and the opening degree of the EGR valve 84 is set so that both the EGR deficiency amount and the external EGR amount are the same amount. .

従って、各バンク12,13にて、第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、他の排気脈動の影響を受けずに内部EGR量は増加しないが、排気ガスがEGR通路91及び分岐管92,93を通して外部EGRとして供給されることで、全体としてのEGR量が所定量増加する。その結果、排気脈動の影響を受ける第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6のEGR量と、排気脈動の影響を受けない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のEGRがほぼ同量となり、各バンク12,13の各気筒におけるEGR量がほぼ均一状態となる。   Therefore, in each of the banks 12 and 13, in the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6, the seventh cylinder # 7 and the fifth cylinder # 5 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being influenced by other exhaust pulsations, but the exhaust gas is not in the EGR passage. By being supplied as an external EGR through 91 and the branch pipes 92 and 93, the EGR amount as a whole increases by a predetermined amount. As a result, the EGR amount of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 that are affected by the exhaust pulsation, and the fourth cylinder # 4 that is not affected by the exhaust pulsation, The EGR amounts of the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 are substantially the same, and the EGR amounts in the respective cylinders of the banks 12 and 13 are substantially uniform.

このように実施例5の内燃機関にあっては、V型8気筒エンジンにて、外部EGR機構を設け、全ての気筒#1〜#8に外部EGRを供給可能とすると共に、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8に対して多くの外部EGRを供給するようにしている。   Thus, in the internal combustion engine of the fifth embodiment, in the V-type 8-cylinder engine, the external EGR mechanism is provided so that the external EGR can be supplied to all the cylinders # 1 to # 8 and the exhaust stroke is exceeded. A large amount of external EGR is supplied to the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 where the lap periods do not overlap.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けないが、多くの排気ガスがEGR通路91及び分岐管92,93を通して外部EGRとして供給されることで、内部EGR量に外部EGR量を加えた全体のEGR量は所定量増加する。そのため、排気脈動の影響を受ける気筒#1,#2,#3,#6のEGR量と、排気脈動の影響を受けない気筒#4,#5,#7,#8のEGR量がほぼ同量となり、全てのバンク12,13の各気筒#1〜#8におけるEGR量がほぼ均一状態となる。その結果、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the exhaust pulsation is not affected during this period, but a large amount of exhaust gas is supplied as external EGR through the EGR passage 91 and branch pipes 92 and 93. Thus, the total EGR amount obtained by adding the external EGR amount to the internal EGR amount increases by a predetermined amount. Therefore, the EGR amounts of cylinders # 1, # 2, # 3, and # 6 that are affected by exhaust pulsation are substantially the same as the EGR amounts of cylinders # 4, # 5, # 7, and # 8 that are not affected by exhaust pulsation. The EGR amount in each of the cylinders # 1 to # 8 of all the banks 12 and 13 is almost uniform. As a result, variations in combustion between cylinders can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、上述の実施例では、排気系の配管構成を、実施例1では、左右バンク12,13にて、2つの気筒を集合させてから4つの気筒を集合させるものとし、実施例2、4,5では、左右バンク12,13にて、直接4つの気筒を集合させるものとしたが、いずれの構成であってもよい。   In the above-described embodiment, the exhaust system piping configuration is configured such that in the first embodiment, the left and right banks 12 and 13 aggregate two cylinders and then four cylinders. , 5, four cylinders are directly assembled in the left and right banks 12, 13, but any configuration may be used.

また、上述した各実施例では、各気筒の点火順序を、第1気筒#1、第8気筒#8、第7気筒#7、第3気筒#3、第6気筒#6、第5気筒#5、第4気筒#4、第2気筒#2としたが、この順序に限るものではなく、各バンク12,13の気筒がそれぞれ不等間隔で点火・爆発するようになっていればよいものである。また、上述の各実施例にて、燃料を燃焼室内に直接噴射する筒内噴射式内燃機関としたが、燃料を吸気系に噴射するポート噴射式内燃機関であっても良い。更に、本発明の機関をV型8気筒エンジンとして説明したが、気筒数はこれに限るものではない。   Further, in each of the above-described embodiments, the firing order of each cylinder is changed to the first cylinder # 1, the eighth cylinder # 8, the seventh cylinder # 7, the third cylinder # 3, the sixth cylinder # 6, and the fifth cylinder #. 5. The fourth cylinder # 4 and the second cylinder # 2 are not limited to this order. The cylinders in the banks 12 and 13 may ignite and explode at unequal intervals. It is. In each of the above-described embodiments, the cylinder injection internal combustion engine that directly injects fuel into the combustion chamber is used. However, a port injection internal combustion engine that injects fuel into the intake system may be used. Furthermore, although the engine of the present invention has been described as a V-type 8-cylinder engine, the number of cylinders is not limited to this.

以上のように、本発明にかかる内燃機関は、排気脈動が作用する気筒の排気ガス再循環量と、排気脈動が作用しない気筒の排気ガス再循環量との偏差が減少するように排気ガス再循環量を変更するようにしたものであり、不等間隔点火・爆発式の内燃機関に有用である。   As described above, the internal combustion engine according to the present invention has an exhaust gas recirculation so that the deviation between the exhaust gas recirculation amount of the cylinder where exhaust pulsation acts and the exhaust gas recirculation amount of the cylinder where exhaust pulsation does not work is reduced. The circulation amount is changed, and it is useful for an internal combustion engine of unequal interval ignition / explosion type.

本発明の実施例1に係る内燃機関を表すV型8気筒エンジンの概略平面図である。1 is a schematic plan view of a V-type 8-cylinder engine that represents an internal combustion engine according to Embodiment 1 of the present invention. 実施例1のV型8気筒エンジンの概略構成図である。1 is a schematic configuration diagram of a V-type 8-cylinder engine according to Embodiment 1. FIG. 実施例1のV型8気筒エンジンにおける吸気弁及び排気弁の開放時期を表すタイムチャートである。3 is a time chart showing the opening timing of the intake valve and the exhaust valve in the V-type 8-cylinder engine of the first embodiment. 本発明の実施例2に係る内燃機関を表すV型8気筒エンジンの概略平面図である。It is a schematic plan view of the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 2 of this invention. 本発明の実施例3に係る内燃機関を表すV型8気筒エンジンにおける吸気弁及び排気弁のリフト量を表すグラフである。It is a graph showing the lift amount of the intake valve and the exhaust valve in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 3 of this invention. 本発明の実施例4に係る内燃機関を表すV型8気筒エンジンの概略平面図である。It is a schematic plan view of the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 4 of this invention. 実施例4のV型8気筒エンジンにおける外部EGR制御のフローチャートである。7 is a flowchart of external EGR control in a V-type 8-cylinder engine according to a fourth embodiment. 本発明の実施例5に係る内燃機関を表すV型8気筒エンジンの概略平面図である。It is a schematic plan view of the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 5 of this invention.

符号の説明Explanation of symbols

12,13 バンク
22,23 燃焼室
24,25 吸気ポート
26,26a〜26d,27,27a〜27d 排気ポート(排気ガス再循環量変更手段)
28,29 吸気弁
30,31 排気弁
36,37 吸気カム
38,39 排気カム(排気ガス再循環量変更手段)
40,41 吸気可変動弁機構
42,43 排気可変動弁機構
54,55 排気マニホールド(排気ガス再循環量変更手段)
54a〜54d,55a〜55d 分岐管
61,62 インジェクタ
66,67 点火プラグ
68 電子制御ユニット、ECU
81,91 排気ガス再循環(EGR)通路(排気ガス再循環量変更手段)
82,83,92,93 分岐管
84,94,95 EGR弁
#1,#2,#3,#6 気筒(第1の気筒)
#4,#5,#7,#8 気筒(第2の気筒)
12, 13 Banks 22, 23 Combustion chambers 24, 25 Intake ports 26, 26a to 26d, 27, 27a to 27d Exhaust ports (exhaust gas recirculation amount changing means)
28, 29 Intake valve 30, 31 Exhaust valve 36, 37 Intake cam 38, 39 Exhaust cam (exhaust gas recirculation amount changing means)
40, 41 Intake variable valve mechanism 42, 43 Exhaust variable valve mechanism 54, 55 Exhaust manifold (exhaust gas recirculation amount changing means)
54a to 54d, 55a to 55d Branch pipe 61, 62 Injector 66, 67 Spark plug 68 Electronic control unit, ECU
81, 91 Exhaust gas recirculation (EGR) passage (exhaust gas recirculation amount changing means)
82, 83, 92, 93 Branch pipe 84, 94, 95 EGR valve # 1, # 2, # 3, # 6 cylinder (first cylinder)
# 4, # 5, # 7, # 8 cylinder (second cylinder)

Claims (1)

複数の気筒が左右のバンクに分けて配列されて該各バンクの気筒が不等間隔で点火されると共に、前記各気筒における排気弁の開放期間と吸気弁の開放期間とがオーバーラップする期間を有する内燃機関において、前記各バンクにて、特定の気筒の排気行程に前記オーバーラップ期間が重なる第1の気筒の排気ガス再循環量と、特定の気筒の排気行程に前記オーバーラップ期間が重ならない第2の気筒の排気ガス再循環量との偏差が減少するように、前記各気筒の排気ガス再循環量を変更する排気ガス再循環量変更手段を設け、該排気ガス再循環量変更手段として、前記第1の気筒に連結された排気系の熱伝導率を、前記第2の気筒に連結された排気系の熱伝導率よりも低く設定したことを特徴とする内燃機関。 A plurality of cylinders are divided into left and right banks, and the cylinders of each bank are ignited at unequal intervals, and the exhaust valve opening period and the intake valve opening period in each cylinder overlap each other. In the internal combustion engine having the above, in each bank, the exhaust gas recirculation amount of the first cylinder in which the overlap period overlaps with the exhaust stroke of the specific cylinder and the overlap period does not overlap with the exhaust stroke of the specific cylinder. as the deviation between the exhaust gas recirculation amount of the second cylinder is reduced, the exhaust gas recirculation amount changing means for changing the exhaust gas recirculation amount of the respective cylinders is provided, as the exhaust gas recirculation amount changing means An internal combustion engine characterized in that the heat conductivity of the exhaust system connected to the first cylinder is set lower than the heat conductivity of the exhaust system connected to the second cylinder .
JP2008218378A 2008-08-27 2008-08-27 Internal combustion engine Expired - Fee Related JP4803225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218378A JP4803225B2 (en) 2008-08-27 2008-08-27 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218378A JP4803225B2 (en) 2008-08-27 2008-08-27 Internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004350455A Division JP4274112B2 (en) 2004-12-02 2004-12-02 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008281012A true JP2008281012A (en) 2008-11-20
JP4803225B2 JP4803225B2 (en) 2011-10-26

Family

ID=40142013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218378A Expired - Fee Related JP4803225B2 (en) 2008-08-27 2008-08-27 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP4803225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016124A1 (en) * 2009-08-06 2011-02-10 トヨタ自動車株式会社 Egr control system for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126956A (en) * 1984-11-21 1986-06-14 Honda Motor Co Ltd Production of exhaust passage for internal-combustion engine
JP2002030927A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126956A (en) * 1984-11-21 1986-06-14 Honda Motor Co Ltd Production of exhaust passage for internal-combustion engine
JP2002030927A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016124A1 (en) * 2009-08-06 2011-02-10 トヨタ自動車株式会社 Egr control system for internal combustion engine
JP5403057B2 (en) * 2009-08-06 2014-01-29 トヨタ自動車株式会社 EGR control system for internal combustion engine
US8788180B2 (en) 2009-08-06 2014-07-22 Toyota Jidosha Kabushiki Kaisha EGR control system for internal combustion engine

Also Published As

Publication number Publication date
JP4803225B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4475221B2 (en) engine
JP3894089B2 (en) Control device for spark ignition engine
KR950000600B1 (en) Turbo-charger attached engine
EP2111499B1 (en) Piston for internal combustion engine, and internal combustion engine using the piston
JP5272611B2 (en) Spark ignition internal combustion engine
JPH0559947A (en) Spark ignition type reciprocating engine
US20150047584A1 (en) Internal combustion engine having a plurality of exhaust ports per cylinder and charge exchange method for such an internal combustion engine
JP4706618B2 (en) Internal combustion engine
JP4274112B2 (en) Internal combustion engine
JP4803225B2 (en) Internal combustion engine
JP2009085020A (en) Control device of internal combustion engine
US9255497B2 (en) Camshaft to control valve timing
JP4400421B2 (en) Control method for dual injection internal combustion engine
JP4415840B2 (en) Internal combustion engine
JP4915370B2 (en) Air-fuel ratio control apparatus for variable compression ratio internal combustion engine
JP2008223615A (en) Internal combustion engine
JP4297044B2 (en) Internal combustion engine
JP2006161691A (en) Internal combustion engine
JP5206274B2 (en) Design method of spark ignition internal combustion engine
JP5049226B2 (en) Intake control device for internal combustion engine
JP2009127485A (en) Internal combustion engine
JP2010138720A (en) Ignition control device for engine
JP2017089585A (en) Control method and device for vehicle
JP2009174339A (en) Intake-air controller of internal combustion engine
JP4968594B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees