JP2008278257A - Receiving circuit - Google Patents

Receiving circuit Download PDF

Info

Publication number
JP2008278257A
JP2008278257A JP2007120176A JP2007120176A JP2008278257A JP 2008278257 A JP2008278257 A JP 2008278257A JP 2007120176 A JP2007120176 A JP 2007120176A JP 2007120176 A JP2007120176 A JP 2007120176A JP 2008278257 A JP2008278257 A JP 2008278257A
Authority
JP
Japan
Prior art keywords
input terminal
comparator
inverting input
voltage
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007120176A
Other languages
Japanese (ja)
Other versions
JP4988425B2 (en
Inventor
Nobuyuki Takeuchi
伸行 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2007120176A priority Critical patent/JP4988425B2/en
Publication of JP2008278257A publication Critical patent/JP2008278257A/en
Application granted granted Critical
Publication of JP4988425B2 publication Critical patent/JP4988425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the problem wherein the circuit area of the conventional receiving circuit becomes large. <P>SOLUTION: This receiving circuit comprises: first and second input terminals; a first comparator COMP1 connected to the first input terminal through a first capacitor C1 and connected to the second input terminal through a second capacitor C2; a second comparator COMP2 connected to the second input terminal through a third capacitor C3 and connected to the first input terminal through a fourth capacitor C4; a first bias voltage setting circuit for setting bias voltage of an input terminal of the first comparator COMP1; a second bias voltage setting circuit for setting bias voltage of an input terminal of the second comparator COMP2; and an output signal generation circuit for setting an output signal to a first logical level on the basis of a first pulse outputted by the first comparator COMP1 and setting the output signal to a second logical level on the basis of a second pulse outputted by the second comparator COMP2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明の受信回路は、特に差動信号をシングルエンド信号に変換する受信回路に関する。   The receiving circuit of the present invention particularly relates to a receiving circuit that converts a differential signal into a single-ended signal.

送信器と受信器との間で行われる通信において、送信器と受信器とを接続する通信線に混入するノイズに対して信号の信頼性(例えば耐ノイズ性)を向上させるために、差動信号を用いた信号の送受信が行われている。また、送信器と受信器とを接続する場合、送信器と受信器との間において信号の直流成分を遮断するために送信器と受信器とをカップリングコンデンサを介して接続することが行われる。このような送信器及び受信器に用いられる受信回路の例が特許文献1、2(以下、従来例1、2と称す)に開示されている。   In communication performed between a transmitter and a receiver, in order to improve signal reliability (for example, noise resistance) against noise mixed in a communication line connecting the transmitter and the receiver, differential Signals are transmitted and received using signals. Further, when connecting the transmitter and the receiver, the transmitter and the receiver are connected via a coupling capacitor in order to cut off the DC component of the signal between the transmitter and the receiver. . Examples of receiving circuits used for such transmitters and receivers are disclosed in Patent Documents 1 and 2 (hereinafter referred to as Conventional Examples 1 and 2).

従来例1にかかる受信回路RC及びこれに付加されるインタフェース回路100の回路図を図4に示す。図4に示すように、従来例1では、送信器が出力する差動信号がそれぞれ入力端子B1、B2からインタフェース回路100に入力される。この差動信号は、インタフェース回路100においてコンデンサC101、C102を介して比較器CMN、CMPに入力される。このとき、インタフェース回路100では、コンデンサC101の比較器CMN、CMPに接続される側のノードの直流電圧を電源ノードVCCと接地ノードGNDとの間に直列に接続された複数の抵抗による抵抗分割比によって設定する。一方、コンデンサC102の比較器CMN、CMPに接続される側のノードの直流電圧を電圧源で生成される電圧(この例ではVCC/2(電源電圧の半分の電圧))に基づき設定する。このような構成とすることで、比較器CMN、CMPは、入力される差動信号に基づいた信号を生成し、受信回路RCは、この信号を受信する。従来例1では、インタフェース回路100によって、送信器が出力する直流成分を除去する。   FIG. 4 shows a circuit diagram of the receiving circuit RC according to the conventional example 1 and the interface circuit 100 added thereto. As shown in FIG. 4, in Conventional Example 1, differential signals output from the transmitter are input to the interface circuit 100 from input terminals B1 and B2, respectively. This differential signal is input to the comparators CMN and CMP via the capacitors C101 and C102 in the interface circuit 100. At this time, in the interface circuit 100, the DC voltage of the node connected to the comparators CMN and CMP of the capacitor C101 is converted into a resistance division ratio by a plurality of resistors connected in series between the power supply node VCC and the ground node GND. Set by. On the other hand, the DC voltage of the node connected to the comparators CMN and CMP of the capacitor C102 is set based on the voltage generated by the voltage source (in this example, VCC / 2 (half the power supply voltage)). With such a configuration, the comparators CMN and CMP generate a signal based on the input differential signal, and the receiving circuit RC receives this signal. In Conventional Example 1, the interface circuit 100 removes the DC component output from the transmitter.

また、従来例2にかかる受信回路200の回路図を図5に示す。図5に示す例では、ドライバーIC1が出力する差動信号をレシーバIC2がコンデンサC201、C202を介して受信する。このとき、コンデンサC201、C202のレシーバ側ノードの電圧をバイアス電圧(図5における−5.2V)と接地電圧とを抵抗によって分割した値で設定する。このような構成にすることで、レシーバIC2は、差動信号に基づいた信号を生成する。つまり、従来例2では、コンデンサC201、C202によって、ドライバーIC1が出力する直流成分を除去する。
特開平3−216045号公報 特開平6−97967号公報
FIG. 5 shows a circuit diagram of the receiving circuit 200 according to the second conventional example. In the example shown in FIG. 5, the receiver IC2 receives the differential signal output from the driver IC1 via the capacitors C201 and C202. At this time, the voltage at the receiver side node of the capacitors C201 and C202 is set to a value obtained by dividing the bias voltage (−5.2V in FIG. 5) and the ground voltage by a resistor. With this configuration, the receiver IC 2 generates a signal based on the differential signal. That is, in the conventional example 2, the DC component output from the driver IC1 is removed by the capacitors C201 and C202.
JP-A-3-216045 JP-A-6-97967

しかしながら、入力信号として、クロック信号のような二値信号を有する差動信号が入力された場合、従来例1、2では、コンデンサの容量値と抵抗の抵抗値とによって求まる時定数に応じて入力信号の立ち上がり及び立ち下がりが鈍る。入力信号の立ち上がり及び立ち下がりが鈍った場合、従来例1における比較器CMN、CMPあるいは従来例2におけるレシーバIC2が差動信号の信号波形を正しく再現できなくなる問題がある。この問題を解決するためには、容量値と抵抗値とのうち少なくとも一方の値を大きく設定し、時定数を大きくする必要がある。しかし、このような対策を行った場合、従来例1、2にかかる受信回路は、コンデンサあるいは抵抗の素子面積が増大する問題がある。   However, when a differential signal having a binary signal such as a clock signal is input as an input signal, in conventional examples 1 and 2, input is performed according to the time constant determined by the capacitance value of the capacitor and the resistance value of the resistor. The rise and fall of the signal is dull. When the rise and fall of the input signal become dull, there is a problem that the comparators CMN and CMP in the conventional example 1 or the receiver IC 2 in the conventional example 2 cannot correctly reproduce the signal waveform of the differential signal. In order to solve this problem, it is necessary to increase at least one of the capacitance value and the resistance value to increase the time constant. However, when such measures are taken, the receiving circuits according to the conventional examples 1 and 2 have a problem that the element area of the capacitor or resistor increases.

本発明の一態様は、差動信号が入力される第1、第2の入力端子と、前記第1の入力端子と第1のコンデンサを介して接続される非反転入力端子と、前記第2の入力端子と第2のコンデンサを介して接続される反転入力端子とを備える第1の比較器と、前記第2の入力端子と第3のコンデンサを介して接続される非反転入力端子と、前記第1の入力端子と第4のコンデンサを介して接続される反転入力端子とを備える第2の比較器と、第1の閾値電圧に対して、前記第1の比較器の非反転入力端子のバイアス電圧を低く設定し、前記第1の比較器の反転入力端子のバイアス電圧を高く設定する第1のバイアス電圧設定回路と、第2の閾値電圧に対して、前記第2の比較器の非反転入力端子のバイアス電圧を低く設定し、前記第2の比較器の反転入力端子のバイアス電圧を高く設定する第2のバイアス電圧設定回路と、前記第1の比較器が出力する第1のパルスに基づき出力信号を第1の論理レベルとし、前記第2の比較器が出力する第2のパルスに基づき出力信号を第2の論理レベルとする出力信号生成回路と、を有する受信回路である。   According to one embodiment of the present invention, first and second input terminals to which a differential signal is input, a non-inverting input terminal connected to the first input terminal via a first capacitor, and the second A first comparator comprising an inverting input terminal connected to the second input terminal via a second capacitor; a non-inverting input terminal connected to the second input terminal via a third capacitor; A second comparator comprising a first input terminal and an inverting input terminal connected via a fourth capacitor; and a non-inverting input terminal of the first comparator for a first threshold voltage A first bias voltage setting circuit that sets a bias voltage of the inverting input terminal of the first comparator to be high and a second bias voltage of the second comparator with respect to a second threshold voltage. The bias voltage of the non-inverting input terminal is set low so that the second comparator Based on the second bias voltage setting circuit that sets the bias voltage of the input terminal high, and the first pulse output from the first comparator, the output signal is set to the first logic level, and the second comparator And an output signal generation circuit that sets the output signal to a second logic level based on the second pulse to be output.

本発明にかかる受信回路によれば、出力信号生成回路が、第1、第2のパルスに基づき出力信号の論理を反転させることで、出力信号生成回路は、差動信号の論理反転に基づいたシングルエンド信号を出力する。従って、第1、第2の比較器が差動信号における論理反転のタイミングに応じた第1、第2のパルスを生成できれば良い。このようなことから、第1の比較器及び第2の比較器の入力端子における時定数を小さく設定しても、本発明にかかる受信回路は差動信号の論理反転に基づいたシングルエンド信号を出力することが可能である。また、第1の比較器及び第2の比較器の入力端子における時定数を小さく設定できることから、第1、第2のバイアス電圧設定回路と非反転入力端子及び反転入力端子との接続ノードに時定数を決定するための抵抗を挿入した場合であっても、その抵抗の抵抗値を小さく設定することが可能である。   According to the receiving circuit of the present invention, the output signal generation circuit inverts the logic of the output signal based on the first and second pulses, so that the output signal generation circuit is based on the logic inversion of the differential signal. Outputs a single-ended signal. Therefore, it is sufficient that the first and second comparators can generate the first and second pulses corresponding to the logic inversion timing in the differential signal. For this reason, even if the time constants at the input terminals of the first comparator and the second comparator are set to be small, the receiving circuit according to the present invention provides a single-ended signal based on the logical inversion of the differential signal. It is possible to output. In addition, since the time constants at the input terminals of the first comparator and the second comparator can be set small, it is necessary to connect the first and second bias voltage setting circuits to the non-inverting input terminal and the inverting input terminal. Even when a resistor for determining a constant is inserted, the resistance value of the resistor can be set small.

本発明の受信回路によれば、コンデンサ又は抵抗が回路面積に占める割合を低減して、回路面積を小さくすることが可能である。   According to the receiving circuit of the present invention, it is possible to reduce the circuit area by reducing the ratio of the capacitor or resistor to the circuit area.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。本実施の形態にかかる受信回路1の回路図を図1に示す。図1に示すように、受信回路1は、第1から第4のコンデンサ(図中のコンデンサC1〜C4)、第1のバイアス電圧生成回路10、第2のバイアス電圧生成回路11、第1の比較器COMP1、第2の比較器COMP2、出力信号生成回路12を有する。なお、受信回路1は、第1の入力端子BP及び第2の入力端子BMを有し、第1の入力端子BPから差動信号の一方の信号が入力され、第2の入力端子BMから差動信号の他方の信号が入力される。
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. A circuit diagram of the receiving circuit 1 according to the present embodiment is shown in FIG. As shown in FIG. 1, the receiving circuit 1 includes first to fourth capacitors (capacitors C1 to C4 in the figure), a first bias voltage generation circuit 10, a second bias voltage generation circuit 11, a first bias voltage generation circuit 11, and a first bias voltage generation circuit 11. The comparator COMP1, the second comparator COMP2, and the output signal generation circuit 12 are included. The receiving circuit 1 has a first input terminal BP and a second input terminal BM, and one of the differential signals is input from the first input terminal BP and the difference from the second input terminal BM. The other signal of the motion signals is input.

第1の比較器COMP1は、非反転入力端子と反転入力端子とを有し、非反転入力端子の電圧が反転入力端子の電圧よりも高ければハイレベル(例えば、電源電圧)を出力し、非反転入力端子の電圧が反転入力端子の電圧よりも低ければロウレベル(例えば、接地電圧)を出力する。なお、第1の比較器COMP1において、出力信号の論理レベルが反転する比較器の入力電圧を第1の閾値電圧Vth1と称す。第2の比較器COMP2非反転入力端子と反転入力端子とを有し、非反転入力端子の電圧が反転入力端子の電圧よりも高ければハイレベル(例えば、電源電圧)を出力し、非反転入力端子の電圧が反転入力端子の電圧よりも低ければロウレベル(例えば、接地電圧)を出力する。なお、第2の比較器COMP2において、出力信号の論理レベルが反転する比較器の入力電圧を第2の閾値電圧Vth2と称す。   The first comparator COMP1 has a non-inverting input terminal and an inverting input terminal. When the voltage at the non-inverting input terminal is higher than the voltage at the inverting input terminal, the first comparator COMP1 outputs a high level (for example, a power supply voltage). If the voltage at the inverting input terminal is lower than the voltage at the inverting input terminal, a low level (for example, ground voltage) is output. In the first comparator COMP1, the input voltage of the comparator whose logic level of the output signal is inverted is referred to as a first threshold voltage Vth1. The second comparator COMP2 has a non-inverting input terminal and an inverting input terminal, and outputs a high level (for example, power supply voltage) if the voltage at the non-inverting input terminal is higher than the voltage at the inverting input terminal. If the voltage at the terminal is lower than the voltage at the inverting input terminal, a low level (for example, ground voltage) is output. Note that, in the second comparator COMP2, the input voltage of the comparator at which the logic level of the output signal is inverted is referred to as a second threshold voltage Vth2.

コンデンサC1は、第1の入力端子BPと第1の比較器COMP1の非反転入力端子との間に接続される。コンデンサC2は、第2の入力端子BMと第1の比較器COMP1の反転入力端子との間に接続される。コンデンサC3は、第2の入力端子BMと第2の比較器COMP2の非反転入力端子との間に接続される。コンデンサC4は、第1の入力端子BPと第2の比較器COMP2の反転入力端子との間に接続される。   The capacitor C1 is connected between the first input terminal BP and the non-inverting input terminal of the first comparator COMP1. The capacitor C2 is connected between the second input terminal BM and the inverting input terminal of the first comparator COMP1. The capacitor C3 is connected between the second input terminal BM and the non-inverting input terminal of the second comparator COMP2. The capacitor C4 is connected between the first input terminal BP and the inverting input terminal of the second comparator COMP2.

第1のバイアス電圧生成回路10は、第1の比較器COMP1の非反転入力端子及び反転入力端子にそれぞれ異なるバイアス電圧を与える。第1のバイアス電圧生成回路10は、反転入力端子のバイアス電圧が第1の閾値電圧Vth1よりも高く、非反転入力端子のバイアス電圧が第1の閾値電圧Vth1よりも低くなるようなバイアス電圧を生成する。本実施の形態では、第1のバイアス電圧生成回路10は、電源ノードVCCと接地ノードGNDとの間に直列に接続される抵抗の抵抗比に基づきバイアス電圧を生成する。   The first bias voltage generation circuit 10 applies different bias voltages to the non-inverting input terminal and the inverting input terminal of the first comparator COMP1. The first bias voltage generation circuit 10 generates a bias voltage such that the bias voltage at the inverting input terminal is higher than the first threshold voltage Vth1, and the bias voltage at the non-inverting input terminal is lower than the first threshold voltage Vth1. Generate. In the present embodiment, the first bias voltage generation circuit 10 generates a bias voltage based on a resistance ratio of resistors connected in series between the power supply node VCC and the ground node GND.

第1のバイアス電圧生成回路10は、第1から第4の抵抗(図中の抵抗R11〜R14)を有する。抵抗R11は、電源端子(以下、電源ノードと称す)VCCと第1の比較器COMP1の非反転入力端子との間に接続される。抵抗R12は、第1の比較器COMP1の非反転入力端子と接地端子(以下、接地ノードと称す)GNDとの間に接続される。抵抗R13は、電源ノードVCCと第1の比較器COMP1の反転入力端子との間に接続される。抵抗R14は、第1の比較器COMP1の反転入力端子と接地ノードGNDとの間に接続される。ここで、抵抗R11の抵抗値は抵抗R12の抵抗値よりも大きく、抵抗R13の抵抗値は抵抗R14の抵抗値よりも小さく設定されるものとする。このような抵抗値の設定とすることで、第1のバイアス電圧生成回路10は、上記説明のバイアス電圧を第1の比較器COMP1の非反転入力端子及び反転入力端子に与える。なお、以下の説明では、抵抗R11、R12と第1の比較器COMP1の非反転入力端子との接続点をノードNaと称し、抵抗R13、14と第1の比較器COMP1の反転入力端子との接続点をノードNbと称す。   The first bias voltage generation circuit 10 includes first to fourth resistors (resistors R11 to R14 in the drawing). The resistor R11 is connected between a power supply terminal (hereinafter referred to as a power supply node) VCC and a non-inverting input terminal of the first comparator COMP1. The resistor R12 is connected between a non-inverting input terminal of the first comparator COMP1 and a ground terminal (hereinafter referred to as a ground node) GND. The resistor R13 is connected between the power supply node VCC and the inverting input terminal of the first comparator COMP1. The resistor R14 is connected between the inverting input terminal of the first comparator COMP1 and the ground node GND. Here, the resistance value of the resistor R11 is set larger than the resistance value of the resistor R12, and the resistance value of the resistor R13 is set smaller than the resistance value of the resistor R14. By setting the resistance value as described above, the first bias voltage generation circuit 10 applies the bias voltage described above to the non-inverting input terminal and the inverting input terminal of the first comparator COMP1. In the following description, a connection point between the resistors R11 and R12 and the non-inverting input terminal of the first comparator COMP1 is referred to as a node Na, and the resistors R13 and 14 and the inverting input terminal of the first comparator COMP1 are connected to each other. The connection point is referred to as a node Nb.

第2のバイアス電圧生成回路11は、第2の比較器COMP2の非反転入力端子及び反転入力端子にそれぞれ異なるバイアス電圧を与える。第2のバイアス電圧生成回路11は、反転入力端子のバイアス電圧が第2の閾値電圧Vth2よりも高く、非反転入力端子のバイアス電圧が第2の閾値電圧Vth2よりも低くなるようなバイアス電圧を生成する。本実施の形態では、第2のバイアス電圧生成回路11は、電源ノードVCCと接地ノードGNDとの間に直列に接続される抵抗の抵抗比に基づきバイアス電圧を生成する。   The second bias voltage generation circuit 11 applies different bias voltages to the non-inverting input terminal and the inverting input terminal of the second comparator COMP2. The second bias voltage generation circuit 11 generates a bias voltage such that the bias voltage at the inverting input terminal is higher than the second threshold voltage Vth2, and the bias voltage at the non-inverting input terminal is lower than the second threshold voltage Vth2. Generate. In the present embodiment, the second bias voltage generation circuit 11 generates a bias voltage based on the resistance ratio of a resistor connected in series between the power supply node VCC and the ground node GND.

第2のバイアス電圧生成回路11は、第5から第8の抵抗(図中の抵抗R15〜R18)を有する。抵抗R15は、電源ノードVCCと第2の比較器COMP2の非反転入力端子との間に接続される。抵抗R16は、第2の比較器COMP2の非反転入力端子と接地ノードGNDとの間に接続される。抵抗R17は、電源ノードVCCと第2の比較器COMP2の反転入力端子との間に接続される。抵抗R18は、第2の比較器COMP2の反転入力端子と接地ノードGNDとの間に接続される。ここで、抵抗R15の抵抗値は抵抗R16の抵抗値よりも大きく、抵抗R17の抵抗値は抵抗R18の抵抗値よりも小さく設定されるものとする。このような抵抗値の設定とすることで、第2のバイアス電圧生成回路11は、上記説明のバイアス電圧を第2の比較器COMP2の非反転入力端子及び反転入力端子に与える。なお、以下の説明では、抵抗R15、R16と第2の比較器COMP2の非反転入力端子との接続点をノードNcと称し、抵抗R17、18と第2の比較器COMP2の反転入力端子との接続点をノードNdと称す。   The second bias voltage generation circuit 11 has fifth to eighth resistors (resistors R15 to R18 in the drawing). The resistor R15 is connected between the power supply node VCC and the non-inverting input terminal of the second comparator COMP2. The resistor R16 is connected between the non-inverting input terminal of the second comparator COMP2 and the ground node GND. The resistor R17 is connected between the power supply node VCC and the inverting input terminal of the second comparator COMP2. The resistor R18 is connected between the inverting input terminal of the second comparator COMP2 and the ground node GND. Here, the resistance value of the resistor R15 is set larger than the resistance value of the resistor R16, and the resistance value of the resistor R17 is set smaller than the resistance value of the resistor R18. By setting the resistance value as described above, the second bias voltage generation circuit 11 applies the bias voltage described above to the non-inverting input terminal and the inverting input terminal of the second comparator COMP2. In the following description, a connection point between the resistors R15 and R16 and the non-inverting input terminal of the second comparator COMP2 is referred to as a node Nc, and the resistors R17 and R18 and the inverting input terminal of the second comparator COMP2 are connected to each other. The connection point is referred to as a node Nd.

ここで、本実施の形態では、コンデンサC1〜C4の容量値を同じとし、抵抗R11、R12の合成抵抗値(R11×R12/(R11+R12))、抵抗R13、R14の合成抵抗値(R13×R14/(R13+R14))、抵抗R15、R16の合成抵抗値(R15×R16/(R15+R16))及び抵抗R17、R18の合成抵抗値(R17×R18/(R17+R18))を同じとする。これによってノードNa〜Ndにおいて設定される時定数Xは同じものとなる。また、第1、第2の比較器における非反転入力端子のバイアス電圧と反転入力端子のバイアス電圧は、差動信号に応じたノード電圧の変動により互いの電圧波形が交差するように設定される。例えば、第1、第2の閾値電圧を中心電圧とし、第1、第2の閾値電圧との差が差動信号に応じたノード電圧の変動の最小値以下となるようにバイアス電圧を設定すると良い。   In this embodiment, the capacitance values of the capacitors C1 to C4 are the same, the combined resistance value of the resistors R11 and R12 (R11 × R12 / (R11 + R12)), and the combined resistance value of the resistors R13 and R14 (R13 × R14). / (R13 + R14)), the combined resistance value of the resistors R15 and R16 (R15 × R16 / (R15 + R16)) and the combined resistance value of the resistors R17 and R18 (R17 × R18 / (R17 + R18)) are the same. As a result, the time constant X set in the nodes Na to Nd becomes the same. Further, the bias voltage of the non-inverting input terminal and the bias voltage of the inverting input terminal in the first and second comparators are set so that their voltage waveforms cross each other due to the fluctuation of the node voltage according to the differential signal. . For example, when the first and second threshold voltages are set as the center voltage, and the bias voltage is set so that the difference from the first and second threshold voltages is equal to or less than the minimum value of the fluctuation of the node voltage according to the differential signal. good.

出力信号生成回路12は、第1の比較器COMP1の出力信号と第2の比較器COMP2の出力信号とに基づき出力信号SOUTの論理レベルを反転させる。出力信号生成回路12は、例えばSRラッチを使用することが可能である。SRラッチは、セット端子Sとリセット端子Rを有する。そして、SRラッチは、セット端子Sにパルス信号の立ち上がりが入力されると出力信号SOUTを第1の論理レベル(例えばハイレベル)にし、リセット端子Rにパルス信号の立ち上がりが入力されると出力信号SOUTを第2の論理レベル(例えば、ロウレベル)にする。本実施の形態では、SRラッチのセット端子Sに第1の比較器COMP1の出力が接続され、リセット端子Rに第2の比較器COMP2の出力が接続される。   The output signal generation circuit 12 inverts the logic level of the output signal SOUT based on the output signal of the first comparator COMP1 and the output signal of the second comparator COMP2. The output signal generation circuit 12 can use, for example, an SR latch. The SR latch has a set terminal S and a reset terminal R. The SR latch sets the output signal SOUT to the first logic level (for example, high level) when the rising edge of the pulse signal is input to the set terminal S, and outputs the output signal when the rising edge of the pulse signal is input to the reset terminal R. SOUT is set to the second logic level (for example, low level). In the present embodiment, the output of the first comparator COMP1 is connected to the set terminal S of the SR latch, and the output of the second comparator COMP2 is connected to the reset terminal R.

次に、受信回路1の動作を示すタイミングチャートの一例を図2に示す。この図2を参照して、本実施の形態にかかる受信回路1の動作について説明する。図2に示す例では、タイミングT0よりも前の期間は、入力信号のレベルが接地電圧となっている。また、ノードNa〜Ndの電圧はバイアス電圧となっている。ノードNaとノードNbの電圧は、第1の閾値電圧Vth1を中心に、ノードNaの電圧が低く、ノードNbの電圧が高くなる。一方、ノードNcとノードNdの電圧は、第2の閾値電圧Vth2を中心に、ノードNcの電圧が低く、ノードNdの電圧が高くなる。   Next, an example of a timing chart showing the operation of the receiving circuit 1 is shown in FIG. With reference to FIG. 2, the operation of the receiving circuit 1 according to the present embodiment will be described. In the example shown in FIG. 2, the level of the input signal is the ground voltage during the period before the timing T0. The voltages at the nodes Na to Nd are bias voltages. As for the voltages of the node Na and the node Nb, the voltage of the node Na is low and the voltage of the node Nb is high with the first threshold voltage Vth1 as the center. On the other hand, with regard to the voltages at the nodes Nc and Nd, the voltage at the node Nc is low and the voltage at the node Nd is high, centering on the second threshold voltage Vth2.

そして、タイミングT0において信号が立ち上がり入力信号のレベルがバイアスレベルとなる。このタイミングT0における信号の立ち上がりでは、第1の入力端子BP及び第2の入力端子BMに入力される信号レベルが同じように立ち上がる。そのため、ノードNa〜Ndの電圧レベルは、同じ方向かつ同じ変動幅で変化する。また、タイミングT0におけるノードNa〜Nbの電圧変動ではノードNaとノードNbの電圧関係及びノードNcとノードNdの電圧関係は変化しないため、第1の比較器COMP1及び第2の比較器COMP2の出力はロウレベルを維持する。   At time T0, the signal rises and the level of the input signal becomes the bias level. At the rise of the signal at this timing T0, the signal levels input to the first input terminal BP and the second input terminal BM rise in the same way. Therefore, the voltage levels of the nodes Na to Nd change in the same direction and with the same fluctuation range. Further, the voltage relationship between the nodes Na to Nb at the timing T0 does not change the voltage relationship between the node Na and the node Nb and the voltage relationship between the node Nc and the node Nd, and therefore the outputs of the first comparator COMP1 and the second comparator COMP2. Maintains a low level.

続いて、タイミングT1において、入力信号が互いに逆位相で変化する差動信号となると、ノードNa〜Ndの電圧は、この差動信号の変化に応じて変動する。タイミングT1では、ノードNaの電圧が上昇し、ノードNbの電圧は下降する。このとき、ノードのNaとノードNbの電圧関係が逆転する。従って、第1の比較器COMP1の非反転入力端子と反転入力端子との電圧関係が逆転して、第1の比較器COMP1の出力は、ロウレベルからハイレベルに切り替わる。また、ノードNa、Nbの電圧は、それぞれ入力信号の電圧変動に応じた振幅で変化するが、この電圧変化が頂点に達した後は、時定数Xに応じて電圧変動前のバイアス電圧に復帰する。つまり、タイミングT2でノードNa、Nbの電圧波形が交差する。これによって、第1の比較器COMP1の出力は、ハイレベルからロウレベルへと切り替わる。つまり、第1の比較器COMP1は、タイミングT1における入力信号の変化に応じて、タイミングT1からタイミングT2の期間にハイレベルとなる第1のパルス信号を出力する。そして、出力信号生成回路12は、第1の比較器COMP1が出力する第1のパルス信号に応じて、出力信号をロウレベルからハイレベルに切り替える(タイミングT1)。   Subsequently, when the input signal becomes a differential signal that changes in opposite phase at the timing T1, the voltages at the nodes Na to Nd vary according to the change in the differential signal. At timing T1, the voltage at the node Na increases and the voltage at the node Nb decreases. At this time, the voltage relationship between the node Na and the node Nb is reversed. Accordingly, the voltage relationship between the non-inverting input terminal and the inverting input terminal of the first comparator COMP1 is reversed, and the output of the first comparator COMP1 is switched from the low level to the high level. Further, the voltages of the nodes Na and Nb change with the amplitude corresponding to the voltage fluctuation of the input signal, respectively, but after this voltage change reaches the apex, it returns to the bias voltage before the voltage fluctuation according to the time constant X. To do. That is, the voltage waveforms at the nodes Na and Nb intersect at the timing T2. As a result, the output of the first comparator COMP1 is switched from the high level to the low level. That is, the first comparator COMP1 outputs a first pulse signal that becomes a high level during the period from the timing T1 to the timing T2 in accordance with the change in the input signal at the timing T1. Then, the output signal generation circuit 12 switches the output signal from the low level to the high level according to the first pulse signal output from the first comparator COMP1 (timing T1).

一方、タイミングT1では、ノードNcの電圧が下降し、ノードNdの電圧は上昇する。つまり、ノードのNcとノードNdの電圧差が大きくなる。従って、第2の比較器COMP2の非反転入力端子と反転入力端子との電圧関係が逆転することがなく、第2の比較器COMP2の出力は、ロウレベルを維持する。   On the other hand, at the timing T1, the voltage at the node Nc decreases and the voltage at the node Nd increases. That is, the voltage difference between the node Nc and the node Nd increases. Therefore, the voltage relationship between the non-inverting input terminal and the inverting input terminal of the second comparator COMP2 is not reversed, and the output of the second comparator COMP2 maintains the low level.

続いて、タイミングT3において、入力信号の信号レベルが逆転すると、ノードNa〜Ndの電圧は、この差動信号の変化に応じて変動する。タイミングT3では、ノードNaの電圧が下降し、ノードNbの電圧は上昇する。このとき、ノードのNaとノードNbの電圧差が大きくなる。従って、第1の比較器COMP1の非反転入力端子と反転入力端子との電圧関係が逆転することはなく、第1の比較器COMP1の出力は、ロウレベルを維持する。   Subsequently, when the signal level of the input signal is reversed at the timing T3, the voltages at the nodes Na to Nd vary according to the change in the differential signal. At timing T3, the voltage at the node Na decreases and the voltage at the node Nb increases. At this time, the voltage difference between the node Na and the node Nb increases. Therefore, the voltage relationship between the non-inverting input terminal and the inverting input terminal of the first comparator COMP1 is not reversed, and the output of the first comparator COMP1 is maintained at a low level.

一方、タイミングT3では、ノードNcの電圧が上昇し、ノードNdの電圧は下降する。つまり、ノードのNcとノードNdの電圧関係が逆転する。従って、第2の比較器COMP2の非反転入力端子と反転入力端子との電圧関係が逆転し、第2の比較器COMP2の出力は、ロウレベルからハイレベルに切り替わる。また、ノードNc、Ndの電圧は、それぞれ入力信号の電圧変動に応じた振幅で変化するが、この電圧変化が頂点に達した後は、時定数Xに応じて電圧変動前のバイアス電圧に復帰する。つまり、タイミングT4でノードNc、Ndの電圧波形が交差する。これによって、第2の比較器COMP2の出力は、ハイレベルからロウレベルへと切り替わる。つまり、第2の比較器COMP2は、タイミングT3における入力信号の変化に応じて、タイミングT3からタイミングT4の期間にハイレベルとなる第2のパルス信号を出力する。そして、出力信号生成回路12は、第2の比較器COMP2が出力する第2のパルス信号に応じて、出力信号をハイレベルからロウレベルに切り替える(タイミングT3)。   On the other hand, at the timing T3, the voltage at the node Nc rises and the voltage at the node Nd falls. That is, the voltage relationship between the node Nc and the node Nd is reversed. Therefore, the voltage relationship between the non-inverting input terminal and the inverting input terminal of the second comparator COMP2 is reversed, and the output of the second comparator COMP2 is switched from the low level to the high level. Further, the voltages of the nodes Nc and Nd change with the amplitude corresponding to the voltage fluctuation of the input signal, respectively, but after this voltage change reaches the apex, the bias voltage before the voltage fluctuation is restored according to the time constant X. To do. That is, the voltage waveforms at the nodes Nc and Nd intersect at the timing T4. As a result, the output of the second comparator COMP2 is switched from the high level to the low level. That is, the second comparator COMP2 outputs a second pulse signal that becomes a high level during the period from the timing T3 to the timing T4 in accordance with the change of the input signal at the timing T3. Then, the output signal generation circuit 12 switches the output signal from the high level to the low level according to the second pulse signal output from the second comparator COMP2 (timing T3).

なお、タイミングT5、T6における動作及びタイミングT9、T10における動作は、タイミングT1、T2における動作と実質的に同じであり、タイミングT7、T8における動作は、タイミングT3、T4における動作と実質的に同じであるため、これらの動作についての説明は省略する。   The operations at timings T5 and T6 and the operations at timings T9 and T10 are substantially the same as the operations at timings T1 and T2, and the operations at timings T7 and T8 are substantially the same as the operations at timings T3 and T4. Therefore, description of these operations is omitted.

上記説明より、本実施の形態にかかる受信回路1は、差動信号のうち第1の入力端子BPに入力される信号の立ち上がりタイミングを検出する第1の比較器COMP1と、差動信号のうち第1の入力端子BPに入力される信号の立ち下がりタイミングを検出する第2の比較器COMP2と、第1の比較器COMP1が出力する第1のパルス信号に基づき出力信号をハイレベルにし、第2の比較器COMP2が出力する第2のパルス信号に基づき出力信号をロウレベルにする出力信号生成回路12を有する。つまり、第1の比較器COMP1及び第2の比較器COMP2は、差動信号の論理レベルが切り替わるタイミングだけを検出するのみで良い。このとき、比較器が出力するパルス信号のパルス幅は、差動信号の切り替わり周期よりも短くても良く、出力信号生成回路12が十分に認識できる程度であれば良い。このことより、受信回路1は、ノードNa〜Ndにおいて設定される時定数を、ノードNa〜Ndの電圧変動に基づき比較器がパルス信号を生成できる程度に、小さく設定することができる。   From the above description, the receiving circuit 1 according to the present embodiment includes the first comparator COMP1 that detects the rising timing of the signal input to the first input terminal BP among the differential signals, and the differential signal. Based on the second comparator COMP2 that detects the falling timing of the signal input to the first input terminal BP, and the first pulse signal that is output from the first comparator COMP1, the output signal is set to the high level. The output signal generation circuit 12 sets the output signal to a low level based on the second pulse signal output from the second comparator COMP2. That is, the first comparator COMP1 and the second comparator COMP2 need only detect the timing at which the logic level of the differential signal switches. At this time, the pulse width of the pulse signal output from the comparator may be shorter than the switching period of the differential signal, and may be as long as the output signal generation circuit 12 can sufficiently recognize. As a result, the receiving circuit 1 can set the time constant set at the nodes Na to Nd so small that the comparator can generate a pulse signal based on voltage fluctuations at the nodes Na to Nd.

このように、受信回路1では、時定数を従来よりも小さくできるため、例えばコンデンサC1〜C4の容量値又は抵抗R11〜R18の抵抗値を小さくすることが可能である。つまり、受信回路1は、コンデンサ又は抵抗の素子面積を小さくすることが可能である。例えば、100kHzの周波数を有する入力信号の場合、この信号の波形を正しく扱うために必要な時定数Xは1/100kHz=0.01msecである。この時定数Xを従来例1、2において実現する場合、時定数X=C×R=10pF×1MΩとなり、カップリングコンデンサの容量値が10pF程度であって、カップリングコンデンサに接続される抵抗値の合成抵抗値が1MΩ程度となる。これに対して、本実施の形態にかかる受信回路1は、例えば、周波数が100kHzの入力信号を扱う場合の時定数を従来のものに比べて1/10程度にしても問題ない。例えば、抵抗値を100kΩ以下にすることが可能であり、カップリングコンデンサ(C1〜C4)の容量値を1pF以下にすることも可能である。従って、本実施の形態にかかる受信回路1は、従来のものに比べて回路面積を削減することが可能である。   Thus, in the receiving circuit 1, since the time constant can be made smaller than before, it is possible to reduce the capacitance values of the capacitors C1 to C4 or the resistance values of the resistors R11 to R18, for example. That is, the receiving circuit 1 can reduce the element area of the capacitor or the resistor. For example, in the case of an input signal having a frequency of 100 kHz, the time constant X necessary for correctly handling the waveform of this signal is 1/100 kHz = 0.01 msec. When this time constant X is realized in the conventional examples 1 and 2, the time constant X = C × R = 10 pF × 1 MΩ, the capacitance value of the coupling capacitor is about 10 pF, and the resistance value connected to the coupling capacitor The combined resistance value is about 1 MΩ. On the other hand, in the receiving circuit 1 according to the present embodiment, for example, there is no problem even if the time constant when handling an input signal having a frequency of 100 kHz is set to about 1/10 compared to the conventional one. For example, the resistance value can be set to 100 kΩ or less, and the capacitance value of the coupling capacitors (C1 to C4) can be set to 1 pF or less. Therefore, the receiving circuit 1 according to the present embodiment can reduce the circuit area as compared with the conventional circuit.

また、本実施の形態にかかる受信回路1は、コンデンサC1〜C4がノードNa〜Ndに対してそれぞれ接続され、ノードNa〜Ndのバイアス電圧は第1のバイアス電圧生成回路10及び第2のバイアス電圧生成回路11によってそれぞれ独立に設定される。これによって、ノードNa〜Ndの時定数をそれぞれ独立に設定することができる。また、ノードNa〜Ndの時定数を全て同じ値として設定することも可能である。本実施の形態においては、ノードNa〜Ndの時定数を全て同じ値として設定している。このことから、ノードNa〜Ndの電圧変動は全て同じ変化率で変化する。つまり、差動信号の変動に対して同じタイミングでノードNa〜Ndの電圧が変動する。ノードNa〜Ndの電圧変動をこのように設定することで、第1の比較器COMP1及び第2の比較器COMP2が出力するパルス信号と差動信号の変動との遅延時間がいずれのタイミングにおいても同じになる。そして、このようなパルス信号に基づき出力信号生成回路12が出力信号を生成することで、差動信号のデューティー比と出力信号のデューティー比を同じにすることが可能になる。   In the receiving circuit 1 according to the present embodiment, the capacitors C1 to C4 are connected to the nodes Na to Nd, and the bias voltages of the nodes Na to Nd are the first bias voltage generation circuit 10 and the second bias voltage. These are set independently by the voltage generation circuit 11. Thereby, the time constants of the nodes Na to Nd can be set independently. It is also possible to set all the time constants of the nodes Na to Nd as the same value. In the present embodiment, the time constants of the nodes Na to Nd are all set to the same value. From this, the voltage fluctuations of the nodes Na to Nd all change at the same rate of change. That is, the voltages at the nodes Na to Nd change at the same timing with respect to the change in the differential signal. By setting the voltage fluctuations of the nodes Na to Nd in this way, the delay time between the fluctuation of the pulse signal output from the first comparator COMP1 and the second comparator COMP2 and the differential signal is at any timing. Be the same. Then, the output signal generation circuit 12 generates an output signal based on such a pulse signal, whereby the duty ratio of the differential signal and the duty ratio of the output signal can be made the same.

さらに、従来例1(図4参照)では抵抗R101〜R104の抵抗分割比に基づきノードA、Bにおける信号振幅が減少する。また、抵抗R105、R106の抵抗分割比に基づきノードCにおける信号振幅が減少する。このような信号振幅の減少が発生すると比較器において入力信号の切り替わりを検出できないおそれがある。しかしながら、本実施の形態にかかる受信回路1では、直列に接続される抵抗の間の接続点から信号を入力するため、抵抗分割比に基づきノードNa〜Ndにおける信号振幅が減少することはない。   Further, in Conventional Example 1 (see FIG. 4), the signal amplitude at nodes A and B decreases based on the resistance division ratio of resistors R101 to R104. Further, the signal amplitude at the node C decreases based on the resistance division ratio of the resistors R105 and R106. When such a decrease in signal amplitude occurs, the comparator may not be able to detect the switching of the input signal. However, in the receiving circuit 1 according to the present embodiment, since a signal is input from a connection point between resistors connected in series, the signal amplitude at the nodes Na to Nd does not decrease based on the resistance division ratio.

実施の形態2
実施の形態2にかかる受信回路2の回路図を図3に示す。図3に示すように、受信回路2は、受信回路1の第1のバイアス電圧生成回路10及び第2のバイアス電圧生成回路11の変形例を示すものである。受信回路2は第1のバイアス電圧生成回路20及び第2のバイアス電圧生成回路21を有している。
Embodiment 2
FIG. 3 shows a circuit diagram of the receiving circuit 2 according to the second embodiment. As illustrated in FIG. 3, the reception circuit 2 is a modification of the first bias voltage generation circuit 10 and the second bias voltage generation circuit 11 of the reception circuit 1. The receiving circuit 2 includes a first bias voltage generation circuit 20 and a second bias voltage generation circuit 21.

第1のバイアス電圧生成回路20は、第1、第2の抵抗(図中の抵抗R21、R22)及び第1、第2の電圧源(図中の電圧源V1、V2)を有する。電圧源V1は、接地ノードGNDと抵抗R21との間に接続される。抵抗R21は、電圧源V1と第1の比較器COMP1の非反転入力端子との間に接続される。なお、抵抗R21と第1の比較器COMP1の非反転入力端子との接続点をノードNaと称す。電圧源V2は、接地ノードGNDと抵抗R22との間に接続される。抵抗R22は、電圧源V2と第1の比較器COMP1の反転入力端子との間に接続される。なお、抵抗R22と第1の比較器COMP1の反転入力端子との接続点をノードNbと称す。   The first bias voltage generation circuit 20 includes first and second resistors (resistors R21 and R22 in the drawing) and first and second voltage sources (voltage sources V1 and V2 in the drawing). Voltage source V1 is connected between ground node GND and resistor R21. The resistor R21 is connected between the voltage source V1 and the non-inverting input terminal of the first comparator COMP1. A connection point between the resistor R21 and the non-inverting input terminal of the first comparator COMP1 is referred to as a node Na. Voltage source V2 is connected between ground node GND and resistor R22. The resistor R22 is connected between the voltage source V2 and the inverting input terminal of the first comparator COMP1. A connection point between the resistor R22 and the inverting input terminal of the first comparator COMP1 is referred to as a node Nb.

第2のバイアス電圧生成回路21は、第3、第4の抵抗(図中の抵抗R23、R24)及び第3、第4の電圧源(図中の電圧源V3、V4)を有する。電圧源V3は、接地ノードGNDと抵抗R23との間に接続される。抵抗R23は、電圧源V3と第2の比較器COMP2の非反転入力端子との間に接続される。なお、抵抗R23と第2の比較器COMP2の非反転入力端子との接続点をノードNcと称す。電圧源V4は、接地ノードGNDと抵抗R24との間に接続される。抵抗R24は、電圧源V4と第2の比較器COMP2の反転入力端子との間に接続される。なお、抵抗R24と第2の比較器COMP2の反転入力端子との接続点をノードNdと称す。   The second bias voltage generation circuit 21 includes third and fourth resistors (resistors R23 and R24 in the drawing) and third and fourth voltage sources (voltage sources V3 and V4 in the drawing). Voltage source V3 is connected between ground node GND and resistor R23. The resistor R23 is connected between the voltage source V3 and the non-inverting input terminal of the second comparator COMP2. A connection point between the resistor R23 and the non-inverting input terminal of the second comparator COMP2 is referred to as a node Nc. Voltage source V4 is connected between ground node GND and resistor R24. The resistor R24 is connected between the voltage source V4 and the inverting input terminal of the second comparator COMP2. A connection point between the resistor R24 and the inverting input terminal of the second comparator COMP2 is referred to as a node Nd.

受信回路2では、ノードNa〜Ndのバイアス電圧を電圧源V1〜V4が生成する電圧に基づきそれぞれ独立に設定する。このとき、ノードNa〜Ndのバイアス電圧の設定値は実施の形態1と同様である。また、ノードNa〜Ndにおける時定数は、コンデンサC1〜C4と、それぞれのコンデンサに対応する抵抗R21〜R24の抵抗値によって設定される。このとき、時定数の設定方法は、実施の形態1と同様である。   In the receiving circuit 2, the bias voltages of the nodes Na to Nd are set independently based on the voltages generated by the voltage sources V1 to V4. At this time, the setting values of the bias voltages of the nodes Na to Nd are the same as those in the first embodiment. The time constants at the nodes Na to Nd are set by the resistance values of the capacitors C1 to C4 and the resistors R21 to R24 corresponding to the capacitors. At this time, the method for setting the time constant is the same as in the first embodiment.

上記説明より、実施の形態2にかかる受信回路2においても、第1の比較器COMP1、第2の比較器COMP2、出力信号生成回路12を用いているため、実施の形態1と同様に、ノードNa〜Ndにおける時定数を小さくすることが可能である。   From the above description, since the first comparator COMP1, the second comparator COMP2, and the output signal generation circuit 12 are used in the receiving circuit 2 according to the second embodiment, the node is the same as in the first embodiment. It is possible to reduce the time constant in Na to Nd.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

実施の形態1にかかる受信回路の回路図である。FIG. 3 is a circuit diagram of a receiving circuit according to the first exemplary embodiment; 実施の形態1における受信回路の動作を示すタイミングチャートである。3 is a timing chart illustrating the operation of the receiving circuit in the first embodiment. 実施の形態2にかかる受信回路の回路図である。FIG. 4 is a circuit diagram of a receiving circuit according to a second exemplary embodiment. 従来例1の受信回路の回路図である。FIG. 6 is a circuit diagram of a receiving circuit in Conventional Example 1. 従来例2の受信回路の回路図である。FIG. 10 is a circuit diagram of a receiving circuit in Conventional Example 2.

符号の説明Explanation of symbols

1、2 受信回路
10、11、20、21 バイアス電圧生成回路
12 出力信号生成回路
BM、BP 入力端子
C1〜C4 コンデンサ
COMP1、COMP2 比較器
Na〜Nd ノード
R11〜R18、R21〜R24 抵抗
V1〜V4 電圧源
VCC 電源ノード
GND 接地ノード
Vth1、Vth2 閾値電圧
1, 2 Receiving circuits 10, 11, 20, 21 Bias voltage generating circuit 12 Output signal generating circuit BM, BP Input terminals C1-C4 Capacitors COMP1, COMP2 Comparator Na-Nd Nodes R11-R18, R21-R24 Resistors V1-V4 Voltage source VCC Power supply node GND Ground node Vth1, Vth2 Threshold voltage

Claims (6)

差動信号が入力される第1、第2の入力端子と、
前記第1の入力端子と第1のコンデンサを介して接続される非反転入力端子と、前記第2の入力端子と第2のコンデンサを介して接続される反転入力端子とを備える第1の比較器と、
前記第2の入力端子と第3のコンデンサを介して接続される非反転入力端子と、前記第1の入力端子と第4のコンデンサを介して接続される反転入力端子とを備える第2の比較器と、
第1の閾値電圧に対して、前記第1の比較器の非反転入力端子のバイアス電圧を低く設定し、前記第1の比較器の反転入力端子のバイアス電圧を高く設定する第1のバイアス電圧設定回路と、
第2の閾値電圧に対して、前記第2の比較器の非反転入力端子のバイアス電圧を低く設定し、前記第2の比較器の反転入力端子のバイアス電圧を高く設定する第2のバイアス電圧設定回路と、
前記第1の比較器が出力する第1のパルスに基づき出力信号を第1の論理レベルとし、前記第2の比較器が出力する第2のパルスに基づき出力信号を第2の論理レベルとする出力信号生成回路と、
を有する受信回路。
First and second input terminals to which a differential signal is input;
A first comparison comprising: a non-inverting input terminal connected to the first input terminal via a first capacitor; and an inverting input terminal connected to the second input terminal via a second capacitor. And
A second comparison comprising: a non-inverting input terminal connected to the second input terminal via a third capacitor; and an inverting input terminal connected to the first input terminal via a fourth capacitor. And
A first bias voltage for setting a bias voltage at the non-inverting input terminal of the first comparator lower than a first threshold voltage and setting a bias voltage at the inverting input terminal of the first comparator higher. A setting circuit;
A second bias voltage that sets a bias voltage of the non-inverting input terminal of the second comparator low with respect to a second threshold voltage and sets a bias voltage of the inverting input terminal of the second comparator high. A setting circuit;
The output signal is set to the first logic level based on the first pulse output from the first comparator, and the output signal is set to the second logic level based on the second pulse output from the second comparator. An output signal generation circuit;
A receiving circuit.
前記第1のバイアス電圧設定回路は、電源端子と前記第1の比較器の非反転入力端子との間に接続される第1の抵抗と、前記第1の比較器の非反転入力端子と接地端子との間に接続される第2の抵抗と、前記電源端子と前記第1の比較器の反転入力端子との間に接続される第3の抵抗と、前記第1の比較器の反転入力端子と前記接地端子との間に接続される第4の抵抗とを有し、
前記第2のバイアス電圧設定回路は、前記電源端子と前記第2の比較器の非反転入力端子との間に接続される第5の抵抗と、前記第2の比較器の非反転入力端子と前記接地端子との間に接続される第6の抵抗と、前記電源端子と前記第2の比較器の反転入力端子との間に接続される第7の抵抗と、前記第2の比較器の反転入力端子と前記接地端子との間に接続される第8の抵抗とを有する請求項1に記載の受信回路。
The first bias voltage setting circuit includes: a first resistor connected between a power supply terminal and a non-inverting input terminal of the first comparator; a non-inverting input terminal of the first comparator; A second resistor connected between the terminal, a third resistor connected between the power supply terminal and the inverting input terminal of the first comparator, and an inverting input of the first comparator. A fourth resistor connected between the terminal and the ground terminal;
The second bias voltage setting circuit includes a fifth resistor connected between the power supply terminal and a non-inverting input terminal of the second comparator, and a non-inverting input terminal of the second comparator. A sixth resistor connected between the ground terminal, a seventh resistor connected between the power supply terminal and the inverting input terminal of the second comparator, and the second comparator. The receiving circuit according to claim 1, further comprising an eighth resistor connected between an inverting input terminal and the ground terminal.
前記第1の比較器の非反転入力端子における時定数は前記第1のコンデンサの容量値と前記第1、第2の抵抗の合成抵抗値とによって設定され、
前記第1の比較器の反転入力端子における時定数は前記第2のコンデンサの容量値と前記第3、第4の抵抗の合成抵抗値とによって設定され、
前記第2の比較器の非反転入力端子における時定数は前記第3のコンデンサの容量値と前記第5、第6の抵抗の合成抵抗値とによって設定され、
前記第2の比較器の反転入力端子における時定数は前記第4のコンデンサの容量値と前記第7、第8の抵抗の合成抵抗値とによって設定される請求項2に記載の受信回路。
The time constant at the non-inverting input terminal of the first comparator is set by the capacitance value of the first capacitor and the combined resistance value of the first and second resistors,
The time constant at the inverting input terminal of the first comparator is set by the capacitance value of the second capacitor and the combined resistance value of the third and fourth resistors,
The time constant at the non-inverting input terminal of the second comparator is set by the capacitance value of the third capacitor and the combined resistance value of the fifth and sixth resistors,
The receiving circuit according to claim 2, wherein a time constant at an inverting input terminal of the second comparator is set by a capacitance value of the fourth capacitor and a combined resistance value of the seventh and eighth resistors.
前記第1のバイアス電圧設定回路は、前記第1の比較器の非反転入力端子の電圧値を設定する第1の電圧源と、前記第1の電圧源と前記第1の比較器の非反転入力端子の間に接続される第1の抵抗と、前記第1の比較器の反転入力端子の電圧値を設定する第2の電圧源と、前記第2の電圧源と前記第1の比較器の反転入力端子の間に接続される第2の抵抗と、を有し、
前記第2のバイアス電圧設定回路は、前記第2の比較器の非反転入力端子のバイアス電圧を設定する第3の電圧源と、前記第3の電圧源と前記第2の比較器の非反転入力端子との間に接続される第3の抵抗と、前記第2の比較器の反転入力端子のバイアス電圧を設定する第4の電圧源と、前記第4の電圧源と前記第2の比較器の反転入力端子との間に接続される第4の抵抗と、を有する請求項1に記載の受信回路。
The first bias voltage setting circuit includes: a first voltage source that sets a voltage value of a non-inverting input terminal of the first comparator; and a non-inverting of the first voltage source and the first comparator. A first resistor connected between the input terminals; a second voltage source for setting a voltage value of an inverting input terminal of the first comparator; the second voltage source; and the first comparator. A second resistor connected between the inverting input terminals of
The second bias voltage setting circuit includes a third voltage source for setting a bias voltage of a non-inverting input terminal of the second comparator, and a non-inverting of the third voltage source and the second comparator. A third resistor connected to the input terminal; a fourth voltage source for setting a bias voltage of the inverting input terminal of the second comparator; and the fourth voltage source and the second comparison. The receiving circuit according to claim 1, further comprising a fourth resistor connected between the inverting input terminal of the amplifier.
前記第1の比較器の非反転入力端子における時定数は前記第1のコンデンサの容量値と前記第1の抵抗の抵抗値とによって設定され、
前記第1の比較器の反転入力端子における時定数は前記第2のコンデンサの容量値と前記第2の抵抗の抵抗値とによって設定され、
前記第2の比較器の非反転入力端子における時定数は前記第3のコンデンサの容量値と前記第3の抵抗の抵抗値とによって設定され、
前記第2の比較器の反転入力端子における時定数は前記第4のコンデンサの容量値と前記第4の抵抗の抵抗値とによって設定される請求項4に記載の受信回路。
A time constant at a non-inverting input terminal of the first comparator is set by a capacitance value of the first capacitor and a resistance value of the first resistor;
A time constant at an inverting input terminal of the first comparator is set by a capacitance value of the second capacitor and a resistance value of the second resistor;
A time constant at a non-inverting input terminal of the second comparator is set by a capacitance value of the third capacitor and a resistance value of the third resistor;
The receiving circuit according to claim 4, wherein a time constant at an inverting input terminal of the second comparator is set by a capacitance value of the fourth capacitor and a resistance value of the fourth resistor.
前記第1、第2の比較器における非反転入力端子のバイアス電圧と反転入力端子のバイアス電圧との差は、前記差動信号に応じたノードの電圧変動により互いの電圧波形が交差するように設定される請求項1乃至5のいずれか1項に記載の受信回路。   The difference between the bias voltage of the non-inverting input terminal and the bias voltage of the inverting input terminal in the first and second comparators is such that the voltage waveforms cross each other due to the voltage fluctuation of the node according to the differential signal. The receiving circuit according to claim 1, wherein the receiving circuit is set.
JP2007120176A 2007-04-27 2007-04-27 Receiver circuit Expired - Fee Related JP4988425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120176A JP4988425B2 (en) 2007-04-27 2007-04-27 Receiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120176A JP4988425B2 (en) 2007-04-27 2007-04-27 Receiver circuit

Publications (2)

Publication Number Publication Date
JP2008278257A true JP2008278257A (en) 2008-11-13
JP4988425B2 JP4988425B2 (en) 2012-08-01

Family

ID=40055669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120176A Expired - Fee Related JP4988425B2 (en) 2007-04-27 2007-04-27 Receiver circuit

Country Status (1)

Country Link
JP (1) JP4988425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049320A1 (en) * 2017-09-08 2019-03-14 ウルトラメモリ株式会社 Signal output device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117251A (en) * 1989-09-29 1991-05-20 Fujitsu Ltd Nrz code transmission circuit
JPH03216045A (en) * 1990-01-22 1991-09-24 Furukawa Electric Co Ltd:The Ac coupling reception circuit
JPH0697967A (en) * 1992-09-10 1994-04-08 Nec Corp Data transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117251A (en) * 1989-09-29 1991-05-20 Fujitsu Ltd Nrz code transmission circuit
JPH03216045A (en) * 1990-01-22 1991-09-24 Furukawa Electric Co Ltd:The Ac coupling reception circuit
JPH0697967A (en) * 1992-09-10 1994-04-08 Nec Corp Data transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049320A1 (en) * 2017-09-08 2019-03-14 ウルトラメモリ株式会社 Signal output device
JPWO2019049320A1 (en) * 2017-09-08 2019-12-19 ウルトラメモリ株式会社 Signal output device
US10868528B2 (en) 2017-09-08 2020-12-15 Ultramemory Inc. Signal output device

Also Published As

Publication number Publication date
JP4988425B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP6193331B2 (en) Signal isolator system with common mode transient protection
JP2006270969A (en) Automatic gain control circuit for infrared receiver
US9832048B2 (en) Transmitter circuit for and methods of generating a modulated signal in a transmitter
US20080164926A1 (en) Duty cycle correction circuit employing sample and hold charge pumping method
JP2011244347A (en) Differential communication device
US8896289B2 (en) Circuit and method of signal detection
JP6027046B2 (en) Communications system
JP2013232719A (en) Isolation circuit
JP4811902B2 (en) Semiconductor device and method for testing semiconductor device
JP4988425B2 (en) Receiver circuit
JP4772793B2 (en) Optical receiver, test apparatus, optical receiver method, test method, test module, and semiconductor chip
JP5876799B2 (en) Semiconductor device
JP4942195B2 (en) Data communication apparatus, data communication system, and data communication method
US9071232B2 (en) Integrated circuit with ring oscillator
JP2012205041A (en) Interface circuit
JP2020031272A (en) Semiconductor device
JP2007158652A (en) Electric signal output apparatus, semiconductor laser modulation drive unit, and image forming apparatus
US11979122B2 (en) Isolation amplifier and anomaly state detection device
US20220311398A1 (en) Isolation amplifier and anomaly state detection device
JP5334087B2 (en) Speed judgment method, speed judgment circuit and speed judgment device
JP4430117B2 (en) Data storage device
JP2006041647A (en) Video signal output circuit and electronic apparatus employing the same
WO2014174743A1 (en) Signal transmission device, signal transmission system, signal transmission method, and computer device
JP2023140842A (en) Insulation communication system
JP2013162152A (en) Oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees