JP2008275383A - Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device - Google Patents

Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device Download PDF

Info

Publication number
JP2008275383A
JP2008275383A JP2007117312A JP2007117312A JP2008275383A JP 2008275383 A JP2008275383 A JP 2008275383A JP 2007117312 A JP2007117312 A JP 2007117312A JP 2007117312 A JP2007117312 A JP 2007117312A JP 2008275383 A JP2008275383 A JP 2008275383A
Authority
JP
Japan
Prior art keywords
concentration
component
voc
measured
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007117312A
Other languages
Japanese (ja)
Inventor
Chiharu Sato
千春 佐藤
Takashi Ogawa
隆 小川
Takashi Kimura
喬 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2007117312A priority Critical patent/JP2008275383A/en
Publication of JP2008275383A publication Critical patent/JP2008275383A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To determine simply and accurately the concentration of each component in a mixed component system. <P>SOLUTION: In this method for measuring each concentration of two kinds of components included in a mixture, each apparent concentration in the mixture is measured by each concentration measuring method by using two kinds of concentration measuring methods (concentration meters) 1, 2 having each different sensitivity to the two kinds of components. An operation part 3 calculates each concentration of the two kinds of components by using each apparent concentration value and the sensitivity of each component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、揮発性有機化合物(VOC:volatile organic compound)を含む混合成分系の濃度測定方法及び装置、及びその装置を用いた省エネルギー設備のVOC混合ガス供給システムに関する。   The present invention relates to a method and apparatus for measuring the concentration of a mixed component system containing a volatile organic compound (VOC), and a VOC mixed gas supply system for energy saving equipment using the apparatus.

混合成分系の流体に含まれる各成分の濃度を測定する場合、各成分を選択的に検知するセンサがあれば、成分の数だけのセンサを用いて各成分の濃度を測定することが可能であり、工業設備などで連続的に流れている混合成分系の流体に対しても、各成分の濃度を連続的に測定することができる。   When measuring the concentration of each component contained in a mixed component fluid, if there is a sensor that selectively detects each component, it is possible to measure the concentration of each component using as many sensors as there are components. Yes, the concentration of each component can be measured continuously even for a mixed component fluid that is continuously flowing in an industrial facility or the like.

しかしながら実際には、混合成分系を構成する全ての成分のそれぞれに対して、選択的に一つの成分だけに感応するセンサを揃えることは難しい。すなわち、センサは、検出感度の相違はあるものの複数の共存成分に反応するので、正確に特定成分の濃度を測定することが困難である。特に2種類以上のVOCを含む混合ガスにおいては、各成分濃度を簡易に自動連続するのは困難である。   However, in practice, it is difficult to prepare sensors that are selectively sensitive to only one component for each of all the components constituting the mixed component system. That is, the sensor reacts to a plurality of coexisting components although there is a difference in detection sensitivity, and it is difficult to accurately measure the concentration of the specific component. In particular, in a mixed gas containing two or more types of VOCs, it is difficult to easily and automatically continue the concentration of each component.

具体的に説明すると、濃度計、例えば赤外式濃度計やFID (Hydrogen Flame Ionization Detector)に対して、有機化合物はそれぞれ固有の検出感度を持っている。このため、混合物を或る濃度計で測定した場合には、各共存する成分が寄与する値の合計値が濃度計に反応し、反応する成分が一緒くたになって、見かけの濃度として表示される。したがって、その見かけの濃度検出値は、どの成分のものがどの程度の濃度であることが分らないため、正しい濃度は測定することができない。   More specifically, each organic compound has a specific detection sensitivity relative to a densitometer such as an infrared densitometer or FID (Hydrogen Flame Ionization Detector). For this reason, when a mixture is measured with a certain densitometer, the total value of the values contributed by each coexisting component reacts with the densitometer, and the reacting components are combined and displayed as an apparent concentration. . Therefore, since the apparent concentration detection value does not know which component has what level, it is impossible to measure the correct concentration.

大気汚染防止法で規制されるVOC濃度の測定は、FID法、赤外式法などによることがJISに規定されている。これはVOCガスの構成成分を知ることや各成分の濃度を正確に測定することが目的ではなく、簡易的な測定方法でVOC混合物の見掛けの濃度を測定し、その数値で規制するためのものである。   The JIS standard stipulates that the VOC concentration regulated by the Air Pollution Control Law is based on the FID method, infrared method, and the like. The purpose of this is not to know the components of VOC gas or to accurately measure the concentration of each component, but to measure the apparent concentration of the VOC mixture with a simple measurement method and to regulate by that value. It is.

現状において、混合物の成分組成及び濃度を正確に求めようとする場合には、各成分を分離した後にそれぞれの成分濃度を測定する手法以外、方策がない。例えばガスクロマトグラフ法がこれにあたるもので、分離層(シリカゲル)に対する各成分の吸着力の差を利用して分離した後に各成分の濃度を測定している。   At present, in order to accurately determine the component composition and concentration of a mixture, there is no measure other than a method of measuring each component concentration after separating each component. For example, the gas chromatograph method corresponds to this, and the concentration of each component is measured after separation using the difference in adsorption force of each component with respect to the separation layer (silica gel).

この方法では、VOCガスが流れているラインから一定量をサンプリングしてバッチ測定するため、前回測定のガスのパージ−サンプリング−分離−濃度測定という一連のサイクルで1サンプルの測定が終了する。   In this method, since a predetermined amount is sampled from the line where the VOC gas is flowing and batch measurement is performed, measurement of one sample is completed in a series of cycles of gas purge-sampling-separation-concentration measurement of the previous measurement.

従って、1サンプルの測定には、一定の時間が掛るため簡易な装置で濃度を連続モニタすることは難しい。   Therefore, since it takes a certain time to measure one sample, it is difficult to continuously monitor the concentration with a simple apparatus.

一方、ESCO(Energy Service Company)事業者等が、工場など排出されるVOC混合ガスを熱エネルギー再利用としてガスタービン(GT)、マイクロガスタービン(MGT)、ガスエンジン(GE)、脱臭炉などに供給する場合(すなわち省エネルギー設備を運用する場合)、そのエネルギー供給量(発熱量)およびそれに伴う省エネルギー性能(発電効率、蒸気効率、総合効率など)をエネルギー供給ビジネスの観点から正確に算出する必要がある。そのためには、省エネ設備の入熱量を正確に把握することが重要である。工場から排出されるVOCなどの混合ガスを燃料として利用する場合、それを利用する省エネ設備の入口濃度を連続測定できれば、入熱量の算出及びシステムの性能を連続モニタ可能となり、ESCO事業等における省エネ量が正しく算出できることになる。   On the other hand, ESCO (Energy Service Company) companies, etc., use VOC mixed gas discharged from factories and other facilities as gas energy (GT), micro gas turbine (MGT), gas engine (GE), deodorizing furnace, etc. When supplying (that is, when operating energy-saving equipment), it is necessary to accurately calculate the energy supply amount (heat generation amount) and the associated energy-saving performance (power generation efficiency, steam efficiency, total efficiency, etc.) from the viewpoint of the energy supply business is there. For that purpose, it is important to accurately grasp the heat input of the energy-saving equipment. When using a mixed gas such as VOC discharged from the factory as fuel, if the inlet concentration of the energy-saving equipment that uses it can be continuously measured, the heat input can be calculated and the performance of the system can be continuously monitored. The amount can be calculated correctly.

このような背景の下で、混合成分系において、各成分の濃度を簡易に自動連続測定可能な方法及び装置が求められている。   Under such circumstances, there is a need for a method and apparatus that can easily and continuously measure the concentration of each component in a mixed component system.

なお、従来技術において、混合ガス中の成分濃度を連続測定する装置(方法)が幾つか公開されている。いずれも対象成分を個別に検知するセンサを成分数以上必要とする測定する装置である。   In the prior art, several apparatuses (methods) for continuously measuring the component concentration in the mixed gas have been disclosed. Both are measuring devices that require more than the number of components to detect the target component individually.

例えば、特開平6-50920号公報の「脱臭剤の脱臭寿命評価方法および装置」では、臭い成分を含んだ混合ガスをガス成分数以上の半導体ガスセンサを用いて連続的に測定する。この従来技術によれば、各臭い成分に対応するセンサが必要となる。なお、臭いガス成分濃度とセンサ出力との関係を、重回帰分析法によって予め解析しておく必要がある。   For example, in the “deodorant deodorizing life evaluation method and apparatus” disclosed in Japanese Patent Application Laid-Open No. 6-50920, a mixed gas containing an odor component is continuously measured using a semiconductor gas sensor having more than the number of gas components. According to this prior art, a sensor corresponding to each odor component is required. The relationship between the odor gas component concentration and the sensor output needs to be analyzed in advance by a multiple regression analysis method.

特開平10-239308号公報の「水素燃焼器の未燃焼ガス測定装置」では、水素の燃焼ガス中の水素ガスと酸素ガスの濃度を水素センサおよび酸素センサを用いて求め、燃料ガス(水素)や酸素ガスの供給量を制御する。   In "Unburned Gas Measuring Device for Hydrogen Combustor" in Japanese Patent Laid-Open No. 10-239308, the concentration of hydrogen gas and oxygen gas in the hydrogen combustion gas is determined using a hydrogen sensor and an oxygen sensor, and fuel gas (hydrogen) And control oxygen gas supply.

これらの従来技術では、各成分を測定するセンサが他の共存成分に対しても感度をもつ場合、個々の成分濃度を精度良く測定することが困難である。   In these conventional techniques, when the sensor for measuring each component has sensitivity to other coexisting components, it is difficult to accurately measure the concentration of each component.

特開昭62-200255号公報では、共存ガスが存在する環境下において被測定ガスのガス濃度を測定する装置において、特定の共存ガスの影響を受ける測定対象ガス検出器のほかに、特定の共存ガスのみに影響を受け測定対象ガス及びほかの共存ガスの影響を受けない特定共存ガス検出器とを用いて、この特定共存ガス検出器の測定値を補正信号として利用して被測定ガスの濃度を検出している。   In JP-A-62-200255, in an apparatus for measuring the gas concentration of a gas to be measured in an environment where a coexisting gas exists, in addition to a measurement target gas detector that is affected by the specific coexisting gas, a specific coexistence Using a specific coexisting gas detector that is affected only by the gas and not the measurement target gas and other coexisting gases, the measured gas concentration is used as a correction signal. Is detected.

この装置は、1種の被測定ガス成分のみを他の共存ガス成分と切り離して測定するものであり、複数成分の濃度を測定することを目的としていない。また、特定共存ガス検出器は、特定の共存ガスのみに影響を受け測定対象ガス及びほかの共存ガスの影響を受けないといった制約がある。   This apparatus measures only one kind of gas component to be measured separately from other coexisting gas components, and does not aim to measure the concentration of a plurality of components. In addition, the specific coexistence gas detector is limited only by the specific coexistence gas and not by the measurement target gas and other coexistence gases.

特開平6-50920号公報JP-A-6-50920 特開平10-239308号公報Japanese Patent Laid-Open No. 10-239308 特開昭62-200255号公報JP-A 62-200255

本発明は、混合物の共存成分に対しても感度を持ってしまう濃度計だけを使用しても、混合成分系の各成分の濃度をそれぞれ簡易にして精度良く求めることのできる測定方法及び装置を提供することにある。   The present invention provides a measuring method and apparatus capable of obtaining the concentration of each component of a mixed component system simply and accurately even if only a densitometer having sensitivity to the coexisting components of the mixture is used. It is to provide.

本発明は、基本的には、混合物に含まれる2種類の成分の濃度を測定する方法において、2種類の成分に対して異なる感度を有する2種類の濃度測定法を用いて、それぞれの濃度測定法による混合物の見かけの濃度を実測し、その見かけの混合物濃度実測値と前記2種類の濃度測定に対する各成分の感度とを用いて2種類の成分の濃度を算出する。   The present invention is basically a method for measuring the concentration of two kinds of components contained in a mixture, using two kinds of concentration measurement methods having different sensitivities for the two kinds of components, and measuring each concentration. The apparent concentration of the mixture is measured by the method, and the concentrations of the two components are calculated using the apparent measured mixture concentration and the sensitivity of each component to the two types of concentration measurements.

上記測定法によれば、2種類の濃度測定を用いて実測した混合物の濃度実測値と各成分の感度から2種の被測定成分の混合比率を求める関係式、真の実測値を求めるための補正係数を求める関係式を成立させて、混合成分系の各成分の濃度を簡易にして精度良く測定できる。   According to the above measurement method, the relational expression for obtaining the mixing ratio of the two components to be measured from the actually measured concentration value of the mixture measured using the two types of concentration measurement and the sensitivity of each component, for obtaining the true actual measurement value By establishing a relational expression for obtaining a correction coefficient, the concentration of each component of the mixed component system can be measured easily and accurately.

以下、本発明の実施例を図面に基づいて説明する。
〔実施例1〕
まず、2種類の被測定成分に対して異なる検出感度を有する濃度計を用いて、混合成分系の成分濃度の測定法(測定原理に関する発明)について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
First, a method for measuring the component concentration of a mixed component system (invention relating to the measurement principle) using a densitometer having different detection sensitivities for two types of components to be measured will be described.

濃度計(センサ)は幾つか種類があるが、一般に濃度計の型式(計測原理)に応じて測定対象成分は固有の感度を示す。この感度の違いを利用して複数の濃度計で混合系における各成分の濃度を測定する。   There are several types of densitometers (sensors). Generally, the component to be measured shows a specific sensitivity depending on the type of the densitometer (measurement principle). Using the difference in sensitivity, the concentration of each component in the mixed system is measured with a plurality of densitometers.

以下、濃度計1と濃度計2の2種類の濃度計(濃度測定法)を用いて、VOCガスの2種類の成分濃度を測定する方法及び装置を、図1及び図2を用いて説明する。図1は、本発明の測定法を実行する装置の概略図、図2はその測定法のフローチャートである。   Hereinafter, a method and apparatus for measuring two component concentrations of VOC gas using two types of densitometers 1 and 2 (concentration measuring method) will be described with reference to FIGS. 1 and 2. . FIG. 1 is a schematic diagram of an apparatus for performing the measurement method of the present invention, and FIG. 2 is a flowchart of the measurement method.

濃度計1及び2は、VOCガスの供給(送給)ライン6に設けられ、それらの濃度実測値は演算部3に入力される(図2のステップS101参照)。演算部3には、外部入力装置4を介して被測定対象ガスの相対的な感度情報が予め入力されている。   The densitometers 1 and 2 are provided in the VOC gas supply (feed) line 6, and their measured concentration values are input to the calculation unit 3 (see step S <b> 101 in FIG. 2). The relative sensitivity information of the gas to be measured is input in advance to the calculation unit 3 via the external input device 4.

ここでは、濃度計1は赤外線波長の吸光度を利用した赤外式濃度計であり、濃度計2はFID式濃度計とする。これらの濃度計の測定原理は周知であるので、説明を省略する。   Here, the densitometer 1 is an infrared densitometer using the absorbance of infrared wavelength, and the densitometer 2 is an FID type densitometer. Since the measurement principle of these densitometers is well known, a description thereof will be omitted.

これらの2種類の濃度計を用いた場合を例にして、成分Aと成分Bを含む混合VOCガス系の各成分A,Bについて測定する方法及び装置を説明する。成分Aは、例えばVOC排出抑制推進セミナー関係資料集(環境省大気環境課平成17年発行)に示されているトルエンであり、成分Bは、エチレン系、スチレン、キシレン系などのいずれか一つが例示される。   A method and apparatus for measuring each of the components A and B of the mixed VOC gas system including the component A and the component B will be described by taking the case of using these two types of densitometers as an example. Component A is, for example, toluene shown in a collection of materials related to the VOC emission suppression promotion seminar (issued in 2005 by the Ministry of the Environment's Atmospheric Environment Division), and Component B is any one of ethylene, styrene, xylene, etc. Illustrated.

各項目を次のように表す。   Each item is expressed as follows.

成分Aの真の濃度=C
成分Bの真の濃度=C
VOCガス成分の真の合計濃度=C=C+C
成分Aの比率=x% [x=C×100/(C+ C)]
赤外式濃度計(濃度計1)の実測値[見掛けのVOC濃度]=Cobs. IR
FID式濃度計(濃度計2)の実測値[見掛けのVOC濃度]=C obs.FID
VOC濃度を測定する場合、トルエンを標準としたトルエン換算濃度を用いることがある。これはトルエン基準で校正した濃度計でVOCガス濃度を測定した値を表すものでVOC成分がトルエン単独の場合は真の濃度を表示する。
True concentration of component A = C A
True concentration of component B = C B
True total concentration of VOC gas components = C O = C A + C B
Ratio of component A = x% [x = C A × 100 / (C A + C B )]
Measured value [apparent VOC concentration] of infrared densitometer (densitometer 1) = C obs. IR
Measured value of FID densitometer (Density meter 2) [apparent VOC concentration] = C obs.FID
When measuring the VOC concentration, a toluene equivalent concentration using toluene as a standard may be used. This represents a value obtained by measuring the VOC gas concentration with a densitometer calibrated with a toluene standard. When the VOC component is toluene alone, the true concentration is displayed.

しかしトルエン以外の別種類の物質は、一般にはトルエンと異なる感度を持つため、トルエンとそれ以外の成分の混合物あるいは別種類の物質単独の場合には、トルエン換算濃度を用いても真の濃度を示さない。   However, since other types of substances other than toluene generally have a sensitivity different from that of toluene, in the case of a mixture of toluene and other components or another type of substance alone, the true concentration can be obtained even if the toluene equivalent concentration is used. Not shown.

ここでは、成分AおよびBを含むVOCガスを考えるものとする。そして成分Aを標準とするA換算濃度で成分Bの濃度も表すこととする。濃度計に対する各成分の感度は、 A単独の場合を1.0 (基準値)とし、 Bの感度はAを1.0とした時の相対値βで表すこととする。この相対値は、用いた濃度計に固有な値であり濃度計をAで校正する時にあらかじめ測定しておき、入力装置4を介して演算部3に入力されている。   Here, a VOC gas containing components A and B is considered. Then, the concentration of component B is also expressed in terms of A conversion concentration with component A as a standard. The sensitivity of each component to the densitometer is 1.0 (reference value) when A alone, and the sensitivity of B is expressed as a relative value β when A is 1.0. This relative value is a value specific to the used densitometer, and is measured in advance when the densitometer is calibrated with A, and is input to the calculation unit 3 via the input device 4.

赤外式で測定した場合の実測値 Cobs. IRは次のように表わすことができる。 The measured value C obs. IR when measured by the infrared method can be expressed as follows.

成分Aの赤外式濃度計に対する感度=1
成分Bの赤外式濃度計に対する相対感度=βIRとする。
Sensitivity of component A to infrared densitometer = 1
Relative sensitivity of component B to infrared densitometer = β IR .

Cobs. IR=(成分Aの寄与分) + (成分Bの寄与分)
=[C× (成分Aの赤外式濃度計に対する感度) ]+[C× (成分Bの赤外式濃度計に対する感度)]
=[C×(x/100)×1]+[C×(1−x/100)×βIR
…(1)
また、 FID式で測定した場合の実測値C obs.FIDは、次のように表すことができる。
C obs. IR = (contribution of component A) + (contribution of component B)
= [C A × (sensitivity of component A to infrared densitometer)] + [C B × (sensitivity of component B to infrared densitometer)]
= [C O × (x / 100) × 1] + [C O × (1−x / 100) × β IR ]
... (1)
The actual measurement value C obs.FID when measured by the FID method can be expressed as follows.

成分AのFIDに対する感度=1
成分BのFIDに対する相対感度=βFID
C obs.FID=(成分Aの寄与分)+(成分Bの寄与分)
=[C× (成分AのFIDに対する感度) ]+[C× (成分BのFIDに対する感度)]
=[C×(x/100)×1]+[C×(1−x/100)×βFID
…(2)
(2)混合比の算出
演算部3は、赤外式とFID式の実測値から、それらの実測値の比Pを算出し、かつ成分Aの混合比率xを次の手順で算出する。
Sensitivity of component A to FID = 1
Relative sensitivity of component B to FID = β FID
C obs.FID = (contribution of component A) + (contribution of component B)
= [C A × (sensitivity of component A to FID)] + [C B × (sensitivity of component B to FID)]
= [C O × (x / 100) × 1] + [C O × (1-x / 100) × β FID ]
... (2)
(2) Calculation of Mixing Ratio The calculation unit 3 calculates the ratio P of the actual measurement values from the actual measurement values of the infrared type and the FID type, and calculates the mixing ratio x of the component A by the following procedure.

上記(1)(2)式から赤外式及びFIB式の実測値の比Pを求めると次式が得られる。   When the ratio P between the measured values of the infrared and FIB formulas is obtained from the above formulas (1) and (2), the following formula is obtained.

Cobs. IR/C obs. FID=P=[100βIR +(1−βIR)x]/[100βFID +(1−βFID)x]…(3)
さらに、(3)式から成分Aの比率xを求めると、
x=(100βIR −100βFID P)/[(1−βFID)P+(1−βIR)] …(4)
となり、赤外式とFID式の実測値からその時の成分Aの比率x%が算出できる。
C obs. IR / C obs. FID = P = [100β IR + (1−β IR ) x] / [100β FID + (1−β FID ) x] (3)
Furthermore, when the ratio x of the component A is obtained from the equation (3),
x = (100β IR −100β FID P) / [(1−β FID ) P + (1−β IR )] (4)
Thus, the ratio x% of the component A at that time can be calculated from the measured values of the infrared type and the FID type.

このようにして混合比率xと相対比Pとの関係を計算できる。実際には、赤外式及びFID式の実測値から相対比Pが分るので、Pの値から成分Aの比率xパーセントを(4)式により求めることになる。
(3)赤外濃度の補正
次に、演算部3は、赤外式とFID式の実測値から次の手順で赤外濃度を補正する。
In this way, the relationship between the mixing ratio x and the relative ratio P can be calculated. Actually, since the relative ratio P is found from the measured values of the infrared and FID formulas, the ratio x percent of the component A is obtained from the value of P by the formula (4).
(3) Correction of Infrared Density Next, the calculation unit 3 corrects the infrared density from the measured values of the infrared type and the FID type by the following procedure.

成分A及びBの混合ガスを赤外式で測定した場合、成分Bの感度βIRを反映した大きさで見掛け上の濃度は表示される。この見かけの赤外濃度を真の濃度に補正する係数を算出する。 When the mixed gas of components A and B is measured by the infrared method, the apparent concentration is displayed in a size reflecting the sensitivity β IR of component B. A coefficient for correcting the apparent infrared density to a true density is calculated.

見かけの赤外濃度は、(1)式で表されるが、
Cobs. IR=[C×(x/100)×1]+[C×(1−x/100)×βIR
…(1)
見かけの赤外濃度Cobs. IRと真の濃度Cの比をKとすると、(1)式から次式が得られる。
Apparent infrared density is expressed by equation (1).
C obs. IR = [C O × (x / 100) × 1] + [C O × (1−x / 100) × β IR ]
... (1)
If the ratio of the apparent infrared density C obs. IR to the true density CO is K, the following formula is obtained from the formula (1).

Cobs. IR/C=K=[(x/100)×1]+[(1−x/100)×βIR]
…(5)
先に求めた成分Aの比率x%から、(5)式を用いて赤外濃度補正係数Kが決る。
このようにして成分Aの比率x%と赤外濃度補正係数Kとの関係を計算できる。
更に、次式で補正された赤外濃度(赤外式濃度計の見かけの実測値を補正した真の測定値)が求められる(ステップS103)。
C obs. IR / C O = K = [(x / 100) × 1] + [(1−x / 100) × β IR ]
... (5)
From the ratio x% of the component A obtained previously, the infrared density correction coefficient K is determined using equation (5).
In this way, the relationship between the ratio x% of the component A and the infrared density correction coefficient K can be calculated.
Further, an infrared density corrected by the following equation (a true measured value obtained by correcting an apparent actual measurement value of the infrared densitometer) is obtained (step S103).

=Cobs. IR/K
(4)各成分濃度の算出
次いで演算部3は、真の赤外濃度Coと成分Aの比率x%から混合ガス中の成分A濃度及び成分B濃度を求める(ステップS103)。
C O = C obs. IR / K
(4) Calculation of Component Concentration Next, the calculation unit 3 obtains the component A concentration and the component B concentration in the mixed gas from the ratio x% of the true infrared concentration Co and the component A (step S103).

真の成分A濃度C=C×x/100
真の成分B濃度C=C×(1−x/100)
本実施例では、上記したように、2種類の濃度測定を用いて実測した混合物の濃度実測値と各成分の感度から2種の被測定成分の混合比率を求める関係式、真の実測値を求めるための補正係数を求める関係式を成立させて、混合成分系の各成分の濃度を簡易にして精度良く測定できる。
〔実施例2〕
上記実施例1では、2種類の成分の濃度を求める場合に、2種類の全く異なる濃度計(赤外式濃度計、FID式濃度計)で測定した見かけの実測値を利用したが、濃度計自体は例えば赤外式濃度計1のように物理的に一つのものを使用し、二つの異なる波長の光、例えば赤外線を使って2成分混合系の成分濃度を求めることも可能である。換言すれば、この場合の2種類の濃度測定法は、二つの異なる波長の赤外線を用いて混合物の見かけの濃度を測定するそれぞれの赤外式濃度測定法により構成される。
True component A concentration C A = C o × x / 100
True component B concentration C B = C o × (1−x / 100)
In the present embodiment, as described above, the relational expression for obtaining the mixing ratio of the two components to be measured from the actually measured concentration value of the mixture measured using the two types of concentration measurement and the sensitivity of each component, and the true actual measurement value are obtained. By establishing a relational expression for obtaining a correction coefficient for obtaining, the concentration of each component of the mixed component system can be measured easily and accurately.
[Example 2]
In Example 1 described above, when the concentrations of two types of components were determined, apparently measured values measured with two completely different densitometers (infrared type densitometer and FID type densitometer) were used. It is also possible to use a physical one such as the infrared densitometer 1 and determine the component concentration of the two-component mixed system using light of two different wavelengths, for example, infrared rays. In other words, the two types of concentration measurement methods in this case are configured by respective infrared concentration measurement methods that measure the apparent concentration of the mixture using infrared rays having two different wavelengths.

被測定対象成分が二つの波長の赤外線に対して異なる感度を持つ場合には、それぞれの波長の実測値をあたかも2種類の濃度計で測定した実測値と同じようにように扱える。   When the component to be measured has different sensitivities with respect to two wavelengths of infrared rays, the measured values of the respective wavelengths can be handled as if they were measured with two types of densitometers.

すなわち、実施例1で2種類の濃度計で測定・計算したことと同じことが1つの濃度計で可能となる。   That is, the same measurement and calculation with two types of densitometers in Example 1 can be performed with one densitometer.

例えば図3に示すように、2種類の成分A,Bが赤外式濃度計1の異なる波長α1及びα2に対して異なる感度を有する場合に、波長α1の赤外式で測定した場合の実測値Cobs. IR1は次のように表わすことができる。 For example, as shown in FIG. 3, when the two types of components A and B have different sensitivities for the different wavelengths α1 and α2 of the infrared densitometer 1, the actual measurement when measured by the infrared method of the wavelength α1. The value C obs. IR1 can be expressed as:

成分Aの波長α1における赤外式濃度計に対する感度=1
成分Bの波長α1における赤外式濃度計に対する相対感度=βIR1とする。
Sensitivity to infrared densitometer at wavelength α1 of component A = 1
Relative sensitivity with respect to the infrared densitometer at wavelength α1 of component B = β IR1 .

Cobs. IR1=(成分Aの寄与分) + (成分Bの寄与分)
=[C× (成分Aの波長α1における赤外式濃度計に対する感度) ]+[C× (成分Bの波長α1における赤外式濃度計に対する感度)]
=[C×(x/100)×1]+[C×(1−x/100)×βIR1
…(1´)
また、波長α2の赤外式で測定した場合の実測値Cobs. IR2は次のように表わすことができる。
C obs. IR1 = (Contribution of component A) + (Contribution of component B)
= [C A × (sensitivity of component A to infrared densitometer at wavelength α1)] + [C B × (sensitivity of component B to infrared densitometer at wavelength α1)]
= [C O × (x / 100) × 1] + [C O × (1−x / 100) × β IR1 ]
... (1 ')
Further, the actual measurement value C obs. IR2 when measured by the infrared method of wavelength α2 can be expressed as follows.

成分Aの波長α2における赤外式濃度計に対する感度=1
成分Bの波長α2における赤外式濃度計に対する相対感度=βIR2とする。
Sensitivity to infrared densitometer at wavelength α2 of component A = 1
Relative sensitivity with respect to the infrared densitometer at wavelength α2 of component B = βIR2 .

Cobs. IR2=(成分Aの寄与分) + (成分Bの寄与分)
=[C× (成分Aの波長α2における赤外式濃度計に対する感度) ]+[C× (成分Bの波長α2における赤外式濃度計に対する感度)]
=[C×(x/100)×1]+[C×(1−x/100)×βIR2
…(2´)
演算部3は、上記実測値Cobs. IR1、及びCobs. IR2から、それらの実測値の比Pを算出し、かつ成分Aの混合比率xを次の手順で算出する。
C obs. IR2 = (Contribution of component A) + (Contribution of component B)
= [C A × (sensitivity of component A to infrared densitometer at wavelength α2)] + [C B × (sensitivity of component B to infrared densitometer at wavelength α2)]
= [C O × (x / 100) × 1] + [C O × (1−x / 100) × β IR2 ]
... (2 ')
The calculation unit 3 calculates the ratio P of the actual measurement values from the actual measurement values C obs. IR1 and C obs. IR2 , and calculates the mixing ratio x of the component A by the following procedure.

上記(1´)(2´)式から波長α1及び波長α2の実測値の比Pを求めると次式が得られる。   When the ratio P between the actually measured values of the wavelength α1 and the wavelength α2 is obtained from the above equations (1 ′) and (2 ′), the following equation is obtained.

Cobs. IR1/C obs.IR2=P=[100βIR1 +(1−βIR1)x]/[100βIR2 +(1−βIR2)x]…(3´)
さらに、(3´)式から成分Aの比率xを求めると、
x=(100βIR1−100βIR2 P)/[(1−βIR2)P+(1−βIR1)] …(4´)
となり、赤外式の二つの異なる波長を利用した実測値からその時の成分Aの比率x%が算出できる。
C obs. IR1 / C obs.IR2 = P = [100β IR1 + (1-β IR1) x] / [100β IR2 + (1-β IR2) x] ... (3')
Further, when the ratio x of the component A is obtained from the equation (3 ′),
x = (100β IR1 -100β IR2 P ) / [(1-β IR2) P + (1-β IR1)] ... (4')
Thus, the ratio x% of the component A at that time can be calculated from actually measured values using two different wavelengths of the infrared type.

このようにして混合比率xと相対比Pとの関係を計算できる。実際には、波長α1及びα2の実測値から相対比Pが分るので、Pの値から成分Aの比率xパーセントを(4´)式により求めることになる。なお、既述した(5)式を用いた赤外濃度補正係数Kや各成分の真の濃度算出は、実施例1同様に行なわれる。
〔実施例3〕
なお、上記実施例では、混合VOCガス系の例を述べてきたが、溶液系でも上記実施例1及び2と同様な手順で混合成分の濃度を簡易的に自動連続測定することができる。
In this way, the relationship between the mixing ratio x and the relative ratio P can be calculated. Actually, since the relative ratio P is determined from the actually measured values of the wavelengths α1 and α2, the ratio x percent of the component A is obtained from the value of P by the equation (4 ′). Note that the infrared density correction coefficient K and the true density calculation of each component using the above-described equation (5) are performed in the same manner as in the first embodiment.
Example 3
In the above embodiment, an example of the mixed VOC gas system has been described. However, even in the solution system, the concentration of the mixed component can be easily and automatically measured in the same procedure as in the first and second embodiments.

その場合には、図1或いは図3に示すように、VOCガスの供給源を混合溶液の供給源に置き換えれば装置が成立する。   In that case, as shown in FIG. 1 or FIG. 3, the apparatus is established by replacing the VOC gas supply source with a mixed solution supply source.

例えば、溶液中のある成分の濃度を測定する場合には、図3の装置を利用して1種の分光光度計(濃度計)1が用いられ、二つの異なる波長の光を使って2成分混合系の成分濃度を算出する。被測定対象成分が二つの波長の光に対して異なる感度を持つ場合には、それぞれの波長の実測値をあたかも2種類の濃度計で測定した実測値と同じように扱える。すなわち、VOC排ガス系で測定・計算したことと同じことが溶液系においても可能となる。   For example, when measuring the concentration of a certain component in a solution, one type of spectrophotometer (concentration meter) 1 is used using the apparatus of FIG. 3, and two components using two different wavelengths of light. The component concentration of the mixed system is calculated. When the component to be measured has different sensitivities to light of two wavelengths, the measured values of the respective wavelengths can be treated as if they were measured by two types of densitometers. In other words, the same measurement and calculation in the VOC exhaust gas system is possible in the solution system.

この場合、2台の濃度計を使用するか1台で2波長の測定が可能な濃度計を使用するかは、いずれも可能である。
〔実施例4〕
成分組成が変動しない混合系において2つの成分を測定する場合、成分比率を最初に決めておけば1種類の濃度計で連続測定することで、簡単な換算式により2成分の濃度を連続的に求めてモニタすることができる。この場合の実施例を図4に示す。
In this case, it is possible to use either two densitometers or one that can measure two wavelengths with one unit.
Example 4
When measuring two components in a mixed system in which the component composition does not vary, if the component ratio is determined first, the concentration of the two components can be continuously measured using a simple conversion formula by continuously measuring with one type of densitometer. Can be sought and monitored. An embodiment in this case is shown in FIG.

この場合には、図4に示すように、1種類の濃度計1の実測値Cobs. IRを演算部3に入力し、また、その濃度計に対する試料成分A,Bの相対感度を1及びβIR及び2成分の混合比率x,(1−x)も既知であり入力装置4を介して演算部に入力される。それにより、既述した(5)式を実行して各成分A,Bの濃度を求めることができる。 In this case, as shown in FIG. 4, the measured value C obs. IR of one type of densitometer 1 is input to the calculation unit 3, and the relative sensitivities of the sample components A and B with respect to the densitometer are 1 and β IR and the mixing ratio x, (1-x) of the two components are also known and are input to the calculation unit via the input device 4. Thereby, the density | concentration of each component A and B can be calculated | required by executing Formula (5) mentioned above.

これまで述べた実施例は、いずれも2成分混合系であるが、主要2成分に少量の別成分が入った混合系においても、少量成分が濃度に及ぼす影響が大きくない場合には、主要2成分の混合系と仮定してその混合比と濃度の近似値を求めることができる。   All of the examples described so far are two-component mixed systems. However, even in a mixed system in which a small amount of another component is contained in two main components, if the influence of the small amount component on the concentration is not large, the main two components are used. Assuming a mixed system of components, approximate values of the mixing ratio and concentration can be obtained.

一般的にセンサは測定誤差を持つ。2種類の主成分に微量の共存成分を含む3成分以上の混合系において、微量成分がその測定誤差程度に留まる場合には、若干の誤差があることを考慮した上で本手法を適用することが可能であり、近似値であっても実務的には意義が大きい。
〔実施例5〕
次に上記した本発明に係る濃度測定法を応用した省エネルギーシステムについて、図5の実施例を用いて説明する。図中、既述した実施例と同一符号は、同一或いは共通する要素を示す。
In general, a sensor has a measurement error. In a mixed system of three or more components that contain a small amount of coexisting components in two types of main components, this method should be applied after considering that there are some errors when the minor components remain at the measurement error level. Even if it is an approximate value, it is significant in practice.
Example 5
Next, an energy saving system to which the above-described concentration measuring method according to the present invention is applied will be described with reference to the embodiment of FIG. In the figure, the same reference numerals as those of the above-described embodiments indicate the same or common elements.

ESCO(Energy Service Company)事業者等が、工場などから排出されるVOC混合ガスを熱エネルギー再利用としてガスタービン(GT)、マイクロガスタービン(MGT)、ガスエンジン(GE)などの省エネルギー設備50に供給する場合、そのエネルギー供給量(発熱量)およびそれに伴う省エネルギー性能(発電効率、蒸気効率、総合効率など)をエネルギー供給ビジネスの観点から正確に算出する必要がある。   ESCO (Energy Service Company) companies, etc., use the VOC mixed gas discharged from factories etc. as heat energy reuse to energy saving equipment 50 such as gas turbine (GT), micro gas turbine (MGT), gas engine (GE) When supplying, it is necessary to accurately calculate the energy supply amount (heat generation amount) and the energy saving performance (power generation efficiency, steam efficiency, total efficiency, etc.) associated therewith from the viewpoint of the energy supply business.

本実施例では、赤外式濃度計1及びFID式濃度計2を用いて、既述した図1或いは図3の実施例のようにVOC混合ガスの各成分の濃度を求める。すなわち、
(1)赤外式及びFID式測定法により見かけのVOC濃度、C obs.IR 及びC obs.FIDを実測する。
(2)実測値からC obs.IR /C obs.FID=Pを算出する。
(3)Pからの成分Aの比率x%を求める。
(4)比率x%から赤外濃度補正係数Kを求める。
(5)補正係数Kで赤外濃度実測値(見かけの濃度)を補正して真の濃度(補正濃度)Coを求める。
(6)さらに、VOC混合ガスの流量値をモニタする。
In this embodiment, the concentration of each component of the VOC mixed gas is obtained using the infrared densitometer 1 and the FID densitometer 2 as in the embodiment of FIG. 1 or FIG. That is,
(1) The apparent VOC concentration, C obs.IR and C obs.FID are measured by infrared and FID measurement methods.
(2) Calculate C obs.IR / C obs.FID = P from the measured value.
(3) The ratio x% of the component A from P is obtained.
(4) An infrared density correction coefficient K is obtained from the ratio x%.
(5) The actual density (corrected density) Co is obtained by correcting the measured infrared density value (apparent density) with the correction coefficient K.
(6) Furthermore, the flow rate value of the VOC mixed gas is monitored.

そして、上位の演算部10が、VOC混合ガスの発熱量を、次式を用いて算出する。   And the high-order calculating part 10 calculates the emitted-heat amount of VOC mixed gas using following Formula.

VOCガスの発熱量=成分Aの発熱量+成分Bの発熱量
=(VOCガス流量×成分Aの濃度×Aの燃焼熱)+(VOCガス流量×成分Bの濃度×Bの燃焼熱)
=[VOCガス流量×(Co×x/100)×成分Aの燃焼熱]+[VOCガス流量×〔Co×(1−x/100)×成分Bの燃焼熱]
本実施例によれば、工場から排出されるVOCなどの混合ガスを燃料として利用する場合、それを利用する省エネ設備の入口濃度を連続測定し、入熱量の算出及びシステムの性能を連続モニタ可能となり、ESCO事業等における省エネ量を正しく算出することができる。なお、図5における温度計7は、送給管6に流れるVOCガスの温度を測定し、圧力計9は、VOCガスの圧力を測定するものであり、これらの測定値はVOCガスの流量値を補正するために使用され、演算部3に入力される。後述される図8及び図9のシステムにおける温度計7及び圧力計9も同様の役割をなすものである。
〔実施例6〕
実施例3で述べた溶液系の混合成分濃度が測定できると、有価成分の回収など廃水処理設備の制御にも利用できる。有価成分回収システムに適用した実施例の概略システムを図6に示す。
VOC gas calorific value = calorific value of component A + calorific value of component B = (VOC gas flow rate x concentration of component A x combustion heat of A) + (VOC gas flow rate x concentration of component B x combustion heat of B)
= [VOC gas flow rate x (Co x x / 100) x Combustion heat of component A] + [VOC gas flow rate x [Co x (1-x / 100) x Combustion heat of component B]
According to this embodiment, when using a mixed gas such as VOC discharged from the factory as fuel, it is possible to continuously measure the inlet concentration of the energy-saving equipment that uses it, and to calculate the heat input and continuously monitor the system performance. Thus, the energy saving amount in the ESCO business can be calculated correctly. Note that the thermometer 7 in FIG. 5 measures the temperature of the VOC gas flowing through the feed pipe 6, and the pressure gauge 9 measures the pressure of the VOC gas. These measured values are the flow rate values of the VOC gas. Is input to the calculation unit 3. The thermometer 7 and the pressure gauge 9 in the system of FIGS. 8 and 9 described later also have the same role.
Example 6
If the mixed component concentration of the solution system described in Example 3 can be measured, it can also be used for controlling wastewater treatment facilities such as recovery of valuable components. The schematic system of the Example applied to the valuable component collection | recovery system is shown in FIG.

図6において、工場の排水ライン6Aには、実施例3(図1或いは図3)で述べたような濃度計1及び2(或いは濃度計1のみ)が設けられている。さらに排水ライン6Aの濃度計の下流側には、廃水を有価成分回収装置60に導いた後に廃水するか、或いは有価成分回収装置60に導かないで排水するための排水処理系61とが設けられている。   6, the factory drain line 6A is provided with the concentration meters 1 and 2 (or only the concentration meter 1) as described in the third embodiment (FIG. 1 or FIG. 3). Further, on the downstream side of the concentration meter of the drainage line 6 </ b> A, a wastewater treatment system 61 is provided for draining the wastewater after guiding it to the valuable component recovery device 60, or draining it without guiding it to the valuable component recovery device 60. ing.

濃度測定装置の演算部3は、入力される2種測定法による実測値から各成分の濃度値を算出し、その少なくとも一つが所定の濃度以上である時に、バルブ12を開き、バルブ11を閉じて有価成分回収装置60に廃水を導く。また、いずれの成分の濃度値も所定の濃度を満たさない場合には、バルブ12を閉じ、バルブ11を開いて廃水を有価成分回収装置60に通さずに排水する排水ルートの切り替え制御が行なわれる。   The calculation unit 3 of the concentration measuring apparatus calculates the concentration value of each component from the actually measured values obtained by the two types of measurement methods that are input, and when at least one of them is equal to or higher than a predetermined concentration, the valve 12 is opened and the valve 11 is closed. Then, the wastewater is guided to the valuable component recovery device 60. If none of the concentration values of the components satisfies the predetermined concentration, the valve 12 is closed and the valve 11 is opened to control the switching of the drainage route for draining the wastewater without passing through the valuable component recovery device 60. .

生産プロセスの廃水には有価成分を含むものが多く回収処理が行われている。有価成分が常時発生しない場合に、廃水全量を処理するとコストが嵩むので、回収対象となる成分のうち1成分でも一定濃度以上検知された場合のみ排水ルートを切替えて回収装置で処理することで効率的運用が可能となる。
〔実施例7〕
上記実施例では、廃水を効率良く有価成分に導く装置について説明したが、有価成分に変えて、図7に示すような汚濁処理設備70を備えてもよい。本実施例では、通常は放流可能な廃水が発生するルートで、廃水処理が必要な汚濁成分を含む廃水が一時的に発生する場合、汚濁処理を設備(汚濁処理装置)70で行なうように設定してある。
Many wastewaters from production processes contain valuable components and are collected. When valuable components do not always occur, processing the entire amount of wastewater increases the cost, so it is efficient to switch the drainage route and process it with a recovery device only when a certain concentration or more of the components to be recovered is detected. Operation is possible.
Example 7
In the above-described embodiment, the apparatus that efficiently guides wastewater to the valuable component has been described. However, instead of the valuable component, a pollution treatment facility 70 as shown in FIG. 7 may be provided. In this embodiment, when waste water containing polluted components that require waste water treatment is temporarily generated in a route where waste water that can be discharged is normally generated, the pollution treatment is set by the facility (pollution treatment device) 70. It is.

図7において、工場の排水ライン6Aには、実施例3(図1或いは図3)で述べたような濃度計1及び2(或いは濃度計1のみ)が設けられている。さらに排水ライン6Aの濃度計の下流側には、廃水を汚濁処理装置70に導いた後に廃水するか、或いは汚濁処理装置70に導かないで排水するための廃水処理系61とが設けられている。   In FIG. 7, the concentration line 1 and 2 (or only the concentration meter 1) as described in the embodiment 3 (FIG. 1 or 3) are provided in the factory drain line 6A. Further, on the downstream side of the concentration meter of the drainage line 6 </ b> A, a wastewater treatment system 61 is provided for draining the wastewater after guiding it to the pollution treatment device 70, or draining the wastewater without guiding it to the pollution treatment device 70. .

濃度測定装置の演算部3は、入力される2種測定法による実測値から各成分の濃度値を算出し、その少なくとも一つが所定の濃度以上である時に、バルブ12を開き、バルブ11を閉じて廃水を汚濁処理装置70に導く。また、いずれの成分の濃度値も所定の濃度を満たさない場合には、バルブ12を閉じ、バルブ11を開いて廃水を汚濁処理装置70を通さずに廃水する排水ルートの切り替え制御が行なわれる。   The calculation unit 3 of the concentration measuring apparatus calculates the concentration value of each component from the actually measured values obtained by the two types of measurement methods that are input, and when at least one of them is equal to or higher than a predetermined concentration, the valve 12 is opened and the valve 11 is closed. Then, the waste water is guided to the pollution treatment device 70. When none of the concentration values of the components satisfy the predetermined concentration, the valve 12 is closed and the valve 11 is opened to control the switching of the drainage route for discharging the wastewater without passing through the pollution treatment device 70.

本実施例によれば、処理対象となる成分のうち1成分でも一定濃度以上検知された場合のみ排水ルートを切替えて、効率良く汚濁処理を実行することができる。
〔実施例8〕
本発明に係る濃度測定法及び装置を、蓄熱式脱臭炉に適用した例を図8に示す。
According to the present embodiment, the drainage route can be switched and the pollution process can be executed efficiently only when at least one of the components to be processed is detected at a certain concentration or more.
Example 8
An example in which the concentration measuring method and apparatus according to the present invention are applied to a regenerative deodorizing furnace is shown in FIG.

蓄熱式脱臭炉80は、セラミック製の蓄熱体(図示省略)を内蔵する。脱臭炉80内に導入されたVOC混合ガスは、蓄熱体を通過する過程で加熱されて酸化処理され、出口側の蓄熱体で熱を吸収された後、系外に排出される。脱臭炉の入口の未処理排ガス(VOC混合ガス)は加熱された蓄熱体から熱を奪い高温になり酸化処理され、同時に蓄熱体は熱を奪われ温度が下がる。この「吸熱」「放熱」が交互に繰り返される。   The heat storage deodorizing furnace 80 contains a ceramic heat storage body (not shown). The VOC mixed gas introduced into the deodorizing furnace 80 is heated and oxidized in the process of passing through the heat accumulator, and after the heat is absorbed by the outlet heat accumulator, it is discharged out of the system. The untreated exhaust gas (VOC mixed gas) at the entrance of the deodorizing furnace takes heat from the heated heat accumulator and becomes a high temperature and is oxidized, and at the same time, the heat accumulator takes heat and the temperature is lowered. This “endotherm” and “heat dissipation” are repeated alternately.

蓄熱式脱臭炉においてVOCガスが炉内で自燃して炉内温度が設定値を超えると燃焼ガスを後段のボイラに引き抜くなどして炉内温度を制御する。この場合、VOC濃度が急激に増加して炉内温度が急上昇する過程では、燃焼ガスの引抜き量の制御に時間遅れが生じ炉内温度が異常上昇する可能性もある。   In the regenerative deodorization furnace, when the VOC gas self-combusts in the furnace and the furnace temperature exceeds a set value, the furnace temperature is controlled by drawing the combustion gas to a subsequent boiler. In this case, in the process in which the VOC concentration suddenly increases and the furnace temperature rapidly rises, there is a possibility that a time delay occurs in the control of the extraction amount of the combustion gas and the furnace temperature rises abnormally.

本実施例では、VOCガスの送給ライン6に、実施例1或いは2で述べた濃度計1及び2(或いは濃度計1単独)を設け、演算部3は、これらの実測値を用いて既述したようにVOC混合ガスの各成分の濃度を求め、さらに成分濃度とVOCガス流量からVOCガスの発熱量を算出する。そして、この発熱量を基にして炉内温度を予測する。そして、発熱量が設定点を越える場合(炉内温度が所定温度以上になることが予測される時)には、大気吸引ダンパ81を開いて大気を脱臭炉80に吸引して炉内希釈を図ることで炉内温度の異常上昇を抑制する。
〔実施例9〕
本発明に係る濃度測定法及び装置を、VOCガス濃縮装置の運転制御に適用した例を図9に示す。
In the present embodiment, the VOC gas supply line 6 is provided with the concentration meters 1 and 2 (or the concentration meter 1 alone) described in the embodiment 1 or 2, and the calculation unit 3 uses these measured values. As described above, the concentration of each component of the VOC mixed gas is obtained, and the calorific value of the VOC gas is calculated from the component concentration and the VOC gas flow rate. And the furnace temperature is predicted based on this calorific value. When the calorific value exceeds the set point (when the furnace temperature is predicted to be higher than the predetermined temperature), the atmosphere suction damper 81 is opened and the atmosphere is sucked into the deodorizing furnace 80 for dilution in the furnace. This suppresses an abnormal rise in the furnace temperature.
Example 9
An example in which the concentration measuring method and apparatus according to the present invention are applied to operation control of a VOC gas concentrator is shown in FIG.

例えば有害大気汚染物質を含むVOCガスの排ガス処理を自燃(燃焼方式)により行なう場合、処理対象ガスの濃度が低い場合には、省エネルギーを図るために濃縮装置を設置し、排ガス濃度を自燃域まで高める濃縮処理を行なっている。この場合、濃縮後の各成分濃度が予め設定した管理濃度(例えば爆発限界濃度の1/4から1/3程度の値)を超える可能性がある。そこで、本実施例では、設定の管理濃度を超える可能性がある場合は、大気吸引により予め希釈して、濃縮後のVOCガス濃度が管理濃度を越えないように運転制御する。   For example, when exhaust gas treatment of VOC gas containing harmful air pollutants is performed by self-combustion (combustion method), if the concentration of the gas to be treated is low, a concentrator is installed to save energy, and the exhaust gas concentration is reduced to the self-combustion range. Enhancing the concentration process. In this case, the concentration of each component after concentration may exceed a preset control concentration (for example, a value about 1/4 to 1/3 of the explosion limit concentration). Therefore, in this embodiment, when there is a possibility of exceeding the set management concentration, operation control is performed so that the VOC gas concentration after the concentration does not exceed the management concentration after dilution by atmospheric suction.

具体的には、VOCガスの送給ライン6に、実施例1或いは2で述べた濃度計1及び2(或いは濃度計1単独)を設け、演算部3は、これらの実測値を用いて既述したようにVOC混合ガスの各成分の濃度を求める。そして、濃縮後の各成分濃度が予め設定した管理濃度を越える場合には、大気吸引ダンパ81を開いて大気を濃縮装置90に吸引して濃縮ガスを希釈し管理濃度を越えないように予測制御する。本実施例によれば、濃縮装置の上流側のVOCガスが通常運転範囲を超える濃度で排出された場合でも、管理濃度を超えないように濃縮倍率を安全側に抑えて濃縮装置を運転することができる。   Specifically, the densitometers 1 and 2 (or the densitometer 1 alone) described in Example 1 or 2 are provided in the VOC gas supply line 6, and the calculation unit 3 uses these measured values. As described above, the concentration of each component of the VOC mixed gas is obtained. When the concentration of each component after concentration exceeds the preset management concentration, the atmospheric suction damper 81 is opened and the atmosphere is sucked into the concentrator 90 to dilute the concentrated gas so that the control concentration is not exceeded. To do. According to the present embodiment, even when the VOC gas upstream of the concentrator is discharged at a concentration exceeding the normal operation range, the concentrator is operated with the concentration factor kept on the safe side so as not to exceed the control concentration. Can do.

本発明の濃度測定法を実行する装置の一例を示す概略図。Schematic which shows an example of the apparatus which performs the density | concentration measuring method of this invention. 図1で実行する測定法のフローチャート。The flowchart of the measuring method performed in FIG. 本発明の濃度測定法を実行する装置の他の例を示す概略図。Schematic which shows the other example of the apparatus which performs the density | concentration measuring method of this invention. 本発明の濃度測定法を実行する装置の他の例を示す概略図。Schematic which shows the other example of the apparatus which performs the density | concentration measuring method of this invention. 本発明に係る濃度測定法を応用したガスタービンコージェネレーション設備のシステム概要図。The system outline figure of the gas turbine cogeneration equipment which applied the concentration measuring method concerning the present invention. 本発明に係る濃度測定法を応用した有価成分回収設備のシステム概要図。The system outline figure of valuable component recovery equipment which applied the concentration measuring method concerning the present invention. 本発明に係る濃度測定法を応用した汚濁処理装置のシステム概要図。The system outline figure of the pollution treatment equipment which applied the concentration measuring method concerning the present invention. 本発明に係る濃度測定法を応用した脱臭炉のシステム概要図。The system outline figure of the deodorizing furnace which applied the concentration measuring method concerning the present invention. 本発明に係る濃度測定法を応用した濃縮装置のシステム概要図。The system outline figure of the concentration device which applied the concentration measuring method concerning the present invention.

符号の説明Explanation of symbols

1…濃度計(赤外式濃度計)、2…濃度計(FID式濃度計)、3…濃度演算部、6…VOCガス供給源、50…ガスタービンコージェネレーション設備、60…有価成分回収装置、70…汚濁処理装置、80…脱臭炉、90…濃縮装置。 DESCRIPTION OF SYMBOLS 1 ... Densitometer (infrared type densitometer), 2 ... Densitometer (FID type | mold densitometer), 3 ... Concentration calculating part, 6 ... VOC gas supply source, 50 ... Gas turbine cogeneration equipment, 60 ... Valuable component collection | recovery apparatus 70 ... Pollution treatment device, 80 ... Deodorizing furnace, 90 ... Concentration device.

Claims (12)

混合物に含まれる2種類の成分の濃度を測定する方法において、
前記2種類の成分に対して異なる感度を有する2種類の濃度測定法を用いて、それぞれの濃度測定法による混合物の見かけの濃度を実測し、その見かけの混合物濃度実測値と前記2種類の濃度測定法に対する各成分の感度とを用いて2種類の成分の濃度を求めることを特徴とする混合成分系の濃度測定方法。
In a method for measuring the concentration of two components contained in a mixture,
Using two kinds of concentration measuring methods having different sensitivities to the two kinds of components, the apparent concentration of the mixture by each concentration measuring method is actually measured, and the apparent measured mixture concentration and the two kinds of concentrations are measured. A concentration measurement method for a mixed component system, wherein concentrations of two types of components are obtained using sensitivity of each component with respect to the measurement method.
請求項1において、前記2種類の濃度測定法の各被測定成分に対する感度は、相対感度であることを特徴とする混合成分系の濃度測定方法。   2. The mixed component concentration measurement method according to claim 1, wherein the sensitivity of each of the two types of concentration measurement methods to each component to be measured is a relative sensitivity. 請求項1において、前記2種類の濃度測定法による見かけの濃度の実測値の比と、前記2種類の濃度測定法に対する各被測定成分の相対感度から、2種類の被測定成分の混合比率を求め、この混合比率を用いて前記2種類の濃度測定法のうちのいずれか一方の濃度測定法で実測した見かけの混合物濃度実測値を補正する補正係数を求め、補正された混合物濃度実測値対する各成分の濃度を求めることを特徴とする混合成分系の濃度測定方法。   2. The mixing ratio of the two types of measured components is determined from the ratio of the actual values of the apparent concentrations obtained by the two types of concentration measuring methods and the relative sensitivity of each measured component with respect to the two types of concentration measuring methods. Using this mixing ratio, a correction coefficient for correcting an apparent mixture concentration actual measurement value actually measured by one of the two types of concentration measurement methods is obtained, and the corrected mixture concentration actual measurement value is obtained. A method for measuring the concentration of a mixed component system, wherein the concentration of each component is obtained. 請求項1ないし3のいずれか1項において、
前記混合物は、2種類の揮発性有機化合物を含む混合ガスであり、前記2種類の濃度測定法の一つは、赤外式濃度計を用いた赤外濃度法であり、もう一つは、水素炎イオン化検出計が使用される水素炎イオン化検出法であることを特徴とする混合成分系の濃度測定方法。
In any one of Claims 1 thru | or 3,
The mixture is a mixed gas containing two kinds of volatile organic compounds, and one of the two kinds of concentration measuring methods is an infrared concentration method using an infrared densitometer, and the other is A method for measuring the concentration of a mixed component system, which is a flame ionization detection method using a flame ionization detector.
請求項1ないし3のいずれか1項において、
前記2種類の被測定成分は、二つの異なる波長の赤外線に対して異なる感度を有し、
前記2種類の濃度測定法は、前記二つの異なる波長の赤外線を用いて前記混合物の見かけの濃度を実測するそれぞれの赤外式濃度測定法であることを特徴とする混合成分系の濃度測定方法。
In any one of Claims 1 thru | or 3,
The two kinds of components to be measured have different sensitivities to two different wavelengths of infrared rays,
The two types of concentration measuring methods are respective infrared concentration measuring methods for actually measuring the apparent concentration of the mixture using infrared rays of the two different wavelengths. .
混合物に含まれる2種類の成分の濃度を測定する装置において、
前記2種類の被測定成分に対して異なる感度を有する2種類の濃度測定計と、
前記それぞれの濃度計を用いて実測された見かけの混合物濃度実測値と前記2種類の濃度測定法に対する各成分の感度とを用いて2種類の成分の濃度を算出する演算部と、
を備えたことを特徴とする混合成分系の濃度測定装置。
In an apparatus for measuring the concentration of two components contained in a mixture,
Two types of concentration meters having different sensitivities to the two types of measured components;
A calculation unit that calculates the concentration of two types of components using the apparent mixture concentration actual value measured using the respective densitometers and the sensitivity of each component with respect to the two types of concentration measurement methods;
A mixed component concentration measuring apparatus comprising:
混合物に含まれる2種類の成分の濃度を測定する装置において、
波長の異なる2種類の光を利用して前記混合物の濃度実測を行う濃度計と、
前記二つの異なる波長の光を用いて実測された見かけの混合物濃度実測値と各成分の前記異なる波長に対する感度とを用いて、2種類の成分の濃度を算出する演算部と、
を備えたことを特徴とする混合成分系の濃度測定装置。
In an apparatus for measuring the concentration of two components contained in a mixture,
A densitometer that measures the concentration of the mixture using two types of light having different wavelengths;
An arithmetic unit that calculates the concentration of two types of components using the apparent mixture concentration actual value measured using the light of the two different wavelengths and the sensitivity of each component to the different wavelengths;
A mixed component concentration measuring apparatus comprising:
2種類の揮発性有機化合物(以下、「VOC」と略称する)を含む混合ガスを省エネルギー設備に供給するVOC混合ガス供給システムにおいて、
VOC混合ガスの供給ラインに設置される前記請求項6又は7記載の混合成分系の濃度測定装置と、
前記VOC混合ガスの供給ラインに設置される流量計と、
前記濃度測定装置で算出される前記VOC混合ガスの各成分の濃度値及び前記流量計からのVOC混合ガス流量値を基にして前記省エネルギー設備の入熱量を算出する演算装置と、
を備えたことを特徴とするVOC混合ガス供給システム。
In a VOC mixed gas supply system that supplies a mixed gas containing two types of volatile organic compounds (hereinafter abbreviated as “VOC”) to an energy saving facility,
The concentration measuring apparatus for a mixed component system according to claim 6 or 7 installed in a VOC mixed gas supply line;
A flow meter installed in the VOC mixed gas supply line;
An arithmetic device that calculates the heat input amount of the energy saving facility based on the concentration value of each component of the VOC mixed gas calculated by the concentration measuring device and the VOC mixed gas flow rate value from the flow meter,
VOC mixed gas supply system characterized by comprising
工場廃水に含まれる有価成分を回収する有価成分回収装置を備えた廃水処理制御システムにおいて、
工場の排水ラインに設置される前記請求項6又は7記載の混合成分系の濃度測定装置と、
前記濃度測定装置で算出される前記各成分の濃度値の少なくとも一つが所定の濃度以上である時に前記有価成分回収装置に廃水を導き、いずれの成分の濃度値も所定の濃度を満たさない場合には、前記廃水を前記有価成分回収装置に通さずに排水する排水ルートの切り替え装置と、を備えたことを特徴とする制御処理制御システム。
In a wastewater treatment control system equipped with a valuable component recovery device that recovers valuable components contained in factory wastewater,
The concentration measuring apparatus of the mixed component system according to claim 6 or 7 installed in a drain line of a factory,
When at least one of the concentration values of each component calculated by the concentration measuring device is equal to or higher than a predetermined concentration, the wastewater is led to the valuable component recovery device, and the concentration value of any component does not satisfy the predetermined concentration And a drain route switching device for draining the waste water without passing through the valuable component recovery device.
工場廃水に含まれる汚濁成分を処理する廃水処理設備を備えた廃水処理制御システムにおいて、
工場の排水ラインに設置される前記請求項6又は7記載の混合成分系の濃度測定装置と、
前記濃度測定装置で算出される前記各成分の濃度値の少なくとも一つが所定の濃度以上である時に前記廃水処理設備に廃水を導き、いずれの成分の濃度値も所定の濃度を満たさない場合には、前記廃水を前記廃水処理設備に通さずに排水する排水ルートの切り替え装置と、を備えたことを特徴とする制御処理制御システム。
In a wastewater treatment control system equipped with a wastewater treatment facility for treating pollutant components contained in factory wastewater,
The concentration measuring apparatus of the mixed component system according to claim 6 or 7 installed in a drain line of a factory,
When at least one of the concentration values of each component calculated by the concentration measuring device is equal to or higher than a predetermined concentration, the wastewater is guided to the wastewater treatment facility, and the concentration values of any component do not satisfy the predetermined concentration A drainage route switching device for draining the wastewater without passing through the wastewater treatment facility.
工場から送給されるVOC混合ガスを導入し、蓄熱体により高温酸化分解することにより清浄化されたガスを排出する蓄熱式脱臭炉に用いる燃焼温度制御システムにおいて、
VOC混合ガスの送給ラインに設置される前記請求項6又は7記載の混合成分系の濃度測定装置と、
前記VOC混合ガスの送給ラインに設置される流量計と、
前記濃度測定装置で算出される前記VOC混合ガスの各成分の濃度値及び前記流量計からのVOC混合ガス流量を基にして前記VOC混合ガスの発熱量を算出する演算装置と、
前記発熱量が設定点を越える場合には大気吸引により脱臭炉内を希釈する大気吸引ダンパと、を備えたことを特徴する蓄熱式脱臭炉の燃焼温度制御システム。
In the combustion temperature control system used for the regenerative deodorization furnace that introduces the VOC mixed gas supplied from the factory and discharges the gas purified by high-temperature oxidative decomposition by the heat storage body,
The concentration measuring apparatus for a mixed component system according to claim 6 or 7 installed in a VOC mixed gas supply line;
A flow meter installed in the VOC mixed gas supply line;
An arithmetic device that calculates the calorific value of the VOC mixed gas based on the concentration value of each component of the VOC mixed gas calculated by the concentration measuring device and the VOC mixed gas flow rate from the flowmeter, and
A combustion temperature control system for a regenerative deodorization furnace, comprising: an air suction damper for diluting the inside of the deodorization furnace by air suction when the calorific value exceeds a set point.
工場から送給されるVOC混合ガスを濃縮する濃縮装置に用いられる運転制御システムにおいて、
VOC混合ガスの送給ラインに設置される前記請求項6又は7記載の混合成分系の濃度測定装置と、
濃縮後の各成分濃度が予め設定した管理濃度を超える可能性がある場合には前記濃縮装置の濃縮ガスを大気吸引により予め希釈して、濃縮後のVOCガス濃度が管理濃度を越えないように制御する大気吸引ダンパと、
を備えたことを特徴とするVOCガス濃縮装置の運転制御システム。
In the operation control system used in the concentrator that concentrates the VOC mixed gas sent from the factory,
The concentration measuring apparatus for a mixed component system according to claim 6 or 7 installed in a VOC mixed gas supply line;
If there is a possibility that the concentration of each component after concentration may exceed the preset control concentration, the concentration gas of the concentrator is pre-diluted by atmospheric suction so that the concentration of VOC gas after concentration does not exceed the control concentration. An atmospheric suction damper to control,
An operation control system for a VOC gas concentrating device.
JP2007117312A 2007-04-26 2007-04-26 Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device Withdrawn JP2008275383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117312A JP2008275383A (en) 2007-04-26 2007-04-26 Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117312A JP2008275383A (en) 2007-04-26 2007-04-26 Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device

Publications (1)

Publication Number Publication Date
JP2008275383A true JP2008275383A (en) 2008-11-13

Family

ID=40053517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117312A Withdrawn JP2008275383A (en) 2007-04-26 2007-04-26 Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device

Country Status (1)

Country Link
JP (1) JP2008275383A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046580A1 (en) * 2010-10-05 2012-04-12 新東工業株式会社 Exhaust gas purification device and temperature control method therefor
CN104487153A (en) * 2012-08-29 2015-04-01 新东工业株式会社 Exhaust gas-purifying equipment and operation control method therefor
WO2018043549A1 (en) * 2016-08-31 2018-03-08 京セラ株式会社 Sensor element and sensor device
CN113597550A (en) * 2019-03-20 2021-11-02 京瓷株式会社 Gas detection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203598A (en) * 1992-01-23 1993-08-10 Tokyo Gas Co Ltd Mixed gas detector
JPH05507866A (en) * 1990-06-06 1993-11-11 ノボ ノルディスク アクティーゼルスカブ Device for measuring blood sugar levels in vivo
JPH10123052A (en) * 1996-10-24 1998-05-15 Toyota Motor Corp Nondispersive infrared absorption analyzer and its interference correction method
JP2003050203A (en) * 2001-08-03 2003-02-21 Nissan Motor Co Ltd Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2004157007A (en) * 2002-11-06 2004-06-03 Keio Gijuku Method and apparatus for measuring volatile organic compound
JP2005522711A (en) * 2002-04-15 2005-07-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー How to restore the sensitivity, speed or stability of a gas sensing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507866A (en) * 1990-06-06 1993-11-11 ノボ ノルディスク アクティーゼルスカブ Device for measuring blood sugar levels in vivo
JPH05203598A (en) * 1992-01-23 1993-08-10 Tokyo Gas Co Ltd Mixed gas detector
JPH10123052A (en) * 1996-10-24 1998-05-15 Toyota Motor Corp Nondispersive infrared absorption analyzer and its interference correction method
JP2003050203A (en) * 2001-08-03 2003-02-21 Nissan Motor Co Ltd Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2005522711A (en) * 2002-04-15 2005-07-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー How to restore the sensitivity, speed or stability of a gas sensing material
JP2004157007A (en) * 2002-11-06 2004-06-03 Keio Gijuku Method and apparatus for measuring volatile organic compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046580A1 (en) * 2010-10-05 2012-04-12 新東工業株式会社 Exhaust gas purification device and temperature control method therefor
JP5131574B2 (en) * 2010-10-05 2013-01-30 新東工業株式会社 Exhaust gas purification device and temperature control method thereof
CN104487153A (en) * 2012-08-29 2015-04-01 新东工业株式会社 Exhaust gas-purifying equipment and operation control method therefor
CN104487153B (en) * 2012-08-29 2017-02-22 新东工业株式会社 Exhaust gas-purifying equipment and operation control method therefor
WO2018043549A1 (en) * 2016-08-31 2018-03-08 京セラ株式会社 Sensor element and sensor device
CN109642863A (en) * 2016-08-31 2019-04-16 京瓷株式会社 Sensor element and sensor device
JPWO2018043549A1 (en) * 2016-08-31 2019-06-24 京セラ株式会社 Sensor element and sensor device
JP2021039110A (en) * 2016-08-31 2021-03-11 京セラ株式会社 Sensor element and sensor device
JP7382301B2 (en) 2016-08-31 2023-11-16 京セラ株式会社 Sensor element and sensor device
CN113597550A (en) * 2019-03-20 2021-11-02 京瓷株式会社 Gas detection system

Similar Documents

Publication Publication Date Title
US5879948A (en) Determination of total mercury in exhaust gases
KR100493624B1 (en) System for detecting amine and other basic molecular contamination in a gas
CN101500700B (en) Method and apparatus for converting oxidized mercury into elemental mercury
US20090018688A1 (en) Methods and systems for designing and validating operation of abatement systems
EP2906936B1 (en) Interference compensated photoionization detector
JP2002517979A (en) System for detecting amine and other basic molecule contamination in gases
CN101939079A (en) Be used to handle system and method from the combustible waste gases of processing procedure
JP2008275383A (en) Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device
WO2010102375A1 (en) Apparatus for continuous in situ monitoring of elemental mercury vapour, and method of using same
CA2872782C (en) Extractive continuous ammonia monitoring system
JP6429911B2 (en) Method for measuring calorific value of combustion object, combustion control method and combustion control apparatus for combustion furnace using measured calorific value
KR101620408B1 (en) The system for detecting gas
KR102438924B1 (en) Sensing based on internet of thing and intelligent monitoring system for operating regenerative thermal oxidizer, and operating method therof
Nguyen et al. Fast and stable real time monitoring of gaseous mercury in its catalytic oxidation using a fully modified cold-vapor atomic absorption mercury analyzer
Cao et al. Fast indirect measurement of PCDD/F TEQ emission from municipal solid waste incineration: a review
JP4899259B2 (en) SO3, NH3 simultaneous continuous concentration meter
JP2009192482A (en) Method and device for measuring exhaust gas odor of cement manufacturing facility
JP2000221183A (en) Flow abnormality determining method of water quality analyzer
JP2008261865A (en) Instrument for measuring volatile organic compound
KR102056354B1 (en) Gas Sensor Array for Odor Measurement
JP5339935B2 (en) Deodorizing device and safe driving method thereof
Higgins et al. Environmental sensor system for expanded capability of PEM fuel cell use in high air contaminant conditions
Ghorbanian et al. VOC Emissions Comparison of Natural Gas and Biogas Usage in Biosolids Drying
CN116448963B (en) Exhaust gas concentration detection method and equipment based on multi-pipeline structure, device and medium
KR20230014323A (en) Electric Power/Fuel Reducing Apparatus of Gas Scrubber Linked to Sensor Part and Electric Power/Fuel Reducing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110617