JP2004157007A - Method and apparatus for measuring volatile organic compound - Google Patents

Method and apparatus for measuring volatile organic compound Download PDF

Info

Publication number
JP2004157007A
JP2004157007A JP2002322731A JP2002322731A JP2004157007A JP 2004157007 A JP2004157007 A JP 2004157007A JP 2002322731 A JP2002322731 A JP 2002322731A JP 2002322731 A JP2002322731 A JP 2002322731A JP 2004157007 A JP2004157007 A JP 2004157007A
Authority
JP
Japan
Prior art keywords
volatile organic
organic compound
photocatalyst
analysis gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002322731A
Other languages
Japanese (ja)
Other versions
JP3809511B2 (en
Inventor
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2002322731A priority Critical patent/JP3809511B2/en
Publication of JP2004157007A publication Critical patent/JP2004157007A/en
Application granted granted Critical
Publication of JP3809511B2 publication Critical patent/JP3809511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for measuring a volatile organic compound and an apparatus for implementing the method. <P>SOLUTION: The apparatus is provided with a feed port and a discharge port of an analysis gas and a photocatalyst fixing part having a volatile organic compound resolution. The analysis gas is introduced into a volatile organic compound decomposition apparatus comprising a gas flow path for discharging the analysis gas after the analysis gas is introduced to a surface of the photocatalyst fixing part. If the volatile organic compound is contained in the analysis gas, the volatile organic compound is decomposed into carbon dioxide on the surface of the photocatalyst fixing part by a photocatalyst reaction, a concentration of the carbon dioxide discharged from the volatile organic compound decomposition apparatus is measured, and the total quantity of the volatile organic compound contained in the analysis gas is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、分析気体に含まれるホルムアルデヒドやトルエンなどをはじめとする揮発性有機化合物(VOC:Volatile Organic Compounds)の総量を測定するための方法および当該方法を実行するための装置に関する。
【0002】
【従来の技術】
近年、住宅の気密化に伴い、建築材料や接着剤などから放出される揮発性有機化合物がシックハウス症候群や化学物質過敏症などの原因となることが報告されており、健康への影響の懸念から社会的な問題となっている。我が国においては、現在、厚生労働省によりホルムアルデヒドやトルエンを含む11の揮発性有機化合物について室内濃度指針値が定められ、その総量(総揮発性有機化合物:TVOC)に関しても400μg/m(新築住宅は1000μg/m)という暫定目標値が示されるなど、対策が進められている。
揮発性有機化合物への対策を検討する上で、揮発性有機化合物汚染の指標となる総揮発性有機化合物の濃度の測定は重要である。今日、総揮発性有機化合物の濃度の測定は、ガスクロマトグラフ・質量分析計(GC−MS)やガスクロマトグラフ・水素炎イオン化検出器(GC−FID)などを用いて個々の揮発性有機化合物の濃度を測定し、これを加算する方法が採られている。しかし、室内には数百種類にも及ぶ揮発性有機化合物が存在するので個々の揮発性有機化合物の濃度を測定することには大変な労力を要するとともに測定の限界もある。このような点に鑑み、下記特許文献1においては、トルエンまたはキシレンの濃度から総揮発性有機化合物の濃度を推定する方法が提案されているが、さらに優れた総揮発性有機化合物の濃度を測定する方法が望まれている。
【0003】
【特許文献1】
特開2002−257811号公報
【0004】
【発明が解決しようとする課題】
そこで本発明は、新規な揮発性有機化合物の測定方法および当該方法を実行するための装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の点に鑑みてなされた本発明の揮発性有機化合物の測定方法は、請求項1記載の通り、分析気体の導入口と排出口、揮発性有機化合物分解能を有する光触媒の固定部を備え、分析気体が光触媒固定部の表面に導通された後に排出されるように気体流路が構成された揮発性有機化合物分解装置に分析気体を導入し、分析気体に揮発性有機化合物が含まれている場合にはこれを光触媒固定部の表面において光触媒反応により二酸化炭素に分解せしめた後、揮発性有機化合物分解装置から排出される二酸化炭素の濃度を測定することで分析気体に含まれていた揮発性有機化合物の総量を測定することを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、揮発性有機化合物分解能を有する光触媒が、酸化チタンであることを特徴とする。
また、請求項3記載の方法は、請求項1記載の方法において、揮発性有機化合物分解装置が、その内壁の少なくとも一部に光触媒固定部が形成され、その内部に光触媒固定部の表面における光触媒反応を活性化するための光源が光触媒固定部が形成された内壁との間に間隙が存するように配設され、この間隙を気体流路としたものであることを特徴とする。
また、請求項4記載の方法は、請求項3記載の方法において、揮発性有機化合物分解装置が、筒体構造であることを特徴とする。
また、請求項5記載の方法は、請求項3記載の方法において、光源が、紫外光ランプまたは可視光ランプであることを特徴とする。
また、請求項6記載の方法は、請求項1記載の方法において、揮発性有機化合物分解装置が、その内部に光触媒固定部を有する部材が配設され、外光によって光触媒固定部の表面における光触媒反応を活性化する構造としたものであることを特徴とする。
また、請求項7記載の方法は、請求項6記載の方法において、揮発性有機化合物分解装置が、光透過性素材で構成された筒体構造であり、その内部に光触媒固定部を側面に形成した棒状部材が筒体構造の内側壁との間に間隙が存するように配設され、この間隙を気体流路としたものであることを特徴とする。
また、請求項8記載の方法は、請求項1記載の方法において、揮発性有機化合物分解装置が、その内部に光触媒固定部を有する部材と、光触媒固定部の表面における光触媒反応を活性化するための光源が配設された構造としたものであることを特徴とする。
また、請求項9記載の方法は、請求項1記載の方法において、分析気体に揮発性有機化合物と二酸化炭素が含まれている可能性がある場合、分析気体を予めコールドトラップに導入し、揮発性有機化合物が選択的に冷却凝集する温度にて揮発性有機化合物だけを濃縮することで二酸化炭素を分析気体から除去した後、冷却凝集した揮発性有機化合物を気化加熱してからこれをキャリアガスとともに揮発性有機化合物分解装置に導入することを特徴とする。
また、請求項10記載の方法は、請求項9記載の方法において、キャリアガスが、酸素を混合させた不活性ガスであることを特徴とする。
また、請求項11記載の方法は、請求項1記載の方法において、揮発性有機化合物分解装置から排出された二酸化炭素の濃度を非分散型赤外線分析計に導いて測定することを特徴とする。
また、本発明の分析気体に含まれている揮発性有機化合物の総量を測定するための装置は、請求項12記載の通り、分析気体の導入口と排出口、揮発性有機化合物分解能を有する光触媒の固定部を備え、分析気体が光触媒固定部の表面に導通された後に排出されるように気体流路が構成された揮発性有機化合物分解装置と、揮発性有機化合物分解装置から排出される二酸化炭素の濃度を測定する装置を少なくとも備えてなることを特徴とする。
【0006】
【発明の実施の形態】
本発明の揮発性有機化合物の測定方法は、分析気体の導入口と排出口、揮発性有機化合物分解能を有する光触媒の固定部を備え、分析気体が光触媒固定部の表面に導通された後に排出されるように気体流路が構成された揮発性有機化合物分解装置に分析気体を導入し、分析気体に揮発性有機化合物が含まれている場合にはこれを光触媒固定部の表面において光触媒反応により二酸化炭素に分解せしめた後、揮発性有機化合物分解装置から排出される二酸化炭素の濃度を測定することで分析気体に含まれていた揮発性有機化合物の総量を測定することを特徴とするものである。
つまり、本発明の揮発性有機化合物の測定方法は、光触媒反応、即ち、光触媒の作用によって酸素や水分から発生する活性酸素種との反応により、揮発性有機化合物が二酸化炭素に分解される性質を利用し、分析気体に含まれていた揮発性有機化合物から生成する二酸化炭素の濃度を測定することで揮発性有機化合物の総量を二酸化炭素量または炭素量に換算して測定するというものであり、これまでにない全く新しい測定方法である。本発明の揮発性有機化合物の測定方法によれば、所定時間ごとに連続して揮発性有機化合物の測定を簡便に行うことができる。
【0007】
本発明の揮発性有機化合物の測定方法は、分析気体の導入口と排出口、揮発性有機化合物分解能を有する光触媒の固定部を備え、分析気体が光触媒固定部の表面に導通された後に排出されるように気体流路が構成された揮発性有機化合物分解装置と、揮発性有機化合物分解装置から排出される二酸化炭素の濃度を測定する装置を少なくとも備えてなる、分析気体に含まれている揮発性有機化合物の総量を測定するための装置を用いて実行される。
【0008】
このうち、好適に用いられる揮発性有機化合物分解装置の代表的なものとしては、その内壁の少なくとも一部に光触媒固定部が形成され、その内部に光触媒固定部の表面における光触媒反応を活性化するための光源が光触媒固定部が形成された内壁との間に間隙が存するように配設され、この間隙を気体流路としたものが挙げられる。このような装置の一例の概略断面を図1に示す。
【0009】
図1に示す揮発性有機化合物分解装置1は、例えば筒体構造を有する。装置1において符号2はガラス管であり、その内側壁に揮発性有機化合物分解能を有する光触媒を固定することで、光触媒固定部3が形成されている。ガラス管2の内側壁への揮発性有機化合物分解能を有する光触媒の固定化は、例えば、光触媒として酸化チタンを用いる場合、ガラス管の内側壁をフッ酸処理することで表面を凹凸にし、ここにバインダー樹脂としてのポリテトラフルオロエチレン(PPTFE)に酸化チタン微粒子とヒドロキシアパタイト(水酸化リン酸カルシウム)のブレンド体を有機溶媒中で均一混合して得られるエマルジョン組成物を塗布してから成膜化することで行えばよい。このようにして形成された光触媒固定部はガラス管の内側壁に強固に保持されており、耐久性に優れるという利点がある。ガラス管2の内部には、光触媒固定部3における光触媒反応を活性化するための光源4がガラス管の内側壁との間に間隙が存するように配設され、導入口5から装置内に導入された分析気体が排出口6から排出されるまでの気体流路が確保されている(矢示参照)。光源4は、光触媒固定部3における光触媒反応を活性化することができるものであればどのようなものであってもよく、例えば、紫外光ランプや可視光ランプを好適に用いることができる。なお、光源が汚損することを防ぐ目的で、光源を石英管の内部に挿入して配設するようにしてもよい。また、揮発性有機化合物分解装置1には、その内部を洗浄するための洗浄水を注入するための注入口と排水するための排水口を設けてもよい。
【0010】
図1に示した揮発性有機化合物分解装置を含む、分析気体に含まれている揮発性有機化合物の総量を測定するための装置として望ましい態様の一例の概略を図2に示す。揮発性有機化合物の総量の測定を行うための基本骨子となる手順は、揮発性有機化合物分解装置1の導入口5から分析気体を導入し、分析気体に揮発性有機化合物が含まれている場合にはこれを装置内部の光触媒固定部(図1参照)の表面において光触媒反応により二酸化炭素に分解し、生成した二酸化炭素を排出口6から排出した後に二酸化炭素濃度測定装置11にてその濃度を測定するというものである。二酸化炭素濃度測定装置としては、例えば、非分散型赤外線分析計(ND−IR:Nondispersive Infrared Analyzer)が用いられる。
【0011】
分析気体が室内空気のような場合、分析気体には建築材料や接着剤などから放出された揮発性有機化合物と空気中の二酸化炭素が含まれている。空気中の二酸化炭素の濃度は約360ppmであるのに対し、室内空気中の総揮発性有機化合物の濃度はせいぜい数ppm程度である。このような分析気体を直接的に揮発性有機化合物分解装置に導入した場合、装置から排出される二酸化炭素は、揮発性有機化合物が分解されて生成した二酸化炭素と空気中の二酸化炭素が混じりあったもので、その大部分が空気中の二酸化炭素ということになり、揮発性有機化合物が分解されて生成した二酸化炭素の濃度を測定することができないといった事態を招く。そこで、図2に示した装置においては、揮発性有機化合物と二酸化炭素の沸点の違いを利用し、揮発性有機化合物は冷却凝集するが二酸化炭素(沸点−78.5℃)はそのまま排気されるような温度(−35℃〜−25℃)に設定されたコールドトラップ12に分析気体を吸引ポンプ13を用いて予め導入し、揮発性有機化合物を選択的に冷却凝集させて濃縮することで二酸化炭素を分析気体から除去した後、冷却凝集した揮発性有機化合物を気化加熱してからこれをキャリアガスとともに揮発性有機化合物分解装置1に導入するという構成を採る。このような操作はマニホールド14を用いて容易に実行することができる。以上の構成によれば、室内空気のように分析気体に揮発性有機化合物がごく微量にしか含まれていない反面、二酸化炭素が多量に含まれているような場合であっても、揮発性有機化合物の総量の濃度を正確に測定することができる。ここで用いるキャリアガスとしては酸素を混合させた不活性ガス(ヘリウムガスなど)が望ましい。このようなキャリアガスを用いれば、光触媒反応における活性酸素種源としての酸素を揮発性有機化合物とともに揮発性有機化合物分解装置1に導入することができるからである。不活性ガスに対する酸素の混合割合は0.1vol%〜3vol%程度でよい。なお、コールドトラップ12で揮発性有機化合物を冷却凝集させる際、分析気体に含まれている水分も同時に冷却凝集され、冷却凝集した揮発性有機化合物を気化加熱する際、冷却凝集した水分も気化し、揮発性有機化合物分解装置1に導入されるが、このようにして導入された水分もまた活性酸素種源として機能する。
【0012】
また、好適に用いられるその他の揮発性有機化合物分解装置としては、その内部に光触媒固定部を有する部材が配設され、外光によって光触媒固定部の表面における光触媒反応を活性化する構造としたものが挙げられる。このような装置の一例の概略断面を図3に示す。
【0013】
図3に示す揮発性有機化合物分解装置21は、光透過性素材で構成された例えば筒体構造を有する。装置21において符号22はガラス管である。ガラス管22の内部には、揮発性有機化合物分解能を有する光触媒の固定部23を側面に形成した棒状部材24が筒体構造の内側壁との間に間隙が存するように配設され、導入口25から装置内に導入された分析気体が排出口26から排出されるまでの気体流路が確保されている(矢示参照)。揮発性有機化合物分解能を有する光触媒として酸化チタンを用いる場合であって、棒状部材24の材質がガラスである場合、棒状部材24の側面への光触媒固定部23の形成は、前述の方法により行えばよい。装置21においては、外光によって光触媒固定部の表面における光触媒反応を活性化するので、内部に光源を必要としないことから構造が簡単であり、消費電力の削減を図ることができる。また、光触媒固定部23を側面に形成した棒状部材24を着脱自在にすれば、その取替えが自在であるといった利点を有する。
分析気体に含まれている揮発性有機化合物の総量を測定するための装置に図3に示す揮発性有機化合物分解装置21を組み込んで揮発性有機化合物の総量を測定する場合における、その他の構成については前述の構成に従えばよい。
【0014】
また、好適に用いられるその他の揮発性有機化合物分解装置としては、その内部に光触媒固定部を有する部材と、光触媒固定部の表面における光触媒反応を活性化するための光源が配設された構造としたものが挙げられる。図面を用いての説明は省略するが、要すれば、前述の第一の揮発性有機化合物分解装置においては、その内壁の少なくとも一部に光触媒固定部が形成されていたが、この揮発性有機化合物分解装置においては、光触媒固定部を有する部材が装置の内部に別途配設された構造としたものである。
分析気体に含まれている揮発性有機化合物の総量を測定するための装置にこのような揮発性有機化合物分解装置を組み込んで揮発性有機化合物の総量を測定する場合における、その他の構成については前述の構成に従えばよい。
【0015】
【実施例】
以下、本発明の揮発性有機化合物の測定方法を実施例にて詳細に説明する。なお、本発明は以下の記載に何ら限定して解釈されるものではない。
【0016】
(揮発性有機化合物分解装置の作成)
アセトンに酸化チタン微粒子(ST−01:石原産業社製)とヒドロキシアパタイトとポリテトラフルオロエチレンを重量比で4:2:3で添加して均一混合することで得られたエマルジョン組成物を外径11mm・内径9mmのガラス管のフッ酸処理した内側壁に塗布してから乾燥することで成膜化して光触媒固定部を形成した(光触媒固定部:有効長10cm,面積28.3cm)。次に、その内部に外径7mm・内径5mmの石英管をガラス管の内側壁と石英管の外側壁との間に間隙が存するように配設し、石英管の内部に冷陰極管蛍光灯(FC1V36/100T4:東芝社製)を挿入して配設することで、図1に示す概略断面を有する揮発性有機化合物分解装置(但し石英管が存在する点は図1と異なる)を作成した。
【0017】
(揮発性有機化合物の光触媒による分解効率)
室内空気中における主要な揮発性有機化合物であるホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレンの各々について(これらの総量が室内空気中の揮発性有機化合物の総量の90%以上を占めることが知られている)、表1に示す流速にて表1に示す濃度のものを上記の揮発性有機化合物分解装置に導入し、導入濃度(C:ppm)と排出口における排出濃度(C:ppm)から光触媒による分解効率(E:%)を下記の式(1)より算出した。個々の条件における実験を各々n回ずつ行ってその平均値と標準偏差とを求めた。結果を表1に示す。
【0018】
E(%)={(C−C)/C}×100 ・・・(1)
【0019】
【表1】

Figure 2004157007
【0020】
表1から明らかなように、いずれの揮発性有機化合物についてもppmの濃度レベルにおいて約90%以上の高い分解効率が得られることがわかった。また、別途の実験にて、これらの揮発性有機化合物から生成した二酸化炭素の濃度を非分散型赤外線分析計で測定した。このような結果から、この揮発性有機化合物分解装置を用いれば、揮発性有機化合物をほぼ完全に二酸化炭素に分解することができることがわかった。従って、分析気体に含まれていた揮発性有機化合物から生成する二酸化炭素の濃度(X:ppm)を測定することで、揮発性有機化合物の総量を下記の式(2)より二酸化炭素量(Y:μg/m)に換算して、または下記の式(3)より炭素量(Z:μg/m)に換算して測定することができることがわかった。
【0021】
Y(μg/m)={(44×1000)/24}×X(ppm) ・・・(2)
Z(μg/m)=(12/44)×Y(μg/m) ・・・(3)
44:二酸化炭素の分子量
24:1気圧20℃における気体1モルの体積(L)
12:炭素の原子量
【0022】
表1に示される通り、揮発性有機化合物の種類によって分解効率に多少の差異が認められるが、測定精度を高めるためには分析気体に含まれていることが予想されるいずれの揮発性有機化合物についても約90%以上の分解効率が得られるように測定条件を設定することが望ましい。本実施例に従えば、揮発性有機化合物分解装置への分析気体の導入流速は、例えば、0.1L/min〜0.5L/minに設定すればよいが、分析気体にトルエンやキシレンが含まれていることが予想される場合には、これらに対する分解効率を考慮して、導入流速は0.1L/min程度とすることが望ましい。
【0023】
【発明の効果】
本発明によれば、新規な揮発性有機化合物の測定方法および当該方法を実行するための装置が提供される。
【図面の簡単な説明】
【図1】揮発性有機化合物分解装置の一例の概略断面図。
【図2】分析気体に含まれている揮発性有機化合物の総量を測定するための装置として望ましい態様の一例の概略図。
【図3】揮発性有機化合物分解装置のその他の例の概略断面図。
【符号の説明】
1,21 揮発性有機化合物分解装置
2,22 ガラス管
3,23 光触媒固定部
4 光源
5,25 導入口
6,26 排出口
11 二酸化炭素濃度測定装置
12 コールドトラップ
13 吸引ポンプ
14 マニホールド
24 棒状部材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the total amount of volatile organic compounds (VOCs) such as formaldehyde and toluene contained in an analysis gas and an apparatus for performing the method.
[0002]
[Prior art]
In recent years, it has been reported that volatile organic compounds released from building materials, adhesives, etc., due to the hermeticity of houses, cause sick house syndrome and chemical sensitivity, etc. It is a social problem. Currently, in Japan, the Ministry of Health, Labor and Welfare has established indoor concentration guideline values for 11 volatile organic compounds including formaldehyde and toluene, and the total amount (total volatile organic compounds: TVOC) is also 400 μg / m 3 (for newly built houses, Countermeasures are being taken, such as a provisional target value of 1000 μg / m 3 ).
In studying measures for volatile organic compounds, it is important to measure the concentration of total volatile organic compounds, which is an indicator of volatile organic compound contamination. Today, the measurement of the concentration of total volatile organic compounds is carried out using a gas chromatograph / mass spectrometer (GC-MS) or a gas chromatograph / flame flame ionization detector (GC-FID). Are measured and added. However, since hundreds of types of volatile organic compounds are present in a room, measuring the concentration of each volatile organic compound requires a great deal of effort and has limitations in measurement. In view of such a point, Patent Document 1 listed below proposes a method for estimating the concentration of total volatile organic compounds from the concentration of toluene or xylene, but more excellent measurement of the concentration of total volatile organic compounds is performed. There is a need for a way to do this.
[0003]
[Patent Document 1]
JP-A-2002-257811
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a novel method for measuring a volatile organic compound and an apparatus for performing the method.
[0005]
[Means for Solving the Problems]
The method for measuring a volatile organic compound according to the present invention, which has been made in view of the above points, includes an inlet and an outlet for an analysis gas and a fixing unit for a photocatalyst having a capability of decomposing a volatile organic compound, as described in claim 1. The analysis gas is introduced into a volatile organic compound decomposition device having a gas flow path so that the analysis gas is discharged after being conducted to the surface of the photocatalyst fixing unit, and the analysis gas contains the volatile organic compound. In this case, this is decomposed into carbon dioxide by a photocatalytic reaction on the surface of the photocatalyst fixed part, and then the concentration of carbon dioxide emitted from the volatile organic compound decomposer is measured to determine the volatility contained in the analysis gas. It is characterized by measuring the total amount of organic compounds.
The method according to claim 2 is characterized in that, in the method according to claim 1, the photocatalyst having a capability of decomposing volatile organic compounds is titanium oxide.
According to a third aspect of the present invention, in the method of the first aspect, the volatile organic compound decomposing apparatus has a photocatalyst fixing portion formed on at least a part of an inner wall thereof, and a photocatalyst on a surface of the photocatalyst fixing portion therein. A light source for activating the reaction is disposed such that a gap exists between the light source and the inner wall on which the photocatalyst fixing portion is formed, and the gap is used as a gas flow path.
According to a fourth aspect of the present invention, in the method of the third aspect, the volatile organic compound decomposing apparatus has a cylindrical structure.
According to a fifth aspect of the present invention, in the method of the third aspect, the light source is an ultraviolet lamp or a visible light lamp.
According to a sixth aspect of the present invention, in the method of the first aspect, the volatile organic compound decomposing apparatus is provided with a member having a photocatalyst fixing portion inside the photocatalyst fixing portion due to external light. It is characterized by having a structure that activates the reaction.
According to a seventh aspect of the present invention, in the method according to the sixth aspect, the volatile organic compound decomposing device has a cylindrical structure made of a light-transmitting material, and a photocatalyst fixing portion is formed on a side surface thereof. The rod-shaped member is disposed such that a gap exists between the rod-shaped member and the inner wall of the tubular structure, and the gap is used as a gas flow path.
The method according to claim 8 is the method according to claim 1, wherein the volatile organic compound decomposing device activates the photocatalytic reaction on the member having the photocatalyst fixing portion therein and the surface of the photocatalyst fixing portion. Characterized in that the light source is disposed in the structure.
According to a ninth aspect of the present invention, in the method according to the first aspect, when there is a possibility that a volatile organic compound and carbon dioxide are contained in the analysis gas, the analysis gas is introduced into a cold trap in advance and the volatile gas is volatilized. After removing carbon dioxide from the analysis gas by concentrating only the volatile organic compound at the temperature at which the volatile organic compound selectively cools and aggregates, the volatile organic compound that has cooled and aggregated is vaporized and heated, and then the carrier gas In addition, it is introduced into a volatile organic compound decomposition apparatus.
According to a tenth aspect of the present invention, in the method of the ninth aspect, the carrier gas is an inert gas mixed with oxygen.
A method according to claim 11 is characterized in that, in the method according to claim 1, the concentration of carbon dioxide discharged from the volatile organic compound decomposing device is measured by leading it to a non-dispersive infrared spectrometer.
The apparatus for measuring the total amount of volatile organic compounds contained in an analysis gas according to the present invention is a photocatalyst having an inlet and an outlet for an analysis gas and a capability of decomposing volatile organic compounds, as described in claim 12. A volatile organic compound decomposer in which a gas flow path is configured to be discharged after the analysis gas is conducted to the surface of the photocatalyst fixed part, and a carbon dioxide discharged from the volatile organic compound decomposer. At least a device for measuring the concentration of carbon is provided.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for measuring a volatile organic compound according to the present invention includes an inlet and an outlet for an analysis gas, a fixed portion of a photocatalyst having a volatile organic compound resolution, and the analysis gas is discharged after being conducted to the surface of the photocatalyst fixed portion. The analysis gas is introduced into the volatile organic compound decomposer having the gas flow path configured as described above, and when the analysis gas contains a volatile organic compound, the volatile organic compound is oxidized by the photocatalytic reaction on the surface of the photocatalyst fixing section. After being decomposed into carbon, the total amount of volatile organic compounds contained in the analysis gas is measured by measuring the concentration of carbon dioxide emitted from the volatile organic compound decomposition device. .
In other words, the method for measuring a volatile organic compound of the present invention has a property that a volatile organic compound is decomposed into carbon dioxide by a photocatalytic reaction, that is, a reaction with active oxygen species generated from oxygen or moisture by the action of a photocatalyst. Utilizing, by measuring the concentration of carbon dioxide generated from volatile organic compounds contained in the analysis gas, by converting the total amount of volatile organic compounds to carbon dioxide amount or carbon amount, it is measured, This is a completely new measurement method. According to the method for measuring a volatile organic compound of the present invention, the measurement of a volatile organic compound can be easily performed continuously at predetermined time intervals.
[0007]
The method for measuring a volatile organic compound according to the present invention includes an inlet and an outlet for an analysis gas, a fixed portion of a photocatalyst having a volatile organic compound resolution, and the analysis gas is discharged after being conducted to the surface of the photocatalyst fixed portion. A volatile organic compound decomposer having a gas flow path formed therein, and a device for measuring the concentration of carbon dioxide discharged from the volatile organic compound decomposer. This is performed using an apparatus for measuring the total amount of the organic compounds.
[0008]
Among them, a typical example of the volatile organic compound decomposer preferably used is formed with a photocatalyst fixing portion formed on at least a part of the inner wall thereof, and activates a photocatalytic reaction on the surface of the photocatalyst fixing portion therein. Light source is disposed such that a gap exists between the light source and the inner wall on which the photocatalyst fixing portion is formed, and the gap is used as a gas flow path. FIG. 1 shows a schematic cross section of an example of such an apparatus.
[0009]
The volatile organic compound decomposition device 1 shown in FIG. 1 has, for example, a cylindrical structure. In the apparatus 1, reference numeral 2 denotes a glass tube, and a photocatalyst having a capability of decomposing volatile organic compounds is fixed on the inner wall of the glass tube, so that a photocatalyst fixing portion 3 is formed. Immobilization of a photocatalyst having a capability of decomposing volatile organic compounds on the inner wall of the glass tube 2 is performed, for example, when titanium oxide is used as the photocatalyst, the inner wall of the glass tube is treated with hydrofluoric acid to make the surface uneven, and here Forming a film after applying an emulsion composition obtained by uniformly mixing a blend of titanium oxide fine particles and hydroxyapatite (calcium hydroxide phosphate) in polytetrafluoroethylene (PPTFE) as a binder resin in an organic solvent. It should be done in. The photocatalyst fixing portion thus formed is firmly held on the inner wall of the glass tube, and has an advantage of excellent durability. Inside the glass tube 2, a light source 4 for activating a photocatalytic reaction in the photocatalyst fixing section 3 is disposed so as to have a gap between the glass tube 2 and the inner wall of the glass tube. A gas flow path until the used analysis gas is discharged from the discharge port 6 is secured (see arrow). The light source 4 may be any light source that can activate the photocatalytic reaction in the photocatalyst fixing section 3, and for example, an ultraviolet lamp or a visible light lamp can be suitably used. In addition, in order to prevent the light source from being stained, the light source may be inserted and disposed inside the quartz tube. Further, the volatile organic compound decomposing apparatus 1 may be provided with an inlet for injecting cleaning water for cleaning the inside thereof and a drain port for draining.
[0010]
FIG. 2 schematically shows an example of a desirable mode for measuring the total amount of volatile organic compounds contained in the analysis gas, including the volatile organic compound decomposer shown in FIG. The basic procedure for measuring the total amount of volatile organic compounds is as follows: when an analysis gas is introduced from the inlet 5 of the volatile organic compound decomposition apparatus 1 and the analysis gas contains a volatile organic compound. Is decomposed into carbon dioxide by a photocatalytic reaction on the surface of a photocatalyst fixing portion (see FIG. 1) inside the device, and the generated carbon dioxide is discharged from an outlet 6 and then its concentration is measured by a carbon dioxide concentration measuring device 11. It is to measure. As the carbon dioxide concentration measuring device, for example, a non-dispersive infrared spectrometer (ND-IR: Nondispersive Infrared Analyzer) is used.
[0011]
When the analysis gas is room air, the analysis gas contains volatile organic compounds released from building materials and adhesives, and carbon dioxide in the air. The concentration of carbon dioxide in the air is about 360 ppm, while the concentration of total volatile organic compounds in room air is at most about a few ppm. When such an analysis gas is directly introduced into the volatile organic compound decomposition apparatus, the carbon dioxide discharged from the apparatus is a mixture of carbon dioxide generated by the decomposition of the volatile organic compound and carbon dioxide in the air. Most of this is carbon dioxide in the air, and the concentration of carbon dioxide generated by decomposition of volatile organic compounds cannot be measured. Therefore, in the apparatus shown in FIG. 2, the difference in boiling point between the volatile organic compound and carbon dioxide is utilized, and the volatile organic compound is cooled and agglomerated, but carbon dioxide (boiling point −78.5 ° C.) is exhausted as it is. The analysis gas is previously introduced into the cold trap 12 set at such a temperature (-35 ° C. to −25 ° C.) using the suction pump 13, and the volatile organic compound is selectively cooled and agglomerated to be concentrated, thereby concentrating the carbon dioxide. After the carbon is removed from the analysis gas, the volatile organic compound which has been cooled and agglomerated is vaporized and heated, and then introduced into the volatile organic compound decomposition apparatus 1 together with the carrier gas. Such an operation can be easily performed using the manifold 14. According to the above configuration, the analysis gas contains only a very small amount of a volatile organic compound as in the case of room air, but the volatile organic compound is contained even in a case where a large amount of carbon dioxide is contained. The concentration of the total amount of the compound can be accurately measured. As the carrier gas used here, an inert gas mixed with oxygen (such as helium gas) is desirable. If such a carrier gas is used, oxygen as the active oxygen species source in the photocatalytic reaction can be introduced into the volatile organic compound decomposition device 1 together with the volatile organic compound. The mixing ratio of oxygen to the inert gas may be about 0.1 vol% to 3 vol%. In addition, when the volatile organic compound is cooled and coagulated by the cold trap 12, the moisture contained in the analysis gas is also coagulated and cooled. Is introduced into the volatile organic compound decomposer 1, and the water thus introduced also functions as a source of active oxygen species.
[0012]
Further, as another volatile organic compound decomposing device that is preferably used, a member having a photocatalyst fixing portion is disposed inside the device, and a photocatalytic reaction on the surface of the photocatalyst fixing portion is activated by external light. Is mentioned. FIG. 3 shows a schematic cross section of an example of such an apparatus.
[0013]
The volatile organic compound decomposing device 21 shown in FIG. 3 has, for example, a cylindrical structure made of a light transmitting material. In the apparatus 21, reference numeral 22 is a glass tube. Inside the glass tube 22, a rod-like member 24 having a photocatalyst fixing portion 23 having the capability of decomposing volatile organic compounds formed on the side surface is disposed so that there is a gap between the rod member 24 and the inner wall of the cylindrical structure. A gas flow path from 25 through which the analysis gas introduced into the apparatus is discharged from the outlet 26 is secured (see arrows). If titanium oxide is used as the photocatalyst having the capability of decomposing volatile organic compounds, and the material of the rod-shaped member 24 is glass, the formation of the photocatalyst fixing portion 23 on the side surface of the rod-shaped member 24 may be performed by the method described above. Good. In the device 21, since the photocatalytic reaction on the surface of the photocatalyst fixing portion is activated by the external light, no light source is required inside, so that the structure is simple and the power consumption can be reduced. Further, if the rod-shaped member 24 having the photocatalyst fixing portion 23 formed on the side surface is made detachable, there is an advantage that the replacement can be made freely.
Other configurations when the total amount of volatile organic compounds is measured by incorporating the volatile organic compound decomposition device 21 shown in FIG. 3 into a device for measuring the total amount of volatile organic compounds contained in the analysis gas. May follow the configuration described above.
[0014]
Further, as another volatile organic compound decomposer preferably used, a member having a photocatalyst fixing portion therein, and a structure in which a light source for activating a photocatalytic reaction on the surface of the photocatalyst fixing portion is disposed. What was done. Although the description with reference to the drawings is omitted, if necessary, in the above-mentioned first volatile organic compound decomposing apparatus, a photocatalyst fixing portion is formed on at least a part of the inner wall. The compound decomposition device has a structure in which a member having a photocatalyst fixing portion is separately provided inside the device.
Other configurations when measuring the total amount of volatile organic compounds by incorporating such a volatile organic compound decomposition device into the device for measuring the total amount of volatile organic compounds contained in the analysis gas are described above. May be followed.
[0015]
【Example】
Hereinafter, the method for measuring a volatile organic compound of the present invention will be described in detail with reference to Examples. Note that the present invention is not construed as being limited to the following description.
[0016]
(Creation of volatile organic compound decomposition equipment)
The outer diameter of the emulsion composition obtained by adding titanium oxide fine particles (ST-01: manufactured by Ishihara Sangyo Co., Ltd.), hydroxyapatite and polytetrafluoroethylene at a weight ratio of 4: 2: 3 to acetone and uniformly mixing the mixture is added. It was applied to the hydrofluoric acid-treated inner wall of a glass tube having an inner diameter of 11 mm and an inner diameter of 9 mm, and then dried to form a film, thereby forming a photocatalyst fixing portion (photocatalyst fixing portion: effective length 10 cm, area 28.3 cm 2 ). Next, a quartz tube having an outer diameter of 7 mm and an inner diameter of 5 mm is provided inside the quartz tube such that a gap exists between the inner wall of the glass tube and the outer wall of the quartz tube. (FC1V36 / 100T4: manufactured by Toshiba Corporation) was inserted and arranged to create a volatile organic compound decomposer having a schematic cross section shown in FIG. 1 (except that a quartz tube is present, which is different from FIG. 1). .
[0017]
(Efficiency of photocatalytic decomposition of volatile organic compounds)
Formaldehyde, acetaldehyde, acetone, toluene, and xylene, which are main volatile organic compounds in indoor air, are known to account for 90% or more of the total amount of volatile organic compounds in indoor air. At a flow rate shown in Table 1 and a concentration shown in Table 1 were introduced into the volatile organic compound decomposer, and the introduced concentration (C 1 : ppm) and the discharge concentration at the outlet (C 2 : ppm) were introduced. The decomposition efficiency by photocatalyst (E:%) was calculated from the following equation (1). The experiment under each condition was performed n times, and the average value and standard deviation were obtained. Table 1 shows the results.
[0018]
E (%) = {(C 1 −C 2 ) / C 1 } × 100 (1)
[0019]
[Table 1]
Figure 2004157007
[0020]
As is clear from Table 1, it was found that a high decomposition efficiency of about 90% or more was obtained at the concentration level of ppm for all volatile organic compounds. In a separate experiment, the concentration of carbon dioxide generated from these volatile organic compounds was measured by a non-dispersive infrared spectrometer. From these results, it was found that the volatile organic compound can be almost completely decomposed into carbon dioxide by using the volatile organic compound decomposing apparatus. Therefore, by measuring the concentration (X: ppm) of carbon dioxide generated from the volatile organic compound contained in the analysis gas, the total amount of the volatile organic compound can be calculated from the following formula (2) using the carbon dioxide amount (Y : Μg / m 3 ) or the carbon content (Z: μg / m 3 ) according to the following formula (3).
[0021]
Y (μg / m 3 ) = {(44 × 1000) / 24} × X (ppm) (2)
Z (μg / m 3 ) = (12/44) × Y (μg / m 3 ) (3)
44: Molecular weight of carbon dioxide 24: 1 mol volume of gas at atmospheric pressure 20 ° C. (L)
12: atomic weight of carbon
As shown in Table 1, there is a slight difference in the decomposition efficiency depending on the type of the volatile organic compound, but in order to improve the measurement accuracy, any volatile organic compound expected to be contained in the analysis gas is required. It is desirable to set the measurement conditions so that about 90% or more of the decomposition efficiency can be obtained. According to this embodiment, the flow rate of the analysis gas introduced into the volatile organic compound decomposition apparatus may be set to, for example, 0.1 L / min to 0.5 L / min, but the analysis gas contains toluene or xylene. If it is anticipated that the flow rate will be reduced, it is desirable that the introduction flow rate be about 0.1 L / min in consideration of the decomposition efficiency for these.
[0023]
【The invention's effect】
According to the present invention, a novel method for measuring volatile organic compounds and an apparatus for performing the method are provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an example of a volatile organic compound decomposing apparatus.
FIG. 2 is a schematic view of an example of a preferred embodiment as an apparatus for measuring the total amount of volatile organic compounds contained in an analysis gas.
FIG. 3 is a schematic sectional view of another example of the volatile organic compound decomposing apparatus.
[Explanation of symbols]
1,21 Volatile organic compound decomposing device 2,22 Glass tube 3,23 Photocatalyst fixing part 4 Light source 5,25 Inlet 6,26 Outlet 11 Carbon dioxide concentration measuring device 12 Cold trap 13 Suction pump 14 Manifold 24 Rod member

Claims (12)

揮発性有機化合物の測定方法であって、分析気体の導入口と排出口、揮発性有機化合物分解能を有する光触媒の固定部を備え、分析気体が光触媒固定部の表面に導通された後に排出されるように気体流路が構成された揮発性有機化合物分解装置に分析気体を導入し、分析気体に揮発性有機化合物が含まれている場合にはこれを光触媒固定部の表面において光触媒反応により二酸化炭素に分解せしめた後、揮発性有機化合物分解装置から排出される二酸化炭素の濃度を測定することで分析気体に含まれていた揮発性有機化合物の総量を測定することを特徴とする方法。A method for measuring a volatile organic compound, comprising: an inlet and an outlet for an analysis gas, a fixed portion of a photocatalyst having a volatile organic compound resolution, and the analysis gas is discharged after being conducted to the surface of the photocatalyst fixed portion. The analysis gas is introduced into the volatile organic compound decomposer in which the gas flow path is configured as described above, and when the analysis gas contains a volatile organic compound, the volatile organic compound is carbon dioxide by a photocatalytic reaction on the surface of the photocatalyst fixing portion. And measuring the total amount of volatile organic compounds contained in the analysis gas by measuring the concentration of carbon dioxide discharged from the volatile organic compound decomposition device after the decomposition. 揮発性有機化合物分解能を有する光触媒が、酸化チタンであることを特徴とする請求項1記載の方法。The method according to claim 1, wherein the photocatalyst having a capability of decomposing volatile organic compounds is titanium oxide. 揮発性有機化合物分解装置が、その内壁の少なくとも一部に光触媒固定部が形成され、その内部に光触媒固定部の表面における光触媒反応を活性化するための光源が光触媒固定部が形成された内壁との間に間隙が存するように配設され、この間隙を気体流路としたものであることを特徴とする請求項1記載の方法。The volatile organic compound decomposer has a photocatalyst fixing portion formed on at least a part of its inner wall, and a light source for activating a photocatalytic reaction on the surface of the photocatalyst fixing portion has an inner wall on which a photocatalyst fixing portion is formed. 2. The method according to claim 1, wherein a gap is provided between the gaps, and the gap is used as a gas flow path. 揮発性有機化合物分解装置が、筒体構造であることを特徴とする請求項3記載の方法。The method according to claim 3, wherein the volatile organic compound decomposing device has a cylindrical structure. 光源が、紫外光ランプまたは可視光ランプであることを特徴とする請求項3記載の方法。4. The method according to claim 3, wherein the light source is an ultraviolet light lamp or a visible light lamp. 揮発性有機化合物分解装置が、その内部に光触媒固定部を有する部材が配設され、外光によって光触媒固定部の表面における光触媒反応を活性化する構造としたものであることを特徴とする請求項1記載の方法。The volatile organic compound decomposing device has a structure in which a member having a photocatalyst fixing portion is disposed therein, and a photocatalytic reaction on the surface of the photocatalyst fixing portion is activated by external light. The method of claim 1. 揮発性有機化合物分解装置が、光透過性素材で構成された筒体構造であり、その内部に光触媒固定部を側面に形成した棒状部材が筒体構造の内側壁との間に間隙が存するように配設され、この間隙を気体流路としたものであることを特徴とする請求項6記載の方法。The volatile organic compound decomposer has a cylindrical structure made of a light-transmitting material, and a rod-shaped member having a photocatalyst fixing portion formed on a side surface has a gap between the volatile member and the inner wall of the cylindrical structure. 7. The method according to claim 6, wherein the gap is a gas flow path. 揮発性有機化合物分解装置が、その内部に光触媒固定部を有する部材と、光触媒固定部の表面における光触媒反応を活性化するための光源が配設された構造としたものであることを特徴とする請求項1記載の方法。The volatile organic compound decomposing device has a structure in which a member having a photocatalyst fixing portion therein and a light source for activating a photocatalytic reaction on the surface of the photocatalyst fixing portion are provided. The method of claim 1. 分析気体に揮発性有機化合物と二酸化炭素が含まれている可能性がある場合、分析気体を予めコールドトラップに導入し、揮発性有機化合物が選択的に冷却凝集する温度にて揮発性有機化合物だけを濃縮することで二酸化炭素を分析気体から除去した後、冷却凝集した揮発性有機化合物を気化加熱してからこれをキャリアガスとともに揮発性有機化合物分解装置に導入することを特徴とする請求項1記載の方法。If there is a possibility that the analysis gas contains volatile organic compounds and carbon dioxide, introduce the analysis gas into a cold trap in advance, and only use volatile organic compounds at a temperature at which the volatile organic compounds selectively cool and aggregate. 2. The method according to claim 1, wherein after removing carbon dioxide from the analysis gas by concentrating the volatile organic compound, the volatile organic compound agglomerated by cooling is vaporized and heated, and then introduced into a volatile organic compound decomposer together with a carrier gas. The described method. キャリアガスが、酸素を混合させた不活性ガスであることを特徴とする請求項9記載の方法。10. The method according to claim 9, wherein the carrier gas is an inert gas mixed with oxygen. 揮発性有機化合物分解装置から排出された二酸化炭素の濃度を非分散型赤外線分析計に導いて測定することを特徴とする請求項1記載の方法。The method according to claim 1, wherein the concentration of carbon dioxide discharged from the volatile organic compound decomposer is guided to a non-dispersive infrared spectrometer and measured. 分析気体の導入口と排出口、揮発性有機化合物分解能を有する光触媒の固定部を備え、分析気体が光触媒固定部の表面に導通された後に排出されるように気体流路が構成された揮発性有機化合物分解装置と、揮発性有機化合物分解装置から排出される二酸化炭素の濃度を測定する装置を少なくとも備えてなることを特徴とする分析気体に含まれている揮発性有機化合物の総量を測定するための装置。A volatile channel having an inlet and an outlet for an analysis gas, a fixed portion for a photocatalyst having a capability of decomposing volatile organic compounds, and a gas flow path configured so that the analysis gas is discharged after being conducted to the surface of the photocatalyst fixed portion. Measuring the total amount of volatile organic compounds contained in the analysis gas, comprising at least an apparatus for measuring the concentration of carbon dioxide emitted from the organic compound decomposition apparatus and the volatile organic compound decomposition apparatus Equipment for.
JP2002322731A 2002-11-06 2002-11-06 Method and apparatus for measuring volatile organic compounds Expired - Fee Related JP3809511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322731A JP3809511B2 (en) 2002-11-06 2002-11-06 Method and apparatus for measuring volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322731A JP3809511B2 (en) 2002-11-06 2002-11-06 Method and apparatus for measuring volatile organic compounds

Publications (2)

Publication Number Publication Date
JP2004157007A true JP2004157007A (en) 2004-06-03
JP3809511B2 JP3809511B2 (en) 2006-08-16

Family

ID=32802832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322731A Expired - Fee Related JP3809511B2 (en) 2002-11-06 2002-11-06 Method and apparatus for measuring volatile organic compounds

Country Status (1)

Country Link
JP (1) JP3809511B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064872A (en) * 2005-09-01 2007-03-15 Komyo Rikagaku Kogyo Kk Analyzer
US7401499B2 (en) 2005-08-12 2008-07-22 Gtr Tec Corporation Apparatus for permeability analysis
JP2008275383A (en) * 2007-04-26 2008-11-13 Hitachi Engineering & Services Co Ltd Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device
CN101915791A (en) * 2010-07-09 2010-12-15 中国科学院广州能源研究所 Method and device for detecting total organic content of gas
JP2013145228A (en) * 2011-12-13 2013-07-25 National Institute Of Advanced Industrial & Technology Method for determining formaldehyde concentration in gas
JP2015059777A (en) * 2013-09-18 2015-03-30 株式会社島津製作所 Carbon measuring apparatus
CN104614432A (en) * 2015-01-15 2015-05-13 合肥工业大学 Single organic matter standard gas concentration detecting device and method
KR101750678B1 (en) * 2016-11-10 2017-06-27 대한민국 Method for evaluating performance of functional building materials with photocatalyst
JP2017122661A (en) * 2016-01-07 2017-07-13 紀本電子工業株式会社 Volatile organic compound measuring device and volatile organic compound measuring method
KR101773863B1 (en) 2016-05-09 2017-09-01 연세대학교 산학협력단 Apparatus for measuring concentration of total volatile organic compounds and method for measuring concentration of total volatile organic compounds using the same
JP2020528548A (en) * 2017-07-18 2020-09-24 アプライド マテリアルズ イスラエル リミテッド Cleanliness monitors and methods for monitoring the cleanliness of vacuum chambers
WO2020201562A1 (en) * 2019-04-04 2020-10-08 Syclope Electronique Device and method for measuring trichloramine concentration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053722A (en) * 2016-05-20 2016-10-26 东莞市普锐美泰环保科技有限公司 VOCs detection method and apparatus
WO2021128097A1 (en) * 2019-12-25 2021-07-01 广州禾信仪器股份有限公司 Vocs traceability detection device, system and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401499B2 (en) 2005-08-12 2008-07-22 Gtr Tec Corporation Apparatus for permeability analysis
JP2007064872A (en) * 2005-09-01 2007-03-15 Komyo Rikagaku Kogyo Kk Analyzer
JP4690149B2 (en) * 2005-09-01 2011-06-01 光明理化学工業株式会社 Analysis equipment
JP2008275383A (en) * 2007-04-26 2008-11-13 Hitachi Engineering & Services Co Ltd Method and device for measuring concentration of mixed component system, and operation control system of energy-saving or exhaust-cleaning facility using device
CN101915791A (en) * 2010-07-09 2010-12-15 中国科学院广州能源研究所 Method and device for detecting total organic content of gas
JP2013145228A (en) * 2011-12-13 2013-07-25 National Institute Of Advanced Industrial & Technology Method for determining formaldehyde concentration in gas
JP2015059777A (en) * 2013-09-18 2015-03-30 株式会社島津製作所 Carbon measuring apparatus
CN104614432A (en) * 2015-01-15 2015-05-13 合肥工业大学 Single organic matter standard gas concentration detecting device and method
JP2017122661A (en) * 2016-01-07 2017-07-13 紀本電子工業株式会社 Volatile organic compound measuring device and volatile organic compound measuring method
KR101773863B1 (en) 2016-05-09 2017-09-01 연세대학교 산학협력단 Apparatus for measuring concentration of total volatile organic compounds and method for measuring concentration of total volatile organic compounds using the same
KR101750678B1 (en) * 2016-11-10 2017-06-27 대한민국 Method for evaluating performance of functional building materials with photocatalyst
JP2020528548A (en) * 2017-07-18 2020-09-24 アプライド マテリアルズ イスラエル リミテッド Cleanliness monitors and methods for monitoring the cleanliness of vacuum chambers
JP7218345B2 (en) 2017-07-18 2023-02-06 アプライド マテリアルズ イスラエル リミテッド Cleanliness monitor and method for monitoring vacuum chamber cleanliness
WO2020201562A1 (en) * 2019-04-04 2020-10-08 Syclope Electronique Device and method for measuring trichloramine concentration
FR3094794A1 (en) * 2019-04-04 2020-10-09 Institut National De Recherche Et De Sécurité (Inrs) Device and method for measuring trichloramine concentration

Also Published As

Publication number Publication date
JP3809511B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP3809511B2 (en) Method and apparatus for measuring volatile organic compounds
Destaillats et al. Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study
KR101260631B1 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer
Nayak et al. Rapid inactivation of airborne porcine reproductive and respiratory syndrome virus using an atmospheric pressure air plasma
Leskinen et al. Characterization and testing of a new environmental chamber
US10295517B2 (en) Heated graphite scrubber to reduce interferences in ozone monitors
Johnson et al. Gas-phase advanced oxidation for effective, efficient in situ control of pollution
US20070023641A1 (en) Conformational real-time atmospheric and environmental characterization sampling apparatus and method
Klenø et al. Degradation of the adsorbent Tenax TA by nitrogen oxides, ozone, hydrogen peroxide, OH radical, and limonene oxidation products
Aoki et al. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction
KR20030038681A (en) Device and method for detecting trace amounts of organic components
Morin et al. Key parameters influencing the uptake of m-xylene on photocatalytic paints
Pan et al. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry
JP2018512582A (en) Method for passive or active sampling of particles and gas phase components in a fluid flow
Komae et al. Secondary organic aerosol formation from p-dichlorobenzene under indoor environmental conditions
Chen et al. Chemical characterization and formation of secondary organosiloxane aerosol (SOSiA) from OH oxidation of decamethylcyclopentasiloxane
JP2004294328A (en) System and method for ultrahigh-sensitive analysis of gas generated from sample surface
JP2004179079A (en) Sample atomization lead-in device
JP2006010500A (en) Formaldehyde treating device and formaldehyde concentration measuring method
Sun et al. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer
Yamashita et al. Humidify effect on non-thermal plasma processing for VOCs decomposition
JP2005058342A (en) Device and method for capturing formaldehyde
Hirokawa et al. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions
Liu et al. Products and kinetics of the heterogeneous reaction of particulate ametryn with NO 3 radicals
Li et al. A kinetic study on reactions of OBrO with NO, OClO, and ClO at 298 K

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees