JP2008275193A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008275193A
JP2008275193A JP2007115954A JP2007115954A JP2008275193A JP 2008275193 A JP2008275193 A JP 2008275193A JP 2007115954 A JP2007115954 A JP 2007115954A JP 2007115954 A JP2007115954 A JP 2007115954A JP 2008275193 A JP2008275193 A JP 2008275193A
Authority
JP
Japan
Prior art keywords
ventilation path
impeller
air conditioner
stabilizer
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007115954A
Other languages
Japanese (ja)
Other versions
JP4804411B2 (en
Inventor
Shoji Yamada
彰二 山田
Seiji Nakajima
誠治 中島
Seiji Hirakawa
誠司 平川
Mitsuhiro Shirota
光宏 代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007115954A priority Critical patent/JP4804411B2/en
Publication of JP2008275193A publication Critical patent/JP2008275193A/en
Application granted granted Critical
Publication of JP4804411B2 publication Critical patent/JP4804411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Duct Arrangements (AREA)
  • Air-Flow Control Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of suppressing the surging phenomenon and improving energy consuming efficiency by applying a constitution capable of changing a volume of a ventilation flue according to operating conditions such as a cooling operation and a heating operation. <P>SOLUTION: This air conditioner comprises an impeller 5, a scroll portion for guiding the air to a back face of the impeller 5, and a cross-flow fan 4 disposed at a downstream side of the impeller 5 in a state of being opposed to the scroll portion 7, and having a stabilizer 8 partitioning a suction opening 2a and a supply opening 11, and the ventilation flue 10 is composed of the scroll portion 7A, the stabilizer 8 and side wall plates 9 disposed at both sides in the axial direction of the impeller. A ventilation flue cross-section changing mechanism 15 is disposed to reduce an area of the axial both sides or axial central portion of the impeller 5 in a cross-section of the ventilation flue at a supply opening 11 side of the impeller 5 in the cooling operation with respect to the heating operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、クロスフローファンを備えた空気調和機に関するものである。   The present invention relates to an air conditioner including a cross flow fan.

従来の空気調和機は、クロスフローファンの上流に、このクロスフローファンと平行に室内熱交換器が配置され、室内熱交換器の下部には吸込口と吹出口を仕切るケーシング前板が設けられ、ケーシング前板と、室内熱交換器とクロスフローファンの背面に空気を案内するケーシング後板とから空気通路が構成されている。そして、ケーシング後板の底部が吹出口の正面視において、両端部付近の高さが中央部付近の高さより低くなるように形成されている(例えば、特許文献1参照)。   In a conventional air conditioner, an indoor heat exchanger is arranged in parallel with the cross flow fan upstream of the cross flow fan, and a casing front plate for partitioning the inlet and the outlet is provided at the lower part of the indoor heat exchanger. An air passage is constituted by the casing front plate, the indoor heat exchanger, and the casing rear plate for guiding air to the back of the cross flow fan. And the bottom part of the casing rear plate is formed so that the height in the vicinity of both ends is lower than the height in the vicinity of the central part in the front view of the outlet (see, for example, Patent Document 1).

従来の空気調和機において、特に、冷房運転時では、熱交換器が濡れて通風路面積が減少して圧力損失が大きくなるため、気流の速度が遅い吹出口の両端部では、空気調和機の内部に外部の空気が流れ込みやすく、サージング現象が発生しやすくなっている。そして、サージング現象が冷房運転時に発生すると、吹出口や空気調和機内部で結露を起こし、露が空気調和機から滴下して問題となる。そこで、一般に、上記のような構成の従来の空気調和機では、吹出口の両端部の一部を覆うようにケーシング前板を形成するなどして、吹出口の両端部での動圧を増大させ、サージング現象の発生を抑制している。   In a conventional air conditioner, especially during cooling operation, the heat exchanger gets wet and the air passage area decreases and the pressure loss increases, so at both ends of the air outlet where the air velocity is slow, the air conditioner External air easily flows into the interior, and surging phenomenon is likely to occur. When the surging phenomenon occurs during the cooling operation, dew condensation occurs inside the air outlet and the air conditioner, and dew drops from the air conditioner, which causes a problem. Therefore, in general, in the conventional air conditioner having the above-described configuration, the dynamic pressure at both ends of the air outlet is increased by forming a casing front plate so as to cover a part of both ends of the air outlet. This suppresses the occurrence of the surging phenomenon.

特開平9−229403号公報JP-A-9-229403

従来の空気調和機において、吹出口の両端部の一部を覆うケーシング前板は、吹出口の両端部に固定されているので、吹出口の両端部での動圧が、サージング現象の発生しやすい冷房運転時だけでなく、暖房運転時でも増大されたまま運転され、余分な電力が消費されてしまうという問題が発生する。   In a conventional air conditioner, the casing front plate that covers part of both ends of the air outlet is fixed to both ends of the air outlet, so that the dynamic pressure at both ends of the air outlet causes a surging phenomenon. Not only during easy cooling operation, but also during heating operation, there is a problem that it is operated while being increased and extra power is consumed.

この発明は、上記の問題を解決するためになされたものであり、冷房運転や暖房運転などの運転条件に応じて通風路の体積を変更可能な構成とすることにより、サージング現象の発生を抑制するとともにエネルギーの消費効率を向上させる空気調和機を得ることを目的とする。   The present invention has been made to solve the above-described problems, and suppresses the occurrence of surging phenomenon by adopting a configuration in which the volume of the ventilation path can be changed according to operating conditions such as cooling operation and heating operation. In addition, an object is to obtain an air conditioner that improves energy consumption efficiency.

この発明による空気調和機は、羽根車、羽根車の背面に空気を案内するスクロール部、及び羽根車の下流側にスクロール部に相対して配置され、吸込口と吹出口とを仕切るスタビライザを有するクロスフローファンを備え、スクロール部と、スタビライザと、羽根車の軸方向両側に配置された側壁板とから通風路を構成してなり、運転条件に対応させて通風路を構成するスクロール部、スタビライザ、及び側壁板の少なくとも一つの壁面を通風路側または通風路とは反対側に変位させて通風路体積を変更する通風路断面変更機構を備えている。   An air conditioner according to the present invention includes an impeller, a scroll portion that guides air to the back surface of the impeller, and a stabilizer that is disposed relative to the scroll portion on the downstream side of the impeller, and partitions the inlet and the outlet. A scroll portion and a stabilizer that are provided with a cross flow fan and that have a ventilation path composed of a scroll portion, a stabilizer, and side wall plates arranged on both sides in the axial direction of the impeller, and that constitute the ventilation path according to the operating conditions. And a ventilation path cross-section changing mechanism that changes the volume of the ventilation path by displacing the at least one wall surface of the side wall plate to the ventilation path side or the opposite side of the ventilation path.

この発明によれば、通風路断面変更機構が、冷房運転や暖房運転などの運転条件に応じた通風路の体積となるように通風路を構成する壁面を変位させるので、サージング現象の発生を抑制するとともにエネルギーの消費効率を向上させる空気調和機を得ることを目的とする。   According to the present invention, the ventilation path cross-section changing mechanism displaces the wall surface configuring the ventilation path so as to have the volume of the ventilation path according to the operating conditions such as cooling operation and heating operation, thereby suppressing the occurrence of the surging phenomenon. In addition, an object is to obtain an air conditioner that improves energy consumption efficiency.

以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る空気調和機の冷房運転時における側断面図、図2はこの発明の実施の形態1に係る空気調和機の冷房運転時におけるスクロール部の斜視図、図3はこの発明の実施の形態1に係る空気調和機の暖房運転時におけるスクロール部の斜視図、図4は図1のIV−IV矢視要部断面図、図5は図4において空気調和機が冷房運転から暖房運転に切り替わったときの断面図、図6はこの発明の実施の形態1に係る空気調和機における吹き出し気流の通風路断面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a side cross-sectional view during cooling operation of an air conditioner according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of a scroll unit during cooling operation of the air conditioner according to Embodiment 1 of the present invention. 3 is a perspective view of the scroll portion during heating operation of the air conditioner according to Embodiment 1 of the present invention, FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1, and FIG. FIG. 6 is a cross-sectional view of the blown airflow in the air conditioner according to Embodiment 1 of the present invention, and FIG. 6 is a cross-sectional view when the air conditioner is switched from the cooling operation to the heating operation.

図1において、空気調和機1Aは、吸込口2aを有する意匠パネル2、熱交換器3、羽根車5とディフューザ6とからなるクロスフローファン4、側壁板9、及び通風路断面変更機構15を有している。さらに、ディフューザ6は、スクロール部7A及びスタビライザ8により構成されている。   In FIG. 1, an air conditioner 1A includes a design panel 2 having a suction port 2a, a heat exchanger 3, a cross flow fan 4 including an impeller 5 and a diffuser 6, a side wall plate 9, and a ventilation path cross-section changing mechanism 15. Have. Further, the diffuser 6 includes a scroll portion 7A and a stabilizer 8.

スクロール部7Aは、矩形平板状の背面壁7a、背面壁7aの長辺の一辺から背面壁7aに垂直方向に突出する底壁7b、さらに底壁7bの先端と背面壁7aの長辺の他辺とを接続する案内壁7cを有している。スクロール部7Aは、図2及び図3に示されるように、背面壁7a、底壁7b、及び案内壁7cによって形成される開口が塞口された中空体に形成されている。また、案内壁7cは、可撓性部材により形成されている。そして、スクロール部7Aは長辺の一辺を下端に、かつ水平にして配置されている。これ以降、背面壁7aの長辺の長さ方向を幅方向とする。   The scroll portion 7A includes a rectangular flat plate-like rear wall 7a, a bottom wall 7b projecting vertically from one side of the long side of the back wall 7a, a tip of the bottom wall 7b, and a long side of the back wall 7a. It has a guide wall 7c that connects the sides. As shown in FIGS. 2 and 3, the scroll portion 7A is formed in a hollow body in which openings formed by the back wall 7a, the bottom wall 7b, and the guide wall 7c are closed. Moreover, the guide wall 7c is formed of a flexible member. The scroll portion 7A is arranged with one long side at the lower end and horizontally. Hereinafter, the length direction of the long side of the back wall 7a is defined as the width direction.

意匠パネル2が背面壁7aの長辺の他辺側から、底壁7bの先端のさらに前方に向けて、アーチ状に張り出している。スタビライザ8は、スクロール部7Aから張りだした意匠パネル2の先端から詳細は後述の羽根車5の方向に突出するように配設され、スクロール部7Aと相対した位置に配置されている。側壁板9が、スクロール部7Aと意匠パネル2とによって形成された幅方向両側の開口を覆うように取り付けられている。   The design panel 2 projects in an arch shape from the other side of the long side of the back wall 7a toward the front of the tip of the bottom wall 7b. The stabilizer 8 is disposed so as to protrude in detail from the tip of the design panel 2 protruding from the scroll portion 7A in the direction of the impeller 5 described later, and is disposed at a position facing the scroll portion 7A. Side wall plates 9 are attached so as to cover the openings on both sides in the width direction formed by the scroll portion 7 </ b> A and the design panel 2.

吸込口2aは、意匠パネル2の前面と上面に桟状に形成されている。そして、スクロール部7A、意匠パネル2、及び側壁板9それぞれの下端側に囲まれた開口が吹出口11を構成している。また、吸込口2aから吹出口11に通ずる通風路10がスクロール部7A、スタビライザ8、意匠パネル2、及び側壁板9に囲まれた空間に形成されている。即ち、吹出口11は通風路10の最下端に形成されている。   The suction port 2a is formed in the shape of a bar on the front surface and upper surface of the design panel 2. An opening surrounded by the lower ends of the scroll portion 7 </ b> A, the design panel 2, and the side wall plate 9 constitutes the air outlet 11. Further, a ventilation path 10 leading from the suction port 2 a to the blower outlet 11 is formed in a space surrounded by the scroll portion 7 </ b> A, the stabilizer 8, the design panel 2, and the side wall plate 9. That is, the air outlet 11 is formed at the lowest end of the ventilation path 10.

通風路10の経路中には、円柱状の羽根車5が、その軸方向を意匠パネル2及びスクロール部7Aの幅方向にあわせ、軸周りに回転自在に配設されている。このとき、羽根車5の背面側にスクロール部7Aが配置され、スクロール部7Aが、吸入口2aから吸入された空気を羽根車5の背面に案内するようになっている。さらに、熱交換器3が羽根車5の吸込口2a側に、羽根車5をΛ型に覆って通風路10内配設されている。   A cylindrical impeller 5 is disposed in the path of the ventilation path 10 so that its axial direction is aligned with the width direction of the design panel 2 and the scroll portion 7A and is rotatable about the axis. At this time, the scroll portion 7A is disposed on the back side of the impeller 5, and the scroll portion 7A guides the air sucked from the suction port 2a to the back surface of the impeller 5. Further, the heat exchanger 3 is disposed in the ventilation path 10 on the suction port 2a side of the impeller 5 so as to cover the impeller 5 in a Λ shape.

上記のように構成された空気調和機1Aでは、吸込口2aから吸い込まれた空気が熱交換器3を通過し、羽根車5を貫流し、さらにディフューザ6を通過して吹出口11から室内に放出されるようになっている。
このとき、吸い込み側の気流と吹き出し側の気流がスタビライザ8により仕切られている。ここで、吸い込み側とは、羽根車5より吸込口2a側の通風路10の部位をいい、吹き出し側とは羽根車5より吹出口11側の通風路10の部位をいう。また、吹き出し側の気流を吹き出し気流とする。
In the air conditioner 1 </ b> A configured as described above, the air sucked from the suction port 2 a passes through the heat exchanger 3, flows through the impeller 5, passes through the diffuser 6, and enters the room from the outlet 11. To be released.
At this time, the airflow on the suction side and the airflow on the blowout side are partitioned by the stabilizer 8. Here, the suction side refers to a portion of the ventilation path 10 closer to the suction port 2 a than the impeller 5, and the blowout side refers to a portion of the ventilation path 10 closer to the outlet 11 than the impeller 5. Moreover, let the airflow on the blowing side be the blowing airflow.

通風路断面変更機構15は、図1、図4及び図5に示されるように棒状の頂部16aと頂部16aの長さ方向の中間部から頂部16aに垂直に突出する棒状の係合柱16bとを有するT型の押圧具16、モータ17、ギア18、及び変位制御部19を有している。そして、通風路断面変更機構15は、羽根車5の配設位置より下方でスクロール部7Aに内包されるように配設されている。
変位制御部19は、制御手段としてのCPU(図示せず)や、空気調和機1Aの冷房運転時と暖房運転時の切り替えに応じて、CPUにモータ17の回転駆動を制御させるためのプログラムが書きこまれたROM(図示せず)などを有している。
As shown in FIGS. 1, 4 and 5, the air passage cross-section changing mechanism 15 includes a rod-like top portion 16 a and a rod-like engagement column 16 b that protrudes perpendicularly to the top portion 16 a from the intermediate portion in the longitudinal direction of the top portion 16 a. And a T-type pressing tool 16, a motor 17, a gear 18, and a displacement control unit 19. And the ventilation path cross-section change mechanism 15 is arrange | positioned so that it may be included in the scroll part 7A below the arrangement | positioning position of the impeller 5. FIG.
The displacement control unit 19 has a CPU (not shown) as a control means, and a program for causing the CPU to control the rotation drive of the motor 17 in accordance with switching between the cooling operation and the heating operation of the air conditioner 1A. It has a written ROM (not shown) and the like.

押圧具16の頂部16aは、案内壁7cの裏面に沿うように、かつ、その長さ方向を気流の方向に合わせて配置されている。ここで、案内壁7cの通風路10側の面を表面とし、通風路10と反対側の面を裏面とした。また、係合柱16bは、案内壁7cの裏面に対して垂直になるように、頂部16aから突出され、係合柱16bの先端側は、ギア18とかみ合わされている。さらに、モータ17は、その回転トルクをギア18に伝達可能なように配設されている。これにより、押圧具16は、モータ17の回転駆動に応じて、係合柱16bの長さ方向に往復移動可能になっている。   The top portion 16a of the pressing tool 16 is arranged along the back surface of the guide wall 7c and with its length direction aligned with the direction of the airflow. Here, the surface of the guide wall 7c on the side of the ventilation path 10 is defined as the front surface, and the surface opposite to the ventilation path 10 is defined as the back surface. The engaging column 16b protrudes from the top portion 16a so as to be perpendicular to the back surface of the guide wall 7c, and the front end side of the engaging column 16b is engaged with the gear 18. Further, the motor 17 is arranged so that the rotational torque can be transmitted to the gear 18. As a result, the pressing tool 16 can reciprocate in the length direction of the engaging column 16 b in accordance with the rotational drive of the motor 17.

次いで、空気調和機1Aの冷房運転時及び暖房運転時の通風路断面変更機構15の動作について説明する。
まず、冷房運転時の通風路断面変更機構15の動作について図1、図2、図4及び図6を参照して説明する。
図1の側断面図は空気調和機1Aの幅方向の中央部付近のものであるが、さらに、空気調和機1Aの幅方向の一端部付近の案内板7cの断面図を破線で併記している。
Next, the operation of the ventilation path cross-section changing mechanism 15 during the cooling operation and the heating operation of the air conditioner 1A will be described.
First, operation | movement of the ventilation path cross-section change mechanism 15 at the time of air_conditionaing | cooling operation is demonstrated with reference to FIG.1, FIG.2, FIG.4 and FIG.
The side sectional view of FIG. 1 is the vicinity of the central portion in the width direction of the air conditioner 1A, and further, the sectional view of the guide plate 7c in the vicinity of one end portion in the width direction of the air conditioner 1A is also shown with a broken line. Yes.

冷房運転時において、変位制御部19のCPUは、係合柱16bを案内壁7cの裏面に向けて移動させる方向にギア18を回転させるようにモータ17の回転駆動を制御している。そして、変位制御部19のCPUは、頂部16aが案内壁7cの裏面に当接してから所定距離だけ通風路10側に移動されたところで、モータ17の回転を停止させている。このとき、可撓性部材で形成された案内壁7cが、案内壁7cの表面に垂直方向に、かつ通風路10側に押圧されるので、図2に示されるように、案内壁7cの幅方向(羽根車5の軸方向)の中央部寄りの部位は、吹出口11から羽根車5の下部近傍の部位まで、幅方向の両端部より通風路10側に突出される。   During the cooling operation, the CPU of the displacement control unit 19 controls the rotational drive of the motor 17 so as to rotate the gear 18 in the direction in which the engagement column 16b is moved toward the back surface of the guide wall 7c. Then, the CPU of the displacement control unit 19 stops the rotation of the motor 17 when the top portion 16a is moved to the ventilation path 10 side by a predetermined distance after contacting the back surface of the guide wall 7c. At this time, the guide wall 7c formed of a flexible member is pressed in the direction perpendicular to the surface of the guide wall 7c and toward the ventilation path 10, so that the width of the guide wall 7c is as shown in FIG. A portion closer to the center in the direction (the axial direction of the impeller 5) protrudes from the blower outlet 11 to a portion near the lower portion of the impeller 5 toward the ventilation path 10 from both ends in the width direction.

これにより、冷房運転時の通風路10は、図6中の破線で示された案内壁7cの表面、スタビライザ8の吹出口11側の壁面(以降スタビライザ吹出壁面8aとする)、及び側壁板9の対向する壁面(以降、側壁面9aとする)に囲まれた領域となる。このとき、冷房運転時の通風路断面における案内壁7cの通風路10側への突出量は、案内壁7cの幅方向の両端部から幅方向の中央部に向かうにつれて序々に増大されるように滑らかに変化している。なお、通風路断面とは、羽根車5より下流側における吹き出し気流の方向と垂直な通風路10の断面のことをいう。   Thereby, the ventilation path 10 at the time of air_conditionaing | cooling operation is the surface of the guide wall 7c shown by the broken line in FIG. 6, the wall surface on the blower outlet 11 side of the stabilizer 8 (hereinafter referred to as the stabilizer blowout wall surface 8a), and the side wall plate 9 Is a region surrounded by opposing wall surfaces (hereinafter referred to as side wall surface 9a). At this time, the protruding amount of the guide wall 7c toward the ventilation path 10 in the cross section of the ventilation path during the cooling operation is gradually increased from both ends in the width direction of the guide wall 7c toward the center in the width direction. It is changing smoothly. The cross section of the ventilation path refers to a cross section of the ventilation path 10 perpendicular to the direction of the blown airflow downstream from the impeller 5.

また、通風路10では、案内壁7cの幅方向の中央部付近の静圧が案内壁7cの両端部側の静圧より低くなっており、静圧の差により案内壁7cの幅方向の両端部から中央部に集まろうとする力が気流に働く。しかし、案内壁7cの幅方向の中央部に向かうにつれ、案内壁7cは通風路10側に突出量が増大されているので、動圧が案内壁7cの幅方向の中央部側ほど案内壁7cの幅方向の両端側に比べて増大する。中央部側で増大された動圧は流速の早い案内壁7cの幅方向の中央部から流速の遅い案内壁7cの幅方向の両端部側に気流を向かわせる方向に働く。   Moreover, in the ventilation path 10, the static pressure near the center part in the width direction of the guide wall 7c is lower than the static pressure on the both end sides of the guide wall 7c, and both ends in the width direction of the guide wall 7c due to the difference in static pressure. The force that gathers from the center to the center acts on the airflow. However, as the guide wall 7c moves toward the center of the guide wall 7c in the width direction, the amount of protrusion of the guide wall 7c increases toward the ventilation path 10, so that the dynamic pressure increases toward the center of the guide wall 7c in the width direction. It increases compared to both ends in the width direction. The dynamic pressure increased on the center side acts in the direction in which the airflow is directed from the center portion in the width direction of the guide wall 7c having a high flow velocity toward both ends in the width direction of the guide wall 7c having a low flow velocity.

案内壁7cの幅方向の中央部側で増大された動圧によって、該中央部から案内壁7cの幅方向の両端部側に気流を向かわせる力の方が、静圧の差により案内壁7cの幅方向の両端部から中央部に集まろうとする力より大きいので、案内壁7cの幅方向の両端部側で動圧が増大される。即ち、通風路10の幅方向の両端部での動圧が増大される。   Due to the dynamic pressure increased at the center portion in the width direction of the guide wall 7c, the force that directs the air flow from the center portion to both ends in the width direction of the guide wall 7c is caused by the difference in static pressure. Since the force is greater than the force to gather from both ends in the width direction to the center, the dynamic pressure is increased on both ends in the width direction of the guide wall 7c. That is, the dynamic pressure at both ends in the width direction of the ventilation path 10 is increased.

次いで、暖房運転時の通風路断面変更機構15の動作について図3、図5及び図6を参照しつつ説明する。
冷房運転から暖房運転時に切り替わると、図5に示されるように、変位制御部19のCPUは、ギア18を冷房運転時とは逆回転させて案内壁7cの裏面から頂部16aが離反されるようにモータ17の回転駆動を制御している。頂部16aが案内壁7cから離反されて、案内壁7cの裏面を押圧する力がなくなるので、図3に示されるように、案内壁7cは、幅方向に対して、一端から他端に至るまで通風路10側に突出する部位がなくなり、平坦化される。
Next, the operation of the ventilation path cross-section changing mechanism 15 during the heating operation will be described with reference to FIGS. 3, 5, and 6.
When switching from the cooling operation to the heating operation, as shown in FIG. 5, the CPU of the displacement control unit 19 rotates the gear 18 in the reverse direction to the cooling operation so that the top portion 16 a is separated from the back surface of the guide wall 7 c. In addition, the rotational drive of the motor 17 is controlled. Since the top portion 16a is separated from the guide wall 7c and there is no force to press the back surface of the guide wall 7c, the guide wall 7c extends from one end to the other end in the width direction as shown in FIG. The part which protrudes to the ventilation path 10 side is lost, and it planarizes.

これにより、暖房運転時の通風路10は、図6の実線で示された案内壁7cの表面、スタビライザ吹出壁面8a、及び側壁面9aで囲まれた領域となる。即ち、案内壁7cの幅方向の中央部付近では、冷房運転時に通風路10側に突出されていた部位がなくなっており、羽根車5より下流側における暖房運転時の通風路断面積は、冷房運転時の通風路断面積より大きくなっている。   Thereby, the ventilation path 10 at the time of heating operation turns into the area | region enclosed by the surface of the guide wall 7c shown by the continuous line of FIG. 6, the stabilizer blowing wall surface 8a, and the side wall surface 9a. That is, in the vicinity of the central portion in the width direction of the guide wall 7c, there is no portion protruding to the ventilation path 10 side during the cooling operation, and the ventilation path cross-sectional area during the heating operation downstream from the impeller 5 is It is larger than the cross-sectional area of the ventilation path during operation.

このとき、案内壁7cの通風路10側への突出部位がなくなったので、通風路10における案内壁7cの幅方向の中央部側での動圧が冷房運転時に比べて減少する。即ち、案内壁7cの幅方向の中央部から幅方向の両端部側に気流を向かわせる力も減少するので、暖房運転時では冷房運転時に比べて、通風路10の幅方向の両端部の動圧が大きく減少する。   At this time, since the projecting portion of the guide wall 7c toward the ventilation path 10 is eliminated, the dynamic pressure on the center side in the width direction of the guide wall 7c in the ventilation path 10 is reduced as compared with the cooling operation. That is, since the force that directs the airflow from the center portion in the width direction of the guide wall 7c to the both end portions in the width direction is also reduced, the dynamic pressure at both ends in the width direction of the ventilation path 10 is larger in the heating operation than in the cooling operation. Is greatly reduced.

この実施の形態1によれば、通風路断面積変更機構15が、冷房運転と暖房運転の切り替えに応じて案内壁7cを変位させて通風路断面積を切り替えるように配設されている。
即ち、冷房運転時に、羽根車5より下流側の通風路断面において、暖房運転時には平坦であったスクロール部7Aの案内壁7cの幅方向の中央部を幅方向の両端部よりも通風路10側に突出させることにより、通風路断面積を暖房運転時よりも縮小させている。これにより動圧が通風路10の幅方向の両端部で増大されるので、冷房運転時のサージング現象を抑制することができる。
According to this Embodiment 1, the ventilation path cross-sectional area change mechanism 15 is arrange | positioned so that the guide wall 7c may be displaced according to switching of a cooling operation and a heating operation, and a ventilation path cross-sectional area may be switched.
That is, in the cross section of the ventilation path downstream from the impeller 5 during the cooling operation, the center portion in the width direction of the guide wall 7c of the scroll portion 7A, which was flat during the heating operation, is closer to the ventilation path 10 side than both ends in the width direction. The cross-sectional area of the ventilation path is made smaller than that during heating operation. As a result, the dynamic pressure is increased at both ends in the width direction of the ventilation path 10, so that the surging phenomenon during the cooling operation can be suppressed.

さらに、暖房運転時には、通風路10側に突出させていた案内壁7cを元に戻して案内壁7cを平坦化することにより、羽根車5より下流側の通風路10の幅方向の両端部で動圧を冷房運転時の動圧より大きく下げている。
従って、暖房運転時の吹き出し気流の動圧損失が大幅に抑制され、暖房運転時のエネルギーの消費効率を向上させることができる。
Furthermore, at the time of heating operation, the guide wall 7c projected to the ventilation path 10 side is returned to the original state and the guide wall 7c is flattened, so that both ends of the ventilation path 10 on the downstream side of the impeller 5 in the width direction. The dynamic pressure is significantly lower than the dynamic pressure during cooling operation.
Accordingly, the dynamic pressure loss of the blown airflow during the heating operation is significantly suppressed, and the energy consumption efficiency during the heating operation can be improved.

ここで、上記説明では、通風路断面における案内壁7cの幅方向の中央部を両端部より通風路10側に突出させて通風路10の両端部での動圧を増大させていたが、通風路10の幅方向の両端部での動圧を増大させるための手段は、案内壁7cの幅方向の中央部を両端部より通風路10側に突出させることに限定されない。   Here, in the above description, the central portion in the width direction of the guide wall 7c in the cross section of the ventilation path is protruded from the both ends toward the ventilation path 10 to increase the dynamic pressure at both ends of the ventilation path 10. The means for increasing the dynamic pressure at both ends in the width direction of the passage 10 is not limited to projecting the center portion in the width direction of the guide wall 7c toward the ventilation passage 10 from both ends.

以下、通風路10の幅方向の両端側での動圧を上げるための第1の実施態様から第5の実施態様について、図7〜図11を参照しつつ簡単に説明する。
図7はこの発明の第1の実施態様を示す空気調和機における吹き出し気流の通風路断面図、図8はこの発明の第2の実施態様を示す空気調和機における吹き出し気流の通風路断面図、図9はこの発明の第3の実施態様を示す空気調和機における吹き出し気流の通風路断面図、図10はこの発明の第4の実施態様を示す空気調和機における吹き出し気流の通風路断面図、図11はこの発明の第5の実施態様を示す空気調和機における吹き出し気流の通風路断面図である。なお、図7〜図11において、上記説明と同一又は相当部分には同一符号を用いている。
Hereinafter, the first to fifth embodiments for increasing the dynamic pressure at both ends in the width direction of the ventilation path 10 will be briefly described with reference to FIGS. 7 to 11.
FIG. 7 is a cross-sectional view of the blown air flow in the air conditioner showing the first embodiment of the present invention, FIG. 8 is a cross-sectional view of the blown air flow in the air conditioner showing the second embodiment of the present invention, FIG. 9 is a cross-sectional view of a blown air flow in an air conditioner showing a third embodiment of the present invention, FIG. 10 is a cross-sectional view of a blown air flow in an air conditioner showing a fourth embodiment of the present invention, FIG. 11 is a cross-sectional view of a blown air flow path in an air conditioner showing a fifth embodiment of the present invention. 7 to 11, the same reference numerals are used for the same or corresponding parts as in the above description.

後述するように、各実施態様とも、冷房運転時と暖房運転時とで、案内壁7cの表面、スタビライザ吹出壁面8a、及び側壁面9aのいずれかが通風路10側への突出量が切り替え可能なようになっているが、いずれも前述の通風路断面変更機構15と同等の機構を用いて各壁面の通風路10内への突出量を冷房運転時と暖房運転時で切り替えている。   As will be described later, in each embodiment, the amount of protrusion of the surface of the guide wall 7c, the stabilizer outlet wall surface 8a, and the side wall surface 9a toward the ventilation path 10 can be switched between the cooling operation and the heating operation. However, in any case, the amount of protrusion of each wall surface into the ventilation path 10 is switched between the cooling operation and the heating operation using a mechanism equivalent to the above-described ventilation path cross-section changing mechanism 15.

第1の実施態様について説明する。
図7において、実線で示される案内壁7cの表面は暖房運転時のものであり、破線で示される案内壁7cの表面は冷房運転時のものである。
即ち、冷房運転時においては、案内壁7cの幅方向の両端部側が、幅方向の中央部より通風路10側に突出されている。この場合、案内壁7cが幅方向に渡って平坦である暖房運転時に比べて、冷房運転時の案内壁7cの両端部は、通風路10側に突出されているので、通風路断面積が減少する。従って、冷房運転時の案内壁7cの幅方向の両端部側(通風路10の幅方向の両端部)の動圧は、暖房運転時より増大する。
The first embodiment will be described.
In FIG. 7, the surface of the guide wall 7c indicated by a solid line is that during heating operation, and the surface of the guide wall 7c indicated by a broken line is that during cooling operation.
That is, during cooling operation, both end portions in the width direction of the guide wall 7c protrude from the center portion in the width direction to the ventilation path 10 side. In this case, compared with the heating operation in which the guide wall 7c is flat across the width direction, the both end portions of the guide wall 7c during the cooling operation protrude toward the ventilation path 10, and thus the cross-sectional area of the ventilation path is reduced. To do. Therefore, the dynamic pressure at both ends in the width direction of the guide wall 7c during cooling operation (both ends in the width direction of the ventilation path 10) increases compared to during heating operation.

次いで、第2及び第3の実施態様について説明する。
図8及び図9において、実線で示されるスタビライザ吹出壁面8aの表面は暖房運転時のものであり、破線で示されるスタビライザ吹出壁面8aは冷房運転時のものである。
そして、図8では、スタビライザ吹出壁面8aを、幅方向の中央部に近づくほど、幅方向の両端部より通風路10内に突出させている。また、図9では、スタビライザ吹出壁面8aの幅方向の両端を幅方向の中央部より通風路10側に突出させている。
Next, the second and third embodiments will be described.
8 and 9, the surface of the stabilizer outlet wall surface 8a indicated by a solid line is that during heating operation, and the stabilizer outlet wall surface 8a indicated by a broken line is that during cooling operation.
And in FIG. 8, the stabilizer blowing wall surface 8a is protruded in the ventilation path 10 from the both ends of the width direction, so that it approaches the center part of the width direction. Moreover, in FIG. 9, both ends of the width direction of the stabilizer blowing wall surface 8a are protruded from the center part in the width direction to the ventilation path 10 side.

図8及び図9のそれぞれは、案内壁7cの壁面の通風路10側への突出量を暖房運転時と冷房運転時とで切り替えるものに代え、スタビライザ吹出壁面8aの通風路10側への突出量を暖房運転時と冷房運転時とで切り替え可能にしただけである。従って、案内壁7cの壁面の通風路10側への突出量を暖房運転時と冷房運転時とで切り替えたときと同様に、スタビライザ8の幅方向の両端部側(通風路10の幅方向の両端部)の動圧が増大される。   Each of FIGS. 8 and 9 replaces the amount of protrusion of the wall surface of the guide wall 7c to the ventilation path 10 side by switching between the heating operation and the cooling operation, and the stabilizer outlet wall surface 8a protrudes to the ventilation path 10 side. Only the amount can be switched between heating operation and cooling operation. Therefore, both ends of the stabilizer 8 in the width direction (in the width direction of the ventilation path 10) are changed in the same manner as when the amount of protrusion of the wall of the guide wall 7c to the ventilation path 10 is switched between the heating operation and the cooling operation. The dynamic pressure at both ends is increased.

次いで、第4及び第5の実施態様について説明する。
図10及び図11において、実線で示される側壁面9aの表面は暖房運転時のものであり、破線で示される側壁面9aの表面は冷房運転時のものである。
そして、図10では、暖房運転時には平面的であった側壁板9を、冷房運転時において、通風路10の幅方向と垂直な方向(縦方向)の中央部を通風路10内に突出させている。また、図11では、暖房運転時には平面的であった側壁板9の縦方向の両端部を、冷房運転時に通風路10内に突出させている。
図10及び図11に示したように、冷房運転時には、通風路10の幅方向の両端部の通風路断面積が暖房運転時に比べて減少し、通風路10の幅方向の両端部の動圧が増大される。
Next, the fourth and fifth embodiments will be described.
10 and 11, the surface of the side wall surface 9a indicated by a solid line is that during heating operation, and the surface of the side wall surface 9a indicated by a broken line is that during cooling operation.
In FIG. 10, the side wall plate 9, which was flat during the heating operation, is protruded into the air passage 10 through the central portion in the direction (longitudinal direction) perpendicular to the width direction of the air passage 10 during the cooling operation. Yes. Moreover, in FIG. 11, the both ends of the vertical direction of the side wall board 9 which were planar at the time of heating operation are protruded in the ventilation path 10 at the time of air_conditionaing | cooling operation.
As shown in FIGS. 10 and 11, during the cooling operation, the cross-sectional area of the ventilation path 10 at both ends in the width direction of the ventilation path 10 is reduced compared with that during the heating operation, and the dynamic pressure at both ends of the ventilation path 10 in the width direction is reduced. Is increased.

以上、実施の形態1及び第1の実施態様〜第5の実施態様では、通風路断面変更機構15が、冷房運転や暖房運転などの運転条件に適した通風路10の体積となるように通風路10を構成する壁面を変位させている。即ち、通風路10を構成するスクロール部7Aの案内壁7cの壁面、及びスタビライザ吹出壁面8aの軸方向両側又は上記軸方向中央部を該通風路側に突出させて、又は側壁面9aを通風路10側に突出させて冷房運転時に、通風路断面積を暖房運転時に比べて縮小させている。
これより動圧が通風路10の幅方向の両端部で増大されるので、冷房運転時のサージング現象を抑制することができる。従って、冷房運転時の露の滴下が防止できる。また、暖房運転時には、冷房運転時の壁面の変位が解消されているので、吹き出し側の気流の動圧損失を大幅に抑制することができる。従って、暖房運転時のエネルギーの消費効率を向上させることができる。
As described above, in the first embodiment and the first to fifth embodiments, the ventilation passage cross-section changing mechanism 15 is ventilated so that the volume of the ventilation passage 10 is suitable for operating conditions such as cooling operation and heating operation. The wall surface which comprises the path 10 is displaced. That is, the wall surface of the guide wall 7c of the scroll portion 7A constituting the air passage 10 and both axial sides of the stabilizer outlet wall surface 8a or the central portion in the axial direction protrude toward the air passage side or the side wall surface 9a. The air passage cross-sectional area is reduced compared with that during heating operation during cooling operation by projecting to the side.
As a result, the dynamic pressure is increased at both ends in the width direction of the ventilation path 10, so that the surging phenomenon during the cooling operation can be suppressed. Accordingly, it is possible to prevent dew dripping during cooling operation. Moreover, since the displacement of the wall surface during the cooling operation is eliminated during the heating operation, the dynamic pressure loss of the airflow on the blowout side can be significantly suppressed. Therefore, the energy consumption efficiency at the time of heating operation can be improved.

なお、上記説明では、通風路断面積変更機構15が、冷房運転時に、通風路断面積を暖房運転時に比べて縮小させるものとしたが、言い換えれば、通風路断面変更機構15が、冷房運転時に、通風路体積(ディフューザ6で囲まれた通風路10の体積)を、暖房運転時に比べて縮小させていることと同等である。   In the above description, the ventilation path cross-sectional area change mechanism 15 is configured to reduce the ventilation path cross-sectional area during cooling operation compared to that during heating operation. In other words, the ventilation path cross-section change mechanism 15 is reduced during cooling operation. This is equivalent to reducing the volume of the ventilation path (volume of the ventilation path 10 surrounded by the diffuser 6) as compared with the heating operation.

そして、この実施の形態1及び第1の実施態様〜第5の実施態様では、案内壁7cの壁面、スタビライザ吹出壁面8a、及び側壁面9aのいずれかの壁面を変位させるものとして説明したが、案内壁7cの壁面、スタビライザ吹出壁面8a、及び側壁面9aの中から複数組み合わせて、選択したそれぞれの壁面を、羽根車5より下流側の通風路体積が暖房運転時より冷房運転時の方が小さくなるように変位させてもよい。これにより、案内壁7c、スタビライザ吹出壁面8a、及び側壁面9aを単体で変位させた通風路断面変更機構15より小さな変位量しかない他の通風路断面変更機構を用いてそれぞれの壁面を変位させても、単体で変位させたものとトータルの通風路体積の変動が同等であれば、案内壁7c、スタビライザ吹出壁面8a、及び側壁面9aのいずれかを単体で変位させたものと同じ効果が得られる。   In the first embodiment and the first to fifth embodiments, the wall surface of the guide wall 7c, the stabilizer outlet wall surface 8a, and the side wall surface 9a are described as being displaced. A plurality of the wall surfaces of the guide wall 7c, the stabilizer outlet wall surface 8a, and the side wall surface 9a are combined, and the selected wall surface is more in the cooling operation than in the heating operation when the ventilation path volume downstream from the impeller 5 is in the heating operation. You may displace so that it may become small. Thereby, each wall surface is displaced using the other ventilation path cross-section change mechanism which has only a small displacement amount from the ventilation path cross-section change mechanism 15 which displaced the guide wall 7c, the stabilizer blowing wall surface 8a, and the side wall surface 9a alone. However, if the variation of the total ventilation path volume is equivalent to that of the single displacement, the same effect as the displacement of any one of the guide wall 7c, the stabilizer outlet wall surface 8a, and the side wall surface 9a is obtained. can get.

また、案内壁7cの壁面、スタビライザ吹出壁面8a、及び側壁面9aは、部分的に冷房運転時の通風路体積が暖房運転時の通風路体積より小さくなるように突出量が切り替えられるものでもよい。即ち、案内壁7cやスクロール壁面8、及び側壁板9の一部が暖房運転時に比べて冷房運転時に通風路10側に突出されていればよい。これにより、冷房運転時における羽根車5より下流側の通風路体積が、暖房運転時のものより小さくなるので、冷房運転時には、暖房運転時より通風路10の気流の動圧が増大されてサージング現象を抑制される。また、暖房運転時には、冷房運転時の壁面の変位を解消させれば、吹き出し側の気流の動圧損失を抑制することができ、暖房運転時のエネルギーの消費効率を向上させることができる。
但し、一般的な上記実施の形態1及び第1の実施態様〜第5の実施態様のように構成すれば、冷房運転時の動圧損失も極力抑えつつ効果的にサージング現象を抑制できる。
Further, the protruding amount of the wall surface of the guide wall 7c, the stabilizer outlet wall surface 8a, and the side wall surface 9a may be switched such that the ventilation path volume during cooling operation is partially smaller than the ventilation path volume during heating operation. . That is, the guide wall 7c, the scroll wall surface 8, and a part of the side wall plate 9 only need to protrude toward the ventilation path 10 during the cooling operation as compared with the heating operation. As a result, the volume of the ventilation path downstream of the impeller 5 during the cooling operation is smaller than that during the heating operation, so the dynamic pressure of the airflow in the ventilation path 10 is increased during the cooling operation and surging. The phenomenon is suppressed. Further, if the wall surface displacement during the cooling operation is eliminated during the heating operation, the dynamic pressure loss of the airflow on the blowing side can be suppressed, and the energy consumption efficiency during the heating operation can be improved.
However, if it is configured as in the general first embodiment and the first to fifth embodiments, the surging phenomenon can be effectively suppressed while suppressing the dynamic pressure loss during the cooling operation as much as possible.

また、上記案内壁7c、スタビライザ8及び側壁板9には、冷房運転時における空気調和機1Aの内部温度のときより、暖房運転時における空気調和機1Aの内部温度のときに膨張する材料を用い、冷房運転時に、暖房運転時に比べて、案内壁7cの壁面、及びスタビライザ吹出壁面8aのいずれかの幅方向両側又は軸方向中央部を通風路10側に突出させたり、側壁面9aを通風路10側に突出させたりしてもよい。この場合、案内壁7c、スタビライザ8及び側壁板9自体が、上述の通風路断面変更機構15の役割を兼ねる。   The guide wall 7c, the stabilizer 8 and the side wall plate 9 are made of a material that expands at the internal temperature of the air conditioner 1A during the heating operation than at the internal temperature of the air conditioner 1A during the cooling operation. In the cooling operation, compared to the heating operation, either the wall surface of the guide wall 7c or the stabilizer outlet wall surface 8a is protruded to the side of the width direction or the central part in the axial direction through the air passage 10 side, or the side wall surface 9a is provided with the air passage. You may make it protrude in 10 side. In this case, the guide wall 7c, the stabilizer 8, and the side wall plate 9 itself also serve as the above-described ventilation path cross-section changing mechanism 15.

また、スクロール部7Aの案内壁7cの下端部には、冷房運転時における冷気と暖気の混合による結露の滴下をより万全を期して防止するため吸水部材などを一体または別部品として配設してもよい。   In addition, a water absorbing member or the like is provided at the lower end portion of the guide wall 7c of the scroll portion 7A as an integral or separate component in order to prevent dripping of condensation due to mixing of cool air and warm air during cooling operation. Also good.

実施の形態2.
図12はこの発明の実施の形態2に係る空気調和機の側断面図、図13はこの発明の実施の形態2に係る空気調和機の吹出口面積変更機構の斜視図、図14はこの発明の実施の形態2に係る空気調和機における吹き出し気流の通風路断面図である。なお、図12〜図14において、上記実施の形態1と同一部分には同一符号を付し、その説明は省略する。
Embodiment 2. FIG.
FIG. 12 is a side sectional view of an air conditioner according to Embodiment 2 of the present invention, FIG. 13 is a perspective view of a blower outlet area changing mechanism for an air conditioner according to Embodiment 2 of the present invention, and FIG. It is the ventilation path sectional drawing of the blowing airflow in the air conditioner which concerns on Embodiment 2. FIG. 12 to 14, the same reference numerals are given to the same portions as those in the first embodiment, and the description thereof is omitted.

図12において、空気調和機1Bは、スクロール部7B、及び吹出口面積変更機構21を有している。スクロール部7Bは、背面壁7a、底壁7b、及び案内壁7dで構成されている。案内壁7dは上述の案内壁7cと同じ形状であるが、可撓性部材は用いられてない。また、吹出口面積変更機構21は、図13に示されるように、モータ17、駆動板回動軸17a、変位制御部19、及び外形形状が三角形で板状の駆動板22を有している。
そして、駆動板回動軸17aは、案内壁7dの下端で、案内壁7dの幅方向に沿って配設されて、その軸周りに回動可能になっている。
In FIG. 12, the air conditioner 1 </ b> B has a scroll portion 7 </ b> B and a blower outlet area changing mechanism 21. The scroll portion 7B includes a back wall 7a, a bottom wall 7b, and a guide wall 7d. The guide wall 7d has the same shape as the above-described guide wall 7c, but no flexible member is used. Further, as shown in FIG. 13, the air outlet area changing mechanism 21 includes a motor 17, a drive plate rotation shaft 17 a, a displacement control unit 19, and a drive plate 22 having a triangular outer shape and a plate shape. .
The drive plate rotation shaft 17a is disposed along the width direction of the guide wall 7d at the lower end of the guide wall 7d, and is rotatable about the axis.

駆動板回動軸17aはモータ17の回転トルクが伝達されるようになっており、モータ17の軸周りの回動に応じて回動される。
駆動板22は、その一辺が駆動板回動軸17aに合わせて取り付けられ、駆動板回動軸17aの軸周りの回動に連動して回動可能になっている。
The drive plate rotation shaft 17a is adapted to transmit the rotational torque of the motor 17, and is rotated according to the rotation of the motor 17 around the axis.
The drive plate 22 is attached so that one side thereof is aligned with the drive plate rotation shaft 17a, and is rotatable in conjunction with the rotation around the drive plate rotation shaft 17a.

そして、空気調和機1Bの冷房運転時には、変位制御部19のCPUは、通風路10の最下端となる吹出口11の下部から駆動板22が吹出口11側の一部を塞口するようにモータ17の回転駆動を制御している。また、暖房運転時には、変位制御部19は駆動板22による吹出口11の一部の塞口を解消するようにモータ17の回転駆動を制御している。   During the cooling operation of the air conditioner 1 </ b> B, the CPU of the displacement control unit 19 causes the drive plate 22 to block a part on the outlet 11 side from the lower part of the outlet 11 that is the lowermost end of the ventilation path 10. The rotational drive of the motor 17 is controlled. Further, during the heating operation, the displacement control unit 19 controls the rotational drive of the motor 17 so as to eliminate a part of the outlet 11 of the air outlet 11 by the drive plate 22.

次いで、暖房運転時と冷房運転時の吹出口11における通風可能な領域の面積(気流通風面積)変化について図14を参照しつつ説明する。図14中、破線が冷房運転時に吹出口11を塞口する駆動板22を示している。また、暖房運転時には、実線で図示した駆動板22は吹出口11の塞口を解消するように回動されている。   Next, a change in the area (air circulation air flow area) of the ventilating region in the air outlet 11 during the heating operation and the cooling operation will be described with reference to FIG. In FIG. 14, the broken line indicates the drive plate 22 that closes the air outlet 11 during the cooling operation. Further, during the heating operation, the drive plate 22 illustrated by the solid line is rotated so as to eliminate the blockage of the air outlet 11.

また、冷房運転時においては、気流通風面積の大きさは、吹出口11の面積から、破線で示された駆動板22の面積を差分したものになり、吹出口11の面積よりも小さくなっている。このとき、駆動板22は、吹出口11の幅方向の中心で最も吹出口11内に突出されている。即ち、冷房運転時には、吹出口11の幅方向中央部の面積は、暖房運転時に対して縮小されている。これにより、吹出口11の幅方向の中心部で動圧が増大し、この動圧は、流速の早い案内壁7cの中央側から流速の遅い両端部側に気流を向かわせる方向に作用する。従って、吹出口11の幅方向の両端での動圧が増大される。   Further, during the cooling operation, the size of the air circulation air area is obtained by subtracting the area of the drive plate 22 indicated by the broken line from the area of the air outlet 11 and is smaller than the area of the air outlet 11. ing. At this time, the drive plate 22 protrudes most into the air outlet 11 at the center in the width direction of the air outlet 11. That is, during the cooling operation, the area of the central portion in the width direction of the air outlet 11 is reduced as compared with the heating operation. As a result, the dynamic pressure increases at the central portion in the width direction of the outlet 11, and this dynamic pressure acts in a direction in which the airflow is directed from the center side of the guide wall 7 c having a high flow velocity to both end portions having a low flow velocity. Therefore, the dynamic pressure at both ends in the width direction of the air outlet 11 is increased.

暖房運転時においては、吹出口11内に突出されていた駆動板22は、気流の流れを阻害しない吹出口11の外部に移動され、吹出口11の下端部は幅方向に渡って平坦となり、吹出口11の面積が気流通風面積となっている。従って、吹出口11の幅方向の中央部では、冷房運転時に比べて動圧が減少するので、吹出口11の幅方向の中央部から両端部に気流を向かわせる力も減少する。つまり、暖房運転時では冷房運転時に比べて、吹出口11の幅方向の両端部で動圧が減少する。   During the heating operation, the drive plate 22 protruding into the air outlet 11 is moved to the outside of the air outlet 11 that does not hinder the flow of the airflow, and the lower end of the air outlet 11 becomes flat across the width direction, The area of the air outlet 11 is an air circulation area. Therefore, since the dynamic pressure is reduced in the central portion in the width direction of the air outlet 11 as compared with the cooling operation, the force for directing the airflow from the central portion in the width direction of the air outlet 11 to both ends is also reduced. That is, in the heating operation, the dynamic pressure decreases at both ends in the width direction of the air outlet 11 as compared with the cooling operation.

この実施の形態2によれば、吹出口面積変更機構21が、冷房運転や暖房運転などの運転条件に適した吹出口11の気流通風面積となるように駆動板22を回動させている。即ち、冷房運転時に、吹出口11の幅方向中央部の面積が暖房運転時に対して縮小されるように、吹出口11の一部を駆動板22により塞口し、暖房運転時に、駆動板22による吹出口11の一部の塞口を解除して、吹出口11の中央部の動圧が下がるように制御している。これにより、冷房運転時における吹出口11の幅方向の両端の動圧が、暖房運転時に比べて増大され、暖房運転時には吹出口11の幅方向両端の動圧が減少されている。
従って、実施の形態1と同様の効果が得られる。
また、冷房運転時と暖房運転時とで、吹出口11の一部を塞口とその塞口の解除の切り替えを行うだけなので、案内壁7d、スタビライザ吹出壁面8a、及び側壁面9aのいずれかを変位させて通風路10側に突出させたり、突出をなくしたりしていた上述の通風路断面変更機構15の制御に比べ、吹出口面積変更機構21の制御が簡素化できる。
According to the second embodiment, the air outlet area changing mechanism 21 rotates the drive plate 22 so that the air circulation air area of the air outlet 11 is suitable for operating conditions such as cooling operation and heating operation. . That is, a part of the air outlet 11 is closed by the drive plate 22 so that the area of the central portion in the width direction of the air outlet 11 is reduced during the cooling operation as compared with that during the heating operation. Is controlled so that the dynamic pressure at the center of the air outlet 11 is lowered. Thereby, the dynamic pressure of the both ends of the width direction of the blower outlet 11 at the time of air_conditionaing | cooling operation increases compared with the time of heating operation, and the dynamic pressure of the width direction both ends of the blower outlet 11 is decreased at the time of heating operation.
Therefore, the same effect as in the first embodiment can be obtained.
In addition, since only a part of the outlet 11 is switched between the closing of the outlet 11 and the closing of the outlet, during the cooling operation and the heating operation, any one of the guide wall 7d, the stabilizer outlet wall surface 8a, and the side wall surface 9a is used. As compared with the control of the above-described ventilation path cross-section changing mechanism 15 that has been displaced and protruded toward the ventilation path 10, the control of the air outlet area changing mechanism 21 can be simplified.

なお、この実施の形態2では、駆動板22の形状は三角形に形成し、冷房運転時に吹出口11の幅方向の中心部で動圧が増大させるように吹出口11の一部を塞口するものとして説明したが、吹出口11の幅方向の中心部の動圧を増大させて、吹出口11の幅方向両端の動圧を増大させるものに限定されるものではない。駆動板22を、吹出口11の幅方向の中心部から両端側に向かうにつれて、吹出口11内への突出量が大きくなるように形成し、冷房運転時に駆動板22で吹出口11の一部を塞口したときに、吹出口11の幅方向の両端で気流通風面積を縮小させて、吹出口11の両端側の動圧が増大するようにしてもよい。   In the second embodiment, the shape of the drive plate 22 is formed in a triangle, and a part of the air outlet 11 is closed so that the dynamic pressure increases at the center in the width direction of the air outlet 11 during the cooling operation. Although described as a thing, it is not limited to what increases the dynamic pressure of the center part of the width direction of the blower outlet 11, and increases the dynamic pressure of the width direction both ends of the blower outlet 11. FIG. The drive plate 22 is formed such that the amount of protrusion into the blower outlet 11 increases from the center in the width direction of the blower outlet 11 toward both ends, and a part of the blower outlet 11 is formed by the drive plate 22 during cooling operation. When the air outlet is closed, the air circulation air area may be reduced at both ends in the width direction of the air outlet 11 so that the dynamic pressure on both ends of the air outlet 11 increases.

また、駆動板22は空気調和機1Bの吹出口11に標準的に設けられている上下左右方向への風向制御板(図示せず)を駆動させる駆動機構(図示せず)を用いて吹出口11を塞口するように駆動板22を回動させてもよい。   Moreover, the drive plate 22 uses the drive mechanism (not shown) which drives the wind direction control board (not shown) to the up-down-and-left-right direction provided normally in the blow-out port 11 of the air conditioner 1B. The drive plate 22 may be rotated so as to close the cover 11.

この発明の実施の形態1に係る空気調和機の冷房運転時における側断面図である。It is a sectional side view at the time of the air_conditioning | cooling operation of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機の冷房運転時におけるスクロール部の斜視図である。It is a perspective view of the scroll part at the time of air_conditionaing | cooling operation of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機の暖房運転時におけるスクロール部の斜視図である。It is a perspective view of the scroll part at the time of the heating operation of the air conditioner which concerns on Embodiment 1 of this invention. 図1のIV−IV矢視要部断面図である。It is IV-IV arrow principal part sectional drawing of FIG. 図4において空気調和機が冷房運転から暖房運転に切り替わったときの断面図である。It is sectional drawing when an air conditioner switches from air_conditionaing | cooling operation to heating operation in FIG. この発明の実施の形態1に係る空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional view of the blowing air current in the air harmony machine concerning Embodiment 1 of this invention. この発明の第1の実施態様を示す空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional view of the blowing air current in the air harmony machine showing the 1st embodiment of this invention. この発明の第2の実施態様を示す空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional drawing of the blowing airflow in the air conditioner which shows the 2nd embodiment of this invention. この発明の第3の実施態様を示す空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional drawing of the blowing airflow in the air conditioner which shows the 3rd embodiment of this invention. この発明の第4の実施態様を示す空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional drawing of the blowing airflow in the air conditioner which shows the 4th embodiment of this invention. この発明の第5の実施態様を示す空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional drawing of the blowing airflow in the air conditioner which shows the 5th embodiment of this invention. この発明の実施の形態2に係る空気調和機の側断面図である。It is a sectional side view of the air conditioner which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る空気調和機の吹出口面積変更機構の斜視図である。It is a perspective view of the blower outlet area change mechanism of the air conditioner concerning Embodiment 2 of this invention. この発明の実施の形態2に係る空気調和機における吹き出し気流の通風路断面図である。It is a ventilation path sectional drawing of the blowing airflow in the air conditioner which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1A,1B 空気調和機、2a 吸込口、4 クロスフローファン、5 羽根車、7A,7B スクロール部、8 スタビライザ、9 側壁板、10 通風路、11 吹出口、15 通風路断面変更機構、21 吹出口面積変更機構。   1A, 1B Air conditioner, 2a Suction port, 4 Cross flow fan, 5 Impeller, 7A, 7B Scroll part, 8 Stabilizer, 9 Side wall plate, 10 Ventilation path, 11 Air outlet, 15 Ventilation path cross-section change mechanism, 21 Blow Exit area change mechanism.

Claims (7)

羽根車、該羽根車の背面に空気を案内するスクロール部、及び羽根車の下流側にスクロール部に相対して配置され、吸込口と吹出口とを仕切るスタビライザを有するクロスフローファンを備え、上記スクロール部と、上記スタビライザと、上記羽根車の軸方向両側に配置された側壁板とから通風路を構成してなる空気調和機において、
運転条件に対応させて上記通風路を構成する上記スクロール部、上記スタビライザ、及び上記側壁板の少なくとも一つの壁面を上記通風路側または上記通風路とは反対側に変位させて通風路体積を変更する通風路断面変更機構を備えていることを特徴とする空気調和機。
An impeller, a scroll portion for guiding air to the back of the impeller, and a crossflow fan disposed on the downstream side of the impeller relative to the scroll portion and having a stabilizer that partitions the suction port and the outlet, In the air conditioner that forms the ventilation path from the scroll portion, the stabilizer, and the side wall plates arranged on both sides in the axial direction of the impeller,
The volume of the ventilation path is changed by displacing at least one wall surface of the scroll portion, the stabilizer, and the side wall plate constituting the ventilation path corresponding to the operating condition to the ventilation path side or the side opposite to the ventilation path. An air conditioner comprising an air passage cross section changing mechanism.
上記通風路断面変更機構は、冷房運転時に、上記羽根車の上記吹出口側の通風路断面における上記羽根車の軸方向両側又は軸方向中央部の面積を、暖房運転時に対して縮小させて上記通風路体積を変更することを特徴とする請求項1記載の空気調和機。   The ventilation path cross-section changing mechanism reduces the area of the both sides in the axial direction of the impeller or the central part in the axial direction in the ventilation path cross section on the outlet side of the impeller during the cooling operation by reducing the area compared to the heating operation. The air conditioner according to claim 1, wherein the air passage volume is changed. 上記通風路断面変更機構は、上記通風路を構成する上記スクロール部の壁面の上記軸方向両側又は上記軸方向中央部を該通風路側に突出させて上記軸方向両側又は上記軸方向中央部の上記面積を縮小させることを特徴とする請求項2記載の空気調和機。   The ventilation path cross-section changing mechanism is configured such that the axially opposite sides or the axially central part of the wall surface of the scroll portion constituting the ventilation path protrudes toward the ventilation path side and the axially opposite sides or the axially central part is The air conditioner according to claim 2, wherein the area is reduced. 上記通風路断面変更機構は、上記通風路を構成する上記スタビライザの壁面の上記軸方向両側又は上記軸方向中央部を該通風路側に突出させて上記軸方向両側又は上記軸方向中央部の上記面積を縮小させることを特徴とする請求項2記載の空気調和機。   The ventilation path cross-section changing mechanism is configured such that the axially opposite sides of the stabilizer wall surface or the axially central portion of the stabilizer that constitutes the ventilation path protrudes toward the ventilation path, and the areas of the axially opposite sides or the axially central portion are projected. The air conditioner according to claim 2, wherein the air conditioner is reduced. 上記通風路断面変更機構は、上記通風路を構成する上記側壁板の壁面を該通風路側に突出させて上記軸方向両側の上記面積を縮小させることを特徴とする請求項2記載の空気調和機。   The air conditioner according to claim 2, wherein the ventilation path cross-section changing mechanism reduces the area on both sides in the axial direction by projecting the wall surface of the side wall plate constituting the ventilation path toward the ventilation path. . 上記通風路断面変更機構は、上記通風路を構成する上記スクロール部及び上記スタビライザの両方の壁面の上記軸方向両側又は上記軸方向中央部を該通風路側に突出させて、又は上記側壁板の壁面を上記通風路側に突出させ、かつ、上記スクロール部及び上記スタビライザの少なくとも一方の壁面の上記軸方向両側又は上記軸方向中央部を上記通風路側に突出させて、上記軸方向両側又は上記軸方向中央部の上記面積を縮小させることを特徴とする請求項2記載の空気調和機。   The ventilation path cross-section changing mechanism is configured such that the axially opposite sides or the axially central part of both wall surfaces of the scroll portion and the stabilizer constituting the ventilation path protrude toward the ventilation path side, or the wall surface of the side wall plate Projecting toward the ventilation path side, and projecting the axially opposite sides or the axially central part of at least one wall surface of the scroll part and the stabilizer toward the ventilation path side, the axially opposite sides or the axially centered part The air conditioner according to claim 2, wherein the area of the portion is reduced. 羽根車、該羽根車の背面に空気を案内するスクロール部、及び該羽根車の下流側に該スクロール部に相対して配置され、吸込口と吹出口とを仕切るスタビライザを有するクロスフローファンを備え、上記スクロール部と、上記スタビライザと上記羽根車の軸方向両側に配置された側壁板とから通風路を構成してなる空気調和機において、
冷房運転時に、上記通風路の最下端となる上記吹出口の上記軸方向両側又は上記軸方向中央部の面積を暖房運転時に対して縮小させる吹出口面積変更機構を備えていることを特徴とする空気調和機。
An impeller, a scroll portion that guides air to the rear surface of the impeller, and a cross flow fan that is disposed on the downstream side of the impeller relative to the scroll portion and has a stabilizer that partitions the suction port and the outlet. In the air conditioner configured to form a ventilation path from the scroll portion, the stabilizer, and side wall plates arranged on both sides in the axial direction of the impeller,
It is provided with a blower outlet area changing mechanism that reduces the area of both sides in the axial direction or the central part in the axial direction of the blower outlet that is the lowermost end of the ventilation path during cooling operation. Air conditioner.
JP2007115954A 2007-04-25 2007-04-25 Air conditioner Active JP4804411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115954A JP4804411B2 (en) 2007-04-25 2007-04-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115954A JP4804411B2 (en) 2007-04-25 2007-04-25 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008275193A true JP2008275193A (en) 2008-11-13
JP4804411B2 JP4804411B2 (en) 2011-11-02

Family

ID=40053356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115954A Active JP4804411B2 (en) 2007-04-25 2007-04-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP4804411B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012169110A1 (en) * 2011-06-09 2015-02-23 三菱電機株式会社 Air conditioner indoor unit
CN105258215A (en) * 2015-09-23 2016-01-20 芜湖美智空调设备有限公司 Vertical indoor unit
CN105352030A (en) * 2015-09-23 2016-02-24 芜湖美智空调设备有限公司 Vertical indoor unit
JP2017053500A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Indoor unit of air conditioner
CN109506351A (en) * 2018-11-28 2019-03-22 奥克斯空调股份有限公司 Air channel structure and air conditioner
JP2020070988A (en) * 2018-10-31 2020-05-07 ダイキン工業株式会社 Blower
CN113028621A (en) * 2021-03-22 2021-06-25 广州松下空调器有限公司 Air conditioner air duct structure and air conditioner
WO2023134219A1 (en) * 2022-01-14 2023-07-20 青岛海尔空调器有限总公司 Air conditioner indoor unit and control method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129295A (en) * 1981-02-02 1982-08-11 Matsushita Electric Ind Co Ltd Arrangement for fan
JPS58133535A (en) * 1982-02-01 1983-08-09 Matsushita Electric Ind Co Ltd Blast device
JPS6236277U (en) * 1985-08-20 1987-03-03
JPH05164085A (en) * 1991-12-12 1993-06-29 Matsushita Electric Ind Co Ltd Cross-flow type cooling fan
JPH07158953A (en) * 1993-12-07 1995-06-20 Matsushita Electric Ind Co Ltd Indoor unit for air conditioner
JPH0886506A (en) * 1994-09-20 1996-04-02 Fujitsu General Ltd Air-conditioning machine
JP2000088273A (en) * 1998-09-16 2000-03-31 Funai Electric Co Ltd Air conditioner
JP2002061872A (en) * 2000-08-11 2002-02-28 Fujitsu General Ltd Air conditioner
JP2002195595A (en) * 2000-12-22 2002-07-10 Daikin Ind Ltd Indoor machine for air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129295A (en) * 1981-02-02 1982-08-11 Matsushita Electric Ind Co Ltd Arrangement for fan
JPS58133535A (en) * 1982-02-01 1983-08-09 Matsushita Electric Ind Co Ltd Blast device
JPS6236277U (en) * 1985-08-20 1987-03-03
JPH05164085A (en) * 1991-12-12 1993-06-29 Matsushita Electric Ind Co Ltd Cross-flow type cooling fan
JPH07158953A (en) * 1993-12-07 1995-06-20 Matsushita Electric Ind Co Ltd Indoor unit for air conditioner
JPH0886506A (en) * 1994-09-20 1996-04-02 Fujitsu General Ltd Air-conditioning machine
JP2000088273A (en) * 1998-09-16 2000-03-31 Funai Electric Co Ltd Air conditioner
JP2002061872A (en) * 2000-08-11 2002-02-28 Fujitsu General Ltd Air conditioner
JP2002195595A (en) * 2000-12-22 2002-07-10 Daikin Ind Ltd Indoor machine for air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180847A (en) * 2011-06-09 2015-10-15 三菱電機株式会社 Indoor unit of air conditioner
US10429088B2 (en) 2011-06-09 2019-10-01 Mitsubishi Electric Corporation Air-conditioning-apparatus indoor unit
JPWO2012169110A1 (en) * 2011-06-09 2015-02-23 三菱電機株式会社 Air conditioner indoor unit
US9574815B2 (en) 2011-06-09 2017-02-21 Mitsubishi Electric Corporation Air-conditioning-apparatus indoor unit
JP2017053500A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Indoor unit of air conditioner
CN105352030A (en) * 2015-09-23 2016-02-24 芜湖美智空调设备有限公司 Vertical indoor unit
CN105352030B (en) * 2015-09-23 2017-12-22 芜湖美智空调设备有限公司 Vertical indoor set
CN105258215B (en) * 2015-09-23 2017-12-22 芜湖美智空调设备有限公司 Vertical indoor set
CN105258215A (en) * 2015-09-23 2016-01-20 芜湖美智空调设备有限公司 Vertical indoor unit
JP2020070988A (en) * 2018-10-31 2020-05-07 ダイキン工業株式会社 Blower
JP7193714B2 (en) 2018-10-31 2022-12-21 ダイキン工業株式会社 blower
CN109506351A (en) * 2018-11-28 2019-03-22 奥克斯空调股份有限公司 Air channel structure and air conditioner
CN113028621A (en) * 2021-03-22 2021-06-25 广州松下空调器有限公司 Air conditioner air duct structure and air conditioner
WO2023134219A1 (en) * 2022-01-14 2023-07-20 青岛海尔空调器有限总公司 Air conditioner indoor unit and control method therefor

Also Published As

Publication number Publication date
JP4804411B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4804411B2 (en) Air conditioner
JP4945305B2 (en) Air conditioner
JP5732579B2 (en) Air conditioner
JP5591061B2 (en) Air conditioner
JP4947227B1 (en) Air conditioner
JP2013053796A (en) Air conditioner
JP2007010259A (en) Air conditioner
JP4123276B2 (en) Air conditioner indoor unit
CN106225070B (en) Air duct machine
JP4945678B1 (en) Air conditioner
CN113623850A (en) Wall-mounted air conditioner indoor unit
WO2005052463A1 (en) Air conditioner
JP3609002B2 (en) Air conditioner indoor unit
JP2016020797A (en) Air conditioner
JP2017161185A (en) Air conditioner
CN105485772A (en) Air conditioner ceiling unit
JP6179794B2 (en) Air conditioner
JP6934610B2 (en) Air conditioner
CN114484611B (en) Wall-mounted air conditioner indoor unit
JP2007071532A (en) Indoor unit for air conditioner
KR100432222B1 (en) Air conditioner
JP6150201B2 (en) Air conditioner
JP4947224B1 (en) Air conditioner
JP2005214560A (en) Indoor machine of air conditioner
WO2018189933A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4804411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250