JP2008273682A - Conveying method and control system of conveying means performing the method - Google Patents

Conveying method and control system of conveying means performing the method Download PDF

Info

Publication number
JP2008273682A
JP2008273682A JP2007118339A JP2007118339A JP2008273682A JP 2008273682 A JP2008273682 A JP 2008273682A JP 2007118339 A JP2007118339 A JP 2007118339A JP 2007118339 A JP2007118339 A JP 2007118339A JP 2008273682 A JP2008273682 A JP 2008273682A
Authority
JP
Japan
Prior art keywords
transported object
rope
wire rope
conveyed
electric cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007118339A
Other languages
Japanese (ja)
Other versions
JP4999080B2 (en
Inventor
Kazuhiko Terajima
寺嶋  一彦
Takanori Miyoshi
孝典 三好
Hideto Kojima
秀人 小島
Hiroyasu Makino
泰育 牧野
Makio Suzuki
薪雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Toyohashi University of Technology NUC
Original Assignee
Sintokogio Ltd
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Toyohashi University of Technology NUC filed Critical Sintokogio Ltd
Priority to JP2007118339A priority Critical patent/JP4999080B2/en
Publication of JP2008273682A publication Critical patent/JP2008273682A/en
Application granted granted Critical
Publication of JP4999080B2 publication Critical patent/JP4999080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conveying method capable of moving an article to be conveyed at the direction and speed desired by an operator by acquiring a power assistance by an overhead traveling crane and controlling the attitude of the article which has been uncontrollable. <P>SOLUTION: The article to be conveyed is suspended by installing it between the lower ends of a suspending means formed of a rope having an upper end connected to the lower end of a wire rope and having a tension detection means and an electric cylinder rope having an upper end connected to the lower end of the wire rope and having a tension detection means and connecting them to each other. An operation force acting on the article to be conveyed and a load by the weight of the article to be conveyed are detected by the tension detection means, respectively. By using a Jacobian matrix (J<SP>T</SP>)<SP>-1</SP>from the value detected by these tension detection means, an electric cylinder is retracted, and a servo-motor is synchronously controlled for controlling the attitude of the article to be conveyed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、搬送方法およびこの方法を実施する搬送手段の制御システムに関する。 The present invention relates to a transport method and a control system for transport means for carrying out the method.

少子高齢化に伴い産業現場では,労働者の高齢化,労働者の減少などの問題が生じている。また,多品種少量生産の観点から,完全自動化システムは柔軟性に乏しい問題がある。このような背景より近年,作業内容に対する柔軟性と多様性を持ち,作業負担を軽減可能なパワーアシストシステムの研究が盛んに行われている。 Along with the declining birthrate and aging population, problems such as the aging of workers and the decrease in workers are occurring in the industrial field. In addition, from the viewpoint of high-mix low-volume production, a fully automated system has a problem of poor flexibility. In recent years, research on power assist systems that have flexibility and diversity in work contents and that can reduce the work burden has been actively conducted.

そこで、本願発明の発明者らは直接荷物に触れ,少ない力で搬送を行うことのできるパワーアシストシステムを提案してきた。本パワーアシストシステムの特徴として,作業者が直接搬送物に触れるため,ペンダント方式と比べ位置決めなどの操作がしやすいことが挙げられる。また,制御対象である天井走行クレーンシステムが社会に数多く普及している点,共振を有する柔軟構造物である点も特徴である。水平方向のパワーアシストシステムでは,作業者が搬送物に直接力を加えた際に生じるロープの振れ角を零にする搬送制御方式を用いることで,水平方向の搬送を可能にした[非特許文献1]。また、垂直方向では,ロードセル(力センサ) により作業者の加えた力を検出することで,すでに搬送物が持ち上がった状態からのパワーアシストを行うことを可能にした[非特許文献2]。 Therefore, the inventors of the present invention have proposed a power assist system that can directly touch a load and carry it with a small force. As a feature of this power assist system, since the operator directly touches the transported object, operations such as positioning are easier than the pendant system. It is also characterized by the fact that many overhead traveling crane systems that are controlled objects are widely used in society and that they are flexible structures with resonance. In the horizontal power assist system, it is possible to transport in the horizontal direction by using a transport control system that eliminates the swing angle of the rope that occurs when an operator applies force directly to the transported object. 1]. In addition, in the vertical direction, it is possible to perform power assist from a state in which the transported object has already been lifted by detecting the force applied by the worker with a load cell (force sensor) [Non-patent Document 2].

三好 孝典,鈴木 裕一,寺嶋 一彦,”天井クレーンにおけるパワーアシストシステムの構築”,日本機会学会論文集C編、vol.70-696、pp.2427,2004。Takanori Miyoshi, Yuichi Suzuki, Kazuhiko Terashima, “Construction of Power Assist System for Overhead Crane”, Proceedings of Japan Opportunity Society, Vol.70-696, pp.2427,2004. T. Miyoshi and K. Terashima, ”Development ofVerticalPower-Assisted Crane System to Reduce the Operators’Burden”, IEEE Int. Conf. on Systems, Man andCybernetics(SMC’04),2004, pp.4420-4425。T. Miyoshi and K. Terashima, “Development of Vertical Power-Assisted Crane System to Reduce the Operators’ Burden ”, IEEE Int. Conf. On Systems, Man and Cybernetics (SMC’04), 2004, pp. 4420-4425.

しかし,このように構成された従来のシステムでは、天井走行クレーンを基に構築されたため,搬送物の姿勢を制御することは不可能であった。 However, with the conventional system configured in this way, it was impossible to control the posture of the transported object because it was built based on an overhead traveling crane.

本発明は上記の事情に鑑みてなされたもので,その目的は,搬送物の姿勢を制御することが可能な搬送物の搬送方法およびこの方法を実施する搬送手段の制御システムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transport method for a transport object that can control the posture of the transport object and a control system for a transport means that implements this method. is there.

請求項1の搬送物の搬送方法は、サーボモータの正逆回転駆動によるワイヤロープ巻揚げドラムの正逆回転によって巻上げ・巻下げされるワイヤロープにより上下方向へ昇降されまたは位置が維持され、かつ水平方向へ移動する天井走行クレーンによって水平方向へ移動される搬送物に、作業者が搬送物の移動方向を操作するとともに搬送物の姿勢を制御する操作力を加えながら、前記天井走行クレーンによるパワーアシストを得て、作業者が望む方向へ望む速度で当該搬送物を移動させる搬送方法であって、その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設したロープと、その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設した電動シリンダロープとによって構成された懸吊手段の下端間に、前記搬送物を装架させて接続して当該搬送物を吊り下げ、その後、前記搬送物に作用する前記操作力と搬送物の重量による負荷を前記張力検出手段によってそれぞれ検出し、これらの張力検出手段による検出値からヤコビ行列(JT )−1を用いて、 前記電動シリンダを収縮作動させるとともに前記サーボモータを同期化制御して前記搬送物の姿勢を制御することを特徴とする。 The method for transporting a transported object according to claim 1 is ascended or lowered in the vertical direction or maintained in position by a wire rope wound and unwound by forward / reverse rotation of a wire rope hoisting drum by forward / reverse rotation driving of a servo motor, and While the operator moves the moving object in the horizontal direction by the overhead traveling crane moving in the horizontal direction, the operator operates the moving direction of the conveyed object and applies the operation force for controlling the posture of the conveyed object. A transport method for obtaining the assist and moving the transported object at a desired speed in a direction desired by the operator, the rope having an upper end connected to the lower end of the wire rope and provided with a tension detecting means, and an upper end of the rope Between the lower ends of the suspension means constituted by the electric cylinder rope connected to the lower end of the wire rope and provided with a tension detection means, The transported material is mounted and connected to suspend the transported material, and then the operation force acting on the transported material and the load due to the weight of the transported material are detected by the tension detecting means, respectively. Using the Jacobian matrix (J T ) −1 from the detected value, the electric cylinder is contracted and the servo motor is synchronized to control the posture of the conveyed object.

請求項3の搬送手段の制御システムは、サーボモータの正逆回転駆動によるワイヤロープ巻揚げドラムの正逆回転によって巻上げ・巻下げされるワイヤロープにより上下方向へ昇降されまたは位置が維持され、かつ水平方向へ移動する天井走行クレーンによって水平方向へ移動される搬送物に、作業者が搬送物の移動方向を操作するとともに搬送物の姿勢を制御する操作力を加えながら、前記天井走行クレーンによるパワーアシストを得て、作業者が望む方向へ望む速度で当該搬送物を移動させる搬送システムであって、その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設したロープと、その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設した電動シリンダロープとによって構成される懸吊手段と、前記張力検出手段の検出値からヤコビ行列(JT )−1を用いて前記電動シリンダを収縮作動させるとともに前記サーボモータを同期化制御するコントローラと、を具備していて、前記搬送物に作用する前記操作力と搬送物の重量により前記懸吊手段に作用する負荷の大きさを前記張力検出手段によってそれぞれ検出し、これらの検出値からヤコビ行列(JT )−1を用いて検出結果に基づき前記コントローラにより、前記電動シリンダを収縮作動させるとともに前記サーボモータを同期化制御して前記搬送物の姿勢を制御するようにしたことを特徴とする。 According to a third aspect of the present invention, there is provided a control system for conveying means which is vertically moved or maintained by a wire rope wound and unwound by forward / reverse rotation of a wire rope hoisting drum by forward / reverse rotation driving of a servo motor, and While the operator moves the moving object in the horizontal direction by the overhead traveling crane moving in the horizontal direction, the operator operates the moving direction of the conveyed object and applies the operation force for controlling the posture of the conveyed object. A transport system that obtains an assist and moves the transported object in a direction desired by an operator at a desired speed, the rope having an upper end connected to the lower end of the wire rope and provided with a tension detecting means, and an upper end of the rope. Suspension means comprising an electric cylinder rope connected to the lower end of the wire rope and provided with a tension detection means; Optionally comprising a controller for controlling synchronizing the servo motor with deflating operating the electric cylinder using Jacobian matrix (J T) -1 from the detection value of the tension detecting means, and acting on the conveyed object the The magnitude of the load acting on the suspension means is detected by the tension detecting means based on the operating force and the weight of the transported object, and based on the detection result using the Jacobian matrix (J T ) −1 from these detected values. The controller is configured to contract the electric cylinder and control the servomotor synchronously to control the posture of the conveyed product.

以上の説明から明らかなように本発明は、その上端がワイヤロープの下端に連結されかつ張力検出手段を付設したロープと、その上端がワイヤロープの下端に連結されかつ張力検出手段を付設した電動シリンダロープとによって構成された懸吊手段の下端間に、搬送物を装架させて接続して当該搬送物を吊り下げ、その後、搬送物に作用する操作力と搬送物の重量による負荷を張力検出手段によってそれぞれ検出し、これらの張力検出手段による検出値からヤコビ行列(JT )−1を用いて、 電動シリンダを収縮作動させるとともにサーボモータを同期化制御して搬送物の姿勢を制御するため、搬送物の姿勢を適確に制御することが可能になるなどの優れた実用的効果を奏する。 As is apparent from the above description, the present invention provides a rope whose upper end is connected to the lower end of the wire rope and provided with tension detecting means, and an electric motor whose upper end is connected to the lower end of the wire rope and provided with tension detecting means. A transported object is mounted and connected between the lower ends of the suspension means constituted by the cylinder rope to suspend the transported object, and then the operating force acting on the transported object and the load due to the weight of the transported object are tensioned. Detecting by the detecting means, and using the Jacobian matrix (J T ) −1 from the detection values by these tension detecting means, the electric cylinder is contracted and the servo motor is synchronized to control the posture of the conveyed product. Therefore, there are excellent practical effects such as being able to accurately control the posture of the conveyed product.

本発明を適用した天井走行クレーンの台車に搭載されたワイヤロープ巻揚げドラムには、図1に示すように、このワイヤロープ巻揚げドラムを正逆回転駆動するサーボモータ1が装着してあり、ワイヤロープ巻揚げドラムによって巻上げ・巻下げされるワイヤロープ2の下端には、搬送物Wを懸吊する懸吊手段3が設けてあり、この懸吊手段3は、その上端がワイヤロープ2の下端に連結されたロープ4と、その上端がワイヤロープ2の下端に連結された電動シリンダ5とによって構成してある。そして、この懸吊手段3におけるロープ4および電動シリンダ5の下端間には、棒状の搬送物Wを両端で固着して装架した状態で取り付けてある。また、前記ロープ4および前記電動シリンダ5のそれぞれの下部にはロードセル6・7がそれぞれ装着してある。 As shown in FIG. 1, a servomotor 1 for driving the wire rope hoisting drum to rotate forward and reverse is mounted on a wire rope hoisting drum mounted on a carriage of an overhead traveling crane to which the present invention is applied. A suspension means 3 for suspending the conveyed product W is provided at the lower end of the wire rope 2 wound and unwound by the wire rope hoisting drum. The rope 4 is connected to the lower end, and the electric cylinder 5 is connected to the lower end of the wire rope 2 at the upper end. And between the rope 4 in this suspension means 3 and the lower end of the electric cylinder 5, it has attached in the state which fixed and mounted | worn the rod-shaped conveyance thing W at both ends. In addition, load cells 6 and 7 are respectively attached to the lower portions of the rope 4 and the electric cylinder 5.

また、この懸吊手段3においては、図1の(b)に示すように、電動シリンダ5を伸縮作動して電動シリンダ5の長さL2 を制御することにより,搬送物Wの姿勢が水平面とで形成する角度θa [rad] を制御することが可能である。しかし、ロープ4が非伸縮性であるため、電動シリンダ5が伸縮作動すると、図1の(b)における搬送物Wの重心位置Za [m] も同時に移動する。そのため、本懸吊手段3では、段落[0022]に述べる制御方法により、搬送物Wの姿勢の角度θa および搬送物Wの重心位置Zaを独立に制御可能にしている。 Further, in this suspension unit 3, as shown in (b) of FIG. 1, by controlling the length L 2 of the electric cylinder 5 and extensible operating the electric cylinder 5, the posture of the conveyed W is horizontal It is possible to control the angle θ a [rad] formed by. However, since the rope 4 is non-stretchable, when the electric cylinder 5 is expanded and contracted, the gravity center position Z a [m] of the conveyed product W in FIG. Therefore, in the present suspension means 3, and enables controlled by the control method described in paragraph [0022], independent of gravity position Z a of the angle theta a and conveyed W posture of conveyed W.

また、ロープ4および電動シリンダ5の長さと、搬送物Wの座標をそれぞれL = [L1 L2]T
,Xa = [Za θa] T のようにベクトルとして表す。またロープ4および電動シリンダ5にかかる張力を張力ベクトルτ= [τ1 τ2] T として表す。また,搬送物Wの重心に加わる垂直方向の力をfZ [N],搬送物Wに加わる回転力をfθ [Nm] とし,その力ベクトルをF = [fZ fθ]T とする。また、搬送物Wの長さを2L [m] とする。また、初期状態において、Lh =√(L1 2− L2 )である。
In addition, the length of the rope 4 and the electric cylinder 5 and the coordinates of the transported object W are respectively set as L = [L 1 L 2 ] T
, X a = [Z a θ a ] T , expressed as a vector. The tension applied to the rope 4 and the electric cylinder 5 is expressed as a tension vector τ = [τ 1 τ 2 ] T. Also, the vertical force applied to the center of gravity of the conveyed product W is f Z [N], the rotational force applied to the conveyed product W is f θ [Nm], and the force vector is F = [f Z f θ ] T. . The length of the conveyed product W is 2L [m]. In the initial state, L h = √ (L 1 2 −L 2 ).

搬送物Wの姿勢ベクトルXa からロープ4および電動シリンダ5の長さベクトルL を計算する問題は逆運動学となり,下記の(1) 式,(2) 式で表される。また,非伸縮性のロープ4が存在するため,搬送物Wの姿勢角度θa と搬送物Wの重心位置Za の間には(3) 式の拘束条件が生じる。
L1 = √[(Lh
Za + Lsinθa)2 + (Lcosθa)2 ] (1)
L2 = √[(Lh
Za−Lsinθa)2 + (Lcosθa)2 ] (2)
Za
=
√[L1 2− (Lcosθa)2]−Lh−Lsinθa (3)
Problem from the posture vector X a of conveyed W to calculate the length vector L of the rope 4 and the electric cylinder 5 becomes inverse kinematics, (1) below, is expressed by equation (2). Further, since the non-stretchable rope 4 exists, a constraint condition of the expression (3) occurs between the posture angle θ a of the conveyed product W and the center of gravity position Z a of the conveyed product W.
L 1 = √ [(L h +
Z a + Lsinθ a ) 2 + (Lcosθ a ) 2 ] (1)
L 2 = √ [(L h +
Z a −Lsinθ a ) 2 + (Lcosθ a ) 2 ] (2)
Z a
=
√ [L 1 2 − (Lcosθ a ) 2 ] −L h −Lsinθ a (3)

(1) 式,(2) 式を時間で微分することにより,ロープ4および電動シリンダ5の長さの変化の速度ベクトルL’(t) = [L1’(t) L2’ (t)] Tと、搬送物Wの姿勢の変化の速度ベクトルXa’(t) = [Za ’(t) θa ’(t)] T の関係式を、ヤコビ行列J を用いて(4) 式として得られる。 By differentiating the expressions (1) and (2) with respect to time, the velocity vector L ′ (t) = [L 1 ′ (t) L 2 ′ (t) of the length change of the rope 4 and the electric cylinder 5 ] The relational expression of T and the velocity vector X a ′ (t) = [Z a ′ (t) θ a ′ (t)] T of the change in the posture of the transported object W using the Jacobian matrix J (4) Is obtained as an equation.

また、本懸吊手段3ではロープ4が非伸縮性であるため,(4) 式においてロープ4の長さの変化の速度ベクトルL1’(t)
= 0 とすることにより、下記の(5) 式,(6) 式の関係が得られる。
Za ’(t) = A122’ (t) (5)
θa’(t) = A222’ (t) (6)
(5)式,(6) 式から、電動シリンダ5の伸縮作動によりその長さが伸縮すると、Za ’(t) とθa ’(t)が連動して動作することがわかる。
重力下において,1
本の電動シリンダ5のみを用いた場合は垂直方向のみの姿勢制御となるが,非伸縮性のロープ4を用いることにより選択可能な制御姿勢を増やすことが可能となる。
Further, since the rope 4 is non-stretchable in the suspension means 3, the speed vector L 1 ′ (t) of the change in the length of the rope 4 in the equation (4)
By setting = 0, the relationship between the following equations (5) and (6) is obtained.
Z a '(t) = A 12 L 2 ' (t) (5)
θ a ′ (t) = A 22 L 2 ′ (t) (6)
From equations (5) and (6), it can be seen that when the length of the electric cylinder 5 expands and contracts due to the expansion and contraction operation, Z a ′ (t) and θ a ′ (t) operate in conjunction with each other.
1 under gravity
When only the electric cylinder 5 is used, the posture control is performed only in the vertical direction. However, by using the non-stretchable rope 4, the selectable control postures can be increased.

次にパワーアシストシステムの構築について述べる。
搬送物Wの姿勢制御装置である懸吊手段3を用い,搬送物Wの姿勢の垂直方向,回転方向の2 自由度に対するパワーアシストシステムを構築する。このパワーアシストシステムは,工場内での組み付け作業などを想定しているため,制御対象である搬送物Wの形,重量はあらかじめ既知であることとする。そのため,制御の前提として,制御対象ごとにシステム同定が行われ,ヤコビ行列は算出可能とする。
Next, the construction of the power assist system is described.
Using the suspension means 3 that is a posture control device for the conveyed product W, a power assist system is constructed for two degrees of freedom in the vertical and rotational directions of the conveyed product W. Since this power assist system assumes assembly work in a factory, the shape and weight of the object W to be controlled are known in advance. Therefore, system identification is performed for each control object as a premise of control, and the Jacobian matrix can be calculated.

図2(a) に本発明を用いた搬送物Wの姿勢制御パワーアシストシステムのブロック線図を示す。図2(a) の破線部がコントローラであり,それ以外が実現象を表す。
図2(a)におけるプラントPa は懸吊手段3を示し,この出力としては、Za ’(t)、θa ’(t)および重力が搬送物Wに加わる際のロードセルの検知する力ベクトルτmgを考える。電動シリンダ5が伸縮作動してこの長さ速度 L2’ (t)が変化することにより、搬送物Wの速度ベクトルX’(t)
= [Za ’(t) θa ’(t)] Tが変化する。また,電動シリンダ5の伸縮作動によるこの長さの変化の速度 L2’ (t) の変化により,重力のみが搬送物Wに加わる際の力ベクトルFmg = [mg 0] T により,ロープ4および電動シリンダ5に生じる張力ベクトルτmg も変化する。そして、人が搬送物Wの中心に加える力ベクトルFh = [fzh fθh]
T により,ロープ4および電動シリンダ5にそれぞれ張力ベクトルτfh が生じる。この張力ベクトルτfhと重力により生じる張力ベクトルτmg を加算した値を,ロープ張力τ としてロードセル6・7のそれぞれは検出する。
FIG. 2 (a) shows a block diagram of a posture control power assist system for a conveyed product W using the present invention. The broken line in Fig. 2 (a) is the controller, and the others represent actual phenomena.
Plant P a in FIG. 2 (a) shows the suspension means 3, as the output, Z a '(t), θ a' (t) and the force of gravity to the detection of the load cell when applied to the carried object W Consider the vector τ mg . When the electric cylinder 5 expands and contracts and this length speed L 2 ′ (t) changes, the speed vector X ′ (t) of the conveyed product W
= [Z a '(t) θ a ' (t)] T changes. Further, due to the change in the speed L 2 ′ (t) of this length change due to the expansion / contraction operation of the electric cylinder 5, the force vector F mg = [mg 0] T when only gravity is applied to the conveyed object W, the rope 4 The tension vector τ mg generated in the electric cylinder 5 also changes. A force vector F h = [f zh f θh ] applied by the person to the center of the transported object W
Due to T , a tension vector τ fh is generated in each of the rope 4 and the electric cylinder 5. Each of the load cells 6 and 7 detects the value obtained by adding the tension vector τ fh and the tension vector τ mg generated by gravity as the rope tension τ.

また,図2(a)におけるプラントPz
はサーボモータ1を示し,懸吊手段3はシリアルに結合され,その座標系を上下動させることが可能である。そのため,サーボモータ1の正逆回転駆動により懸吊手段3を上下動させると,作業座標系での搬送物Wの垂直方向速度Z ’(t) [m/s]は,サーボモータ1により生じる速度Z ’(t) [m/s] と、懸吊手段3により生じる速度 Za ’(t) [m/s] を足し合わせ,Z ’(t)=Z ’(t)+Za ’(t) となる。
In addition, plant P z in Fig. 2 (a)
Indicates a servo motor 1 and the suspension means 3 is serially coupled, and its coordinate system can be moved up and down. Therefore, when the suspension means 3 is moved up and down by the forward / reverse rotation drive of the servo motor 1, the vertical speed Z ′ (t) [m / s] of the conveyed object W in the work coordinate system is generated by the servo motor 1. The velocity Z e ′ (t) [m / s] and the velocity Z a ′ (t) [m / s] generated by the suspension means 3 are added together, and Z ′ (t) = Z e ′ (t) + Z a '(T)

次に図2(a)における破線部のコントローラについて説明する。設計するシステムの仕様を以下のように定義する。
1. 人が加えた力ベクトルFh の各成分に沿った方向へのみパワーアシストを行う。
2. 人が加えた力ベクトルFhの各成分に比例した大きさの搬送物Wの速度ベクトルX’(t)を制御する。
仕様1.を実現することにより,操作者の意図する方向へのみ搬送物Wの姿勢制御を行うことができる。また,仕様2.は作業者の操作力と搬送物Wの姿勢の変化の速度が比例関係となることが,人間の直感に合致すると考え、設計した。本願発明の発明者らは、力に比例した搬送物Wの速度を用いることでパワーアシストを行っているため,組み合わせに適していることも理由である[非特許文献1][ 非特許文献2]。
Next, the controller at the broken line in FIG. The specifications of the system to be designed are defined as follows.
1. people perform only power assist in a direction along each component of the force vector F h plus.
2. The velocity vector X ′ (t) of the transported object W having a magnitude proportional to each component of the force vector F h applied by the person is controlled.
Specifications 1. By realizing the above, it is possible to control the posture of the conveyed product W only in the direction intended by the operator. Specification 2. Was designed in consideration of the fact that there is a proportional relationship between the operator's operating force and the speed of change in the posture of the conveyed product W, which matches human intuition. The inventors of the present invention perform power assist by using the speed of the conveyed product W proportional to the force, and are also suitable for the combination [Non-Patent Document 1] [Non-Patent Document 2] ].

次に、パワーアシストシステムにおける張力補償,操作力の推定について説明する。
ロードセル6・7のそれぞれは、操作者の操作力と搬送物Wの重量によってロープ4および電動シリンダ5に生じる重力を,張力τ
として検出する。そのため,制御を行なうには張力τ から操作力Fh を推定する必要がある。そのため、ヤコビ行列(JT )−1
を用い、ロードセル6・7のそれぞれによる検出値τにより、Fh
Fmg を推定する。推定された値からFmgを差し引くことにより,操作力F h を検出する。この操作力F h の各成分を比例コントローラKz,Kθ への入力とし,その出力値を搬送物Wの姿勢の変化の速度指令値X’(t)= [Z ’(t) θ ’(t) ] T
とする。計算に用いるヤコビ行列(JT )−1 は,搬送物Wの姿勢と共に変化する。そのため,本コントローラでは電動シリンダ5の電動機のエンコーダから得られる電動シリンダ5の長さL2
[m] から,順運動学を用いてZa 、θa の算出を行い,ヤコビ行列(JT )−1を逐次更新する手法を用いる。図2(a) に示すA12、A22 -1も同様に逐次更新を行う。
Next, tension compensation and operation force estimation in the power assist system will be described.
Each of the load cells 6 and 7 is configured to reduce the gravity generated in the rope 4 and the electric cylinder 5 by the operating force of the operator and the weight of the transported object W with the tension τ.
Detect as. Therefore, in order to perform control, it is necessary to estimate the operating force F h from the tension τ. Therefore, Jacobian matrix (J T ) −1
Using the detected value τ by each of the load cells 6 and 7, F h +
Estimate F mg . The operating force Fh is detected by subtracting F mg from the estimated value. Each component of the operating force F h is input to the proportional controllers K z and K θ , and the output value is the speed command value X r ′ (t) = [Z r ′ (t) θ r '(t)] T
And The Jacobian matrix (J T ) −1 used for the calculation changes with the posture of the transported object W. Therefore, in this controller, the length L 2 of the electric cylinder 5 obtained from the encoder of the electric motor of the electric cylinder 5 is obtained.
From [m], Z a and θ a are calculated using forward kinematics, and the Jacobian matrix (J T ) −1 is sequentially updated. Similarly, A 12 and A 22 -1 shown in FIG.

次に軸同期化制御による2 自由度制御について説明する。
電動シリンダ5が伸縮作動してその長さL2
[m] が伸縮すると,(5) 式,(6) 式により、懸吊手段3により生じる速度Za
’(t)と、搬送物Wの回転速度θa ’(t)が連動して動作するため,搬送物Wを回転動作させようとする操作者にとっては懸吊手段3により生じる速度Za
’(t)が違和感となる。そのため、 (5) 式からA12 を用い, 電動シリンダ5の伸縮による違和感の原因であり,Z (上下)方向への干渉成分でもある懸吊手段3により生じる速度Za ’(t) を算出し,それを打ち消すようにサーボモータ1の同期化制御を行う。本制御手法を用いることにより,電動シリンダ5は搬送物Wの姿勢角度θa の制御に特化することが可能となり,制御系の非干渉化が実現され,仕様1.を満たす制御系となる。
Next, two-degree-of-freedom control by axis synchronization control will be described.
The electric cylinder 5 expands and contracts and its length L 2
When [m] expands and contracts, the speed Z a generated by the suspension means 3 is calculated according to equations (5) and (6).
Since '(t) and the rotational speed θ a ' (t) of the conveyed product W operate in conjunction with each other, the speed Z a generated by the suspension means 3 for the operator who wants to rotate the conveyed product W.
'(T) is uncomfortable. Therefore, the speed Z a ′ (t) generated by the suspension means 3 that is the cause of the uncomfortable feeling due to the expansion and contraction of the electric cylinder 5 and also the interference component in the Z (vertical) direction is calculated using A 12 from the equation (5). Then, synchronization control of the servo motor 1 is performed so as to cancel it. By using this control method, the electric cylinder 5 will be able to specialize in the control of the attitude angle theta a conveyance object W, the non-interacting control system is realized, specifications 1. It becomes a control system that satisfies

次に逆モデルを用いたフィードフォワード制御について説明する。
コントローラKθ から出力される搬送物Wの姿勢角速度指令値θ
’(t) [rad/s]に、搬送物Wの姿勢角速度θa ’(t) が追従することで仕様2.は満たされる。そのため,電動シリンダ5への指令として,搬送物Wの姿勢角速度指令値θ
’(t)にシステムの逆モデルとしてA22 -1 を乗じたものを用いる。これらの制御系を用いることにより,システムがモデルと等しいとき,システムは図2(b) と書き換えられる。このシステムは2 入力2 出力の,非干渉化された独立したシステムとなる。
Next, feedforward control using an inverse model will be described.
Attitude angular velocity command value θ r of the conveyed product W output from the controller K θ
Specification by the attitude angular velocity θ a '(t) of the work W following' (t) [rad / s] 2. Is satisfied. Therefore, the attitude angular velocity command value θ r of the conveyed product W is used as a command to the electric cylinder 5.
'(T) multiplied by A 22 -1 is used as the inverse model of the system. By using these control systems, when the system is equal to the model, the system can be rewritten as shown in Fig. 2 (b). This system is a two-input, two-output, non-interfering, independent system.

次に構築したシステムの実装実験について説明する。実験で用いる搬送物は、重量m = 21 [kg],長さL =0.256 [m] とした。比例コントローラを用いKz = 0.002 [(m/s)/N],Kθ = 0.015
[(rad/s)/(Nm)] とし,操作力として10 [N] の重りを付加する実験を行った。搬送物の重心,ロープ4および電動シリンダ5の各下端に重りをそれぞれに付加し,結果を図3の(a),(b),(c) にそれぞれ示す。実験ではノイズを除去するため,推定された操作入力Fh に時定数0.1 [s] のローパスフィルタを用いた。また,シミュレーションでは,ロードセルを時定数0.3[s] の1 次系モデルとして用いた。
Next, an implementation experiment of the constructed system will be described. The transported material used in the experiment was weight m = 21 [kg] and length L = 0.256 [m]. Using a proportional controller, K z = 0.002 [(m / s) / N], K θ = 0.015
[(rad / s) / (Nm)] and a weight of 10 [N] was added as the operating force. Weights are added to the center of gravity of the conveyed product, the lower end of the rope 4 and the electric cylinder 5, respectively, and the results are shown in FIGS. 3 (a), (b) and (c), respectively. For removing noise in the experiment, using a low-pass filter time constant 0.1 [s] on the estimated operation input F h. In the simulation, the load cell was used as a first-order model with a time constant of 0.3 [s].

実験における操作力fzh,fθh の推定値を黒色実線に示し,灰色破線にシミュレーション結果を示す。多少の誤差を含むものの,実験はシミュレーションと近い結果となり,操作力の方向と大きさを推定できている。また垂直方向速度では,回転方向操作時における干渉成分であるZa ’(t) を黒色破線,サーボモータ1により生じる速度Z ’(t) を灰色実線,作業座標上での搬送物の重心の垂直方向速度Z ’(t) を黒色実線,シミュレーション結果を灰色破線に示す。結果より,干渉成分であるZa ’(t) がZ ’(t) により打ち消されていることがわかる。それにより,定常状態において,推定された操作力fzh に比例した速度Z ’(t) で動作しているため,シミュレーション結果と同様の結果を得る。角速度θa ’(t) では実験結果を黒色実線に,シミュレーションを灰色は線で示す。角速度も同様に,推定されたfθh に比例した角速度θa ’(t)で制御されている。ただしfθh の推定値がシミュレーションと誤差を持っているため,角速度θa ’(t) にも誤差が生じている。原因として,今回考慮しなかったモデルの動的要素が影響を与えたと考えられる。 The estimated values of the operating forces f zh and f θh in the experiment are shown by the solid black line, and the simulation results are shown by the gray broken line. Although some errors were included, the experiment was similar to the simulation, and the direction and magnitude of the operating force could be estimated. In the vertical speed, the interference component Z a '(t) in the rotation direction operation is indicated by a black broken line, the speed Z e ' (t) generated by the servo motor 1 is indicated by a gray solid line, and the center of gravity of the conveyed object on the work coordinates. The vertical speed Z ′ (t) is shown by a black solid line, and the simulation result is shown by a gray broken line. From the result, it can be seen that the interference component Z a ′ (t) is canceled out by Z e ′ (t). Thereby, in the steady state, since it operates at a speed Z ′ (t) proportional to the estimated operating force f zh , a result similar to the simulation result is obtained. At the angular velocity θ a ′ (t), the experimental result is shown as a black solid line, and the simulation is shown as a gray line. Similarly, the angular velocity is controlled at an angular velocity θ a ′ (t) proportional to the estimated f θh . However, since the estimated value of f θh has an error from the simulation, an error also occurs in the angular velocity θ a ′ (t). This is probably because the dynamic elements of the model that were not considered this time had an effect.

同様の実験を重りの重量を変更して行い,定常速度Z ’(t) ,定常角速度θa ’(t) を計測した結果を図4(a) に,システム内で推定された操作力fθh、fz の結果を図4(b) にそれぞれ示す。図4 (b)の結果より,操作力fz は理論値に近い結果を得られたが,操作力fθh の推定結果は理論値との間に誤差が生じた。そのため,角速度の結果にも影響を及ぼしていることがわかる。しかし,角速度に誤差はあるものの,操作者の意図した方向へ,かつ操作入力に比例した速度,角速度による制御が行なわれていることが確認できる。 Performed by changing the weight of the weight of the same experiment, steady rate Z '(t), constant angular velocity theta a' in FIGS. 4 (a) the measurement results of the (t), the operation force f estimated in the system [theta] h, indicates the results of f z in Figure 4 (b). From the results of FIG. 4 (b), although the operation force f z were obtained the results close to the theoretical value, the estimated result of the operation force f [theta] h is an error occurs between the theoretical value. Therefore, it can be seen that the result of angular velocity also has an effect. However, although there is an error in the angular velocity, it can be confirmed that the control is performed in the direction intended by the operator and the velocity and angular velocity proportional to the operation input.

なお、上記の実施例では電動シリンダ5は1個であるが、図5に示すように、電動シリンダ5を2本にするとともに、搬送物が非棒状のものであって、搬送物の重心がロープ4の下端と電動シリンダ5の下端をつなぐ直線上に存在しないときでも同様の効果が得られる(第2実施例)。 In the above embodiment, the number of electric cylinders 5 is one. However, as shown in FIG. 5, the number of electric cylinders 5 is two, and the conveyed object is non-stick, and the center of gravity of the conveyed object is The same effect can be obtained even when the lower end of the rope 4 and the lower end of the electric cylinder 5 do not exist on the straight line (second embodiment).

すなわち、図5に厚みの存在する制御対象のモデル図を示す。2Ln [m] が搬送物高さ,2Lm [m] は搬送物の幅,2Lm [m]が搬送物対角線の距離であり,Lh [m] が初期位置における搬送物高取り付け位置から搬送物上部までの距離である。そしてZa [m] が重心の移動量,θa [rad] が搬送物の回転角度,θo [rad] が搬送物の対角線と水平線とがなす角度である。
逆運動学式は(21) 式,(22) 式となる。
L1 = √[{Lcos(θ0−θ)}2+{Lh+L+Za−Lsin(θ0−θ)}2] (21)
L2 = √[{Lcos(θ0+θ)}2+{Lh+L+Za−Lsin(θ0+θ)}2] (22)
That is, FIG. 5 shows a model diagram of a control target having a thickness. 2 Ln [m] is conveyed height, 2Lm [m] is the distance conveyed diagonal width of the conveyed object, 2Lm [m] is, L h [m] is conveyed from the conveyed object high mounting position in the initial position The distance to the top. Z a [m] is the amount of movement of the center of gravity, θ a [rad] is the rotation angle of the transported object, and θ o [rad] is the angle formed by the diagonal line of the transported object and the horizontal line.
The inverse kinematic equation is expressed by equations (21) and (22).
L 1 = √ [{L m cos (θ 0 −θ)} 2 + {L h + L n + Z a −L m sin (θ 0 −θ)} 2 ] (21)
L 2 = √ [{L m cos (θ 0 + θ)} 2 + {L h + L n + Z a −L m sin (θ 0 + θ)} 2 ] (22)

この逆運動学式を時間で微分すると,搬送物Wの姿勢の変化の速度ベクトルと、ロープ4および2本の電動シリンダ5の長さの変化の速度ベクトルの関係式を,ヤコビ行列を用いて(23)式として得る。 When this inverse kinematic equation is differentiated with respect to time, the relational expression between the velocity vector of the change in the posture of the conveyed object W and the velocity vector of the change in the length of the rope 4 and the two electric cylinders 5 is obtained using a Jacobian matrix. Obtained as equation (23).

この式からヤコビ行列は算出可能であり,搬送物を棒状のものとして構築した上述のシステムをそのまま適用することが可能である. From this equation, the Jacobian matrix can be calculated, and the above-described system constructed as a rod-like object can be applied as it is.

この第2の実施例では、回転姿勢1 自由度のみの制御を行なった。しかし,同様の理論展開を用いることで,ロール,ピッチの姿勢2 自由度までは用意に適応可能であると考える。そのため,図6に示すように,1本のロープ4と2本の電動シリンダ5を用い,サーボモータ1と同期させることで,Z 方向,ロール方向,ピッチ方向の姿勢制御について検討する(第3の実施例)。 In the second embodiment, only the rotational posture 1 degree of freedom is controlled. However, by using the same theoretical development, we think that the roll and pitch attitudes up to 2 degrees of freedom can be readily adapted. Therefore, as shown in FIG. 6, by using one rope 4 and two electric cylinders 5 and synchronizing with the servo motor 1, the attitude control in the Z direction, the roll direction, and the pitch direction is studied (third Example).

図6のG が搬送物の重心位置を表し,第2の搬送物の姿勢制御装置により動作する垂直方向移動量をZa
とし,サーボモータ1による移動量をZe とする。すると,この姿勢制御装置の座標系におけるロープ4および2本の電動シリンダ5・5の長さの変化の速度ベクトルL’(t)と、搬送物Wの姿勢の変化の速度ベクトルXa’(t)の関係式は(24) 式となる。
G in FIG. 6 represents the center of gravity position of the conveyed product, and the vertical movement amount operated by the attitude control device of the second conveyed product is Z a
Let Z e be the amount of movement by servo motor 1. Then, the speed vector L ′ (t) of the change in length of the rope 4 and the two electric cylinders 5 and 5 in the coordinate system of the attitude control device, and the speed vector X a ′ of the change in the attitude of the conveyed product W ( The relational expression t) is the expression (24).

そして,ロープ4
は非伸縮であるためL1’(t)= 0 となり,(25) 式,(26) 式,(27) 式を得る。
Za ’(t) =A12 2’ (t)+A13’(t) (25)
φ’(t) =A222’ (t)+A23 ’(t) (26)
θ’(t) =A322’ (t)+A33’(t) (27)
ここで(26) 式,(27) 式を(28) 式のように定義する。
And rope 4
Is non-stretchable, so L 1 ′ (t) = 0, and Equations (25), (26), and (27) are obtained.
Z a '(t) = A 12 L 2 ' (t) + A 13 L 3 '(t) (25)
φ ′ (t) = A 22 L 2 ′ (t) + A 23 L 3 ′ (t) (26)
θ '(t) = A 32 L 2' (t) + A 33 L 3 '(t) (27)
Here, equations (26) and (27) are defined as equations (28).

また,人の操作力により搬送物の重心にかかるロールφ,ピッチθ,垂直Z 方向への力をFh = [fzh fθh fzh] とする。このFh により搬送物の姿勢角速度指令値ベクトルXr を(29) 式のようにする。 Also, let F h = [f zh f θh f zh ] be the roll φ, pitch θ, and the force in the vertical Z direction applied to the center of gravity of the conveyed object by the human operating force. The F h by so that the posture angular velocity command value vector X r (29) equation conveyed.

これらの数式から,第2の搬送物の姿勢制御装置で用いた制御方式を適応するとシステムのブロック線図は図7
で与えられる。ブロック線図において異なるところは,フィードフォワード入力の生成をJ2×2 を用いて行っているところであるが,実際に行っていることはロープ4を2本を用いたシステムと同じである。
From these formulas, the system block diagram is shown in FIG.
Given in. The difference in the block diagram is that the feedforward input is generated using J 2 × 2 , but what is actually done is the same as the system using two ropes 4.

本発明を適用した第1実施例の模式図である。It is a schematic diagram of the 1st example to which the present invention is applied. 本発明を適用した第1実施例のブロック図である。It is a block diagram of the 1st example to which the present invention is applied. 本発明を適用した第1実施例の実験結果を(過剰応答)示すグラフである。It is a graph which shows the experimental result (excess response) of 1st Example to which this invention is applied. 本発明を適用した第1実施例の実験結果を(定常状態)示すグラフである。It is a graph which shows the experimental result (steady state) of 1st Example to which this invention is applied. 本発明を適用した第2実施例の模式図である。It is a schematic diagram of 2nd Example to which this invention is applied. 本発明を適用した第3実施例の模式図である。It is a schematic diagram of 3rd Example to which this invention is applied. 本発明を適用した第3実施例のブロック図である。It is a block diagram of 3rd Example to which this invention is applied.

Claims (4)

サーボモータの正逆回転駆動によるワイヤロープ巻揚げドラムの正逆回転によって巻上げ・巻下げされるワイヤロープにより上下方向へ昇降されまたは位置が維持され、かつ水平方向へ移動する天井走行クレーンによって水平方向へ移動される搬送物に、作業者が搬送物の移動方向を操作するとともに搬送物の姿勢を制御する操作力を加えながら、前記天井走行クレーンによるパワーアシストを得て、作業者が望む方向へ望む速度で当該搬送物を移動させる搬送方法であって、
その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設したロープと、その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設した電動シリンダロープとによって構成された懸吊手段の下端間に、前記搬送物を装架させて接続して当該搬送物を吊り下げ、その後、前記搬送物に作用する前記操作力と搬送物の重量による負荷を前記張力検出手段によってそれぞれ検出し、これらの張力検出手段による検出値からヤコビ行列(JT )−1を用いて、 前記電動シリンダを収縮作動させるとともに前記サーボモータを同期化制御して前記搬送物の姿勢を制御することを特徴とする搬送物の搬送方法。
Horizontally by an overhead traveling crane that is moved up and down or maintained in position by a wire rope that is wound and unwound by forward and reverse rotation of a wire rope hoisting drum driven by forward and reverse rotation of a servo motor and that moves horizontally. While the operator operates the moving direction of the transported object and applies the operation force for controlling the posture of the transported object to the transported object, the power assist by the overhead traveling crane is obtained, and the direction desired by the operator is obtained. A transport method for moving the transport object at a desired speed,
Suspension means composed of a rope having an upper end connected to the lower end of the wire rope and provided with a tension detecting means, and an electric cylinder rope having an upper end connected to the lower end of the wire rope and provided with a tension detecting means. The transported object is suspended and connected between the lower ends of the transporting object, and the transported object is suspended. Thereafter, the operation force acting on the transported object and the load due to the weight of the transported object are respectively detected by the tension detecting means. In addition, using the Jacobian matrix (J T ) −1 from the detection values by these tension detection means, the electric cylinder is contracted and the servo motor is synchronized to control the posture of the conveyed object. The method of transporting the transported material.
請求項1に記載の搬送物の搬送方法において、
前記懸吊手段における前記電動シリンダを2本にしたことを特徴とする搬送物の搬送方法。
In the conveying method of the conveyed product of Claim 1,
2. A method for transporting a conveyed product, wherein the suspension unit has two electric cylinders.
サーボモータの正逆回転駆動によるワイヤロープ巻揚げドラムの正逆回転によって巻上げ・巻下げされるワイヤロープにより上下方向へ昇降されまたは位置が維持され、かつ水平方向へ移動する天井走行クレーンによって水平方向へ移動される搬送物に、作業者が搬送物の移動方向を操作するとともに搬送物の姿勢を制御する操作力を加えながら、前記天井走行クレーンによるパワーアシストを得て、作業者が望む方向へ望む速度で当該搬送物を移動させる搬送システムであって、
その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設したロープと、その上端が前記ワイヤロープの下端に連結されかつ張力検出手段を付設した電動シリンダロープとによって構成される懸吊手段と、
前記張力検出手段の検出値からヤコビ行列(JT )−1を用いて前記電動シリンダを収縮作動させるとともに前記サーボモータを同期化制御するコントローラと、
を具備していて、
前記搬送物に作用する前記操作力と搬送物の重量により前記懸吊手段に作用する負荷の大きさを前記張力検出手段によってそれぞれ検出し、これらの検出値からヤコビ行列(JT )−1を用いて検出結果に基づき前記コントローラにより、前記電動シリンダを収縮作動させるとともに前記サーボモータを同期化制御して前記搬送物の姿勢を制御するようにしたことを特徴とする搬送手段の制御システム。
Horizontally by an overhead traveling crane that is moved up and down or maintained in position by a wire rope that is wound and unwound by forward and reverse rotation of a wire rope hoisting drum driven by forward and reverse rotation of a servo motor and that moves horizontally. While the operator operates the moving direction of the transported object and applies the operation force for controlling the posture of the transported object to the transported object, the power assist by the overhead traveling crane is obtained, and the direction desired by the operator is obtained. A transport system for moving the transported object at a desired speed,
Suspension means composed of a rope having an upper end connected to the lower end of the wire rope and provided with a tension detecting means, and an electric cylinder rope having an upper end connected to the lower end of the wire rope and provided with a tension detecting means. When,
A controller for performing a contraction operation of the electric cylinder using a Jacobian matrix (J T ) −1 from a detection value of the tension detection means and synchronously controlling the servo motor;
Comprising
The magnitude of the load acting on the suspension means is detected by the tension detecting means based on the operation force acting on the transported object and the weight of the transported object, and the Jacobian matrix (J T ) −1 is obtained from these detected values. And a controller for controlling the posture of the conveyed object by controlling the servomotor synchronously and controlling the attitude of the electric motor by the controller based on the detection result.
請求項3に記載の搬送手段の制御システムにおいて、
前記懸吊手段における前記電動シリンダを2本にしたことを特徴とする搬送手段の制御システム。
In the control system of the conveyance means of Claim 3,
A control system for conveying means, characterized in that the electric cylinder in the suspension means is two.
JP2007118339A 2007-04-27 2007-04-27 Conveying method and control system for conveying means for implementing the method Active JP4999080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007118339A JP4999080B2 (en) 2007-04-27 2007-04-27 Conveying method and control system for conveying means for implementing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118339A JP4999080B2 (en) 2007-04-27 2007-04-27 Conveying method and control system for conveying means for implementing the method

Publications (2)

Publication Number Publication Date
JP2008273682A true JP2008273682A (en) 2008-11-13
JP4999080B2 JP4999080B2 (en) 2012-08-15

Family

ID=40052179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118339A Active JP4999080B2 (en) 2007-04-27 2007-04-27 Conveying method and control system for conveying means for implementing the method

Country Status (1)

Country Link
JP (1) JP4999080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108116988A (en) * 2017-12-14 2018-06-05 臧其亮 A kind of control method cut down autocrane revolution and stop impact
CN116969331A (en) * 2023-09-21 2023-10-31 华侨大学 Five-time polynomial smooth self-defined track precision parallel crane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679277A (en) * 2017-08-31 2018-02-09 合肥工业大学 Double-crane system dynamic modeling algorithm and nonsingular interval parameter design method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291800A (en) * 1997-04-17 1998-11-04 Nissan Motor Co Ltd Assistant arm provided with power assist
JP2003026400A (en) * 2001-07-16 2003-01-29 Honda Motor Co Ltd Assist supporting device
WO2005094296A2 (en) * 2004-03-26 2005-10-13 Actuant Corporation Hydraulic auxiliary hoist and crane control for high precision load positioning
JP2006143397A (en) * 2004-11-19 2006-06-08 Sintokogio Ltd Control system for carrying means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291800A (en) * 1997-04-17 1998-11-04 Nissan Motor Co Ltd Assistant arm provided with power assist
JP2003026400A (en) * 2001-07-16 2003-01-29 Honda Motor Co Ltd Assist supporting device
WO2005094296A2 (en) * 2004-03-26 2005-10-13 Actuant Corporation Hydraulic auxiliary hoist and crane control for high precision load positioning
JP2006143397A (en) * 2004-11-19 2006-06-08 Sintokogio Ltd Control system for carrying means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108116988A (en) * 2017-12-14 2018-06-05 臧其亮 A kind of control method cut down autocrane revolution and stop impact
CN116969331A (en) * 2023-09-21 2023-10-31 华侨大学 Five-time polynomial smooth self-defined track precision parallel crane
CN116969331B (en) * 2023-09-21 2023-12-12 华侨大学 Five-time polynomial smooth self-defined track precision parallel crane

Also Published As

Publication number Publication date
JP4999080B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US9850108B2 (en) Movement system configured for moving a payload
Singhose et al. Effects of hoisting on the input shaping control of gantry cranes
Yu et al. Development of a upper-limb exoskeleton robot for refractory construction
US9102054B2 (en) Robot, robot control apparatus, robot control method, and robot control program
EP3074337B1 (en) A device and a process for controlling a swinging of a load suspended from a lifting apparatus
US9533861B2 (en) Self-balanced apparatus for hoisting and positioning loads, with six degrees of freedom
US20130112643A1 (en) Movement system configured for moving a payload in a plurality of directions
Castelli et al. A Cartesian Cable-Suspended Robot for improving end-users' mobility in an urban environment
JP2010188471A (en) Robot apparatus and method of controlling the same, and computer program
ur Rehman et al. Input shaping with an adaptive scheme for swing control of an underactuated tower crane under payload hoisting and mass variations
EP4144681A2 (en) Dynamic flex compensation, coordinated hoist control, and anti-sway control for load handling machines
JP4999080B2 (en) Conveying method and control system for conveying means for implementing the method
JP7172243B2 (en) Cranes and crane control systems
ur Rehman et al. Adaptive input shaper for payload swing control of a 5-DOF tower crane with parameter uncertainties and obstacle avoidance
JP6333688B2 (en) Mobile robot controller
Maghsoudi et al. An experiment for position and sway control of a 3D gantry crane
ALMESHAL et al. Modelling of two-wheeled robotic wheelchair with moving payload
Capua et al. Motion planning algorithm for a mobile robot suspended by seven cables
JP3997721B2 (en) Power assist type lifting device
Schlott et al. A crane-based five-axis manipulator for antenna tests
Burkhardt et al. Towards Modeling and Control of a Crane-Collaboration for the Automated Assembly of Timber Structures
Wang et al. Dynamic modeling of a mobile humanoid robot
JP2002137888A (en) Crane device and cargo suspension control device for use therewith
JP2018034238A (en) Mobile robot, control device thereof and stabilization discrimination method
Bošković et al. Review of the Dynamic and Mathematical Models of Portal Slewing Cranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

R150 Certificate of patent or registration of utility model

Ref document number: 4999080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250