CN116969331B - A quintic polynomial smooth custom trajectory precision parallel crane - Google Patents

A quintic polynomial smooth custom trajectory precision parallel crane Download PDF

Info

Publication number
CN116969331B
CN116969331B CN202311218663.6A CN202311218663A CN116969331B CN 116969331 B CN116969331 B CN 116969331B CN 202311218663 A CN202311218663 A CN 202311218663A CN 116969331 B CN116969331 B CN 116969331B
Authority
CN
China
Prior art keywords
point
platform
wire rope
pulley
column support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311218663.6A
Other languages
Chinese (zh)
Other versions
CN116969331A (en
Inventor
黄琪琛
林添良
缪骋
付胜杰
李芊芊
彭怡红
胡鑫海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN202311218663.6A priority Critical patent/CN116969331B/en
Publication of CN116969331A publication Critical patent/CN116969331A/en
Application granted granted Critical
Publication of CN116969331B publication Critical patent/CN116969331B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

本发明提供了一种五次多项式平滑自定义轨迹精度并联起重机,涉及起重机技术领域,通过人机界面输入目标点或连续的路径点坐标,可实现定点或自定义路径的大负载、灵活、平稳无晃动、高速、精度吊载,且负重比高、操作简单。执行机构由三套钢丝绳、万向滑轮组、立柱支座、伺服电机、减速卷扬机通过斜杆与横杆连接组成等边三棱柱体,通过三根钢丝绳共同作用于吊载平台,实现在工作空间中的移动。

The invention provides a fifth-order polynomial smooth customized trajectory precision parallel crane, which relates to the technical field of cranes. By inputting coordinates of target points or continuous path points through a human-machine interface, large loads, flexibility and stability of fixed points or customized paths can be achieved. No shaking, high speed, precise lifting, high load-bearing ratio, and simple operation. The actuator consists of three sets of steel wire ropes, a universal pulley block, a column support, a servo motor, and a reduction hoist connected through diagonal bars and cross bars to form an equilateral triangular prism. The three steel wire ropes work together on the hoisting platform to realize the movement in the work space. move.

Description

一种五次多项式平滑自定义轨迹精度并联起重机A quintic polynomial smooth custom trajectory precision parallel crane

技术领域Technical field

本发明涉及起重机技术领域,具体涉及一种五次多项式平滑自定义轨迹精度并联起重机。The invention relates to the technical field of cranes, and in particular to a fifth-order polynomial smooth customized trajectory precision parallel crane.

背景技术Background technique

起重机是一种用于吊装与搬运重物的机械设备。它们广泛应用于建筑工地、港口、仓储场所、制造业和其他需要抬升或移动重物的环境中。A crane is a mechanical equipment used for hoisting and carrying heavy objects. They are widely used on construction sites, ports, warehousing sites, manufacturing and other environments where heavy objects need to be lifted or moved.

传统固定式起重机存在结构较大、负重比(即自身质量与有效载荷比)较低、运行过程灵活性较差(通常三自由度每次只能一个自由度移动,难以实现三自由度联动)、运行平稳性较差(吊载时易出现晃动)的缺点。同时,传统起重机由工作人员使用操纵杆、按钮或遥控器进行遥控作业,难以实现定点的精度、平稳作业,并且操作对工作人员具有一定要求。Traditional fixed cranes have large structures, low load-bearing ratios (i.e., the ratio of their own mass to payload), and poor flexibility in the operation process (usually only one degree of freedom can move at a time, making it difficult to achieve three-degree-of-freedom linkage) , The shortcomings of poor running stability (easy to shake when hoisting). At the same time, with traditional cranes, workers use joysticks, buttons or remote controls to perform remote operations. It is difficult to achieve fixed-point accuracy and smooth operation, and the operation has certain requirements for workers.

有鉴于此,提出本申请。In view of this, this application is filed.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种五次多项式平滑自定义轨迹精度并联起重机,能够有效解决现有技术中的传统固定式起重机存在作业效率低、负重比低、灵活性差、吊载平稳性低、精度低、以及对操作人员要求高的问题。In view of this, the purpose of the present invention is to provide a fifth-order polynomial smooth customized trajectory precision parallel crane, which can effectively solve the problems of low operating efficiency, low load-bearing ratio, poor flexibility, and stable lifting of traditional fixed cranes in the existing technology. Problems include low performance, low accuracy, and high requirements on operators.

本发明公开了一种五次多项式平滑自定义轨迹精度并联起重机,包括:控制器、人机界面模块、驱动组件、执行组件、以及平台位置采集模块;The invention discloses a fifth-order polynomial smooth custom trajectory precision parallel crane, which includes: a controller, a human-machine interface module, a driving component, an execution component, and a platform position acquisition module;

其中,所述人机界面模块的输出端、所述平台位置采集模块的输出端、所述执行组件的输出端与所述控制器的输入端电气连接,所述控制器的输出端与所述驱动组件的输入端电气连接,所述驱动组件的输出端与所述执行组件的输入端电气连接;Wherein, the output end of the human-machine interface module, the output end of the platform position acquisition module, and the output end of the execution component are electrically connected to the input end of the controller, and the output end of the controller is connected to the input end of the controller. The input end of the driving component is electrically connected, and the output end of the driving component is electrically connected with the input end of the execution component;

其中,所述执行组件包括吊载平台、钢丝绳组件、第一立柱支座、第二立柱支座、第三立柱支座、配置在所述第一立柱支座上端部的第一万向滑轮、配置在所述第一立柱支座底部的第一伺服电机和第一减速卷扬机、配置在所述第二立柱支座上端部的第二万向滑轮、配置在所述第二立柱支座底部的第二伺服电机和第二减速卷扬机、配置在所述第三立柱支座上端部的第三万向滑轮、配置在所述第三立柱支座底部的第三伺服电机和第三减速卷扬机、横杆组件、以及斜杆组件,所述第一立柱支座、所述第二立柱支座和所述第三立柱支座通过所述横杆组件、及所述斜杆组件进行固定连接,所述吊载平台通过所述钢丝绳组件可移动配置在工作空间;Wherein, the execution component includes a lifting platform, a wire rope assembly, a first column support, a second column support, a third column support, a first universal pulley arranged at the upper end of the first column support, The first servo motor and the first reduction hoist are arranged at the bottom of the first column support, the second universal pulley is arranged at the upper end of the second column support, and the second universal pulley is arranged at the bottom of the second column support. The second servo motor and the second reduction hoist, the third universal pulley arranged at the upper end of the third column support, the third servo motor and the third reduction hoist arranged at the bottom of the third column support, the horizontal Rod assembly and inclined rod assembly, the first column support, the second column support and the third column support are fixedly connected through the cross rod assembly and the inclined rod assembly, the The hoisting platform is movably configured in the work space through the wire rope assembly;

其中,所述控制器被配置为通过执行其内部存储的计算机程序以实现如下步骤:Wherein, the controller is configured to implement the following steps by executing its internally stored computer program:

分别获取所述人机界面模块发送的坐标信息和所述平台位置采集模块采集到的所述吊载平台的轨迹初始位置点/>,其中,所述坐标信息/>为目标点坐标或连续的路径点坐标;Obtain the coordinate information sent by the human-machine interface module respectively and the initial position point of the trajectory of the hoisting platform collected by the platform position acquisition module/> , wherein the coordinate information/> It is the coordinates of the target point or the coordinates of the continuous way points;

对所述坐标信息、所述吊载平台的轨迹初始位置点/>和真实时间/>进行预处理,生成理想位置信息/>,其中,所述理想位置信息为所述吊载平台的轨迹初始位置点/>到所述坐标信息/>之间的所述真实时间/>时刻点下所对应的理想位置信息,所述吊载平台的轨迹初始位置点/>到所述坐标信息/>之间存在多个时刻点,每一时刻点对应一个理想位置信息,具体为:for the coordinate information , the initial position point of the trajectory of the hoisting platform/> and real time/> Perform preprocessing to generate ideal location information/> , wherein the ideal position information is the trajectory initial position point of the hoisting platform/> to the coordinate information/> said real time between/> The ideal position information corresponding to the time point, the initial position point of the trajectory of the hoisting platform/> to the coordinate information/> There are multiple time points, each time point corresponds to an ideal location information, specifically:

采用五次多项式规划方程组对所述坐标信息、所述吊载平台的轨迹初始位置点/>和真实时间/>进行计算处理,生成理想位置信息/>A system of fifth-order polynomial planning equations is used to calculate the coordinate information , the initial position point of the trajectory of the hoisting platform/> and real time/> Perform calculation processing to generate ideal location information/> ;

其中,五次多项式规划方程组为:Among them, the system of fifth-order polynomial programming equations is:

其中,为理想位置信息/>的X轴坐标点,/>为理想位置信息/>的Y轴坐标点,/>为理想位置信息/>的Z轴坐标点,/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>和/>为常数,/>为/>的一阶导数,/>为/>的二阶导数,/>为/>的一阶导数,/>为/>的二阶导数,/>为/>的一阶导数,/>为/>的二阶导数;in, For ideal location information/> X-axis coordinate point,/> For ideal location information/> Y-axis coordinate point,/> For ideal location information/> Z-axis coordinate point,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> , ,/> ,/> ,/> ,/> and/> is a constant,/> for/> The first derivative of ,/> for/> The second derivative of ,/> for/> The first derivative of ,/> for/> The second derivative of ,/> for/> The first derivative of ,/> for/> The second derivative of ;

获取所述平台位置采集模块采集到的与所述理想位置信息相对应的所述吊载平台的当前位置/>,并采用PID控制律算法对所述吊载平台的当前位置/>和所述理想位置信息/>进行位置闭环处理,生成时刻控制位置信息/>,具体为:Obtain the ideal location information collected by the platform location acquisition module The corresponding current position of the hoisting platform/> , and use the PID control law algorithm to determine the current position of the hoisting platform/> and the ideal location information/> Perform position closed-loop processing to generate time-controlled position information/> ,Specifically:

根据公式对所述吊载平台的当前位置/>和所述理想位置信息/>进行位置闭环处理,其中,/>为时刻控制位置信息/>,/>为/>,/>为比例系数,/>为积分系数,/>为微分系数;According to the formula The current position of the lifting platform/> and the ideal location information/> Perform position closed-loop processing, where,/> Control location information at all times/> ,/> for/> ,/> is the proportional coefficient,/> is the integral coefficient,/> is the differential coefficient;

调用建立好的执行机构运动学模型对所述时刻控制位置信息进行转换处理,生成转速控制信号/>,具体为:Call the established kinematics model of the actuator to control the position information at the time Perform conversion processing to generate a speed control signal/> ,Specifically:

根据公式,其中,/>为减速卷扬机减速比,/>为减速卷扬机卷筒半径,/>是/>对时间t的求导,为下一时刻吊载平台速度,/>为数据采集周期,/>为雅可比矩阵;According to the formula , where,/> is the reduction ratio of the reduction winch,/> is the drum radius of the speed reduction winch,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment,/> , is the data collection cycle,/> is the Jacobian matrix;

获取所述执行组件采集到的当前时刻转速信息,并采用PID控制律算法对所述当前时刻转速信息和所述转速控制信号进行转速闭环处理,生成时刻转速信号;Obtain the current speed information collected by the execution component, and use the PID control law algorithm to compare the current speed information and the speed control signal. Carry out speed closed-loop processing and generate instant speed signals;

将所述时刻转速信号发送给所述驱动组件,以驱动所述执行组件的伺服电机进行相应的转动,以实现所述吊载平台在工作空间的移动。The rotational speed signal at the time is sent to the driving component to drive the servo motor of the execution component to perform corresponding rotation to realize the movement of the hoisting platform in the work space.

优选地,所述驱动组件包括三组不同型号的断路器、电磁接触器、变压器、电抗器、干扰滤波器、伺服驱动器、以及制动电阻器,其中,所述断路器与所述电磁接触器、所述变压器电气连接,所述电磁接触器与所述变压器、所述电抗器电气连接,所述电抗器与所述干扰滤波器电气连接,所述伺服驱动器与所述执行组件、所述干扰滤波器、所述制动电阻器电气连接。Preferably, the driving assembly includes three groups of different types of circuit breakers, electromagnetic contactors, transformers, reactors, interference filters, servo drives, and braking resistors, wherein the circuit breaker and the electromagnetic contactor , the transformer is electrically connected, the electromagnetic contactor is electrically connected with the transformer and the reactor, the reactor is electrically connected with the interference filter, the servo driver is with the execution component and the interference filter. The filter and the braking resistor are electrically connected.

优选地,所述钢丝绳组件包括第一钢丝绳、第二钢丝绳、以及第三钢丝绳,其中,所述第一钢丝绳的一端与所述吊载平台连接,所述第一钢丝绳的另一端通过所述第一万向滑轮可移动的配置在所述第一减速卷扬机上,所述第二钢丝绳的一端与所述吊载平台连接,所述第二钢丝绳的另一端通过所述第二万向滑轮可移动的配置在所述第二减速卷扬机上,所述第三钢丝绳的一端与所述吊载平台连接,所述第三钢丝绳的另一端通过所述第三万向滑轮可移动的配置在所述第三减速卷扬机上。Preferably, the steel wire rope assembly includes a first steel wire rope, a second steel wire rope, and a third steel wire rope, wherein one end of the first steel wire rope is connected to the lifting platform, and the other end of the first steel wire rope passes through the third steel wire rope. A universal pulley is movably arranged on the first reduction hoist, one end of the second steel wire rope is connected to the lifting platform, and the other end of the second steel wire rope is movable through the second universal pulley. is configured on the second reduction hoist, one end of the third steel wire rope is connected to the lifting platform, and the other end of the third steel wire rope is movably arranged on the third universal pulley through the third universal pulley. On the three-reduction winch.

优选地,所述平台位置采集模块为红外传感器。Preferably, the platform position acquisition module is an infrared sensor.

优选地,在调用建立好的执行机构运动学模型对所述时刻控制位置信息进行转换处理之前,还包括:Preferably, the established kinematic model of the actuator is called to control the position information at the said moment. Before conversion processing, also include:

为未知量(X1,Y1,Z1),滑轮质心点为A,得A到/>点距离/>set up is the unknown quantity (X1, Y1, Z1), the center of mass point of the pulley is A, and A is/> Point distance/> ;

设万向滑轮组滑轮半径为R,得滑轮出绳点C与点距离/>,得滑轮C点与/>点夹角/>Assuming the pulley radius of the universal pulley block is R, the pulley rope exit point C and Point distance/> , get pulley point C and/> Point angle/> ;

设滑轮入绳点Q,得Q与点距离/>Suppose the pulley enters the rope point Q, we get Q and Point distance/> ;

由余弦定理得滑轮Q点与点夹角,得滑轮Q点与C点弧长/>,进而得Q点至/>点绳长According to the cosine theorem, the pulley Q point and angle between points , get the arc length of pulley point Q and point C/> , and then get Q point to/> Point rope length ;

对绳长求导可得/>,其中,/>为雅可比矩阵,可表示为:,/>是/>对时间t的求导,为下一时刻吊载平台速度,,/>为数据采集周期。The length of the rope By derivation, we can get/> ,wherein,/> is the Jacobian matrix, which can be expressed as: ,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment, ,/> is the data collection cycle.

综上所述,本实施例提供的一种五次多项式平滑自定义轨迹精度并联起重机,通过人机界面输入目标点或连续的路径点坐标,可实现定点或自定义路径的大负载、灵活、平稳无晃动、高速、精度吊载,且负重比高、操作简单;执行机构由三套钢丝绳、万向滑轮组、立柱支座、伺服电机、减速卷扬机通过斜杆与横杆连接组成等边三棱柱体,通过三根钢丝绳共同作用于吊载平台,实现在工作空间中的移动;从而解决现有技术中的传统固定式起重机存在作业效率低、负重比低、灵活性差、吊载平稳性低、精度低、以及对操作人员要求高的问题。To sum up, this embodiment provides a fifth-degree polynomial smooth customized trajectory precision parallel crane, which can realize large load, flexibility, and flexibility of fixed points or customized paths by inputting target point or continuous path point coordinates through the human-machine interface. Smooth and rock-free, high-speed, precise hoisting, high load-bearing ratio, and simple operation; the actuator consists of three sets of steel wire ropes, a universal pulley block, a column support, a servo motor, and a reduction hoist connected through diagonal bars and cross bars to form an equilateral triangular prism. The three steel wire ropes work together on the hoisting platform to achieve movement in the work space; thereby solving the problems of traditional fixed cranes in the existing technology such as low operating efficiency, low load-bearing ratio, poor flexibility, low hoisting stability, and poor accuracy. low, and high requirements on operators.

附图说明Description of the drawings

图1是实施例提供的一种五次多项式平滑自定义轨迹精度并联起重机的结构示意图。Figure 1 is a schematic structural diagram of a fifth-degree polynomial smooth custom trajectory precision parallel crane provided by the embodiment.

图2是实施例提供的一种五次多项式平滑自定义轨迹精度并联起重机的驱动组件的结构示意图。Figure 2 is a schematic structural diagram of the driving assembly of a fifth-degree polynomial smooth customized trajectory precision parallel crane provided by the embodiment.

图3是实施例提供的一种五次多项式平滑自定义轨迹精度并联起重机的执行组件的结构示意图。Figure 3 is a schematic structural diagram of an execution component of a fifth-degree polynomial smooth customized trajectory precision parallel crane provided by the embodiment.

图4是实施例提供的执行机构运动学模型的数学平面示意图。FIG. 4 is a mathematical plan view of the kinematic model of the actuator provided by the embodiment.

具体实施方式Detailed ways

为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention. Accordingly, the following detailed description of embodiments of the invention provided in the appended drawings is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

以下结合附图对本发明的具体实施例做详细说明。Specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

请参阅图1至图4,本发明的第一实施例提供了一种五次多项式平滑自定义轨迹精度并联起重机,包括:控制器、人机界面模块、驱动组件、执行组件、以及平台位置采集模块;Please refer to Figures 1 to 4. The first embodiment of the present invention provides a fifth-order polynomial smooth custom trajectory precision parallel crane, including: a controller, a human-machine interface module, a driving component, an execution component, and a platform position acquisition module;

其中,所述人机界面模块的输出端、所述平台位置采集模块的输出端、所述执行组件的输出端与所述控制器的输入端电气连接,所述控制器的输出端与所述驱动组件的输入端电气连接,所述驱动组件的输出端与所述执行组件的输入端电气连接;Wherein, the output end of the human-machine interface module, the output end of the platform position acquisition module, and the output end of the execution component are electrically connected to the input end of the controller, and the output end of the controller is connected to the input end of the controller. The input end of the driving component is electrically connected, and the output end of the driving component is electrically connected with the input end of the execution component;

其中,所述执行组件包括吊载平台、钢丝绳组件、第一立柱支座、第二立柱支座、第三立柱支座、配置在所述第一立柱支座上端部的第一万向滑轮、配置在所述第一立柱支座底部的第一伺服电机和第一减速卷扬机、配置在所述第二立柱支座上端部的第二万向滑轮、配置在所述第二立柱支座底部的第二伺服电机和第二减速卷扬机、配置在所述第三立柱支座上端部的第三万向滑轮、配置在所述第三立柱支座底部的第三伺服电机和第三减速卷扬机、横杆组件、以及斜杆组件,所述第一立柱支座、所述第二立柱支座和所述第三立柱支座通过所述横杆组件、及所述斜杆组件进行固定连接,所述吊载平台通过所述钢丝绳组件可移动配置在工作空间;Wherein, the execution component includes a lifting platform, a wire rope assembly, a first column support, a second column support, a third column support, a first universal pulley arranged at the upper end of the first column support, The first servo motor and the first reduction hoist are arranged at the bottom of the first column support, the second universal pulley is arranged at the upper end of the second column support, and the second universal pulley is arranged at the bottom of the second column support. The second servo motor and the second reduction hoist, the third universal pulley arranged at the upper end of the third column support, the third servo motor and the third reduction hoist arranged at the bottom of the third column support, the horizontal Rod assembly and inclined rod assembly, the first column support, the second column support and the third column support are fixedly connected through the cross rod assembly and the inclined rod assembly, the The hoisting platform is movably configured in the work space through the wire rope assembly;

具体地,在本实施例中,所述驱动组件包括三组不同型号的断路器、电磁接触器、变压器、电抗器、干扰滤波器、伺服驱动器、以及制动电阻器,其中,所述断路器与所述电磁接触器、所述变压器电气连接,所述电磁接触器与所述变压器、所述电抗器电气连接,所述电抗器与所述干扰滤波器电气连接,所述伺服驱动器与所述执行组件、所述干扰滤波器、所述制动电阻器电气连接。Specifically, in this embodiment, the driving assembly includes three groups of different types of circuit breakers, electromagnetic contactors, transformers, reactors, interference filters, servo drives, and braking resistors, wherein the circuit breaker It is electrically connected to the electromagnetic contactor and the transformer, the electromagnetic contactor is electrically connected to the transformer and the reactor, the reactor is electrically connected to the interference filter, and the servo driver is electrically connected to the The execution component, the interference filter and the braking resistor are electrically connected.

所述钢丝绳组件包括第一钢丝绳、第二钢丝绳、以及第三钢丝绳,其中,所述第一钢丝绳的一端与所述吊载平台连接,所述第一钢丝绳的另一端通过所述第一万向滑轮可移动的配置在所述第一减速卷扬机上,所述第二钢丝绳的一端与所述吊载平台连接,所述第二钢丝绳的另一端通过所述第二万向滑轮可移动的配置在所述第二减速卷扬机上,所述第三钢丝绳的一端与所述吊载平台连接,所述第三钢丝绳的另一端通过所述第三万向滑轮可移动的配置在所述第三减速卷扬机上。The steel wire rope assembly includes a first steel wire rope, a second steel wire rope, and a third steel wire rope, wherein one end of the first steel wire rope is connected to the lifting platform, and the other end of the first steel wire rope passes through the first universal A pulley is movably arranged on the first reduction hoist, one end of the second wire rope is connected to the lifting platform, and the other end of the second wire rope is movably arranged on the second universal pulley. On the second reduction hoist, one end of the third steel wire rope is connected to the lifting platform, and the other end of the third steel wire rope is movably arranged on the third reduction hoist through the third universal pulley. superior.

所述平台位置采集模块可以为红外传感器。The platform position acquisition module may be an infrared sensor.

在本实施例中,所述五次多项式平滑自定义轨迹精度并联起重机通过人机界面输入目标点或连续的路径点坐标,可实现定点或自定义路径的大负载、灵活、平稳无晃动、高速、精度吊载,且负重比高、操作简单。执行机构由三套钢丝绳、万向滑轮组、立柱支座、伺服电机、减速卷扬机通过斜杆与横杆连接组成边长为6m、高度4.295m的等边三棱柱体,通过三根钢丝绳共同作用于吊载平台,实现在工作空间中的移动。其中,所述驱动组件由三组断路器、电磁接触器、电抗器、干扰滤波器、伺服驱动器和制动电阻组成,能够有效滤除市电中的杂波和噪声,稳定电路的电压和电流,并防止短路电流对电气器件造成损坏。所述驱动组件的电路连接如图2所示。In this embodiment, the fifth-degree polynomial smooth custom trajectory precision parallel crane inputs the target point or continuous path point coordinates through the human-machine interface, which can realize large load, flexibility, stability without shaking, and high speed of fixed points or customized paths. , precise lifting, high load-bearing ratio and simple operation. The actuator consists of three sets of steel wire ropes, a universal pulley block, a column support, a servo motor, and a reduction hoist connected through diagonal bars and cross bars to form an equilateral triangular prism with a side length of 6m and a height of 4.295m. The three steel wire ropes work together to lift the crane. loading platform to enable movement in the workspace. Among them, the drive assembly consists of three sets of circuit breakers, electromagnetic contactors, reactors, interference filters, servo drives and braking resistors, which can effectively filter out clutter and noise in the mains power and stabilize the voltage and current of the circuit. , and prevent short-circuit current from causing damage to electrical components. The circuit connection of the driving component is shown in Figure 2.

其中,所述控制器被配置为通过执行其内部存储的计算机程序以实现如下步骤:Wherein, the controller is configured to implement the following steps by executing its internally stored computer program:

S101,分别获取所述人机界面模块发送的坐标信息和所述平台位置采集模块采集到的所述吊载平台的轨迹初始位置点/>,其中,所述坐标信息为目标点坐标或连续的路径点坐标;S101, respectively obtain the coordinate information sent by the human-machine interface module and the initial position point of the trajectory of the hoisting platform collected by the platform position acquisition module/> , where the coordinate information It is the coordinates of the target point or the coordinates of the continuous way points;

具体地,在本实施例中,在人机界面模块中输入目标点坐标或连续的路径点/>坐标,将所述坐标信息/>通过以太网输入与控制器中。Specifically, in this embodiment, the target point is input into the human-machine interface module Coordinates or continuous waypoints/> coordinates, the coordinate information/> Input to controller via Ethernet.

S102,对所述坐标信息、所述吊载平台的轨迹初始位置点/>和真实时间/>进行预处理,生成理想位置信息/>,其中,所述理想位置信息为所述吊载平台的轨迹初始位置点/>到所述坐标信息/>之间的所述真实时间/>时刻点下所对应的理想位置信息,所述吊载平台的轨迹初始位置点/>到所述坐标信息之间存在多个时刻点,每一时刻点对应一个理想位置信息;S102, for the coordinate information , the initial position point of the trajectory of the hoisting platform/> and real time/> Perform preprocessing to generate ideal location information/> , wherein the ideal position information is the trajectory initial position point of the hoisting platform/> to the coordinate information/> said real time between/> The ideal position information corresponding to the time point, the initial position point of the trajectory of the hoisting platform/> to the coordinate information There are multiple time points, each time point corresponds to an ideal position information;

具体地,步骤S102包括:采用五次多项式规划方程组对所述坐标信息、所述吊载平台的轨迹初始位置点/>和真实时间/>进行计算处理,生成理想位置信息/>Specifically, step S102 includes: using a fifth-order polynomial planning equation system to calculate the coordinate information , the initial position point of the trajectory of the hoisting platform/> and real time/> Perform calculation processing to generate ideal location information/> ;

其中,五次多项式规划方程组为:Among them, the system of fifth-order polynomial programming equations is:

其中,为理想位置信息/>的X轴坐标点,/>为理想位置信息/>的Y轴坐标点,/>为理想位置信息/>的Z轴坐标点,/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>和/>为常数,/>为/>的一阶导数,/>为/>的二阶导数,/>为/>的一阶导数,/>为/>的二阶导数,/>为/>的一阶导数,/>为/>的二阶导数。in, For ideal location information/> X-axis coordinate point,/> For ideal location information/> Y-axis coordinate point,/> For ideal location information/> Z-axis coordinate point,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> , ,/> ,/> ,/> ,/> and/> is a constant,/> for/> The first derivative of ,/> for/> The second derivative of ,/> for/> The first derivative of ,/> for/> The second derivative of ,/> for/> The first derivative of ,/> for/> the second derivative of .

具体地,在本实施例中,所述控制器的位置计算就接收到的人机界面坐标信息,与当前吊载平台所在的轨迹初始位置信息/>做位置计算。位置计算,可输出轨迹初始位置点/>到目标点或路径点/>间每一时刻点所对应的理想位置信息/>。在机器中,吊载平台的移动它在微观中不是连续的一条线,而是通过在极短的时间内走过一个一个点,在宏观上感觉是一个连续的动作,因此在控制上也是在极短的时间内输出一个又一个的坐标点让机器快速执行,形成宏观上的移动。假设在起点与目标点用直线连起来,且将其离散成均匀的无数个点,每个点都拥有自己的坐标(x,y,z)值,我们使用同样的极短时间走过每个小点,这样就是匀速运动。匀速运动中的起始与停止点不是从零缓慢加上去的,而是阶跃的,这样就会造成冲击。Specifically, in this embodiment, the position calculation of the controller is based on the received coordinate information of the human-machine interface. , and the initial position information of the trajectory where the current hoisting platform is located/> Do position calculations. Position calculation, can output the initial position point of the trajectory/> To target point or waypoint/> The ideal location information corresponding to each time point/> . In the machine, the movement of the hoisting platform is not a continuous line in the microscopic sense, but passes through one point in a very short time. In the macroscopic sense, it feels like a continuous action, so it is also controlled in terms of control. Outputting coordinate points one after another in a very short time allows the machine to execute quickly, forming macroscopic movements. Assume that the starting point and the target point are connected by a straight line and discretized into countless uniform points. Each point has its own coordinate (x, y, z) value. We use the same extremely short time to walk through each point. Small point, this is a uniform motion. The starting and stopping points in uniform motion are not added slowly from zero, but in steps, which will cause impact.

为实现吊载过程平稳性,采用五次多项式的轨迹规划方法,对当前位置点到目标点或路径点的这段路程中加入速度与加速度控制,让起始和停止不出现冲击现象。其根本思想就是,在同样极短的时间内走过两个微观离散点的距离是不同的,在起始与停止时,同样极短的时间走过距离比较短,速度就比较慢,中间段时同样极短的时间走过距离比较长,速度就比较快。为实现速度与加速度规划并输出,建立五次多项式方程输入真实时间t即可得出对应时刻下的离散点位置,即每一时刻点所对应的理想位置信息In order to achieve the stability of the hoisting process, a fifth-degree polynomial trajectory planning method is used to add speed and acceleration control to the distance from the current position point to the target point or path point, so that there will be no impact when starting and stopping. The basic idea is that the distance traveled by two microscopic discrete points in the same extremely short time is different. When starting and stopping, the distance traveled in the same extremely short time is shorter, and the speed is slower. When the distance covered in the same extremely short time is longer, the speed is faster. In order to realize speed and acceleration planning and output, a quintic polynomial equation is established and the real time t is input to obtain the discrete point position at the corresponding time, that is, the ideal position information corresponding to each time point. .

五次多项式规划方程组如下所示:The system of fifth-degree polynomial programming equations is as follows:

首先,设置起始时刻t为0,位置为当前点坐标,设置停止时间为First, set the starting time t to 0, the position to the current point coordinates, and the stop time to

其中,为目标点或连续点坐标,即所述坐标信息,/>为轨迹初始位置坐标,即所述吊载平台的轨迹初始位置点,/>为机器最大运行速度,pi为防过速系数。in, is the target point or continuous point coordinates, that is, the coordinate information,/> is the trajectory initial position coordinate, that is, the trajectory initial position point of the hoisting platform, /> is the maximum operating speed of the machine, and pi is the anti-overspeed coefficient.

设置起始、停止速度和加速度为0,即、/>、/>、/>、/>、/>为0,包含已知起始与停止点的时间和位置,共18个已知条件,带入上述五次多项式中可解得常数/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>Set the start, stop speed and acceleration to 0, that is ,/> ,/> ,/> ,/> ,/> is 0, including the time and position of the known start and stop points, a total of 18 known conditions, which can be solved by adding the above quintic polynomial to the constant/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> .

将解得常数带入五次多项式Enter the solution constant into the fifth degree polynomial

变量为时间t,即可得出每一t时刻下理想位置信息The variable is time t, and the ideal position information at each time t can be obtained. .

S103,获取所述平台位置采集模块采集到的与所述理想位置信息相对应的所述吊载平台的当前位置/>,并采用PID控制律算法对所述吊载平台的当前位置/>和所述理想位置信息/>进行位置闭环处理,生成时刻控制位置信息/>S103. Obtain the ideal position information collected by the platform position collection module. The corresponding current position of the hoisting platform/> , and use the PID control law algorithm to determine the current position of the hoisting platform/> and the ideal location information/> Perform position closed-loop processing to generate time-controlled position information/> ;

具体地,步骤S103包括:根据公式对所述吊载平台的当前位置/>和所述理想位置信息/>进行位置闭环处理,其中,/>为时刻控制位置信息/>,/>为/>,/>为比例系数,/>为积分系数,/>为微分系数。Specifically, step S103 includes: according to the formula The current position of the lifting platform/> and the ideal location information/> Perform position closed-loop processing, where,/> Control location information at all times/> ,/> for/> ,/> is the proportional coefficient,/> is the integral coefficient,/> is the differential coefficient.

具体地,在本实施例中,位置闭环采用红外传感器检测当前实时位置,控制律上采用PID做位置闭环控制,保证位置精度。Specifically, in this embodiment, the position closed loop uses an infrared sensor to detect the current real-time position, and the control law uses PID for position closed loop control to ensure position accuracy.

PID控制律如下:The PID control law is as follows:

其中为输入到控制器中的时刻控制位置信息/>,/>为/>,/>为比例系数,/>为积分系数,/>为微分系数,通过多次测试调定其/>、/>、/>系数,实现位置精度。in Control position information for the time input to the controller/> ,/> for/> ,/> is the proportional coefficient,/> is the integral coefficient,/> is a differential coefficient, which is adjusted through multiple tests/> ,/> ,/> coefficient to achieve position accuracy.

S104,调用建立好的执行机构运动学模型对所述时刻控制位置信息进行转换处理,生成转速控制信号/>S104, call the established kinematic model of the actuator to control the position information at the time Perform conversion processing to generate a speed control signal/> ;

具体地,步骤S104包括:根据公式,其中,/>为减速卷扬机减速比,/>为减速卷扬机卷筒半径,/>是/>对时间t的求导,为下一时刻吊载平台速度,,/>为数据采集周期,/>为雅可比矩阵。Specifically, step S104 includes: according to the formula , where,/> is the reduction ratio of the reduction winch,/> is the drum radius of the speed reduction winch,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment, ,/> is the data collection cycle,/> is the Jacobian matrix.

具体地,在本实施例中,设减速卷扬机减速比为i,半径为r可得转速,其中,/>是/>对时间t的求导,为下一时刻吊载平台速度,,/>为数据采集周期,其中,/>为雅可比矩阵。通过以上计算方式,带入/>实际值可得,三台伺服电机时刻转速。Specifically, in this embodiment, assuming that the reduction ratio of the reduction hoist is i and the radius is r, the rotation speed can be obtained , where,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment, ,/> is the data collection cycle, where,/> is the Jacobian matrix. Through the above calculation method, bring in/> Actual values are available, the momentary speeds of the three servo motors.

请参阅图4,具体地,在本实施例中,在调用建立好的执行机构运动学模型对所述时刻控制位置信息进行转换处理之前,还包括:Please refer to Figure 4. Specifically, in this embodiment, the established kinematic model of the actuator is called to control the position information at the time Before conversion processing, also include:

为未知量(X1,Y1,Z1),滑轮质心点为A,得A到/>点距离/>set up is the unknown quantity (X1, Y1, Z1), the center of mass point of the pulley is A, and A is/> Point distance/> ;

设万向滑轮组滑轮半径为R,得滑轮出绳点C与点距离/>,得滑轮C点与/>点夹角/>Assuming the pulley radius of the universal pulley block is R, the pulley rope exit point C and Point distance/> , get pulley point C and/> Point angle/> ;

设滑轮入绳点Q,得Q与点距离/>Suppose the pulley enters the rope point Q, we get Q and Point distance/> ;

由余弦定理得滑轮Q点与点夹角,得滑轮Q点与C点弧长/>,进而得Q点至/>点绳长According to the cosine theorem, the pulley Q point and angle between points , get the arc length of pulley point Q and point C/> , and then get Q point to/> Point rope length ;

对绳长求导可得/>,其中,/>为雅可比矩阵,可表示为:,/>是/>对时间t的求导,为下一时刻吊载平台速度,,/>为数据采集周期。The length of the rope By derivation, we can get/> ,wherein,/> is the Jacobian matrix, which can be expressed as: ,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment, ,/> is the data collection cycle.

在本实施例中,控制计算接收时刻控制位置信息,输出转速控制信号/>。控制计算需建立执行机构运动学模型,建立如下:In this embodiment, the control calculation reception time control position information , output speed control signal/> . The control calculation requires the establishment of a kinematic model of the actuator, which is established as follows:

为未知量(X1,Y1,Z1),滑轮质心点为A,得A到/>点距离set up is the unknown quantity (X1, Y1, Z1), the center of mass point of the pulley is A, and A is/> point distance

设滑轮半径R,得滑轮出绳点C与点距离Assuming the pulley radius R, the pulley rope exit point C and point distance

得滑轮C点与点夹角/> Obtain the point C of the pulley and Point angle/>

设滑轮入绳点Q,得Q与点距离Suppose the pulley enters the rope point Q, we get Q and point distance

由余弦定理得滑轮Q点与点夹角According to the cosine theorem, the pulley Q point and angle between points

得滑轮Q点与C点弧长 Find the arc lengths of points Q and C of the pulley.

可得Q点至点绳长/> You can get Q point to Point rope length/>

对绳长求导可得/>,其中,/>为雅可比矩阵,可表示为:,/>是/>对时间t的求导,为下一时刻吊载平台速度,,/>为数据采集周期。The length of the rope By derivation, we can get/> ,wherein,/> is the Jacobian matrix, which can be expressed as: ,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment, ,/> is the data collection cycle.

S105,获取所述执行组件采集到的当前时刻转速信息,并采用PID控制律算法对所述当前时刻转速信息和所述转速控制信号进行转速闭环处理,生成时刻转速信号;S105: Obtain the current speed information collected by the execution component, and use the PID control law algorithm to compare the current speed information and the speed control signal. Carry out speed closed-loop processing and generate instant speed signals;

具体地,在本实施例中,所述驱动组件接收来自所述控制器的转速信息与当前时刻转速信息做PID转速闭环控制,控制率同理步骤S103。其中,所述驱动组件由三组断路器、电磁接触器、电抗器、干扰滤波器、伺服驱动器和制动电阻组成,能够有效滤除市电中的杂波和噪声,稳定电路的电压和电流,并防止短路电流对电气器件造成损坏。调定驱动系统中伺服驱动器的、/>、/>参数,可实现三台伺服电机耦合执行。Specifically, in this embodiment, the driving component receives the rotational speed information from the controller and the current rotational speed information to perform PID rotational speed closed-loop control, and the control rate is the same as step S103. Among them, the drive assembly consists of three sets of circuit breakers, electromagnetic contactors, reactors, interference filters, servo drives and braking resistors, which can effectively filter out clutter and noise in the mains power and stabilize the voltage and current of the circuit. , and prevent short-circuit current from causing damage to electrical components. Set the servo drive in the drive system ,/> ,/> Parameters can realize the coupling execution of three servo motors.

S106,将所述时刻转速信号发送给所述驱动组件,以驱动所述执行组件的伺服电机进行相应的转动,以实现所述吊载平台在工作空间的移动。S106. Send the rotation speed signal at the time to the driving component to drive the servo motor of the execution component to rotate accordingly to realize the movement of the hoisting platform in the work space.

具体地,在本实施例中,三台伺服电机受驱动器控制,驱动减速卷扬机收放钢丝绳实现吊载平台在工作空间移动。Specifically, in this embodiment, three servo motors are controlled by the driver to drive the reduction hoist to retract and unwind the wire rope to realize the movement of the hoisting platform in the work space.

综上,所述五次多项式平滑自定义轨迹精度并联起重机采用并联结构实现高负载、灵活吊载,使用人机界面做信息交互,采用五次多项式轨迹规划法对运行轨迹速度与加速度进行规划,建立控制系统实现快速、平稳、无冲击吊载,采用位置、转速双闭环控制实现精准控制。所述五次多项式平滑自定义轨迹精度并联起重机具有机构质量降低,负载能力增强,负重比高,可在三个自由度上进行灵活控制;采用人机界面输入位置或连续点坐标实现定点或连续点运动,操作简单便捷;采用五次多项式轨迹规划进行轨迹速度、加速度规划实现高速、平稳、无冲击吊载,作业稳定性好,效率高;以及采用位置、速度双闭环控制,可实现毫米级精度吊载的优点。In summary, the fifth-degree polynomial smooth customized trajectory precision parallel crane adopts a parallel structure to achieve high load and flexible hoisting, uses a human-machine interface for information interaction, and uses a fifth-degree polynomial trajectory planning method to plan the speed and acceleration of the operating trajectory. A control system is established to achieve fast, stable and impact-free lifting, and dual closed-loop control of position and speed is used to achieve precise control. The fifth-degree polynomial smooth customized trajectory precision parallel crane has the advantages of reduced mechanism mass, enhanced load capacity, high load-bearing ratio, and can be flexibly controlled on three degrees of freedom; the human-machine interface is used to input positions or continuous point coordinates to achieve fixed point or continuous Point motion, the operation is simple and convenient; using quintic polynomial trajectory planning for trajectory speed and acceleration planning to achieve high-speed, stable, and impact-free lifting, good operating stability and high efficiency; and using position and speed double closed-loop control to achieve millimeter level Advantages of precision lifting.

以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。The above are only preferred embodiments of the present invention. The protection scope of the present invention is not limited to the above-mentioned embodiments. All technical solutions that fall under the idea of the present invention belong to the protection scope of the present invention.

Claims (5)

1.一种五次多项式平滑自定义轨迹精度并联起重机, 其特征在于,包括:控制器、人机界面模块、驱动组件、执行组件、以及平台位置采集模块;1. A fifth-order polynomial smooth customized trajectory precision parallel crane, which is characterized by including: a controller, a human-machine interface module, a driving component, an execution component, and a platform position acquisition module; 其中,所述人机界面模块的输出端、所述平台位置采集模块的输出端、所述执行组件的输出端与所述控制器的输入端电气连接,所述控制器的输出端与所述驱动组件的输入端电气连接,所述驱动组件的输出端与所述执行组件的输入端电气连接;Wherein, the output end of the human-machine interface module, the output end of the platform position acquisition module, and the output end of the execution component are electrically connected to the input end of the controller, and the output end of the controller is connected to the input end of the controller. The input end of the driving component is electrically connected, and the output end of the driving component is electrically connected with the input end of the execution component; 其中,所述执行组件包括吊载平台、钢丝绳组件、第一立柱支座、第二立柱支座、第三立柱支座、配置在所述第一立柱支座上端部的第一万向滑轮、配置在所述第一立柱支座底部的第一伺服电机和第一减速卷扬机、配置在所述第二立柱支座上端部的第二万向滑轮、配置在所述第二立柱支座底部的第二伺服电机和第二减速卷扬机、配置在所述第三立柱支座上端部的第三万向滑轮、配置在所述第三立柱支座底部的第三伺服电机和第三减速卷扬机、横杆组件、以及斜杆组件,所述第一立柱支座、所述第二立柱支座和所述第三立柱支座通过所述横杆组件、及所述斜杆组件进行固定连接,所述吊载平台通过所述钢丝绳组件可移动配置在工作空间;Wherein, the execution component includes a lifting platform, a wire rope assembly, a first column support, a second column support, a third column support, a first universal pulley arranged at the upper end of the first column support, The first servo motor and the first reduction hoist are arranged at the bottom of the first column support, the second universal pulley is arranged at the upper end of the second column support, and the second universal pulley is arranged at the bottom of the second column support. The second servo motor and the second reduction hoist, the third universal pulley arranged at the upper end of the third column support, the third servo motor and the third reduction hoist arranged at the bottom of the third column support, the horizontal Rod assembly and inclined rod assembly, the first column support, the second column support and the third column support are fixedly connected through the cross rod assembly and the inclined rod assembly, the The hoisting platform is movably configured in the work space through the wire rope assembly; 其中,所述控制器被配置为通过执行其内部存储的计算机程序以实现如下步骤:Wherein, the controller is configured to implement the following steps by executing its internally stored computer program: 分别获取所述人机界面模块发送的坐标信息和所述平台位置采集模块采集到的所述吊载平台的轨迹初始位置点/>,其中,所述坐标信息/>为目标点坐标或连续的路径点坐标;Obtain the coordinate information sent by the human-machine interface module respectively and the initial position point of the trajectory of the hoisting platform collected by the platform position acquisition module/> , wherein the coordinate information/> It is the coordinates of the target point or the coordinates of the continuous way points; 对所述坐标信息、所述吊载平台的轨迹初始位置点/>和真实时间/>进行预处理,生成理想位置信息/>,其中,所述理想位置信息为所述吊载平台的轨迹初始位置点/>到所述坐标信息/>之间的所述真实时间/>时刻点下所对应的理想位置信息,所述吊载平台的轨迹初始位置点/>到所述坐标信息/>之间存在多个时刻点,每一时刻点对应一个理想位置信息,具体为:for the coordinate information , the initial position point of the trajectory of the hoisting platform/> and real time/> Perform preprocessing to generate ideal location information/> , wherein the ideal position information is the trajectory initial position point of the hoisting platform/> to the coordinate information/> said real time between/> The ideal position information corresponding to the time point, the initial position point of the trajectory of the hoisting platform/> to the coordinate information/> There are multiple time points, each time point corresponds to an ideal location information, specifically: 采用五次多项式规划方程组对所述坐标信息、所述吊载平台的轨迹初始位置点/>和真实时间/>进行计算处理,生成理想位置信息/>A system of fifth-order polynomial planning equations is used to calculate the coordinate information , the initial position point of the trajectory of the hoisting platform/> and real time/> Perform calculation processing to generate ideal location information/> ; 其中,五次多项式规划方程组为:Among them, the system of fifth-order polynomial programming equations is: 其中,为理想位置信息/>的X轴坐标点,/>为理想位置信息/>的Y轴坐标点,/>为理想位置信息/>的Z轴坐标点,/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>、/>和/>为常数,/>为/>的一阶导数,/>为/>的二阶导数,/>为/>的一阶导数,为/>的二阶导数,/>为/>的一阶导数,/>为/>的二阶导数;in, For ideal location information/> X-axis coordinate point,/> For ideal location information/> Y-axis coordinate point,/> For ideal location information/> Z-axis coordinate point,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> ,/> and/> is a constant,/> for/> The first derivative of ,/> for/> The second derivative of ,/> for/> The first derivative of for/> The second derivative of ,/> for/> The first derivative of ,/> for/> The second derivative of ; 获取所述平台位置采集模块采集到的与所述理想位置信息相对应的所述吊载平台的当前位置/>,并采用PID控制律算法对所述吊载平台的当前位置/>和所述理想位置信息/>进行位置闭环处理,生成时刻控制位置信息/>,具体为:Obtain the ideal location information collected by the platform location acquisition module The corresponding current position of the hoisting platform/> , and use the PID control law algorithm to determine the current position of the hoisting platform/> and the ideal location information/> Perform position closed-loop processing to generate time-controlled position information/> ,Specifically: 根据公式对所述吊载平台的当前位置/>和所述理想位置信息/>进行位置闭环处理,其中,/>为时刻控制位置信息/>,/>,/>为比例系数,/>为积分系数,/>为微分系数;According to the formula The current position of the lifting platform/> and the ideal location information/> Perform position closed-loop processing, where,/> Control location information at all times/> ,/> for ,/> is the proportional coefficient,/> is the integral coefficient,/> is the differential coefficient; 调用建立好的执行机构运动学模型对所述时刻控制位置信息进行转换处理,生成转速控制信号/>,具体为:Call the established kinematics model of the actuator to control the position information at the time Perform conversion processing to generate a speed control signal/> ,Specifically: 根据公式,其中,/>为减速卷扬机减速比,/>为减速卷扬机卷筒半径,/>是/>对时间t的求导,为下一时刻吊载平台速度,/>,/>为数据采集周期,/>为雅可比矩阵;According to the formula , where,/> is the reduction ratio of the reduction winch,/> is the drum radius of the speed reduction winch,/> Yes/> The derivation of time t is the speed of the lifting platform at the next moment,/> ,/> is the data collection cycle,/> is the Jacobian matrix; 获取所述执行组件采集到的当前时刻转速信息,并采用PID控制律算法对所述当前时刻转速信息和所述转速控制信号进行转速闭环处理,生成时刻转速信号;Obtain the current speed information collected by the execution component, and use the PID control law algorithm to compare the current speed information and the speed control signal. Carry out speed closed-loop processing and generate instant speed signals; 将所述时刻转速信号发送给所述驱动组件,以驱动所述执行组件的伺服电机进行相应的转动,以实现所述吊载平台在工作空间的移动。The rotational speed signal at the time is sent to the driving component to drive the servo motor of the execution component to perform corresponding rotation to realize the movement of the hoisting platform in the work space. 2.根据权利要求1所述的一种五次多项式平滑自定义轨迹精度并联起重机, 其特征在于,所述驱动组件包括三组不同型号的断路器、电磁接触器、变压器、电抗器、干扰滤波器、伺服驱动器、以及制动电阻器,其中,所述断路器与所述电磁接触器、所述变压器电气连接,所述电磁接触器与所述变压器、所述电抗器电气连接,所述电抗器与所述干扰滤波器电气连接,所述伺服驱动器与所述执行组件、所述干扰滤波器、所述制动电阻器电气连接。2. A fifth-degree polynomial smooth customized trajectory precision parallel crane according to claim 1, characterized in that the driving assembly includes three groups of different types of circuit breakers, electromagnetic contactors, transformers, reactors, and interference filters. device, servo driver, and braking resistor, wherein the circuit breaker is electrically connected to the electromagnetic contactor and the transformer, the electromagnetic contactor is electrically connected to the transformer and the reactor, and the reactance The servo driver is electrically connected to the interference filter, and the servo driver is electrically connected to the execution component, the interference filter, and the braking resistor. 3.根据权利要求1所述的一种五次多项式平滑自定义轨迹精度并联起重机, 其特征在于,所述钢丝绳组件包括第一钢丝绳、第二钢丝绳、以及第三钢丝绳,其中,所述第一钢丝绳的一端与所述吊载平台连接,所述第一钢丝绳的另一端通过所述第一万向滑轮可移动的配置在所述第一减速卷扬机上,所述第二钢丝绳的一端与所述吊载平台连接,所述第二钢丝绳的另一端通过所述第二万向滑轮可移动的配置在所述第二减速卷扬机上,所述第三钢丝绳的一端与所述吊载平台连接,所述第三钢丝绳的另一端通过所述第三万向滑轮可移动的配置在所述第三减速卷扬机上。3. A fifth-degree polynomial smooth customized trajectory precision parallel crane according to claim 1, characterized in that the steel wire rope assembly includes a first steel wire rope, a second steel wire rope, and a third steel wire rope, wherein the first steel wire rope One end of the steel wire rope is connected to the hoisting platform, the other end of the first steel wire rope is movably arranged on the first reduction hoist through the first universal pulley, and one end of the second steel wire rope is connected to the The hoisting platform is connected, the other end of the second steel wire rope is movably arranged on the second reduction hoist through the second universal pulley, and one end of the third wire rope is connected to the hoisting platform, so The other end of the third steel wire rope is movably arranged on the third reduction hoist through the third universal pulley. 4.根据权利要求1所述的一种五次多项式平滑自定义轨迹精度并联起重机, 其特征在于,所述平台位置采集模块为红外传感器。4. A fifth-degree polynomial smooth custom trajectory precision parallel crane according to claim 1, characterized in that the platform position acquisition module is an infrared sensor. 5.根据权利要求1所述的一种五次多项式平滑自定义轨迹精度并联起重机, 其特征在于,在调用建立好的执行机构运动学模型对所述时刻控制位置信息进行转换处理之前,还包括:5. A fifth-degree polynomial smooth customized trajectory precision parallel crane according to claim 1, characterized in that the established kinematic model of the actuator is called to control the position information at the time Before conversion processing, also include: 为未知量(X1,Y1,Z1),滑轮质心点为A,得A到/>点距离/>set up is the unknown quantity (X1, Y1, Z1), the center of mass point of the pulley is A, and A is/> Point distance/> ; 设万向滑轮组滑轮半径为R,得滑轮出绳点C与点距离/>,得滑轮C点与/>点夹角/>Assuming the pulley radius of the universal pulley block is R, the pulley rope exit point C and Point distance/> , get pulley point C and/> Point angle/> ; 设滑轮入绳点Q,得Q与点距离/>Suppose the pulley enters the rope point Q, we get Q and Point distance/> ; 由余弦定理得滑轮Q点与点夹角,得滑轮Q点与C点弧长/>,进而得Q点至/>点绳长According to the cosine theorem, the pulley Q point and angle between points , get the arc length of pulley point Q and point C/> , and then get Q point to/> Point rope length ; 对绳长求导可得/>,其中,/>为雅可比矩阵,可表示为:/>是/>对时间t的求导,为下一时刻吊载平台速度,/>,/>为数据采集周期。The length of the rope By derivation, we can get/> ,wherein,/> is the Jacobian matrix, which can be expressed as:/> , Yes/> The derivation of time t is the speed of the lifting platform at the next moment,/> ,/> is the data collection cycle.
CN202311218663.6A 2023-09-21 2023-09-21 A quintic polynomial smooth custom trajectory precision parallel crane Active CN116969331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311218663.6A CN116969331B (en) 2023-09-21 2023-09-21 A quintic polynomial smooth custom trajectory precision parallel crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311218663.6A CN116969331B (en) 2023-09-21 2023-09-21 A quintic polynomial smooth custom trajectory precision parallel crane

Publications (2)

Publication Number Publication Date
CN116969331A CN116969331A (en) 2023-10-31
CN116969331B true CN116969331B (en) 2023-12-12

Family

ID=88477029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311218663.6A Active CN116969331B (en) 2023-09-21 2023-09-21 A quintic polynomial smooth custom trajectory precision parallel crane

Country Status (1)

Country Link
CN (1) CN116969331B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250888A (en) * 2007-02-21 2008-08-27 神钢建设机械株式会社 Rotation control device and working machine therewith
JP2008273682A (en) * 2007-04-27 2008-11-13 Sintokogio Ltd Conveying method and control system for conveying means for implementing the method
CN104555733A (en) * 2014-12-26 2015-04-29 中联重科股份有限公司 Hoisting swing control method, equipment and system and engineering machinery
CN104909273A (en) * 2015-06-12 2015-09-16 华电重工股份有限公司 Grab ship unloader as well as driving method and device of grab ship unloader
CN111196557A (en) * 2018-11-19 2020-05-26 B和R工业自动化有限公司 Method and vibration controller for compensating vibrations of a vibratable technical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759519B2 (en) * 2017-10-31 2020-09-01 The Boeing Company Adaptive feedback control of force fighting in hybrid actuation systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250888A (en) * 2007-02-21 2008-08-27 神钢建设机械株式会社 Rotation control device and working machine therewith
JP2008273682A (en) * 2007-04-27 2008-11-13 Sintokogio Ltd Conveying method and control system for conveying means for implementing the method
CN104555733A (en) * 2014-12-26 2015-04-29 中联重科股份有限公司 Hoisting swing control method, equipment and system and engineering machinery
CN104909273A (en) * 2015-06-12 2015-09-16 华电重工股份有限公司 Grab ship unloader as well as driving method and device of grab ship unloader
CN111196557A (en) * 2018-11-19 2020-05-26 B和R工业自动化有限公司 Method and vibration controller for compensating vibrations of a vibratable technical system

Also Published As

Publication number Publication date
CN116969331A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
Lee Modeling and control of a three-dimensional overhead crane
CN201358142Y (en) Automatic control system for telescopic crane
CN103963051B (en) Robot and robot controller
KR970003508B1 (en) Speed control method for vibration prevention of crane
CN101973489B (en) Double-lifting bridge crane control system with image sensor and control method
CN104440870A (en) Variable structure parameter flexible rope parallel connection robot system and control method
KR20110004776A (en) Cranes for handling loads suspended from load cables
CN103723629B (en) Crane and anti-swing control method for steel wire rope of crane
CN113955637B (en) Anti-swing control method and control system of three-dimensional double-swing bridge crane
KR20080040624A (en) Shaping controller with combined feedback and command for multi-state control applied to improve positioning in cranes and reduce cable shake
CN108358082B (en) Intelligent tower crane system with self-learning function
CN102059699A (en) Three-degree-of-freedom hybrid drive flexible cable parallel robot control device and method
US20220297984A1 (en) Construction and/or material-handling machine
CN114195009B (en) Anti-swing control method and system of double-swing tower crane based on active disturbance rejection controller
CN110397256A (en) A kind of paving robot
CN116969331B (en) A quintic polynomial smooth custom trajectory precision parallel crane
CN108115666A (en) Novel palletizer tool hand
CN102701076B (en) Control device and control method for six-degree-of-freedom lifting cooperative parallel-flexible-cable equipment
DE60217621T2 (en) Method for crane operation
CN117886226B (en) Nonlinear control method and system for crane system based on flat output
CN117985602A (en) Control method for automatic leveling of spacecraft slings and incremental PID control method
CN114572828B (en) Non-singular terminal sliding mode anti-sway control method for vertical lifting of slender loads
KR101384512B1 (en) Line-speed control method and apparatus for aerial work platform
CN202625634U (en) An electronic anti-sway control system for cranes
CN116969334B (en) A multi-crane cooperative operation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant