JP2008272736A - Discharge electrode and air cleaning apparatus using the same - Google Patents

Discharge electrode and air cleaning apparatus using the same Download PDF

Info

Publication number
JP2008272736A
JP2008272736A JP2008036368A JP2008036368A JP2008272736A JP 2008272736 A JP2008272736 A JP 2008272736A JP 2008036368 A JP2008036368 A JP 2008036368A JP 2008036368 A JP2008036368 A JP 2008036368A JP 2008272736 A JP2008272736 A JP 2008272736A
Authority
JP
Japan
Prior art keywords
adsorbent
discharge
electrode
conductor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008036368A
Other languages
Japanese (ja)
Other versions
JP5369448B2 (en
Inventor
Takahiro Sakai
隆弘 酒井
Koji Ota
幸治 太田
Yasuhiro Tanimura
泰宏 谷村
Takeshi Doi
全 土井
Katsumi Araki
克己 荒木
Makoto Furukawa
誠 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008036368A priority Critical patent/JP5369448B2/en
Publication of JP2008272736A publication Critical patent/JP2008272736A/en
Application granted granted Critical
Publication of JP5369448B2 publication Critical patent/JP5369448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air cleaning apparatus capable of stably cleaning air without generating abnormal discharge by protecting a dielectric covering the metallic conductor of a high voltage electrode from thermal stress and preventing damage. <P>SOLUTION: The air cleaning apparatus uses the discharge electrode having the high voltage electrode 2 wherein a space 2g is provided in a tube of the tubular dielectric 2b for inserting the metallic conductor 2a, and a conductor 2e electrically connecting the metallic conductor 2a to the tubular dielectric 2b, and a grounding electrode 3 with a conductor 3t connected to an adsorbent 3h adsorbing chemical substances. The space 2g between the metallic conductor 2a and tubular dielectric 2b prevents damage of the tubular dielectric body 2b by thermal stress at a discharge time. The connection of the metallic conductor 2a to the tubular dielectric 2b by the conductor 2e stabilizes the discharge and causes little abnormal discharge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば塗装工程などから排出される空気に含まれる揮発性有機化合物(Volatile Organic Compounds:以下、VOCsと称する。)を分解除去する装置に用いられる放電電極およびそれを用いた空気浄化装置に関するものである。   The present invention relates to a discharge electrode used in an apparatus for decomposing and removing volatile organic compounds (hereinafter referred to as VOCs) contained in air discharged from, for example, a painting process, and an air purification apparatus using the same. It is about.

塗装工場や半導体工場、あるいは印刷工場などは多量の有機溶剤を使用している。このような工場から大気に排出されるVOCsは、太陽光やオゾンなどとの反応により炭化水素系微粒子を形成したり、大気中のオゾン濃度を増大させたりするなど大気環境に重大な影響を与えることが知られている。このため、VOCsを回収し分解処理することが強く求められている。
2004年に公布された改正大気汚染防止法では、光化学スモッグ、SPM(浮遊粒子状物質)による大気汚染防止のため、その原因物質であるVOCsの排出及び飛散を抑止することを求めている。この改正大気汚染防止法によりVOCsの削減の必要性が顕著化し、VOCsを分解・除去するさまざまな方法が検討されている。一方、近年労働環境に対する環境改善指向が高まっており、作業環境の改善としてVOCsなどの化学物質削減のニーズが高まっている。これら、VOCsなどの化学物質を除去する方法として、活性炭などの吸着剤等に化学物質を捕集し除去する方法が一般的であった。しかしながら、この方法では長期間の使用により吸着剤が飽和し、浄化能力が低下することからコスト、メンテナンスの点、さらに化学物質が多量に吸着している吸着剤から化学物質が再放出するといった問題があり、新たな除去方法の開発が必要であった。そこで、吸着剤で吸着した化学物質を低エネルギで分解でき、かつメンテナンスが容易で一旦捕集した化学物質の再放出を抑制する浄化方法として放電プラズマと吸着剤を利用したものが注目されている。
Painting factories, semiconductor factories, and printing factories use large amounts of organic solvents. VOCs discharged into the atmosphere from such factories have a significant impact on the atmospheric environment, such as the formation of hydrocarbon-based fine particles by reaction with sunlight, ozone, etc., or increasing the ozone concentration in the atmosphere. It is known. For this reason, there is a strong demand to recover and decompose VOCs.
The revised Air Pollution Control Law promulgated in 2004 requires that the emission and scattering of VOCs, which are the causative substances, be suppressed in order to prevent air pollution caused by photochemical smog and SPM (suspended particulate matter). The revised Air Pollution Control Law has made it necessary to reduce VOCs, and various methods for decomposing and removing VOCs are being studied. On the other hand, in recent years, there has been an increasing trend toward environmental improvement with respect to the working environment, and the need for reducing chemical substances such as VOCs has increased as an improvement in the working environment. As a method for removing these chemical substances such as VOCs, a method of collecting and removing the chemical substances in an adsorbent such as activated carbon has been common. However, this method saturates the adsorbent over a long period of time and lowers the purification capacity. Therefore, there is a problem in that the chemical substance is re-released from the adsorbent in which a large amount of the chemical substance is adsorbed. Therefore, it was necessary to develop a new removal method. Therefore, attention has been paid to a method using discharge plasma and an adsorbent as a purification method that can decompose chemical substances adsorbed by the adsorbent with low energy, is easy to maintain, and suppresses the re-release of the once collected chemical substances. .

特許文献1による空気浄化装置では、VOCsを放電を行う両電極間に触媒を設けて誘電体を配設させることで、アセトアルデヒド及び揮発性有機化合物などのガス状汚染物質を浄化している。また、両電極間は誘電体で覆われているため、放電プラズマを利用する際に問題となる火花放電を抑制することができる。   In the air purifying apparatus according to Patent Document 1, gaseous contaminants such as acetaldehyde and volatile organic compounds are purified by providing a dielectric between the electrodes that discharge VOCs and disposing a dielectric. Further, since the gap between both electrodes is covered with a dielectric, it is possible to suppress a spark discharge that becomes a problem when using discharge plasma.

また、特許文献2によるガス処理装置では、特許文献1による空気浄化装置が電極と平行に被処理空気を流しているため圧力損失の問題があるのに対して、被処理ガスが誘電体部材内を誘電体部材に対して垂直な方向に流通するようプラズマ処理室内に配置されているので、圧力損失が低減されている。さらに、誘電体部材の孔内空間に生成したプラズマと被処理ガスの接触確率が増し、処理効率を上げている。
特開2003−135582号公報 特開2006−187766号公報
Further, in the gas processing apparatus according to Patent Document 2, the air purification apparatus according to Patent Document 1 has a problem of pressure loss because the air to be processed flows in parallel with the electrodes, whereas the gas to be processed is in the dielectric member. Is disposed in the plasma processing chamber so as to flow in a direction perpendicular to the dielectric member, pressure loss is reduced. Furthermore, the contact probability between the plasma generated in the hole space of the dielectric member and the gas to be processed is increased, and the processing efficiency is increased.
JP 2003-135582 A JP 2006-187766 A

しかしながら、上記、従来の空気浄化装置においては、高圧電極が熱膨張率の異なる誘電体で金属導体が被覆されているため、放電時に発生する熱により熱膨張率が小さい誘電体の一部が損傷し、異常放電が発生する可能性があるといった問題点があった。   However, in the conventional air purifying device described above, since the metal conductor is coated with the dielectric having a different coefficient of thermal expansion in the high voltage electrode, a part of the dielectric having a small coefficient of thermal expansion is damaged by the heat generated at the time of discharge. However, there is a problem that abnormal discharge may occur.

本発明は、上述のような問題点を解決するためになされたものであり、金属導体と誘電体の熱膨張差があっても、放電時に発生する熱によって誘電体が損傷せず、安定的で高い処理効率を維持できる空気浄化用の放電電極とそれを用いた空気浄化装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and even if there is a difference in thermal expansion between the metal conductor and the dielectric, the dielectric is not damaged by the heat generated during discharge, and is stable. It is an object of the present invention to provide an air purification discharge electrode capable of maintaining high processing efficiency and an air purification apparatus using the same.

上記課題を解決するために、本発明の請求項1に係る空気浄化用の放電電極は、管状誘電体の管内に空隙を設けて金属導体が挿入され、空隙の一部で金属導体と管状誘電体とを電気的に接続させる第一の導電体が設けられた高圧電極と、化学物質を吸着する吸着材に第二の導電体が接続された接地電極と、を備え、高圧電極と接地電極とが対向されていることを特徴とするものである。この課題解決手段によれば、高圧電極と接地電極との放電で発生されたプラズマにより吸着材に吸着された化学物質を分解処理できる。また、金属導体と管状誘電体に空隙が設けられているので放電時の熱応力による管状誘電体の損傷を防止できる。   In order to solve the above-mentioned problems, a discharge electrode for purifying air according to claim 1 of the present invention has a metal conductor inserted by providing a gap in a tube of a tubular dielectric, and the metal conductor and the tubular dielectric are partially formed in the gap. A high-voltage electrode provided with a first conductor for electrically connecting the body, and a ground electrode having a second conductor connected to an adsorbent that adsorbs a chemical substance. Are opposed to each other. According to this problem solving means, the chemical substance adsorbed on the adsorbent can be decomposed by the plasma generated by the discharge of the high voltage electrode and the ground electrode. Moreover, since the space | gap is provided in the metal conductor and the tubular dielectric material, the tubular dielectric material can be prevented from being damaged by the thermal stress during discharge.

また、上記課題を解決するために、本発明の請求項2に係る空気浄化用の放電電極は、管状誘電体の管内に空隙を設けて金属導体が挿入され、空隙の一部で金属導体と管状誘電体とを電気的に接続させる第一の導電体が設けられた高圧電極と、化学物質を吸着する吸着材に第二の導電体が接続された接地電極と、を備え、吸着材が管形状であり、吸着材の管内に空隙を設けて高圧電極が挿入されていることを特徴とするものである。この課題解決手段によれば、高圧電極と接地電極との放電で発生されたプラズマにより吸着材に吸着された化学物質を分解処理できる。また、金属導体と管状誘電体に空隙が設けられているので放電時の熱応力による管状誘電体の損傷を防止できる。   In order to solve the above-mentioned problem, a discharge electrode for purifying air according to claim 2 of the present invention has a gap formed in a tube of a tubular dielectric, a metal conductor is inserted therein, and a metal conductor is formed in a part of the gap. A high-voltage electrode provided with a first conductor for electrically connecting a tubular dielectric, and a ground electrode having a second conductor connected to an adsorbent that adsorbs a chemical substance. It has a tube shape, and is characterized in that a high-pressure electrode is inserted with a gap provided in the tube of the adsorbent. According to this problem solving means, the chemical substance adsorbed on the adsorbent can be decomposed by the plasma generated by the discharge of the high voltage electrode and the ground electrode. Moreover, since the space | gap is provided in the metal conductor and the tubular dielectric material, the tubular dielectric material can be prevented from being damaged by the thermal stress during discharge.

また、上記課題を解決するために、本発明の請求項3に係る空気浄化用の放電電極は、管状誘電体の管内に空隙を設けて金属導体が挿入され、空隙の一部で金属導体と管状誘電体とを電気的に接続させる第一の導電体が設けられた高圧電極と、化学物質を吸着する吸着材に第二の導電体が接続された接地電極と、を備え、吸着材が板形状であり、吸着材の板面に対して平行に形成された孔に空隙を設けて高圧電極が挿入されているものである。この課題解決手段によれば、高圧電極と接地電極との放電で発生されたプラズマにより吸着材に吸着された化学物質を分解処理できる。また、金属導体と管状誘電体に空隙が設けられているので放電時の熱応力による管状誘電体の損傷を防止できる。   In order to solve the above-mentioned problem, a discharge electrode for air purification according to claim 3 of the present invention is provided with a metal conductor inserted into a tube of a tubular dielectric body, and a metal conductor is inserted in a part of the gap. A high-voltage electrode provided with a first conductor for electrically connecting a tubular dielectric, and a ground electrode having a second conductor connected to an adsorbent that adsorbs a chemical substance. It has a plate shape, and a high-voltage electrode is inserted in a hole formed parallel to the plate surface of the adsorbent. According to this problem solving means, the chemical substance adsorbed on the adsorbent can be decomposed by the plasma generated by the discharge of the high voltage electrode and the ground electrode. Moreover, since the space | gap is provided in the metal conductor and the tubular dielectric material, the tubular dielectric material can be prevented from being damaged by the thermal stress during discharge.

また、本発明に係る空気浄化装置は、放電電極に電源を供給する高圧電源と、放電電極に被処理空気を引き込む吸気用のファンと、被処理空気から塵埃を除去する除塵フィルタと、を備えたものである。この課題解決手段によれば、高圧電極と接地電極との間の放電によりプラズマを発生させ、接地電極の吸着材に吸着されたVOCsなどの化学物質を反応により、分解処理することができる。   In addition, an air purification apparatus according to the present invention includes a high-voltage power supply that supplies power to the discharge electrode, an intake fan that draws air to be treated into the discharge electrode, and a dust removal filter that removes dust from the air to be treated. It is a thing. According to this problem solving means, plasma can be generated by discharge between the high-voltage electrode and the ground electrode, and chemical substances such as VOCs adsorbed on the adsorbent of the ground electrode can be decomposed by reaction.

本発明の放電電極および空気浄化装置によれば、高圧電極の金属導体と誘電体との間に空隙を設け、金属導体と誘電体とを導電体により一部で接続させているので、放電時の熱の上昇により金属導体と誘電体間で熱膨張差が生じても、誘電体にストレスが加わることがないため誘電体が損傷を受けず、異常放電が発生せず安定した放電が維持できる効果がある。また、接地電極が吸着材で構成されているため、放電プラズマにより生成した酸素原子などの活性種と吸着材に濃縮されたVOCsなどの有機ガス分子とを効率良く反応させて化学物質を除去することができる効果もある。   According to the discharge electrode and the air purification apparatus of the present invention, since a gap is provided between the metal conductor of the high-voltage electrode and the dielectric, and the metal conductor and the dielectric are partially connected by the conductor, Even if there is a difference in thermal expansion between the metal conductor and the dielectric due to the rise in heat, the dielectric is not stressed, so the dielectric is not damaged, abnormal discharge does not occur, and stable discharge can be maintained. effective. In addition, since the ground electrode is made of an adsorbent, chemical species are removed by efficiently reacting active species such as oxygen atoms generated by discharge plasma with organic gas molecules such as VOCs concentrated in the adsorbent. There is also an effect that can be.

以下、本発明の実施の形態に係る放電電極および空気浄化装置の構成と動作について、図を参照しながら説明する。   Hereinafter, the configuration and operation of the discharge electrode and the air purification device according to the embodiment of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る空気浄化装置の構成を示す透視斜視図である。図2は、放電電極の接地電極部の構成を示す斜視図である。
図1(a)に示すように、空気浄化装置1は、金属導体2aが管状誘電体2b内に空隙2gを設けて挿入配置された複数本の高圧電極2と所定の距離を隔てて対向する接地電極3とにより構成された放電電極対、高圧電極2に接続された高圧電源4、また、放電電極対の後方に設けられた吸気用のファン5、放電電極対の前方に配置された除塵フィルタ6から構成されている。図1(b)に、高圧電極2の断面図を示す。管状誘電体2bの内壁には、導電膜2cが形成されており、金属導体2aと導電膜2cの間の空隙2gには、金属導体2aと導電膜2cとを電気的に接続させる状態で第一の導電体である導電体2eが取り付けられている。図2に示すように、接地電極3は、板状吸着材3hとこの周囲側面に取り付けられた金属などの第二の導電体である帯状導電体3tから構成されている。
Embodiment 1 FIG.
1 is a perspective view showing a configuration of an air purification device according to Embodiment 1 of the present invention. FIG. 2 is a perspective view showing the configuration of the ground electrode portion of the discharge electrode.
As shown in FIG. 1 (a), the air purification device 1 is opposed to a plurality of high-voltage electrodes 2 in which a metal conductor 2a is inserted and provided with a gap 2g in a tubular dielectric 2b with a predetermined distance therebetween. A discharge electrode pair constituted by the ground electrode 3, a high-voltage power source 4 connected to the high-voltage electrode 2, an intake fan 5 provided behind the discharge electrode pair, and dust removal arranged in front of the discharge electrode pair The filter 6 is configured. FIG. 1B shows a cross-sectional view of the high-voltage electrode 2. A conductive film 2c is formed on the inner wall of the tubular dielectric 2b, and the gap 2g between the metal conductor 2a and the conductive film 2c is electrically connected to the metal conductor 2a and the conductive film 2c. A conductor 2e, which is one conductor, is attached. As shown in FIG. 2, the ground electrode 3 includes a plate-shaped adsorbent 3h and a strip-shaped conductor 3t that is a second conductor such as a metal attached to the peripheral side surface.

次に、実施の形態1に係る空気浄化装置の動作について、図1を参照して説明する。
まず、VOCsが含まれる被処理空気7が吸気用のファン5により空気浄化装置1内に導入されるが、除塵フィルタ6により被処理空気7中に含まれる空気中に浮遊している塵や埃、ペンキカスなどの粒子などの塵埃が取り除かれる。次に、高圧電極2間をすり抜けた被処理空気7に含まれるVOCsなどの有機ガス分子を始めとする化学物質は接地電極3の板状吸着材3hで吸着される。高圧電極2と接地電極3には高圧電源4から交流高電圧が印加され無声放電により、プラズマが発生し、接地電極3の板状吸着材3hに吸着されている有機ガス分子が式(1)から式(6)で示される反応により、酸化され、二酸化炭素と水とに分解処理される。なお、分解処理は交流高電圧が印加された放電時に行なわれるが、吸着は放電時、非放電時に係らず行なわれる。また、放電時には吸着材から放出されるもののみならず、吸着されずにプラズマ中に直接飛来したものも分解される。その後、有機ガス分子が分解除去された清浄空気8は、空気浄化装置1外に排出される。
Next, the operation of the air purification apparatus according to Embodiment 1 will be described with reference to FIG.
First, to-be-treated air 7 containing VOCs is introduced into the air purifier 1 by the intake fan 5, but dust or dust floating in the air contained in the to-be-treated air 7 by the dust removal filter 6. Dust, such as particles of paint, is removed. Next, chemical substances including organic gas molecules such as VOCs contained in the air 7 to be processed that have passed through the high-voltage electrodes 2 are adsorbed by the plate-like adsorbent 3 h of the ground electrode 3. An alternating high voltage is applied to the high-voltage electrode 2 and the ground electrode 3 from the high-voltage power supply 4, and plasma is generated by silent discharge. The organic gas molecules adsorbed on the plate-shaped adsorbent 3h of the ground electrode 3 are expressed by the formula (1). To be oxidized and decomposed into carbon dioxide and water by the reaction represented by formula (6). The decomposition treatment is performed at the time of discharging with an AC high voltage applied, but the adsorption is performed at the time of discharging or not. Moreover, not only what is emitted from the adsorbent during discharge but also what is directly adsorbed into the plasma without being adsorbed is decomposed. Thereafter, the clean air 8 from which organic gas molecules have been decomposed and removed is discharged out of the air purification apparatus 1.

放電により発生されたプラズマによる被処理空気中に含まれる炭化水素やアルデヒドなどのVOCsの有機ガス分子の分解に関わる主な反応は、式(1)から式(6)で表される。具体的には、有機ガス分子の分解は、放電により生成されたオゾン(O)による分解、酸素原子(O)による分解、およびペルオキシドラジカル(OH)による分解とに分けられる。
まず、式(1)から式(3)で示すオゾンによる分解では、式(1)で示されるように、酸素分子(O)が電子(e)により酸素原子(O)に分解される。次に、式(2)で示されるように、酸素原子(O)と酸素分子(O)とによりオゾン(O)が生成される。続いて、式(3)に示されるように、このオゾン(O)により有機ガス分子(C、ここで、k、m、nは整数)は二酸化炭素(CO)と水(HO)とに分解される。式(4)で示す酸素原子(O)による分解では、式(1)で示される酸素原子(O)により有機ガス分子(C)は二酸化炭素(CO)と水(HO)に分解される。また、式(5)と式(6)に示すペルオキシドラジカル(OH)による分解では、式(5)で示されるように、水(HO)と酸素分子(O)が反応してペルオキシドラジカル(OH)が生成され、次に、式(6)で示されるように、このペルオキシドラジカル(OH)により有機ガス分子(C)は二酸化炭素(CO)と水(HO)とに分解される。
e+O → e+O+O (1)
ここで、eは電子を表し、電子は放電により生じる。
O+O → O (2)
+(2k+m/2−n)O → kCO+(m/2)H
+(2k+m/2−n)O (3)
+(2k+m/2−n)O → kCO+(m/2)HO (4)
O+1/2O → 2OH (5)
+(4k+m−2n)OH → kCO+(2k+m−n)HO (6)
The main reactions involved in the decomposition of organic gas molecules of VOCs such as hydrocarbons and aldehydes contained in the air to be treated by the plasma generated by the discharge are expressed by equations (1) to (6). Specifically, the decomposition of organic gas molecules is divided into decomposition by ozone (O 3 ) generated by discharge, decomposition by oxygen atoms (O), and decomposition by peroxide radicals (OH).
First, in the decomposition by ozone shown by the formulas (1) to (3), as shown by the formula (1), oxygen molecules (O 2 ) are decomposed into oxygen atoms (O) by electrons (e). Next, as shown by the formula (2), ozone (O 3 ) is generated by the oxygen atoms (O) and oxygen molecules (O 2 ). Subsequently, as shown in Formula (3), organic gas molecules (C k H m O n , where k, m, and n are integers) are converted into carbon dioxide (CO 2 ) by this ozone (O 3 ). Decomposed into water (H 2 O). In the decomposition by the oxygen atom (O) represented by the formula (4), the organic gas molecule (C k H m O n ) is converted into carbon dioxide (CO 2 ) and water (H by the oxygen atom (O) represented by the formula (1). Decomposed to 2 O). In the decomposition by the peroxide radical (OH) shown in the formula (5) and the formula (6), as shown in the formula (5), water (H 2 O) and oxygen molecules (O 2 ) react to react with the peroxide. Radicals (OH) are generated, and then, as shown in the formula (6), organic peroxide molecules (C k H m O n ) are converted into carbon dioxide (CO 2 ) and water (H 2 O).
e + O 2 → e + O + O (1)
Here, e represents an electron, and the electron is generated by discharge.
O + O 2 → O 3 (2)
C k H m O n + ( 2k + m / 2-n) O 3 → kCO 2 + (m / 2) H 2 O
+ (2k + m / 2-n) O 2 (3)
C k H n O n + ( 2k + m / 2-n) O → kCO 2 + (m / 2) H 2 O (4)
H 2 O + 1 / 2O 2 → 2OH (5)
C k H m O n + ( 4k + m-2n) OH → kCO 2 + (2k + m-n) H 2 O (6)

金属導体とそれを覆うように誘電体を備えた高圧電極においては、放電時に発生する熱の影響により誘電体に比べて熱膨張率が高い金属導体が膨張し、金属導体に誘電体を密着させた場合には誘電体を損傷させる可能性がある。このため、本実施の形態1では、金属導体2aと管状誘電体2bとの間に空隙を設け、金属導体2aと管状誘電体2bとの間の一箇所で導電体2eにより電気的に接続されているので、熱膨張による管状誘電体2bの損傷を抑制することができるだけでなく、これによる異常放電も抑制することができる。高圧電源4から交流高電圧を供給する事により、高圧電極2と板状吸着材3hとの放電空間で無声放電を発生させ、プラズマを生成させる。このプラズマにより生成した酸素原子などの活性種と、板状吸着材3hに吸着・濃縮されたVOCsなどの有機ガス分子の化学物質とを反応させることにより有機ガス分子を分解除去し、板状吸着材3hの化学物質の吸着・濃縮能力が回復される。本実施の形態1の構成により、高圧電極2からの火花放電を抑制でき、かつ、高圧電極2と接地電極3とによる放電電極対に投入できる電力を増大させることができる。この結果、有機ガス分子を分解除去する酸素ラジカルの高い生成効率を実現でき、分解効率の高い空気浄化装置を実現することができる。また、熱膨張による管状誘電体2bの損傷を抑制することができるので、金属導体2を冷却する必要がなく、放電に伴う熱を利用して分解効率の向上も可能となり、空気浄化装置の小型化が図れる。   In a high-voltage electrode equipped with a metal conductor and a dielectric so as to cover the metal conductor, the metal conductor having a higher coefficient of thermal expansion than the dielectric expands due to the influence of heat generated during discharge, and the dielectric is brought into close contact with the metal conductor. In such a case, the dielectric may be damaged. For this reason, in this Embodiment 1, a space | gap is provided between the metal conductor 2a and the tubular dielectric 2b, and it electrically connects with the conductor 2e in one place between the metal conductor 2a and the tubular dielectric 2b. Therefore, not only can the damage of the tubular dielectric 2b due to thermal expansion be suppressed, but also abnormal discharge due to this can be suppressed. By supplying an alternating high voltage from the high voltage power source 4, a silent discharge is generated in the discharge space between the high voltage electrode 2 and the plate-like adsorbent 3h to generate plasma. By reacting active species such as oxygen atoms generated by this plasma with chemicals of organic gas molecules such as VOCs adsorbed and concentrated on the plate-like adsorbent 3h, the organic gas molecules are decomposed and removed, and plate-like adsorption is performed. The ability to adsorb and concentrate the chemical substances in the material 3h is restored. With the configuration of the first embodiment, it is possible to suppress the spark discharge from the high voltage electrode 2 and increase the power that can be supplied to the discharge electrode pair by the high voltage electrode 2 and the ground electrode 3. As a result, high generation efficiency of oxygen radicals for decomposing and removing organic gas molecules can be realized, and an air purification device with high decomposition efficiency can be realized. Further, since the damage to the tubular dielectric 2b due to thermal expansion can be suppressed, it is not necessary to cool the metal conductor 2, and it is possible to improve the decomposition efficiency by using the heat accompanying the discharge, and the air purification device can be made compact. Can be achieved.

板状吸着材3hは、空気を流した時の圧力損失を減らすために1cmあたり16〜155個のハニカムもしくはコルゲート形状のセルを持つセラミック基台に、二酸化マンガン(MnO)、酸化銅(CuO)、酸化亜鉛(ZnO)、二酸化チタン(TiO)とその複合体および金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Ru)、イリジウム(Ir)から選ばれる少なくとも1種類以上の触媒が添加されたSiO、AlからなるFAU構造やMFI構造をもつゼオライトなどの吸着剤が添着されたものである。ここでFAU、MFIは国際ゼオライト学会(International Zeolite Association:IZA)で決定された構造コードであり、FAUはフォージャサイトとも呼ばれ、細孔径1.2nm程度の比較的大きな細孔を持つ12員環のゼオライトであり、MFI構造はZSM5ともよばれ10員環、細孔0.5〜0.6nmの細孔を持つゼオライトである。触媒は有機ガス分子の酸化分解反応を促進する作用を持つ。また、板状吸着材3hの導電性を向上させるために、マンガン(Mn)、銅(Cu)、ニッケル(Ni)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)あるいはコバルト(Co)の金属を添加してもよい。上記金属を複数種類、添加することは触媒被毒に耐性を持たせ、長時間分解性能を維持させる上で望ましい。 The plate-like adsorbent 3h is made of manganese dioxide (MnO 2 ), copper oxide (copper oxide) on a ceramic base having 16 to 155 honeycombs or corrugated cells per 1 cm 2 in order to reduce pressure loss when air flows. CuO), zinc oxide (ZnO), titanium dioxide (TiO 2 ) and their composites, and gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Ru), iridium (Ir) An adsorbent such as zeolite having a FAU structure or MFI structure made of SiO 2 and Al 2 O 3 to which at least one selected catalyst is added is added. Here, FAU and MFI are structural codes determined by the International Zeolite Association (IZA). FAU is also called faujasite and has 12 members with relatively large pores with a pore diameter of about 1.2 nm. It is a ring zeolite, and its MFI structure is also called ZSM5 and has a 10-membered ring and pores with pores of 0.5 to 0.6 nm. The catalyst has the effect of promoting the oxidative decomposition reaction of organic gas molecules. Further, in order to improve the conductivity of the plate-like adsorbent 3h, manganese (Mn), copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), titanium (Ti) or cobalt (Co) These metals may be added. It is desirable to add a plurality of types of the above metals in order to provide resistance to catalyst poisoning and maintain decomposition performance for a long time.

板状吸着材3hの別の製法として、ゼオライトの粉末と粘土やアルミナなどのつなぎ(バインダー)でハニカムやコルゲート状に押し出し成型後、焼成したものを基台として、これに二酸化マンガン(MnO)、酸化銅(CuO)、酸化亜鉛(ZnO)、二酸化チタン(TiO)やその複合体からなる触媒をイオン交換や含浸により添着したものであってもよい。一般的にゼオライトなどの吸着剤はポーラスであるため、空気中の水分を吸着して導電性を持つ。しかし、疎水性ゼオライトにイオン交換により触媒を添着した場合には、吸湿性が低いため導電性が低くなるので、金属粒子をハニカム基台に混ぜる、もしくは、金属基台に吸着剤を添着させることによって導電性を持たせることができる。さらに、金属粒子に粒径数ナノメートルの粒子を利用する、あるいは、チタン、亜鉛、白金、金、銀などの金属で基台を作ることによりに金属自体に触媒作用を持たせることもできる。 As another method for producing the plate-like adsorbent 3h, a zeolite powder and a binder (binder) such as clay or alumina that are extruded into a honeycomb or corrugated shape and then fired, and then fired, manganese dioxide (MnO 2 ) is used as a base. A catalyst made of copper oxide (CuO), zinc oxide (ZnO), titanium dioxide (TiO 2 ), or a composite thereof may be added by ion exchange or impregnation. In general, an adsorbent such as zeolite is porous, so it has conductivity by adsorbing moisture in the air. However, when a catalyst is attached to a hydrophobic zeolite by ion exchange, the conductivity becomes low due to low hygroscopicity, so the metal particles are mixed into the honeycomb base, or the adsorbent is attached to the metal base. Can be made conductive. Furthermore, it is possible to use metal particles having a particle size of several nanometers, or to make the metal itself have a catalytic action by making a base with a metal such as titanium, zinc, platinum, gold, or silver.

また、放電プラズマを用いて有機ガス分子やNHなどの臭気成分を分解除去するため、放電生成物としてオゾン(O)が生成される。生成されたオゾンは微量では問題ないが、高濃度になると有害であるため、板状吸着材3hにはオゾンを分解する能力を有する吸着剤を用いるのが望ましく、活性炭などのオゾン分解触媒を添加すると空気浄化装置1から漏れ出すオゾンを低減することができる。さらに二酸化マンガン、鉄、銅、ニッケルなどのオゾン分解触媒を用いた場合、オゾンを酸素分子(O)とオゾンよりも酸化力の高い酸素原子(O)に分解することが出来る。生成した酸素原子はオゾン分解触媒上に留まっているため、オゾン分解触媒上に吸着した有機ガス分子と接触反応し、分解することができるという効果もある。 Moreover, ozone (O 3 ) is generated as a discharge product in order to decompose and remove odor components such as organic gas molecules and NH 3 using the discharge plasma. The amount of ozone generated is not a problem, but it is harmful when the concentration is high. Therefore, it is desirable to use an adsorbent capable of decomposing ozone for the plate-like adsorbent 3h, and an ozone decomposition catalyst such as activated carbon is added. Then, ozone leaking out from the air purification device 1 can be reduced. Furthermore, when an ozone decomposing catalyst such as manganese dioxide, iron, copper, or nickel is used, ozone can be decomposed into oxygen molecules (O 2 ) and oxygen atoms (O) having higher oxidizing power than ozone. Since the generated oxygen atoms remain on the ozone decomposition catalyst, there is an effect that the oxygen atoms can be decomposed by contact reaction with organic gas molecules adsorbed on the ozone decomposition catalyst.

金属導体2aは、例えば、材料はステンレス、鉄、銅、タングステンであり、形状は板、棒、線の何れの形状であってもよいが、高圧電極2としての外形形状は、接地電極3の板状吸着材3h全面に対して均一に被処理空気が行き届き、かつ板状吸着材3h全面に亙って一様に放電させるために棒状が好ましい。一例として、高圧電極2の寸法は、金属導体2aの径が1mmφ、管状誘電体2bの外径が3mmφ、肉厚が0.5mm、導電膜2cの膜厚が0.3mm、空隙2gの距離が0.2mm、全体の長さは100mmである。管状誘電体2bの材質としては、石英、ガラス、ジルコニア、アルミナ、ムライト、ステアタイトセラミックなどがあげられるが、耐電圧、耐熱性、比誘電率が高く、誘電損失の低い誘電体であればよく、これらに限定されるものではない。また、金属導体2aの形状を円柱状とした場合、それを覆う管状誘電体2bは円筒状の形状が望ましい。   The metal conductor 2a is made of, for example, stainless steel, iron, copper, or tungsten, and may have any shape such as a plate, a rod, or a wire, but the outer shape of the high-voltage electrode 2 is the same as that of the ground electrode 3. The rod-like shape is preferable because the air to be treated reaches the entire surface of the plate-shaped adsorbent 3h uniformly and discharges uniformly over the entire surface of the plate-shaped adsorbent 3h. As an example, the dimensions of the high voltage electrode 2 are as follows: the diameter of the metal conductor 2a is 1 mmφ, the outer diameter of the tubular dielectric 2b is 3 mmφ, the wall thickness is 0.5 mm, the film thickness of the conductive film 2c is 0.3 mm, and the gap is 2g. Is 0.2 mm, and the overall length is 100 mm. Examples of the material of the tubular dielectric 2b include quartz, glass, zirconia, alumina, mullite, and steatite ceramic. However, any dielectric that has high withstand voltage, heat resistance, high dielectric constant, and low dielectric loss may be used. However, it is not limited to these. Moreover, when the shape of the metal conductor 2a is a columnar shape, the tubular dielectric 2b covering the metal conductor 2a preferably has a cylindrical shape.

管状誘電体2bの肉厚は薄いほど放電開始電圧を小さくすることができるが、強度が低下し損傷する可能性が高くなる。また、管状誘電体2bの肉厚が厚くなると印加電圧が高くなり、被処理空気の透過を妨げる要因となり得ることから、管状誘電体2bの肉厚としては0.5〜1mmを用いることが望ましい。この範囲の肉厚の誘電体を用いることにより、低い放電開始電圧で放電プラズマを発生させることができ、誘電体の損傷を抑止することができる。また、高圧電極2と板状吸着材3hとの放電ギャップ長が1mm未満であると、被処理空気7が高圧電極2の背後の板状吸着材3hの面に行き届かず、圧力損失の増加に繋がる。放電ギャップ長が5mm以上であると、放電開始に必要な電圧が高くなるため、高圧電源4の負荷が増大する。このため、放電ギャップ長は1〜5mm程度であることが望ましい。   The thinner the tubular dielectric 2b is, the smaller the discharge start voltage can be. However, the strength decreases and the possibility of damage increases. In addition, when the thickness of the tubular dielectric 2b is increased, the applied voltage is increased, which can be a factor that hinders permeation of the air to be treated. Therefore, it is desirable to use 0.5 to 1 mm as the thickness of the tubular dielectric 2b. . By using a dielectric having a thickness in this range, discharge plasma can be generated at a low discharge start voltage, and damage to the dielectric can be suppressed. Further, if the discharge gap length between the high-voltage electrode 2 and the plate-shaped adsorbent 3h is less than 1 mm, the air 7 to be treated does not reach the surface of the plate-shaped adsorbent 3h behind the high-voltage electrode 2 and the pressure loss increases. It leads to. When the discharge gap length is 5 mm or more, the voltage required for starting the discharge increases, so the load of the high-voltage power supply 4 increases. For this reason, the discharge gap length is desirably about 1 to 5 mm.

金属導体2aと管状誘電体2bとの空隙2gの距離は、金属導体2a、管状誘電体2bの体積膨張率により決定されるが、例えば、金属導体2aにSUS304、誘電体3にアルミナセラミックを用いた場合には、放電に伴う温度上昇が150℃であるとすると、SUS304の体積膨張率は、0.0078であるのに対して、アルミナセラミックの体積膨張率は0.0036であることから、金属導体2aの体積に対して1.5%以上の距離を設けることにより管状誘電体の損傷を抑制することができる。   The distance of the gap 2g between the metal conductor 2a and the tubular dielectric 2b is determined by the volume expansion coefficient of the metal conductor 2a and the tubular dielectric 2b. For example, SUS304 is used for the metal conductor 2a and alumina ceramic is used for the dielectric 3. In the case where the temperature rise accompanying the discharge is 150 ° C., the volume expansion coefficient of SUS304 is 0.0078, whereas the volume expansion coefficient of alumina ceramic is 0.0036. Damage to the tubular dielectric can be suppressed by providing a distance of 1.5% or more with respect to the volume of the metal conductor 2a.

ここで、金属導体2aと管状誘電体2bとの間を接触接続する導電体2eとしては、導電性を有する材質であれば良く、導電性を有する物質を充填する以外に、例えば、金属製ばね、金属製メッシュなどであってもよく、金属導体2aと誘電体2bを電気的に接続させることにより、放電時に金属導体2aが膨張した際には、金属製ばねもしくは金属製メッシュが収縮することにより誘電体2bにかかる応力を低減できるため、管状誘電体2bの損傷を抑制することができる。接触接続する導電体2eは、金属導体2aの膨張による管状誘電体2bの応力を考慮すると一箇所であることが好ましい。   Here, the conductor 2e that contacts and connects between the metal conductor 2a and the tubular dielectric 2b may be any material having conductivity, for example, a metal spring other than filling with a substance having conductivity. A metal mesh or the like may be used. When the metal conductor 2a expands during discharge by electrically connecting the metal conductor 2a and the dielectric 2b, the metal spring or the metal mesh contracts. Thus, the stress applied to the dielectric 2b can be reduced, so that damage to the tubular dielectric 2b can be suppressed. The conductor 2e to be contact-connected is preferably at one place in consideration of the stress of the tubular dielectric 2b due to the expansion of the metal conductor 2a.

また、管状誘電体2bの内壁に導電膜2cを形成する方法としては、めっき、塗布、貼り付け、スパッタによる方法などがある。この導電膜2cにより、金属導体2aと管状誘電体2bとの空隙2gでの異常放電を抑え、かつ放電時の発熱が引き起こす金属導体2aの膨張による管状誘電体2bの損傷の発生を抑制できる。   In addition, as a method of forming the conductive film 2c on the inner wall of the tubular dielectric 2b, there are a method of plating, coating, pasting, sputtering, and the like. With this conductive film 2c, abnormal discharge in the gap 2g between the metal conductor 2a and the tubular dielectric 2b can be suppressed, and occurrence of damage to the tubular dielectric 2b due to expansion of the metal conductor 2a caused by heat generation during discharge can be suppressed.

接地電極3の板状吸着材3hに吸着されたVOCsなどの有機ガス分子やアンモニアなどの臭気物質を分解するために、高圧電源4により発生させた波高値1〜30kV、周波数50〜10,000Hzの正弦波もしくは矩形波交流高電圧、または、パルス的に発生する正負両極性もしくは正また負のみの単極性電圧を印加して、高圧電極2と接地電極3の板状吸着材3hとの間で放電させればよい。なお、放電させる印加電圧と周波数は、高圧電極2と接地電極3との距離、吸着した有機ガス分子を分解するために必要な投入エネルギにより決定される。金属導体2aと板状吸着材3hとの間に管状誘電体2bが存在することにより、放電が開始されると管状誘電体2b表面に電荷の移動が起こり、高圧電極2表面で一様に放電を発生させることが可能になる。また、この管状誘電体2bの存在により金属導体2aと板状吸着材3hとの間での短絡が抑制される。   In order to decompose organic gas molecules such as VOCs adsorbed on the plate-shaped adsorbent 3h of the ground electrode 3 and odorous substances such as ammonia, a peak value generated by the high voltage power source 4 is 1 to 30 kV, and a frequency is 50 to 10,000 Hz. Between the high-voltage electrode 2 and the plate-like adsorbent 3h of the ground electrode 3 by applying a positive sine wave or rectangular wave AC high voltage, or positive and negative bipolar or positive or negative unipolar voltage Can be discharged. The applied voltage and frequency to be discharged are determined by the distance between the high-voltage electrode 2 and the ground electrode 3 and the input energy necessary for decomposing the adsorbed organic gas molecules. Due to the presence of the tubular dielectric 2b between the metal conductor 2a and the plate-like adsorbent 3h, when the discharge is started, charge transfer occurs on the surface of the tubular dielectric 2b, and the high voltage electrode 2 surface is uniformly discharged. Can be generated. Further, the presence of the tubular dielectric 2b suppresses a short circuit between the metal conductor 2a and the plate-like adsorbent 3h.

図3に、投入電力に対する板状吸着材の体積抵抗率と放電電力の関係の一例を示す。ここで、電源周波数は1kHz、高圧電極2と板状吸着材3hとの放電ギャップ長は2mm、被処理空気の含有水分濃度が13,000ppm(露点温度:11℃)の場合である。板状吸着材3hの体積抵抗率が8.5MΩmの場合、12kVの交流高電圧を印加した際の放電電力が58Wであるのに対して、体積抵抗率が15MΩmの場合には、同じ12kVの交流高電圧を印加した場合でも33Wであり、体積抵抗率が増加するに従い、同一印加電圧に対する放電電力が低下する傾向がある。この図から放電プラズマを発生させる場合、接地電極3の板状吸着材3hの電気抵抗が高くなるにつれ放電電流が流れ難くなり、投入電力に対して放電電力が低くなることが分かる。従って、この条件で、放電プラズマで分解処理を行う場合には、板状吸着材3hの体積抵抗率が8.5MΩm以下のものを使用することが望ましい。   FIG. 3 shows an example of the relationship between the volume resistivity of the plate-like adsorbent and the discharge power with respect to the input power. Here, the power supply frequency is 1 kHz, the discharge gap length between the high-voltage electrode 2 and the plate-like adsorbent 3 h is 2 mm, and the moisture content of the air to be treated is 13,000 ppm (dew point temperature: 11 ° C.). When the volume resistivity of the plate-like adsorbent 3h is 8.5 MΩm, the discharge power when an AC high voltage of 12 kV is applied is 58 W, whereas when the volume resistivity is 15 MΩm, the same 12 kV Even when an alternating high voltage is applied, it is 33 W, and the discharge power for the same applied voltage tends to decrease as the volume resistivity increases. From this figure, it is understood that when the discharge plasma is generated, it becomes difficult for the discharge current to flow as the electric resistance of the plate-like adsorbent 3h of the ground electrode 3 increases, and the discharge power becomes lower than the input power. Therefore, when the decomposition treatment is performed with the discharge plasma under these conditions, it is desirable to use a plate-like adsorbent 3h having a volume resistivity of 8.5 MΩm or less.

図4は、高圧電源4から高圧電極2へ高電圧を印加する給電方法を示す図である。図4(a)は、複数の高圧電極2に対して金属製の板ばね給電子9で固定、給電する方法である。図4(b)は、線状給電子10で接続して、給電する方法である。他に線状の替わりに板状給電子(図示せず)なども利用できる。特に、板ばね給電子9を用いることにより高圧電極2を固定できるため、板状吸着材3hに対して均一な放電プラズマを実現することができる。
高圧電極2に高電圧が印加されるので、高圧電極2と対向する板状吸着材3hとの放電ギャップ長が不均一であると電界が一点に集中し、火花放電に進展する可能性が高くなり、均一に放電プラズマが生成されない。この結果、吸着材が局所的にしか再生されず、板状吸着材3hに濃縮される化学物質を完全に分解除去することができない。そこで、高圧電極2と接地電極3との距離を一定の値に保ち、固定保持する例の斜視図を図5に示す。絶縁性を有する支持体11に凹部11sを設けて高圧電極2を固定することにより板状吸着材3hとの放電ギャップ長を均一に維持し、板ばね給電子9により複数の高圧電極2を高圧電源4に接続することで複数の高圧電極2を同電位に調整できる。また、絶縁性の支持体11の凹部11s内に板ばね給電子9を埋め込むことで、板ばね給電子9から板状吸着材3hへの異常放電を防ぐことができる。高圧電極2の金属導体2aは、板ばね給電子9で接続され、高圧電源4に繋がっている。一方、接地電極3は板状吸着材3hの側面周囲に取り付けられた帯状導電体3tにより接地されている。
FIG. 4 is a diagram showing a power feeding method for applying a high voltage from the high voltage power source 4 to the high voltage electrode 2. FIG. 4A shows a method in which a plurality of high-voltage electrodes 2 are fixed and supplied with metal leaf springs 9. FIG. 4B shows a method of supplying power by connecting with the linear power supply 10. In addition, a plate-type power supply (not shown) can be used instead of the linear shape. In particular, since the high voltage electrode 2 can be fixed by using the leaf spring power supply 9, uniform discharge plasma can be realized for the plate-like adsorbent 3h.
Since a high voltage is applied to the high-voltage electrode 2, if the discharge gap length between the plate-shaped adsorbent 3h facing the high-voltage electrode 2 is non-uniform, the electric field concentrates at one point, and there is a high possibility of progressing to spark discharge. Therefore, the discharge plasma is not generated uniformly. As a result, the adsorbent is regenerated only locally, and the chemical substance concentrated in the plate-like adsorbent 3h cannot be completely decomposed and removed. Therefore, FIG. 5 shows a perspective view of an example in which the distance between the high-voltage electrode 2 and the ground electrode 3 is kept constant and fixed. The insulating support 11 is provided with a recess 11s and the high voltage electrode 2 is fixed to maintain a uniform discharge gap length with the plate-like adsorbent 3h. By connecting to the power supply 4, the plurality of high voltage electrodes 2 can be adjusted to the same potential. Further, by embedding the leaf spring supply electron 9 in the recess 11s of the insulating support 11, an abnormal discharge from the leaf spring supply electron 9 to the plate-like adsorbent 3h can be prevented. The metal conductor 2 a of the high-voltage electrode 2 is connected by a leaf spring power supply 9 and connected to the high-voltage power supply 4. On the other hand, the ground electrode 3 is grounded by a strip-shaped conductor 3t attached around the side surface of the plate-like adsorbent 3h.

支持材11の材質としては、金属導体2eと板状吸着材3hとの間での異常放電の発生を抑制する必要があるため、絶縁性が高いものが望ましい。例えば、ポリエチレン、塩化ビニル、天然ゴム、磁器、ガラス、ポリエステル・エポキシ・メラミン・フェノール・ポリウレタンなどの合成樹脂、マイカ・石綿・ガラス繊維など無機材料などの絶縁性を有するものが望ましい。さらに、放電プラズマにより発熱することから耐熱性に優れた材料が好ましい。また、支持材11により高圧電極2と板状吸着材3hとの間の放電ギャップ長が一定に保たれるので、板状吸着材3hとの界面で均一な放電プラズマを生成でき、板状吸着材3hの完全再生が可能となる。   As the material of the support member 11, since it is necessary to suppress the occurrence of abnormal discharge between the metal conductor 2e and the plate-like adsorbent 3h, a material having high insulation is desirable. For example, insulating materials such as polyethylene, vinyl chloride, natural rubber, porcelain, glass, synthetic resins such as polyester, epoxy, melamine, phenol, and polyurethane, and inorganic materials such as mica, asbestos, and glass fiber are desirable. Furthermore, since it generates heat by discharge plasma, a material excellent in heat resistance is preferable. Further, since the discharge gap length between the high-voltage electrode 2 and the plate-like adsorbent 3h is kept constant by the support material 11, a uniform discharge plasma can be generated at the interface with the plate-like adsorbent 3h, and the plate-like adsorption The material 3h can be completely regenerated.

図6は、管状誘電体2bの内壁に導電膜が形成されていない場合における放電電極対部の断面図を示すものである。導電体2eは、管状誘電体2bの長さ方向に亙って金属導体2aと管状誘電体2bとの空隙に設けられ、管状誘電体2bの半径方向に対して一箇所で金属導体2aと管状誘電体2bが接続されている。導電体2eは、放電により高圧電極2と接地電極3との間で放電によるプラズマが発生することを考えると、板状吸着材3hと対面する側の管状誘電体2bの内壁側に設けるのが望ましい。   FIG. 6 shows a cross-sectional view of the discharge electrode pair when the conductive film is not formed on the inner wall of the tubular dielectric 2b. The conductor 2e is provided in the gap between the metal conductor 2a and the tubular dielectric 2b along the length direction of the tubular dielectric 2b, and the metal conductor 2a and the tubular are formed at one position with respect to the radial direction of the tubular dielectric 2b. The dielectric 2b is connected. The conductor 2e is provided on the inner wall side of the tubular dielectric 2b on the side facing the plate-like adsorbent 3h, considering that plasma is generated by discharge between the high-voltage electrode 2 and the ground electrode 3 due to discharge. desirable.

支持材11の沿面距離が十分ではない場合、沿面放電が進展し、高圧電極2と板状吸着材3hとの空間で放電プラズマが生成されない。高圧電極2に印加する電圧値は、支持材11の材質などにより決定されるが、沿面距離Sと放電ギャップ長Dが同じ距離の場合、高圧電極2と板状吸着材3hとの間で支持材に沿って沿面放電が進展し、放電プラズマが生成できない可能性がある。ここで、図6に示すように沿面距離Sが放電ギャップ長Dよりも長くなるように、支持材11に板状吸着材3h側の開口部が大きくなるように角度θのテーパ部12を設けておけばよく、角度θを90度未満にすれば、沿面距離Sを放電ギャップ長Dより長くすることができる。好ましくは、角度θを15〜45度の範囲に設定することにより、沿面距離Sが長くなり、高圧電極2と板状吸着材3hの沿面放電を抑制することができる。さらに、角度θを設けることにより、板状吸着材3hの実効吸着面積を増やすことになり、被処理空気7に対する圧力損失を低減できる。また、支持材11の側面に凹凸を形成することにより、沿面距離を長くしても同様の効果が得られる。   When the creepage distance of the support material 11 is not sufficient, creeping discharge progresses and no discharge plasma is generated in the space between the high-voltage electrode 2 and the plate-like adsorbent 3h. The voltage value applied to the high-voltage electrode 2 is determined by the material of the support material 11 and the like, but when the creepage distance S and the discharge gap length D are the same distance, the voltage is supported between the high-voltage electrode 2 and the plate-like adsorbent 3h. There is a possibility that creeping discharge progresses along the material, and discharge plasma cannot be generated. Here, as shown in FIG. 6, the taper portion 12 having the angle θ is provided in the support material 11 so that the opening on the plate-like adsorbent 3 h side becomes large so that the creepage distance S becomes longer than the discharge gap length D. The creeping distance S can be made longer than the discharge gap length D if the angle θ is less than 90 degrees. Preferably, by setting the angle θ in the range of 15 to 45 degrees, the creeping distance S is increased, and creeping discharge between the high-voltage electrode 2 and the plate-like adsorbent 3h can be suppressed. Furthermore, by providing the angle θ, the effective adsorption area of the plate-like adsorbent 3h is increased, and the pressure loss with respect to the air to be treated 7 can be reduced. Further, by forming irregularities on the side surface of the support material 11, the same effect can be obtained even if the creeping distance is increased.

このように、実施の形態1に係る空気浄化装置によれば、高圧電極2の金属導体2aと管状誘電体2bの間に空隙2gを設け、導電体2eで金属導体2aと管状誘電体2bの内壁の間に導電体2eにより接触接続されているため、管状誘電体2bが放電に伴う金属導体2aの熱膨張の影響を受けず、管状誘電体2bの損傷を低減させ異常放電を起こすことなく、接地電極3の板状吸着材3hに吸着されている有機ガス分子の放電分解処理を行うことができる効果がある。また、管状誘電体2bの内壁に導電膜2cが形成されているので、高圧電極2表面で一様に放電させることができ、安定した放電をさせることができる効果もある。   As described above, according to the air purification device of the first embodiment, the gap 2g is provided between the metal conductor 2a of the high-voltage electrode 2 and the tubular dielectric 2b, and the conductor 2e is used to connect the metal conductor 2a and the tubular dielectric 2b. Since the inner wall is contact-connected by the conductor 2e, the tubular dielectric 2b is not affected by the thermal expansion of the metal conductor 2a due to discharge, and the damage to the tubular dielectric 2b is reduced and abnormal discharge does not occur. There is an effect that the discharge decomposition treatment of the organic gas molecules adsorbed on the plate-like adsorbent 3h of the ground electrode 3 can be performed. In addition, since the conductive film 2c is formed on the inner wall of the tubular dielectric 2b, the surface of the high voltage electrode 2 can be uniformly discharged, and there is an effect that stable discharge can be achieved.

実施の形態2.
図7は、本発明の実施の形態2に係る空気浄化装置の構成を示す透視斜視図および放電電極対の断面図である。
図7(a)、(b)において、接地電極13の円筒状吸着材13h内に空隙13gを設けて高圧電極2が同心円状に挿入設置され、円筒状吸着材13hに帯状導電体13tが取り付けられている点を除けば、実施の形態1の図1と同様であるので、他の符号の説明を省略する。
Embodiment 2. FIG.
FIG. 7 is a perspective view and a cross-sectional view of the discharge electrode pair showing the configuration of the air purification apparatus according to Embodiment 2 of the present invention.
7A and 7B, the gap 13g is provided in the cylindrical adsorbent 13h of the ground electrode 13, the high-voltage electrode 2 is inserted and installed concentrically, and the strip conductor 13t is attached to the cylindrical adsorbent 13h. Except for this point, it is the same as that of FIG.

次に、実施の形態2に係る空気浄化装置の動作について、図7を参照して説明する。
まず、VOCsが含まれる被処理空気7が吸気用のファン5により空気浄化装置1内に導入されるが、除塵フィルタ6により被処理空気7中に含まれる空気中に浮遊している塵や埃、ペンキカスなどの粒子などの塵埃が取り除かれる。次に、被処理空気7に含まれるVOCsなどの有機ガス分子を始めとする化学物質は、接地電極13の円筒状吸着材13hで吸着される。高圧電極2と接地電極13には高圧電源4から高電圧が印加され放電により、プラズマが発生し、接地電極13の円筒状吸着材13hに吸着されている有機ガス分子が酸化され、二酸化炭素と水とに分解処理される。その後、有機ガス分子が分解除去された清浄空気8は、空気浄化装置1外に排出される。
Next, the operation of the air purification apparatus according to Embodiment 2 will be described with reference to FIG.
First, to-be-treated air 7 containing VOCs is introduced into the air purifier 1 by the intake fan 5, but dust or dust floating in the air contained in the to-be-treated air 7 by the dust removal filter 6. Dust, such as particles of paint, is removed. Next, chemical substances including organic gas molecules such as VOCs contained in the air to be treated 7 are adsorbed by the cylindrical adsorbent 13 h of the ground electrode 13. A high voltage is applied to the high-voltage electrode 2 and the ground electrode 13 from the high-voltage power supply 4, and plasma is generated by discharge, and the organic gas molecules adsorbed on the cylindrical adsorbent 13 h of the ground electrode 13 are oxidized, and carbon dioxide and Decomposed into water. Thereafter, the clean air 8 from which organic gas molecules have been decomposed and removed is discharged out of the air purification apparatus 1.

このように、実施の形態2に係る空気浄化装置によれば、金属導体2aと管状誘電体2bの内壁の間に導電体2eにより接触接続されているため、管状誘電体2bが放電に伴う金属導体2aの熱膨張の影響を受けず、管状誘電体2bの損傷を低減させ異常放電を起こすことなく、接地電極3の円筒状吸着材13hに吸着されている有機ガス分子の放電分解処理が行えるという実施の形態1と同様の効果を有するとともに、高圧電極2が円筒状吸着材13h内に空隙13gを設けて、挿入配置されているので、高圧電極2と接地電極13とのそれぞれの放電電極対の放電距離を独立して調整できるので、距離の調整が容易になるとともに精度が向上し、また、放電が安定するという効果もある。   As described above, according to the air purification device according to the second embodiment, since the conductor 2e is contact-connected between the metal conductor 2a and the inner wall of the tubular dielectric 2b, the tubular dielectric 2b is a metal associated with discharge. The discharge decomposition treatment of organic gas molecules adsorbed on the cylindrical adsorbent 13h of the ground electrode 3 can be performed without being affected by the thermal expansion of the conductor 2a, reducing damage to the tubular dielectric 2b, and causing no abnormal discharge. The high-voltage electrode 2 has the same effect as that of the first embodiment, and the gap 13g is provided in the cylindrical adsorbent 13h so as to be inserted. Therefore, the discharge electrodes of the high-voltage electrode 2 and the ground electrode 13 are provided. Since the discharge distance of the pair can be adjusted independently, the distance can be easily adjusted, the accuracy is improved, and the discharge is stabilized.

実施の形態3.
図8は、本発明の実施の形態3に係る空気浄化装置の構成を示す透視斜視図である。
図8において、接地電極14の板状吸着材14h内に空隙14gを設けて高圧電極2が同心円状に挿入設置され、板状吸着材14hに帯状導電体14tが取り付けられている点を除けば、実施の形態1の図1と同様であるので、他の符号の説明を省略する。
Embodiment 3 FIG.
FIG. 8 is a transparent perspective view showing the configuration of the air purifying apparatus according to Embodiment 3 of the present invention.
In FIG. 8, except that the gap 14g is provided in the plate-like adsorbent 14h of the ground electrode 14, the high-voltage electrode 2 is inserted and installed concentrically, and the strip-like conductor 14t is attached to the plate-like adsorbent 14h. Since it is the same as that of FIG. 1 of Embodiment 1, description of another code | symbol is abbreviate | omitted.

次に、実施の形態3に係る空気浄化装置の動作について、図8を参照して説明する。
まず、VOCsが含まれる被処理空気7が吸気用のファン5により空気浄化装置1内に導入されるが、除塵フィルタ6により被処理空気7中に含まれる空気中に浮遊している塵や埃、ペンキカスなどの粒子などの塵埃が取り除かれる。次に、被処理空気7に含まれるVOCsなどの有機ガス分子を始めとする化学物質は、接地電極14の板状吸着材14hで吸着される。高圧電極2と接地電極14には高圧電源4から高電圧が印加され放電により、プラズマが発生し、接地電極14の板状吸着材14hに吸着されている有機ガス分子が酸化され、二酸化炭素と水とに分解処理される。その後、有機ガス分子が分解除去された清浄空気8は、空気浄化装置1外に排出される。
Next, the operation of the air purification apparatus according to Embodiment 3 will be described with reference to FIG.
First, to-be-treated air 7 containing VOCs is introduced into the air purifier 1 by the intake fan 5, but dust or dust floating in the air contained in the to-be-treated air 7 by the dust removal filter 6. Dust, such as particles of paint, is removed. Next, chemical substances including organic gas molecules such as VOCs contained in the air to be treated 7 are adsorbed by the plate-like adsorbent 14 h of the ground electrode 14. A high voltage is applied to the high-voltage electrode 2 and the ground electrode 14 from the high-voltage power supply 4, and plasma is generated by discharge, and the organic gas molecules adsorbed on the plate-like adsorbent 14 h of the ground electrode 14 are oxidized, and carbon dioxide and Decomposed into water. Thereafter, the clean air 8 from which organic gas molecules have been decomposed and removed is discharged out of the air purification apparatus 1.

このように、実施の形態3に係る空気浄化装置によれば、金属導体2と管状誘電体2bの内壁の間に導電体2eにより接触接続されているため、管状誘電体2bが放電に伴う金属導体2aの熱膨張の影響を受けず、管状誘電体2bの損傷を低減させ異常放電を起こすことなく、接地電極14の板状吸着材14hに吸着されている有機ガス分子の放電分解処理が行えるという実施の形態1と同様の効果を有するとともに、高圧電極2が板状吸着材14h内に空隙14gを設けて、挿入配置されているので、高圧電極2と接地電極14とのそれぞれの放電電極対の放電距離を独立して調整できるので、距離の調整が容易になるという効果がある。また、吸着材が板状であるので、被処理空気と吸着材の接触面積を落とすことなく効率良く処理できる効果もある。   As described above, according to the air purification device according to the third embodiment, since the conductor 2e is contact-connected between the metal conductor 2 and the inner wall of the tubular dielectric 2b, the tubular dielectric 2b is a metal accompanying discharge. The discharge decomposition treatment of organic gas molecules adsorbed on the plate-shaped adsorbent 14h of the ground electrode 14 can be performed without being affected by the thermal expansion of the conductor 2a, reducing damage to the tubular dielectric 2b, and causing no abnormal discharge. The high-voltage electrode 2 is provided with a gap 14g in the plate-like adsorbing material 14h and inserted and disposed, so that the discharge electrodes of the high-voltage electrode 2 and the ground electrode 14 are provided. Since the discharge distance of the pair can be adjusted independently, there is an effect that the distance can be easily adjusted. Further, since the adsorbent is plate-shaped, there is an effect that the treatment can be performed efficiently without reducing the contact area between the air to be treated and the adsorbent.

実施の形態4.
図9は、本発明の実施の形態4に係る空気浄化装置を示すの透視斜視図である。
図9において、高圧電極2と高圧電源4との間に直列に可変誘導負荷Lが設置されている点を除けば、実施の形態1の図1と同様であるので、他の符号の説明を省略する。
Embodiment 4 FIG.
FIG. 9 is a perspective view showing an air purifying apparatus according to Embodiment 4 of the present invention.
9 is the same as FIG. 1 of Embodiment 1 except that a variable induction load L is installed in series between the high-voltage electrode 2 and the high-voltage power supply 4, and therefore other reference numerals are explained. Omitted.

次に、実施の形態4に係る空気浄化装置の動作について、図9を参照して説明する。高圧電極2の管状誘電体2bには、静電容量C1が、管状誘電体2bと板状吸着材3hとの放電ギャップには静電容量C2が存在する(図示せず)。高圧電源4から交流高電圧を印加する場合、印加電圧波形と放電電流波形との位相がずれることにより、印加電圧に対する電力効率が低下する。可変誘導負荷Lを設けることにより、位相ずれを解消し、電力効率を向上させることができる。必要な付加誘電負荷値は、管状誘電体2bの静電容量C1と放電ギャップの静電容量C2の合成容量C(=(C1+C2)/C1・C2)、高圧電源4の電源周波数fの値にもよるが、例えば、電源周波数を1kHz、管状誘電体2bの静電容量と放電ギャップ長の付加容量との合成容量Cが40pFである場合における付加誘導負荷値と電力効率の関係の例を図10に示す。この例では、電力効率を80%以上にするには、誘導負荷値を620〜650Hに設定することが望ましい。この範囲外の誘電負荷値の場合は、印加電圧に対する投入電力が低下する。必要な電力を投入するためには印加電圧を上げる必要がある。印加電圧を上げると、高圧電極2から空気浄化装置1の筐体などへの異常放電を誘発する可能性がる。上記の誘導負荷の範囲内に設定することにより、印加電圧波形と放電電流波形の位相ずれを無くし、高圧電源の電力効率を向上させることができる。また、可変誘導負荷Lを高圧電極2と並列に設置してもよく、直列と並列の両方を備えていてもよい。   Next, the operation of the air purification apparatus according to Embodiment 4 will be described with reference to FIG. Capacitance C1 exists in the tubular dielectric 2b of the high-voltage electrode 2, and capacitance C2 exists in the discharge gap between the tubular dielectric 2b and the plate-like adsorbent 3h (not shown). When an AC high voltage is applied from the high-voltage power supply 4, the phase of the applied voltage waveform and the discharge current waveform shifts, and the power efficiency with respect to the applied voltage decreases. By providing the variable inductive load L, the phase shift can be eliminated and the power efficiency can be improved. The required additional dielectric load value is the combined capacitance C (= (C1 + C2) / C1 · C2) of the capacitance C1 of the tubular dielectric 2b and the capacitance C2 of the discharge gap, and the value of the power supply frequency f of the high-voltage power supply 4. However, for example, when the power supply frequency is 1 kHz and the combined capacitance C of the capacitance of the tubular dielectric 2b and the additional capacitance of the discharge gap length is 40 pF, an example of the relationship between the additional inductive load value and the power efficiency is illustrated. 10 shows. In this example, in order to increase the power efficiency to 80% or more, it is desirable to set the inductive load value to 620 to 650H. In the case of a dielectric load value outside this range, the input power with respect to the applied voltage decreases. In order to input the necessary power, it is necessary to increase the applied voltage. When the applied voltage is increased, there is a possibility that abnormal discharge from the high-voltage electrode 2 to the housing of the air purification device 1 is induced. By setting within the range of the inductive load described above, the phase shift between the applied voltage waveform and the discharge current waveform can be eliminated, and the power efficiency of the high-voltage power supply can be improved. Moreover, the variable induction load L may be installed in parallel with the high voltage electrode 2, and both the series and the parallel may be provided.

このように、実施の形態5に係る空気浄化装置によれば、高圧電極2に対して直列もしく並列、あるいは両方に可変誘導負荷Lを設置することにより、管状誘電体2bの静電容量と高圧電極2と板状吸着材3hとの放電ギャップの静電容量による高圧電源4から印加される交流高電圧の印加電圧波形と放電電流波形との位相のずれを付加する付加誘導負荷値を最適化することにより解消でき、高圧電源4の電力効率を向上させることができる効果を有する。また、印加電圧を最適化し、低く抑えることができるので異常放電を抑制する効果も有する。   As described above, according to the air purification device of the fifth embodiment, the variable dielectric load L is installed in series or in parallel with the high-voltage electrode 2 or both, so that the capacitance of the tubular dielectric 2b can be increased. Optimum additional inductive load value that adds a phase shift between the applied high voltage AC voltage applied from the high voltage power supply 4 and the discharge current waveform due to the capacitance of the discharge gap between the high voltage electrode 2 and the plate-like adsorbent 3h. This has the effect of being able to be eliminated by improving the power efficiency of the high-voltage power supply 4. Further, since the applied voltage can be optimized and kept low, it has an effect of suppressing abnormal discharge.

実施の形態5.
図11は、本発明の実施の形態5に係る空気浄化装置を示す透視斜視図である。
図11において、接地電極3とアースとの間に直列に板状吸着材3hの導電率を調整用するための可変抵抗R1が設置されている点を除けば、実施の形態1の図1と同様であるので、他の符号の説明を省略する。
Embodiment 5. FIG.
FIG. 11 is a perspective view showing an air purifying apparatus according to Embodiment 5 of the present invention.
In FIG. 11, except that a variable resistor R1 for adjusting the conductivity of the plate-like adsorbent 3h is provided in series between the ground electrode 3 and the earth, Since it is the same, description of another code | symbol is abbreviate | omitted.

次に、実施の形態5に係る空気浄化装置の動作について説明する。接地電極が吸着材により構成されているが、吸着材が被処理空気に含まれている水分を吸着すると導電性が変化し、吸着材の電気抵抗値が変化する。一例として、電源周波数を1kHz、高圧電極2と板状吸着材3hとの放電ギャップ長を2mmとした場合の被処理空気に含まれる水分濃度が1,800ppm(露点温度:−20℃)、6,000ppm(0℃)、13,000ppm(11℃)における印加電圧と放電電力の関係を図12に示す。水分濃度により高圧電源4からの印加電圧に対する放電電力が異なることが分かる。季節、天候などのより環境条件が異なるため、接地電極3の板状吸着材3hの電気抵抗値を一定の値に維持することは困難であるため、高圧電極2に対して直列又は並列に吸着材の導電率を調整用するための可変抵抗R1を接続することにより、放電電極対のインピーダンスを一定の値に維持し、一定の処理効率に保つことができる。この可変抵抗R1の値が数GΩ以上であると、可変抵抗R1での電力損失が増大するため、数MΩ以下の抵抗値とすることが望ましい。なお、上記説明では、接地電極に直列に可変抵抗R1を設置する場合について述べたが、接地電極に対して並列に設置したものであってもよい。   Next, the operation of the air purification apparatus according to Embodiment 5 will be described. The ground electrode is made of an adsorbent, but when the adsorbent adsorbs moisture contained in the air to be treated, the conductivity changes and the electric resistance value of the adsorbent changes. As an example, when the power supply frequency is 1 kHz, the discharge gap length between the high-voltage electrode 2 and the plate-like adsorbent 3h is 2 mm, the moisture concentration contained in the air to be treated is 1,800 ppm (dew point temperature: −20 ° C.), 6 FIG. 12 shows the relationship between the applied voltage and the discharge power at 3,000 ppm (0 ° C.) and 13,000 ppm (11 ° C.). It can be seen that the discharge power with respect to the applied voltage from the high-voltage power supply 4 varies depending on the moisture concentration. Since environmental conditions such as season and weather are different, it is difficult to maintain the electric resistance value of the plate-like adsorbent 3h of the ground electrode 3 at a constant value, and therefore it is adsorbed in series or in parallel to the high-voltage electrode 2. By connecting a variable resistor R1 for adjusting the electrical conductivity of the material, the impedance of the discharge electrode pair can be maintained at a constant value and can be maintained at a constant processing efficiency. When the value of the variable resistor R1 is several GΩ or more, power loss in the variable resistor R1 increases. Therefore, it is desirable to set the resistance value to several MΩ or less. In the above description, the variable resistor R1 is installed in series with the ground electrode. However, the variable resistor R1 may be installed in parallel with the ground electrode.

このように、実施の形態5に係る空気浄化装置によれば、接地電極3と接地との間に直列に可変抵抗R1を設置することにより、板状吸着材3hに水分が吸着され電気抵抗値が変化しても、その抵抗値を調整することにより、放電電極対のインピーダンスを一定の値に維持し、一定の処理効率に保つことができる効果がある。   As described above, according to the air purifying apparatus according to the fifth embodiment, by installing the variable resistor R1 in series between the ground electrode 3 and the ground, moisture is adsorbed on the plate-like adsorbent 3h, and the electric resistance value. Even if is changed, by adjusting the resistance value, there is an effect that the impedance of the discharge electrode pair can be maintained at a constant value and can be maintained at a constant processing efficiency.

実施の形態6.
図13は、本発明の実施の形態6に係る空気浄化装置を示す透過斜視図である。
図13において、高圧電極2と高圧電源4との間に直列にアーク放電抑制用の可変抵抗R2が設置されている点を除けば、実施の形態1の図1と同様であるので、他の符号の説明を省略する。
Embodiment 6 FIG.
FIG. 13 is a transparent perspective view showing an air purification device according to Embodiment 6 of the present invention.
13 is the same as FIG. 1 of the first embodiment except that a variable resistor R2 for suppressing arc discharge is installed in series between the high voltage electrode 2 and the high voltage power source 4, Explanation of the reference numerals is omitted.

次に、実施の形態6に係る空気浄化装置の動作について説明する。通常、高圧電極2に高圧電源4から交流高電圧を印加して無声放電を発生させて、被処理空気7中に含まれるVOCsなどの有機ガス分子の分解処理を行う。しかしながら、環境雰囲気などの要因により放電空間の導電率が上昇し、高圧電極2と接地電極3との間において無声放電からアーク放電に進展する可能性がある。さらに、管状誘電体2bの肉厚によっては火花放電への進展も考えられるため、高圧電極2に直列にアーク放電抑制用の可変抵抗R2を設置して、この抵抗値を調整することによって、アーク放電を抑え、一定の処理効率を保つことができる。ここで、アーク放電抑制用の可変抵抗R2の値としては、短絡時の放電電流を1mA以下に抑えられる抵抗値を有するものであれば良く、抵抗値としては、〔最大印加電圧値/10−3〕Ω以上とすることが望ましい。 Next, the operation of the air purification device according to Embodiment 6 will be described. Usually, an alternating high voltage is applied to the high-voltage electrode 2 from the high-voltage power source 4 to generate a silent discharge to decompose organic gas molecules such as VOCs contained in the air 7 to be treated. However, the electrical conductivity of the discharge space increases due to factors such as the environmental atmosphere, and there is a possibility of progressing from silent discharge to arc discharge between the high-voltage electrode 2 and the ground electrode 3. Furthermore, depending on the thickness of the tubular dielectric 2b, progress to spark discharge can be considered. Therefore, by installing a variable resistor R2 for suppressing arc discharge in series with the high-voltage electrode 2 and adjusting the resistance value, Discharge can be suppressed and a constant processing efficiency can be maintained. Here, the value of the variable resistor R2 for arc discharge suppression, as long as it has a resistance value capable of suppressing the discharge current during a short circuit to less than 1mA, the resistance value [maximum applied voltage / 10 - 3 ] It is desirable that it be Ω or more.

このように、実施の形態6に係る空気浄化装置によれば、高圧電極2と高圧電源4との間に直列に可変抵抗R2を設置して、放電空間の導電率の変化を抵抗値を調整することにより、無声放電がアーク放電に進展するのを抑制し、一定の処理効率を保つことができる効果がある。   As described above, according to the air purifying apparatus according to the sixth embodiment, the variable resistor R2 is installed in series between the high-voltage electrode 2 and the high-voltage power supply 4, and the resistance value is adjusted by changing the conductivity of the discharge space. By doing so, there is an effect that it is possible to suppress the silent discharge from progressing to the arc discharge and to maintain a constant processing efficiency.

なお、上記実施の形態では、吸着剤としてゼオライトを使用する場合について述べたが、同じMFI構造を持つSiOが主成分であるシリカライトを用いても同様の効果が期待できる。 In the above-described embodiment, the case where zeolite is used as the adsorbent has been described, but the same effect can be expected even when silicalite having SiO 2 having the same MFI structure as a main component is used.

また、図中、同一符号は、同一または相当部分を示す。   Moreover, in the figure, the same code | symbol shows the same or an equivalent part.

実施の形態1に係る空気浄化装置の構成を示す透視斜視図および断面図である。1 is a perspective view and a cross-sectional view showing a configuration of an air purification device according to Embodiment 1. FIG. 実施の形態1に係る空気浄化装置の接地電極を示す略斜視図である。2 is a schematic perspective view showing a ground electrode of the air purification device according to Embodiment 1. FIG. 実施の形態1に係る空気浄化装置における投入電力に対する板状吸着材の体積抵抗率と放電電力の関係を示す略斜視図である。It is a schematic perspective view which shows the relationship between the volume resistivity of the plate-shaped adsorbent with respect to the input electric power in the air purification apparatus which concerns on Embodiment 1, and discharge electric power. 実施の形態1に係る空気浄化装置の高圧電極への給電方法を示す斜視図である。It is a perspective view which shows the electric power feeding method to the high voltage | pressure electrode of the air purification apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る空気浄化装置の放電電極対の構成を示す斜視図である。It is a perspective view which shows the structure of the discharge electrode pair of the air purification apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る空気浄化装置の動作を説明するための放電電極対の断面図である。It is sectional drawing of the discharge electrode pair for demonstrating operation | movement of the air purification apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る空気浄化装置の構成を示す透視斜視図および断面図である。FIG. 6 is a perspective view and a cross-sectional view showing a configuration of an air purification device according to Embodiment 2. 実施の形態3に係る空気浄化装置の構成を示す透視斜視図である。FIG. 6 is a perspective view showing a configuration of an air purification device according to Embodiment 3. 実施の形態4に係る空気浄化装置の構成を示す透視斜視図である。FIG. 6 is a perspective view illustrating a configuration of an air purification device according to a fourth embodiment. 実施の形態4に係る空気浄化装置における付加誘導負荷値と電力効率の関係を示す図である。It is a figure which shows the relationship between the additional induction load value in the air purification apparatus which concerns on Embodiment 4, and power efficiency. 実施の形態5に係る空気浄化装置の構成を示す透視斜視図である。FIG. 9 is a perspective view showing a configuration of an air purification device according to a fifth embodiment. 実施の形態5に係る空気浄化装置における水分濃度に対する印加電圧と放電電力の関係を示す図である。It is a figure which shows the relationship between the applied voltage with respect to the moisture concentration in the air purification apparatus which concerns on Embodiment 5, and discharge electric power. 実施の形態6に係る空気浄化装置の構成を示す透視斜視図である。FIG. 10 is a perspective view illustrating a configuration of an air purification device according to a sixth embodiment.

符号の説明Explanation of symbols

1 空気浄化装置
2 高圧電極
2a 金属導体
2b 管状誘電体
2c 導電膜
2d 空隙
2e 導電体
3 接地電極
3h,14h 板状吸着材
3t,13h,14h 帯状導電体
4 高圧電源
5 ファン
6 除塵フィルタ
13h 円筒状吸着材
L 可変誘導負荷
R1,R2 可変抵抗
DESCRIPTION OF SYMBOLS 1 Air purification apparatus 2 High voltage electrode 2a Metal conductor 2b Tubular dielectric 2c Conductive film 2d Air gap 2e Conductor 3 Ground electrode 3h, 14h Plate-shaped adsorbent 3t, 13h, 14h Strip conductor 4 High voltage power supply 5 Fan 6 Dust removal filter 13h Cylinder Adsorbent L Variable induction load R1, R2 Variable resistance

Claims (10)

管状誘電体の管内に空隙を設けて金属導体が挿入され、前記空隙の一部で前記金属導体と前記管状誘電体とを電気的に接続させる第一の導電体が設けられた高圧電極と、
化学物質を吸着する吸着材に第二の導電体が接続された接地電極と、
を備え、
前記高圧電極と前記接地電極とが対向されていることを特徴とする空気浄化用の放電電極。
A high-voltage electrode provided with a first conductor that electrically connects the metal conductor and the tubular dielectric in a part of the gap, with a gap provided in a tube of the tubular dielectric, a metal conductor inserted;
A ground electrode having a second conductor connected to an adsorbent that adsorbs a chemical substance;
With
A discharge electrode for purifying air, wherein the high-voltage electrode and the ground electrode are opposed to each other.
管状誘電体の管内に空隙を設けて金属導体が挿入され、前記空隙の一部で前記金属導体と前記管状誘電体とを電気的に接続させる第一の導電体が設けられた高圧電極と、
化学物質を吸着する吸着材に第二の導電体が接続された接地電極と、
を備え、
前記吸着材が管形状であり、前記吸着材の管内に空隙を設けて前記高圧電極が挿入されていることを特徴とする空気浄化用の放電電極。
A high-voltage electrode provided with a first conductor that electrically connects the metal conductor and the tubular dielectric in a part of the gap, with a gap provided in a tube of the tubular dielectric, a metal conductor inserted;
A ground electrode having a second conductor connected to an adsorbent that adsorbs a chemical substance;
With
The discharge electrode for air purification | cleaning characterized by the said adsorbent being a pipe | tube shape, providing the space | gap in the pipe | tube of the said adsorbent, and inserting the said high voltage | pressure electrode.
管状誘電体の管内に空隙を設けて金属導体が挿入され、前記空隙の一部で前記金属導体と前記管状誘電体とを電気的に接続させる第一の導電体が設けられた高圧電極と、
化学物質を吸着する吸着材に第二の導電体が接続された接地電極と、
を備え、
前記吸着材が板形状であり、前記吸着材の板面に対して平行に形成された孔に空隙を設けて前記高圧電極が挿入されていることを特徴とする空気浄化用の放電電極。
A high-voltage electrode provided with a first conductor that electrically connects the metal conductor and the tubular dielectric in a part of the gap, with a gap provided in a tube of the tubular dielectric, a metal conductor inserted;
A ground electrode having a second conductor connected to an adsorbent that adsorbs a chemical substance;
With
A discharge electrode for air purification, wherein the adsorbent has a plate shape, and the high voltage electrode is inserted in a hole formed in parallel to the plate surface of the adsorbent.
管状誘電体の内壁に導電膜が形成されていることを特徴とする請求項1から請求項3のいずれかに記載の空気浄化用の放電電極。   The discharge electrode for air purification | cleaning in any one of Claims 1-3 in which the electrically conductive film is formed in the inner wall of a tubular dielectric material. 吸着材は、吸着剤としてゼオライトが基台に添着されたものであることを特徴とする請求項1から請求項3のいずれかに記載の空気浄化用の放電電極。   The discharge electrode for air purification according to any one of claims 1 to 3, wherein the adsorbent is a material in which zeolite is attached to a base as an adsorbent. 吸着剤にマンガン、銅、ニッケル、亜鉛、鉄、チタン、コバルトの酸化物とこれらの複合体および金、銀、白金、パラジウム、ロジウム、イリジウムから選ばれる少なくとも1種類以上の触媒が添加されていることを特徴とする請求項5に記載の空気浄化用の放電電極。   Manganese, copper, nickel, zinc, iron, titanium, cobalt oxides and composites thereof, and at least one catalyst selected from gold, silver, platinum, palladium, rhodium, and iridium are added to the adsorbent. The discharge electrode for air purification | cleaning of Claim 5 characterized by the above-mentioned. 請求項1から請求項6のいずれかに記載の放電電極に電源を供給する高圧電源と、前記放電電極に被処理空気を引き込む吸気用のファンと、前記被処理空気から塵埃を除去する除塵フィルタと、を備えたことを特徴とする空気浄化装置。   A high-voltage power supply that supplies power to the discharge electrode according to any one of claims 1 to 6, a fan for intake air that draws air to be treated into the discharge electrode, and a dust removal filter that removes dust from the air to be treated And an air purification device. 高圧電極に対して直列または並列に可変誘導負荷を備えたことを特徴とする請求項7に記載の空気浄化装置。   8. The air purifier according to claim 7, further comprising a variable induction load in series or in parallel with the high voltage electrode. 高圧電極に対して直列に可変抵抗を備えたことを特徴とする請求項7に記載の空気浄化装置。   The air purifier according to claim 7, further comprising a variable resistor in series with the high voltage electrode. 接地電極に対して直列に可変抵抗を備えたことを特徴とする請求項7に記載の空気浄化装置。   The air purifier according to claim 7, further comprising a variable resistor in series with the ground electrode.
JP2008036368A 2007-04-03 2008-02-18 Discharge electrode and air purification apparatus using the same Expired - Fee Related JP5369448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036368A JP5369448B2 (en) 2007-04-03 2008-02-18 Discharge electrode and air purification apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007097351 2007-04-03
JP2007097351 2007-04-03
JP2008036368A JP5369448B2 (en) 2007-04-03 2008-02-18 Discharge electrode and air purification apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008272736A true JP2008272736A (en) 2008-11-13
JP5369448B2 JP5369448B2 (en) 2013-12-18

Family

ID=40051391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036368A Expired - Fee Related JP5369448B2 (en) 2007-04-03 2008-02-18 Discharge electrode and air purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP5369448B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136314A (en) * 2015-12-14 2018-06-08 松下电器产业株式会社 Chemical substance inspissator and chemical detector
KR20200074454A (en) * 2018-12-17 2020-06-25 한국기초과학지원연구원 Plasma source module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275119A (en) * 1990-03-26 1991-12-05 Akira Mizuno Apparatus for treating exhaust gas with plasma
JPH04267927A (en) * 1991-02-22 1992-09-24 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
JP2002256851A (en) * 2001-03-01 2002-09-11 Denso Corp Exhaust gas purifier of internal combustion engine
JP2003135582A (en) * 2001-11-06 2003-05-13 Denso Corp Air cleaner
JP2005313108A (en) * 2004-04-30 2005-11-10 Canon Inc Dielectric
JP2006167220A (en) * 2004-12-16 2006-06-29 Nittetsu Mining Co Ltd Method and apparatus for treating gas containing tobacco smoke
JP2006187766A (en) * 2004-12-07 2006-07-20 Canon Inc Gas treatment apparatus and gas treatment cartridge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275119A (en) * 1990-03-26 1991-12-05 Akira Mizuno Apparatus for treating exhaust gas with plasma
JPH04267927A (en) * 1991-02-22 1992-09-24 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
JP2002256851A (en) * 2001-03-01 2002-09-11 Denso Corp Exhaust gas purifier of internal combustion engine
JP2003135582A (en) * 2001-11-06 2003-05-13 Denso Corp Air cleaner
JP2005313108A (en) * 2004-04-30 2005-11-10 Canon Inc Dielectric
JP2006187766A (en) * 2004-12-07 2006-07-20 Canon Inc Gas treatment apparatus and gas treatment cartridge
JP2006167220A (en) * 2004-12-16 2006-06-29 Nittetsu Mining Co Ltd Method and apparatus for treating gas containing tobacco smoke

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136314A (en) * 2015-12-14 2018-06-08 松下电器产业株式会社 Chemical substance inspissator and chemical detector
CN108136314B (en) * 2015-12-14 2021-07-20 松下电器产业株式会社 Chemical substance concentrator and chemical substance detector
KR20200074454A (en) * 2018-12-17 2020-06-25 한국기초과학지원연구원 Plasma source module
KR102167842B1 (en) * 2018-12-17 2020-10-20 한국기초과학지원연구원 Plasma source module

Also Published As

Publication number Publication date
JP5369448B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP2009202137A (en) Air treatment apparatus
JP3711052B2 (en) Catalytic reactor for treating hazardous gases using low temperature plasma and dielectric heat
AU745172B2 (en) Electrostatic precipitator
JP4718344B2 (en) Air purification apparatus and air purification method using the same
EP1649923A1 (en) Gas processing method and gas processing apparatus utilizing oxidation catalyst and low-temperature plasma
JP4631861B2 (en) Air purification device
JP2007069115A (en) Gas processing apparatus and cartridge for gas processing
KR100487544B1 (en) Air pollutant destruction apparatus having plasma filter with three dimensional cell structure and its cleaning method
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
JP5369448B2 (en) Discharge electrode and air purification apparatus using the same
JP3632579B2 (en) Air purification device
KR100492475B1 (en) Low temperature plasma-catalysts system for VOC and odor treatment and method using thereof
JP4235580B2 (en) Dielectric
JP2001179040A (en) Gas decomposer
JP2007144278A (en) Deodorizer, and air conditioner equipped with the same
JP2022505628A (en) New plasma air purifier
CN107866216B (en) Catalyst, and process and device for purifying formaldehyde by using same
KR102411341B1 (en) Plasma Catalytic Rector for Removing Hazadous Gases and Removing Method of Hazadous Gases Using the Same
JP2006055512A (en) Air cleaner
JP2002346334A (en) Gas cleaning apparatus by plasma
WO2023019081A1 (en) Methods and apparatus for decomposing constituent elements of fluids
CN218235209U (en) Electric field device and VOCs gas treatment device
JPH11319489A (en) Catalyst structural body and deodorizing device having catalyst structural body
JP2006043550A (en) Air cleaner
KR20200019646A (en) Plasma wire having carbon coating layer and dust collector using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5369448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees